1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28  *                          only, and any IPv4 addresses if not IPv6 only
29  * match_wildcard == false: addresses must be exactly the same, i.e.
30  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31  *                          and 0.0.0.0 equals to 0.0.0.0 only
32  */
33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34 				 const struct in6_addr *sk2_rcv_saddr6,
35 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36 				 bool sk1_ipv6only, bool sk2_ipv6only,
37 				 bool match_wildcard)
38 {
39 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41 
42 	/* if both are mapped, treat as IPv4 */
43 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44 		if (!sk2_ipv6only) {
45 			if (sk1_rcv_saddr == sk2_rcv_saddr)
46 				return true;
47 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48 				return match_wildcard;
49 		}
50 		return false;
51 	}
52 
53 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54 		return true;
55 
56 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58 		return true;
59 
60 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62 		return true;
63 
64 	if (sk2_rcv_saddr6 &&
65 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66 		return true;
67 
68 	return false;
69 }
70 #endif
71 
72 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
73  * match_wildcard == false: addresses must be exactly the same, i.e.
74  *                          0.0.0.0 only equals to 0.0.0.0
75  */
76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77 				 bool sk2_ipv6only, bool match_wildcard)
78 {
79 	if (!sk2_ipv6only) {
80 		if (sk1_rcv_saddr == sk2_rcv_saddr)
81 			return true;
82 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83 			return match_wildcard;
84 	}
85 	return false;
86 }
87 
88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89 			  bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92 	if (sk->sk_family == AF_INET6)
93 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94 					    inet6_rcv_saddr(sk2),
95 					    sk->sk_rcv_saddr,
96 					    sk2->sk_rcv_saddr,
97 					    ipv6_only_sock(sk),
98 					    ipv6_only_sock(sk2),
99 					    match_wildcard);
100 #endif
101 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102 				    ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105 
106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109 	if (sk->sk_family == AF_INET6)
110 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112 	return !sk->sk_rcv_saddr;
113 }
114 
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121 
122 		*low = net->ipv4.ip_local_ports.range[0];
123 		*high = net->ipv4.ip_local_ports.range[1];
124 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127 
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 				  const struct inet_bind_bucket *tb,
130 				  bool relax, bool reuseport_ok)
131 {
132 	struct sock *sk2;
133 	bool reuse = sk->sk_reuse;
134 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 	kuid_t uid = sock_i_uid((struct sock *)sk);
136 
137 	/*
138 	 * Unlike other sk lookup places we do not check
139 	 * for sk_net here, since _all_ the socks listed
140 	 * in tb->owners list belong to the same net - the
141 	 * one this bucket belongs to.
142 	 */
143 
144 	sk_for_each_bound(sk2, &tb->owners) {
145 		if (sk != sk2 &&
146 		    (!sk->sk_bound_dev_if ||
147 		     !sk2->sk_bound_dev_if ||
148 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 			if ((!reuse || !sk2->sk_reuse ||
150 			    sk2->sk_state == TCP_LISTEN) &&
151 			    (!reuseport || !sk2->sk_reuseport ||
152 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
153 			     (sk2->sk_state != TCP_TIME_WAIT &&
154 			     !uid_eq(uid, sock_i_uid(sk2))))) {
155 				if (inet_rcv_saddr_equal(sk, sk2, true))
156 					break;
157 			}
158 			if (!relax && reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 		}
164 	}
165 	return sk2 != NULL;
166 }
167 
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 	int port = 0;
177 	struct inet_bind_hashbucket *head;
178 	struct net *net = sock_net(sk);
179 	int i, low, high, attempt_half;
180 	struct inet_bind_bucket *tb;
181 	u32 remaining, offset;
182 	int l3mdev;
183 
184 	l3mdev = inet_sk_bound_l3mdev(sk);
185 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
186 other_half_scan:
187 	inet_get_local_port_range(net, &low, &high);
188 	high++; /* [32768, 60999] -> [32768, 61000[ */
189 	if (high - low < 4)
190 		attempt_half = 0;
191 	if (attempt_half) {
192 		int half = low + (((high - low) >> 2) << 1);
193 
194 		if (attempt_half == 1)
195 			high = half;
196 		else
197 			low = half;
198 	}
199 	remaining = high - low;
200 	if (likely(remaining > 1))
201 		remaining &= ~1U;
202 
203 	offset = prandom_u32() % remaining;
204 	/* __inet_hash_connect() favors ports having @low parity
205 	 * We do the opposite to not pollute connect() users.
206 	 */
207 	offset |= 1U;
208 
209 other_parity_scan:
210 	port = low + offset;
211 	for (i = 0; i < remaining; i += 2, port += 2) {
212 		if (unlikely(port >= high))
213 			port -= remaining;
214 		if (inet_is_local_reserved_port(net, port))
215 			continue;
216 		head = &hinfo->bhash[inet_bhashfn(net, port,
217 						  hinfo->bhash_size)];
218 		spin_lock_bh(&head->lock);
219 		inet_bind_bucket_for_each(tb, &head->chain)
220 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
221 			    tb->port == port) {
222 				if (!inet_csk_bind_conflict(sk, tb, false, false))
223 					goto success;
224 				goto next_port;
225 			}
226 		tb = NULL;
227 		goto success;
228 next_port:
229 		spin_unlock_bh(&head->lock);
230 		cond_resched();
231 	}
232 
233 	offset--;
234 	if (!(offset & 1))
235 		goto other_parity_scan;
236 
237 	if (attempt_half == 1) {
238 		/* OK we now try the upper half of the range */
239 		attempt_half = 2;
240 		goto other_half_scan;
241 	}
242 	return NULL;
243 success:
244 	*port_ret = port;
245 	*tb_ret = tb;
246 	return head;
247 }
248 
249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
250 				     struct sock *sk)
251 {
252 	kuid_t uid = sock_i_uid(sk);
253 
254 	if (tb->fastreuseport <= 0)
255 		return 0;
256 	if (!sk->sk_reuseport)
257 		return 0;
258 	if (rcu_access_pointer(sk->sk_reuseport_cb))
259 		return 0;
260 	if (!uid_eq(tb->fastuid, uid))
261 		return 0;
262 	/* We only need to check the rcv_saddr if this tb was once marked
263 	 * without fastreuseport and then was reset, as we can only know that
264 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
265 	 * owners list.
266 	 */
267 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
268 		return 1;
269 #if IS_ENABLED(CONFIG_IPV6)
270 	if (tb->fast_sk_family == AF_INET6)
271 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
272 					    inet6_rcv_saddr(sk),
273 					    tb->fast_rcv_saddr,
274 					    sk->sk_rcv_saddr,
275 					    tb->fast_ipv6_only,
276 					    ipv6_only_sock(sk), true);
277 #endif
278 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
279 				    ipv6_only_sock(sk), true);
280 }
281 
282 /* Obtain a reference to a local port for the given sock,
283  * if snum is zero it means select any available local port.
284  * We try to allocate an odd port (and leave even ports for connect())
285  */
286 int inet_csk_get_port(struct sock *sk, unsigned short snum)
287 {
288 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
289 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
290 	int ret = 1, port = snum;
291 	struct inet_bind_hashbucket *head;
292 	struct net *net = sock_net(sk);
293 	struct inet_bind_bucket *tb = NULL;
294 	kuid_t uid = sock_i_uid(sk);
295 	int l3mdev;
296 
297 	l3mdev = inet_sk_bound_l3mdev(sk);
298 
299 	if (!port) {
300 		head = inet_csk_find_open_port(sk, &tb, &port);
301 		if (!head)
302 			return ret;
303 		if (!tb)
304 			goto tb_not_found;
305 		goto success;
306 	}
307 	head = &hinfo->bhash[inet_bhashfn(net, port,
308 					  hinfo->bhash_size)];
309 	spin_lock_bh(&head->lock);
310 	inet_bind_bucket_for_each(tb, &head->chain)
311 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
312 		    tb->port == port)
313 			goto tb_found;
314 tb_not_found:
315 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
316 				     net, head, port, l3mdev);
317 	if (!tb)
318 		goto fail_unlock;
319 tb_found:
320 	if (!hlist_empty(&tb->owners)) {
321 		if (sk->sk_reuse == SK_FORCE_REUSE)
322 			goto success;
323 
324 		if ((tb->fastreuse > 0 && reuse) ||
325 		    sk_reuseport_match(tb, sk))
326 			goto success;
327 		if (inet_csk_bind_conflict(sk, tb, true, true))
328 			goto fail_unlock;
329 	}
330 success:
331 	if (hlist_empty(&tb->owners)) {
332 		tb->fastreuse = reuse;
333 		if (sk->sk_reuseport) {
334 			tb->fastreuseport = FASTREUSEPORT_ANY;
335 			tb->fastuid = uid;
336 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
337 			tb->fast_ipv6_only = ipv6_only_sock(sk);
338 			tb->fast_sk_family = sk->sk_family;
339 #if IS_ENABLED(CONFIG_IPV6)
340 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
341 #endif
342 		} else {
343 			tb->fastreuseport = 0;
344 		}
345 	} else {
346 		if (!reuse)
347 			tb->fastreuse = 0;
348 		if (sk->sk_reuseport) {
349 			/* We didn't match or we don't have fastreuseport set on
350 			 * the tb, but we have sk_reuseport set on this socket
351 			 * and we know that there are no bind conflicts with
352 			 * this socket in this tb, so reset our tb's reuseport
353 			 * settings so that any subsequent sockets that match
354 			 * our current socket will be put on the fast path.
355 			 *
356 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
357 			 * do extra checking for all subsequent sk_reuseport
358 			 * socks.
359 			 */
360 			if (!sk_reuseport_match(tb, sk)) {
361 				tb->fastreuseport = FASTREUSEPORT_STRICT;
362 				tb->fastuid = uid;
363 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
364 				tb->fast_ipv6_only = ipv6_only_sock(sk);
365 				tb->fast_sk_family = sk->sk_family;
366 #if IS_ENABLED(CONFIG_IPV6)
367 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
368 #endif
369 			}
370 		} else {
371 			tb->fastreuseport = 0;
372 		}
373 	}
374 	if (!inet_csk(sk)->icsk_bind_hash)
375 		inet_bind_hash(sk, tb, port);
376 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
377 	ret = 0;
378 
379 fail_unlock:
380 	spin_unlock_bh(&head->lock);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(inet_csk_get_port);
384 
385 /*
386  * Wait for an incoming connection, avoid race conditions. This must be called
387  * with the socket locked.
388  */
389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
390 {
391 	struct inet_connection_sock *icsk = inet_csk(sk);
392 	DEFINE_WAIT(wait);
393 	int err;
394 
395 	/*
396 	 * True wake-one mechanism for incoming connections: only
397 	 * one process gets woken up, not the 'whole herd'.
398 	 * Since we do not 'race & poll' for established sockets
399 	 * anymore, the common case will execute the loop only once.
400 	 *
401 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
402 	 * after any current non-exclusive waiters, and we know that
403 	 * it will always _stay_ after any new non-exclusive waiters
404 	 * because all non-exclusive waiters are added at the
405 	 * beginning of the wait-queue. As such, it's ok to "drop"
406 	 * our exclusiveness temporarily when we get woken up without
407 	 * having to remove and re-insert us on the wait queue.
408 	 */
409 	for (;;) {
410 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
411 					  TASK_INTERRUPTIBLE);
412 		release_sock(sk);
413 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
414 			timeo = schedule_timeout(timeo);
415 		sched_annotate_sleep();
416 		lock_sock(sk);
417 		err = 0;
418 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
419 			break;
420 		err = -EINVAL;
421 		if (sk->sk_state != TCP_LISTEN)
422 			break;
423 		err = sock_intr_errno(timeo);
424 		if (signal_pending(current))
425 			break;
426 		err = -EAGAIN;
427 		if (!timeo)
428 			break;
429 	}
430 	finish_wait(sk_sleep(sk), &wait);
431 	return err;
432 }
433 
434 /*
435  * This will accept the next outstanding connection.
436  */
437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
438 {
439 	struct inet_connection_sock *icsk = inet_csk(sk);
440 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
441 	struct request_sock *req;
442 	struct sock *newsk;
443 	int error;
444 
445 	lock_sock(sk);
446 
447 	/* We need to make sure that this socket is listening,
448 	 * and that it has something pending.
449 	 */
450 	error = -EINVAL;
451 	if (sk->sk_state != TCP_LISTEN)
452 		goto out_err;
453 
454 	/* Find already established connection */
455 	if (reqsk_queue_empty(queue)) {
456 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
457 
458 		/* If this is a non blocking socket don't sleep */
459 		error = -EAGAIN;
460 		if (!timeo)
461 			goto out_err;
462 
463 		error = inet_csk_wait_for_connect(sk, timeo);
464 		if (error)
465 			goto out_err;
466 	}
467 	req = reqsk_queue_remove(queue, sk);
468 	newsk = req->sk;
469 
470 	if (sk->sk_protocol == IPPROTO_TCP &&
471 	    tcp_rsk(req)->tfo_listener) {
472 		spin_lock_bh(&queue->fastopenq.lock);
473 		if (tcp_rsk(req)->tfo_listener) {
474 			/* We are still waiting for the final ACK from 3WHS
475 			 * so can't free req now. Instead, we set req->sk to
476 			 * NULL to signify that the child socket is taken
477 			 * so reqsk_fastopen_remove() will free the req
478 			 * when 3WHS finishes (or is aborted).
479 			 */
480 			req->sk = NULL;
481 			req = NULL;
482 		}
483 		spin_unlock_bh(&queue->fastopenq.lock);
484 	}
485 out:
486 	release_sock(sk);
487 	if (req)
488 		reqsk_put(req);
489 	return newsk;
490 out_err:
491 	newsk = NULL;
492 	req = NULL;
493 	*err = error;
494 	goto out;
495 }
496 EXPORT_SYMBOL(inet_csk_accept);
497 
498 /*
499  * Using different timers for retransmit, delayed acks and probes
500  * We may wish use just one timer maintaining a list of expire jiffies
501  * to optimize.
502  */
503 void inet_csk_init_xmit_timers(struct sock *sk,
504 			       void (*retransmit_handler)(struct timer_list *t),
505 			       void (*delack_handler)(struct timer_list *t),
506 			       void (*keepalive_handler)(struct timer_list *t))
507 {
508 	struct inet_connection_sock *icsk = inet_csk(sk);
509 
510 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
511 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
512 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
513 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
514 }
515 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
516 
517 void inet_csk_clear_xmit_timers(struct sock *sk)
518 {
519 	struct inet_connection_sock *icsk = inet_csk(sk);
520 
521 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
522 
523 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
524 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
525 	sk_stop_timer(sk, &sk->sk_timer);
526 }
527 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
528 
529 void inet_csk_delete_keepalive_timer(struct sock *sk)
530 {
531 	sk_stop_timer(sk, &sk->sk_timer);
532 }
533 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
534 
535 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
536 {
537 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
538 }
539 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
540 
541 struct dst_entry *inet_csk_route_req(const struct sock *sk,
542 				     struct flowi4 *fl4,
543 				     const struct request_sock *req)
544 {
545 	const struct inet_request_sock *ireq = inet_rsk(req);
546 	struct net *net = read_pnet(&ireq->ireq_net);
547 	struct ip_options_rcu *opt;
548 	struct rtable *rt;
549 
550 	rcu_read_lock();
551 	opt = rcu_dereference(ireq->ireq_opt);
552 
553 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
554 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
555 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
556 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
557 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
558 			   htons(ireq->ir_num), sk->sk_uid);
559 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
560 	rt = ip_route_output_flow(net, fl4, sk);
561 	if (IS_ERR(rt))
562 		goto no_route;
563 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
564 		goto route_err;
565 	rcu_read_unlock();
566 	return &rt->dst;
567 
568 route_err:
569 	ip_rt_put(rt);
570 no_route:
571 	rcu_read_unlock();
572 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
573 	return NULL;
574 }
575 EXPORT_SYMBOL_GPL(inet_csk_route_req);
576 
577 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
578 					    struct sock *newsk,
579 					    const struct request_sock *req)
580 {
581 	const struct inet_request_sock *ireq = inet_rsk(req);
582 	struct net *net = read_pnet(&ireq->ireq_net);
583 	struct inet_sock *newinet = inet_sk(newsk);
584 	struct ip_options_rcu *opt;
585 	struct flowi4 *fl4;
586 	struct rtable *rt;
587 
588 	opt = rcu_dereference(ireq->ireq_opt);
589 	fl4 = &newinet->cork.fl.u.ip4;
590 
591 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
592 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
593 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
594 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
595 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
596 			   htons(ireq->ir_num), sk->sk_uid);
597 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
598 	rt = ip_route_output_flow(net, fl4, sk);
599 	if (IS_ERR(rt))
600 		goto no_route;
601 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
602 		goto route_err;
603 	return &rt->dst;
604 
605 route_err:
606 	ip_rt_put(rt);
607 no_route:
608 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
609 	return NULL;
610 }
611 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
612 
613 #if IS_ENABLED(CONFIG_IPV6)
614 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
615 #else
616 #define AF_INET_FAMILY(fam) true
617 #endif
618 
619 /* Decide when to expire the request and when to resend SYN-ACK */
620 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
621 				  const int max_retries,
622 				  const u8 rskq_defer_accept,
623 				  int *expire, int *resend)
624 {
625 	if (!rskq_defer_accept) {
626 		*expire = req->num_timeout >= thresh;
627 		*resend = 1;
628 		return;
629 	}
630 	*expire = req->num_timeout >= thresh &&
631 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
632 	/*
633 	 * Do not resend while waiting for data after ACK,
634 	 * start to resend on end of deferring period to give
635 	 * last chance for data or ACK to create established socket.
636 	 */
637 	*resend = !inet_rsk(req)->acked ||
638 		  req->num_timeout >= rskq_defer_accept - 1;
639 }
640 
641 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
642 {
643 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
644 
645 	if (!err)
646 		req->num_retrans++;
647 	return err;
648 }
649 EXPORT_SYMBOL(inet_rtx_syn_ack);
650 
651 /* return true if req was found in the ehash table */
652 static bool reqsk_queue_unlink(struct request_sock *req)
653 {
654 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
655 	bool found = false;
656 
657 	if (sk_hashed(req_to_sk(req))) {
658 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
659 
660 		spin_lock(lock);
661 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
662 		spin_unlock(lock);
663 	}
664 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
665 		reqsk_put(req);
666 	return found;
667 }
668 
669 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
670 {
671 	if (reqsk_queue_unlink(req)) {
672 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
673 		reqsk_put(req);
674 	}
675 }
676 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
677 
678 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
679 {
680 	inet_csk_reqsk_queue_drop(sk, req);
681 	reqsk_put(req);
682 }
683 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
684 
685 static void reqsk_timer_handler(struct timer_list *t)
686 {
687 	struct request_sock *req = from_timer(req, t, rsk_timer);
688 	struct sock *sk_listener = req->rsk_listener;
689 	struct net *net = sock_net(sk_listener);
690 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
691 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
692 	int qlen, expire = 0, resend = 0;
693 	int max_retries, thresh;
694 	u8 defer_accept;
695 
696 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
697 		goto drop;
698 
699 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
700 	thresh = max_retries;
701 	/* Normally all the openreqs are young and become mature
702 	 * (i.e. converted to established socket) for first timeout.
703 	 * If synack was not acknowledged for 1 second, it means
704 	 * one of the following things: synack was lost, ack was lost,
705 	 * rtt is high or nobody planned to ack (i.e. synflood).
706 	 * When server is a bit loaded, queue is populated with old
707 	 * open requests, reducing effective size of queue.
708 	 * When server is well loaded, queue size reduces to zero
709 	 * after several minutes of work. It is not synflood,
710 	 * it is normal operation. The solution is pruning
711 	 * too old entries overriding normal timeout, when
712 	 * situation becomes dangerous.
713 	 *
714 	 * Essentially, we reserve half of room for young
715 	 * embrions; and abort old ones without pity, if old
716 	 * ones are about to clog our table.
717 	 */
718 	qlen = reqsk_queue_len(queue);
719 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
720 		int young = reqsk_queue_len_young(queue) << 1;
721 
722 		while (thresh > 2) {
723 			if (qlen < young)
724 				break;
725 			thresh--;
726 			young <<= 1;
727 		}
728 	}
729 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
730 	if (defer_accept)
731 		max_retries = defer_accept;
732 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
733 		       &expire, &resend);
734 	req->rsk_ops->syn_ack_timeout(req);
735 	if (!expire &&
736 	    (!resend ||
737 	     !inet_rtx_syn_ack(sk_listener, req) ||
738 	     inet_rsk(req)->acked)) {
739 		unsigned long timeo;
740 
741 		if (req->num_timeout++ == 0)
742 			atomic_dec(&queue->young);
743 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
744 		mod_timer(&req->rsk_timer, jiffies + timeo);
745 		return;
746 	}
747 drop:
748 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
749 }
750 
751 static void reqsk_queue_hash_req(struct request_sock *req,
752 				 unsigned long timeout)
753 {
754 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
755 	mod_timer(&req->rsk_timer, jiffies + timeout);
756 
757 	inet_ehash_insert(req_to_sk(req), NULL);
758 	/* before letting lookups find us, make sure all req fields
759 	 * are committed to memory and refcnt initialized.
760 	 */
761 	smp_wmb();
762 	refcount_set(&req->rsk_refcnt, 2 + 1);
763 }
764 
765 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
766 				   unsigned long timeout)
767 {
768 	reqsk_queue_hash_req(req, timeout);
769 	inet_csk_reqsk_queue_added(sk);
770 }
771 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
772 
773 /**
774  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
775  *	@sk: the socket to clone
776  *	@req: request_sock
777  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
778  *
779  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
780  */
781 struct sock *inet_csk_clone_lock(const struct sock *sk,
782 				 const struct request_sock *req,
783 				 const gfp_t priority)
784 {
785 	struct sock *newsk = sk_clone_lock(sk, priority);
786 
787 	if (newsk) {
788 		struct inet_connection_sock *newicsk = inet_csk(newsk);
789 
790 		inet_sk_set_state(newsk, TCP_SYN_RECV);
791 		newicsk->icsk_bind_hash = NULL;
792 
793 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
794 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
795 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
796 
797 		/* listeners have SOCK_RCU_FREE, not the children */
798 		sock_reset_flag(newsk, SOCK_RCU_FREE);
799 
800 		inet_sk(newsk)->mc_list = NULL;
801 
802 		newsk->sk_mark = inet_rsk(req)->ir_mark;
803 		atomic64_set(&newsk->sk_cookie,
804 			     atomic64_read(&inet_rsk(req)->ir_cookie));
805 
806 		newicsk->icsk_retransmits = 0;
807 		newicsk->icsk_backoff	  = 0;
808 		newicsk->icsk_probes_out  = 0;
809 
810 		/* Deinitialize accept_queue to trap illegal accesses. */
811 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
812 
813 		security_inet_csk_clone(newsk, req);
814 	}
815 	return newsk;
816 }
817 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
818 
819 /*
820  * At this point, there should be no process reference to this
821  * socket, and thus no user references at all.  Therefore we
822  * can assume the socket waitqueue is inactive and nobody will
823  * try to jump onto it.
824  */
825 void inet_csk_destroy_sock(struct sock *sk)
826 {
827 	WARN_ON(sk->sk_state != TCP_CLOSE);
828 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
829 
830 	/* It cannot be in hash table! */
831 	WARN_ON(!sk_unhashed(sk));
832 
833 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
834 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
835 
836 	sk->sk_prot->destroy(sk);
837 
838 	sk_stream_kill_queues(sk);
839 
840 	xfrm_sk_free_policy(sk);
841 
842 	sk_refcnt_debug_release(sk);
843 
844 	percpu_counter_dec(sk->sk_prot->orphan_count);
845 
846 	sock_put(sk);
847 }
848 EXPORT_SYMBOL(inet_csk_destroy_sock);
849 
850 /* This function allows to force a closure of a socket after the call to
851  * tcp/dccp_create_openreq_child().
852  */
853 void inet_csk_prepare_forced_close(struct sock *sk)
854 	__releases(&sk->sk_lock.slock)
855 {
856 	/* sk_clone_lock locked the socket and set refcnt to 2 */
857 	bh_unlock_sock(sk);
858 	sock_put(sk);
859 
860 	/* The below has to be done to allow calling inet_csk_destroy_sock */
861 	sock_set_flag(sk, SOCK_DEAD);
862 	percpu_counter_inc(sk->sk_prot->orphan_count);
863 	inet_sk(sk)->inet_num = 0;
864 }
865 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
866 
867 int inet_csk_listen_start(struct sock *sk, int backlog)
868 {
869 	struct inet_connection_sock *icsk = inet_csk(sk);
870 	struct inet_sock *inet = inet_sk(sk);
871 	int err = -EADDRINUSE;
872 
873 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
874 
875 	sk->sk_ack_backlog = 0;
876 	inet_csk_delack_init(sk);
877 
878 	/* There is race window here: we announce ourselves listening,
879 	 * but this transition is still not validated by get_port().
880 	 * It is OK, because this socket enters to hash table only
881 	 * after validation is complete.
882 	 */
883 	inet_sk_state_store(sk, TCP_LISTEN);
884 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
885 		inet->inet_sport = htons(inet->inet_num);
886 
887 		sk_dst_reset(sk);
888 		err = sk->sk_prot->hash(sk);
889 
890 		if (likely(!err))
891 			return 0;
892 	}
893 
894 	inet_sk_set_state(sk, TCP_CLOSE);
895 	return err;
896 }
897 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
898 
899 static void inet_child_forget(struct sock *sk, struct request_sock *req,
900 			      struct sock *child)
901 {
902 	sk->sk_prot->disconnect(child, O_NONBLOCK);
903 
904 	sock_orphan(child);
905 
906 	percpu_counter_inc(sk->sk_prot->orphan_count);
907 
908 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
909 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
910 		BUG_ON(sk != req->rsk_listener);
911 
912 		/* Paranoid, to prevent race condition if
913 		 * an inbound pkt destined for child is
914 		 * blocked by sock lock in tcp_v4_rcv().
915 		 * Also to satisfy an assertion in
916 		 * tcp_v4_destroy_sock().
917 		 */
918 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
919 	}
920 	inet_csk_destroy_sock(child);
921 }
922 
923 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
924 				      struct request_sock *req,
925 				      struct sock *child)
926 {
927 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
928 
929 	spin_lock(&queue->rskq_lock);
930 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
931 		inet_child_forget(sk, req, child);
932 		child = NULL;
933 	} else {
934 		req->sk = child;
935 		req->dl_next = NULL;
936 		if (queue->rskq_accept_head == NULL)
937 			WRITE_ONCE(queue->rskq_accept_head, req);
938 		else
939 			queue->rskq_accept_tail->dl_next = req;
940 		queue->rskq_accept_tail = req;
941 		sk_acceptq_added(sk);
942 	}
943 	spin_unlock(&queue->rskq_lock);
944 	return child;
945 }
946 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
947 
948 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
949 					 struct request_sock *req, bool own_req)
950 {
951 	if (own_req) {
952 		inet_csk_reqsk_queue_drop(sk, req);
953 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
954 		if (inet_csk_reqsk_queue_add(sk, req, child))
955 			return child;
956 	}
957 	/* Too bad, another child took ownership of the request, undo. */
958 	bh_unlock_sock(child);
959 	sock_put(child);
960 	return NULL;
961 }
962 EXPORT_SYMBOL(inet_csk_complete_hashdance);
963 
964 /*
965  *	This routine closes sockets which have been at least partially
966  *	opened, but not yet accepted.
967  */
968 void inet_csk_listen_stop(struct sock *sk)
969 {
970 	struct inet_connection_sock *icsk = inet_csk(sk);
971 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
972 	struct request_sock *next, *req;
973 
974 	/* Following specs, it would be better either to send FIN
975 	 * (and enter FIN-WAIT-1, it is normal close)
976 	 * or to send active reset (abort).
977 	 * Certainly, it is pretty dangerous while synflood, but it is
978 	 * bad justification for our negligence 8)
979 	 * To be honest, we are not able to make either
980 	 * of the variants now.			--ANK
981 	 */
982 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
983 		struct sock *child = req->sk;
984 
985 		local_bh_disable();
986 		bh_lock_sock(child);
987 		WARN_ON(sock_owned_by_user(child));
988 		sock_hold(child);
989 
990 		inet_child_forget(sk, req, child);
991 		reqsk_put(req);
992 		bh_unlock_sock(child);
993 		local_bh_enable();
994 		sock_put(child);
995 
996 		cond_resched();
997 	}
998 	if (queue->fastopenq.rskq_rst_head) {
999 		/* Free all the reqs queued in rskq_rst_head. */
1000 		spin_lock_bh(&queue->fastopenq.lock);
1001 		req = queue->fastopenq.rskq_rst_head;
1002 		queue->fastopenq.rskq_rst_head = NULL;
1003 		spin_unlock_bh(&queue->fastopenq.lock);
1004 		while (req != NULL) {
1005 			next = req->dl_next;
1006 			reqsk_put(req);
1007 			req = next;
1008 		}
1009 	}
1010 	WARN_ON_ONCE(sk->sk_ack_backlog);
1011 }
1012 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1013 
1014 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1015 {
1016 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1017 	const struct inet_sock *inet = inet_sk(sk);
1018 
1019 	sin->sin_family		= AF_INET;
1020 	sin->sin_addr.s_addr	= inet->inet_daddr;
1021 	sin->sin_port		= inet->inet_dport;
1022 }
1023 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1024 
1025 #ifdef CONFIG_COMPAT
1026 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1027 			       char __user *optval, int __user *optlen)
1028 {
1029 	const struct inet_connection_sock *icsk = inet_csk(sk);
1030 
1031 	if (icsk->icsk_af_ops->compat_getsockopt)
1032 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1033 							    optval, optlen);
1034 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1035 					     optval, optlen);
1036 }
1037 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1038 
1039 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1040 			       char __user *optval, unsigned int optlen)
1041 {
1042 	const struct inet_connection_sock *icsk = inet_csk(sk);
1043 
1044 	if (icsk->icsk_af_ops->compat_setsockopt)
1045 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1046 							    optval, optlen);
1047 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1048 					     optval, optlen);
1049 }
1050 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1051 #endif
1052 
1053 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1054 {
1055 	const struct inet_sock *inet = inet_sk(sk);
1056 	const struct ip_options_rcu *inet_opt;
1057 	__be32 daddr = inet->inet_daddr;
1058 	struct flowi4 *fl4;
1059 	struct rtable *rt;
1060 
1061 	rcu_read_lock();
1062 	inet_opt = rcu_dereference(inet->inet_opt);
1063 	if (inet_opt && inet_opt->opt.srr)
1064 		daddr = inet_opt->opt.faddr;
1065 	fl4 = &fl->u.ip4;
1066 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1067 				   inet->inet_saddr, inet->inet_dport,
1068 				   inet->inet_sport, sk->sk_protocol,
1069 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1070 	if (IS_ERR(rt))
1071 		rt = NULL;
1072 	if (rt)
1073 		sk_setup_caps(sk, &rt->dst);
1074 	rcu_read_unlock();
1075 
1076 	return &rt->dst;
1077 }
1078 
1079 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1080 {
1081 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1082 	struct inet_sock *inet = inet_sk(sk);
1083 
1084 	if (!dst) {
1085 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1086 		if (!dst)
1087 			goto out;
1088 	}
1089 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1090 
1091 	dst = __sk_dst_check(sk, 0);
1092 	if (!dst)
1093 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094 out:
1095 	return dst;
1096 }
1097 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1098