1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28  *                          only, and any IPv4 addresses if not IPv6 only
29  * match_wildcard == false: addresses must be exactly the same, i.e.
30  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31  *                          and 0.0.0.0 equals to 0.0.0.0 only
32  */
33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34 				 const struct in6_addr *sk2_rcv_saddr6,
35 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36 				 bool sk1_ipv6only, bool sk2_ipv6only,
37 				 bool match_wildcard)
38 {
39 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41 
42 	/* if both are mapped, treat as IPv4 */
43 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44 		if (!sk2_ipv6only) {
45 			if (sk1_rcv_saddr == sk2_rcv_saddr)
46 				return true;
47 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48 				return match_wildcard;
49 		}
50 		return false;
51 	}
52 
53 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54 		return true;
55 
56 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58 		return true;
59 
60 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62 		return true;
63 
64 	if (sk2_rcv_saddr6 &&
65 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66 		return true;
67 
68 	return false;
69 }
70 #endif
71 
72 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
73  * match_wildcard == false: addresses must be exactly the same, i.e.
74  *                          0.0.0.0 only equals to 0.0.0.0
75  */
76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77 				 bool sk2_ipv6only, bool match_wildcard)
78 {
79 	if (!sk2_ipv6only) {
80 		if (sk1_rcv_saddr == sk2_rcv_saddr)
81 			return true;
82 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83 			return match_wildcard;
84 	}
85 	return false;
86 }
87 
88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89 			  bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92 	if (sk->sk_family == AF_INET6)
93 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94 					    inet6_rcv_saddr(sk2),
95 					    sk->sk_rcv_saddr,
96 					    sk2->sk_rcv_saddr,
97 					    ipv6_only_sock(sk),
98 					    ipv6_only_sock(sk2),
99 					    match_wildcard);
100 #endif
101 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102 				    ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105 
106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109 	if (sk->sk_family == AF_INET6)
110 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112 	return !sk->sk_rcv_saddr;
113 }
114 
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121 
122 		*low = net->ipv4.ip_local_ports.range[0];
123 		*high = net->ipv4.ip_local_ports.range[1];
124 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127 
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 				  const struct inet_bind_bucket *tb,
130 				  bool relax, bool reuseport_ok)
131 {
132 	struct sock *sk2;
133 	bool reuse = sk->sk_reuse;
134 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 	kuid_t uid = sock_i_uid((struct sock *)sk);
136 
137 	/*
138 	 * Unlike other sk lookup places we do not check
139 	 * for sk_net here, since _all_ the socks listed
140 	 * in tb->owners list belong to the same net - the
141 	 * one this bucket belongs to.
142 	 */
143 
144 	sk_for_each_bound(sk2, &tb->owners) {
145 		if (sk != sk2 &&
146 		    (!sk->sk_bound_dev_if ||
147 		     !sk2->sk_bound_dev_if ||
148 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 			if ((!reuse || !sk2->sk_reuse ||
150 			    sk2->sk_state == TCP_LISTEN) &&
151 			    (!reuseport || !sk2->sk_reuseport ||
152 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
153 			     (sk2->sk_state != TCP_TIME_WAIT &&
154 			     !uid_eq(uid, sock_i_uid(sk2))))) {
155 				if (inet_rcv_saddr_equal(sk, sk2, true))
156 					break;
157 			}
158 			if (!relax && reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 		}
164 	}
165 	return sk2 != NULL;
166 }
167 
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 	int port = 0;
177 	struct inet_bind_hashbucket *head;
178 	struct net *net = sock_net(sk);
179 	int i, low, high, attempt_half;
180 	struct inet_bind_bucket *tb;
181 	u32 remaining, offset;
182 	int l3mdev;
183 
184 	l3mdev = inet_sk_bound_l3mdev(sk);
185 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
186 other_half_scan:
187 	inet_get_local_port_range(net, &low, &high);
188 	high++; /* [32768, 60999] -> [32768, 61000[ */
189 	if (high - low < 4)
190 		attempt_half = 0;
191 	if (attempt_half) {
192 		int half = low + (((high - low) >> 2) << 1);
193 
194 		if (attempt_half == 1)
195 			high = half;
196 		else
197 			low = half;
198 	}
199 	remaining = high - low;
200 	if (likely(remaining > 1))
201 		remaining &= ~1U;
202 
203 	offset = prandom_u32() % remaining;
204 	/* __inet_hash_connect() favors ports having @low parity
205 	 * We do the opposite to not pollute connect() users.
206 	 */
207 	offset |= 1U;
208 
209 other_parity_scan:
210 	port = low + offset;
211 	for (i = 0; i < remaining; i += 2, port += 2) {
212 		if (unlikely(port >= high))
213 			port -= remaining;
214 		if (inet_is_local_reserved_port(net, port))
215 			continue;
216 		head = &hinfo->bhash[inet_bhashfn(net, port,
217 						  hinfo->bhash_size)];
218 		spin_lock_bh(&head->lock);
219 		inet_bind_bucket_for_each(tb, &head->chain)
220 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
221 			    tb->port == port) {
222 				if (!inet_csk_bind_conflict(sk, tb, false, false))
223 					goto success;
224 				goto next_port;
225 			}
226 		tb = NULL;
227 		goto success;
228 next_port:
229 		spin_unlock_bh(&head->lock);
230 		cond_resched();
231 	}
232 
233 	offset--;
234 	if (!(offset & 1))
235 		goto other_parity_scan;
236 
237 	if (attempt_half == 1) {
238 		/* OK we now try the upper half of the range */
239 		attempt_half = 2;
240 		goto other_half_scan;
241 	}
242 	return NULL;
243 success:
244 	*port_ret = port;
245 	*tb_ret = tb;
246 	return head;
247 }
248 
249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
250 				     struct sock *sk)
251 {
252 	kuid_t uid = sock_i_uid(sk);
253 
254 	if (tb->fastreuseport <= 0)
255 		return 0;
256 	if (!sk->sk_reuseport)
257 		return 0;
258 	if (rcu_access_pointer(sk->sk_reuseport_cb))
259 		return 0;
260 	if (!uid_eq(tb->fastuid, uid))
261 		return 0;
262 	/* We only need to check the rcv_saddr if this tb was once marked
263 	 * without fastreuseport and then was reset, as we can only know that
264 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
265 	 * owners list.
266 	 */
267 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
268 		return 1;
269 #if IS_ENABLED(CONFIG_IPV6)
270 	if (tb->fast_sk_family == AF_INET6)
271 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
272 					    inet6_rcv_saddr(sk),
273 					    tb->fast_rcv_saddr,
274 					    sk->sk_rcv_saddr,
275 					    tb->fast_ipv6_only,
276 					    ipv6_only_sock(sk), true);
277 #endif
278 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
279 				    ipv6_only_sock(sk), true);
280 }
281 
282 /* Obtain a reference to a local port for the given sock,
283  * if snum is zero it means select any available local port.
284  * We try to allocate an odd port (and leave even ports for connect())
285  */
286 int inet_csk_get_port(struct sock *sk, unsigned short snum)
287 {
288 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
289 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
290 	int ret = 1, port = snum;
291 	struct inet_bind_hashbucket *head;
292 	struct net *net = sock_net(sk);
293 	struct inet_bind_bucket *tb = NULL;
294 	kuid_t uid = sock_i_uid(sk);
295 	int l3mdev;
296 
297 	l3mdev = inet_sk_bound_l3mdev(sk);
298 
299 	if (!port) {
300 		head = inet_csk_find_open_port(sk, &tb, &port);
301 		if (!head)
302 			return ret;
303 		if (!tb)
304 			goto tb_not_found;
305 		goto success;
306 	}
307 	head = &hinfo->bhash[inet_bhashfn(net, port,
308 					  hinfo->bhash_size)];
309 	spin_lock_bh(&head->lock);
310 	inet_bind_bucket_for_each(tb, &head->chain)
311 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
312 		    tb->port == port)
313 			goto tb_found;
314 tb_not_found:
315 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
316 				     net, head, port, l3mdev);
317 	if (!tb)
318 		goto fail_unlock;
319 tb_found:
320 	if (!hlist_empty(&tb->owners)) {
321 		if (sk->sk_reuse == SK_FORCE_REUSE)
322 			goto success;
323 
324 		if ((tb->fastreuse > 0 && reuse) ||
325 		    sk_reuseport_match(tb, sk))
326 			goto success;
327 		if (inet_csk_bind_conflict(sk, tb, true, true))
328 			goto fail_unlock;
329 	}
330 success:
331 	if (hlist_empty(&tb->owners)) {
332 		tb->fastreuse = reuse;
333 		if (sk->sk_reuseport) {
334 			tb->fastreuseport = FASTREUSEPORT_ANY;
335 			tb->fastuid = uid;
336 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
337 			tb->fast_ipv6_only = ipv6_only_sock(sk);
338 			tb->fast_sk_family = sk->sk_family;
339 #if IS_ENABLED(CONFIG_IPV6)
340 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
341 #endif
342 		} else {
343 			tb->fastreuseport = 0;
344 		}
345 	} else {
346 		if (!reuse)
347 			tb->fastreuse = 0;
348 		if (sk->sk_reuseport) {
349 			/* We didn't match or we don't have fastreuseport set on
350 			 * the tb, but we have sk_reuseport set on this socket
351 			 * and we know that there are no bind conflicts with
352 			 * this socket in this tb, so reset our tb's reuseport
353 			 * settings so that any subsequent sockets that match
354 			 * our current socket will be put on the fast path.
355 			 *
356 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
357 			 * do extra checking for all subsequent sk_reuseport
358 			 * socks.
359 			 */
360 			if (!sk_reuseport_match(tb, sk)) {
361 				tb->fastreuseport = FASTREUSEPORT_STRICT;
362 				tb->fastuid = uid;
363 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
364 				tb->fast_ipv6_only = ipv6_only_sock(sk);
365 				tb->fast_sk_family = sk->sk_family;
366 #if IS_ENABLED(CONFIG_IPV6)
367 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
368 #endif
369 			}
370 		} else {
371 			tb->fastreuseport = 0;
372 		}
373 	}
374 	if (!inet_csk(sk)->icsk_bind_hash)
375 		inet_bind_hash(sk, tb, port);
376 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
377 	ret = 0;
378 
379 fail_unlock:
380 	spin_unlock_bh(&head->lock);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(inet_csk_get_port);
384 
385 /*
386  * Wait for an incoming connection, avoid race conditions. This must be called
387  * with the socket locked.
388  */
389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
390 {
391 	struct inet_connection_sock *icsk = inet_csk(sk);
392 	DEFINE_WAIT(wait);
393 	int err;
394 
395 	/*
396 	 * True wake-one mechanism for incoming connections: only
397 	 * one process gets woken up, not the 'whole herd'.
398 	 * Since we do not 'race & poll' for established sockets
399 	 * anymore, the common case will execute the loop only once.
400 	 *
401 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
402 	 * after any current non-exclusive waiters, and we know that
403 	 * it will always _stay_ after any new non-exclusive waiters
404 	 * because all non-exclusive waiters are added at the
405 	 * beginning of the wait-queue. As such, it's ok to "drop"
406 	 * our exclusiveness temporarily when we get woken up without
407 	 * having to remove and re-insert us on the wait queue.
408 	 */
409 	for (;;) {
410 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
411 					  TASK_INTERRUPTIBLE);
412 		release_sock(sk);
413 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
414 			timeo = schedule_timeout(timeo);
415 		sched_annotate_sleep();
416 		lock_sock(sk);
417 		err = 0;
418 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
419 			break;
420 		err = -EINVAL;
421 		if (sk->sk_state != TCP_LISTEN)
422 			break;
423 		err = sock_intr_errno(timeo);
424 		if (signal_pending(current))
425 			break;
426 		err = -EAGAIN;
427 		if (!timeo)
428 			break;
429 	}
430 	finish_wait(sk_sleep(sk), &wait);
431 	return err;
432 }
433 
434 /*
435  * This will accept the next outstanding connection.
436  */
437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
438 {
439 	struct inet_connection_sock *icsk = inet_csk(sk);
440 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
441 	struct request_sock *req;
442 	struct sock *newsk;
443 	int error;
444 
445 	lock_sock(sk);
446 
447 	/* We need to make sure that this socket is listening,
448 	 * and that it has something pending.
449 	 */
450 	error = -EINVAL;
451 	if (sk->sk_state != TCP_LISTEN)
452 		goto out_err;
453 
454 	/* Find already established connection */
455 	if (reqsk_queue_empty(queue)) {
456 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
457 
458 		/* If this is a non blocking socket don't sleep */
459 		error = -EAGAIN;
460 		if (!timeo)
461 			goto out_err;
462 
463 		error = inet_csk_wait_for_connect(sk, timeo);
464 		if (error)
465 			goto out_err;
466 	}
467 	req = reqsk_queue_remove(queue, sk);
468 	newsk = req->sk;
469 
470 	if (sk->sk_protocol == IPPROTO_TCP &&
471 	    tcp_rsk(req)->tfo_listener) {
472 		spin_lock_bh(&queue->fastopenq.lock);
473 		if (tcp_rsk(req)->tfo_listener) {
474 			/* We are still waiting for the final ACK from 3WHS
475 			 * so can't free req now. Instead, we set req->sk to
476 			 * NULL to signify that the child socket is taken
477 			 * so reqsk_fastopen_remove() will free the req
478 			 * when 3WHS finishes (or is aborted).
479 			 */
480 			req->sk = NULL;
481 			req = NULL;
482 		}
483 		spin_unlock_bh(&queue->fastopenq.lock);
484 	}
485 
486 out:
487 	release_sock(sk);
488 	if (newsk && mem_cgroup_sockets_enabled) {
489 		int amt;
490 
491 		/* atomically get the memory usage, set and charge the
492 		 * newsk->sk_memcg.
493 		 */
494 		lock_sock(newsk);
495 
496 		/* The socket has not been accepted yet, no need to look at
497 		 * newsk->sk_wmem_queued.
498 		 */
499 		amt = sk_mem_pages(newsk->sk_forward_alloc +
500 				   atomic_read(&newsk->sk_rmem_alloc));
501 		mem_cgroup_sk_alloc(newsk);
502 		if (newsk->sk_memcg && amt)
503 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
504 
505 		release_sock(newsk);
506 	}
507 	if (req)
508 		reqsk_put(req);
509 	return newsk;
510 out_err:
511 	newsk = NULL;
512 	req = NULL;
513 	*err = error;
514 	goto out;
515 }
516 EXPORT_SYMBOL(inet_csk_accept);
517 
518 /*
519  * Using different timers for retransmit, delayed acks and probes
520  * We may wish use just one timer maintaining a list of expire jiffies
521  * to optimize.
522  */
523 void inet_csk_init_xmit_timers(struct sock *sk,
524 			       void (*retransmit_handler)(struct timer_list *t),
525 			       void (*delack_handler)(struct timer_list *t),
526 			       void (*keepalive_handler)(struct timer_list *t))
527 {
528 	struct inet_connection_sock *icsk = inet_csk(sk);
529 
530 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
531 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
532 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
533 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
534 }
535 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
536 
537 void inet_csk_clear_xmit_timers(struct sock *sk)
538 {
539 	struct inet_connection_sock *icsk = inet_csk(sk);
540 
541 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
542 
543 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
544 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
545 	sk_stop_timer(sk, &sk->sk_timer);
546 }
547 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
548 
549 void inet_csk_delete_keepalive_timer(struct sock *sk)
550 {
551 	sk_stop_timer(sk, &sk->sk_timer);
552 }
553 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
554 
555 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
556 {
557 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
558 }
559 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
560 
561 struct dst_entry *inet_csk_route_req(const struct sock *sk,
562 				     struct flowi4 *fl4,
563 				     const struct request_sock *req)
564 {
565 	const struct inet_request_sock *ireq = inet_rsk(req);
566 	struct net *net = read_pnet(&ireq->ireq_net);
567 	struct ip_options_rcu *opt;
568 	struct rtable *rt;
569 
570 	rcu_read_lock();
571 	opt = rcu_dereference(ireq->ireq_opt);
572 
573 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
574 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
575 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
576 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
577 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
578 			   htons(ireq->ir_num), sk->sk_uid);
579 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
580 	rt = ip_route_output_flow(net, fl4, sk);
581 	if (IS_ERR(rt))
582 		goto no_route;
583 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
584 		goto route_err;
585 	rcu_read_unlock();
586 	return &rt->dst;
587 
588 route_err:
589 	ip_rt_put(rt);
590 no_route:
591 	rcu_read_unlock();
592 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
593 	return NULL;
594 }
595 EXPORT_SYMBOL_GPL(inet_csk_route_req);
596 
597 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
598 					    struct sock *newsk,
599 					    const struct request_sock *req)
600 {
601 	const struct inet_request_sock *ireq = inet_rsk(req);
602 	struct net *net = read_pnet(&ireq->ireq_net);
603 	struct inet_sock *newinet = inet_sk(newsk);
604 	struct ip_options_rcu *opt;
605 	struct flowi4 *fl4;
606 	struct rtable *rt;
607 
608 	opt = rcu_dereference(ireq->ireq_opt);
609 	fl4 = &newinet->cork.fl.u.ip4;
610 
611 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
612 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
613 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
614 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
615 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
616 			   htons(ireq->ir_num), sk->sk_uid);
617 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
618 	rt = ip_route_output_flow(net, fl4, sk);
619 	if (IS_ERR(rt))
620 		goto no_route;
621 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
622 		goto route_err;
623 	return &rt->dst;
624 
625 route_err:
626 	ip_rt_put(rt);
627 no_route:
628 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
629 	return NULL;
630 }
631 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
632 
633 /* Decide when to expire the request and when to resend SYN-ACK */
634 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
635 				  const int max_retries,
636 				  const u8 rskq_defer_accept,
637 				  int *expire, int *resend)
638 {
639 	if (!rskq_defer_accept) {
640 		*expire = req->num_timeout >= thresh;
641 		*resend = 1;
642 		return;
643 	}
644 	*expire = req->num_timeout >= thresh &&
645 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
646 	/*
647 	 * Do not resend while waiting for data after ACK,
648 	 * start to resend on end of deferring period to give
649 	 * last chance for data or ACK to create established socket.
650 	 */
651 	*resend = !inet_rsk(req)->acked ||
652 		  req->num_timeout >= rskq_defer_accept - 1;
653 }
654 
655 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
656 {
657 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
658 
659 	if (!err)
660 		req->num_retrans++;
661 	return err;
662 }
663 EXPORT_SYMBOL(inet_rtx_syn_ack);
664 
665 /* return true if req was found in the ehash table */
666 static bool reqsk_queue_unlink(struct request_sock *req)
667 {
668 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
669 	bool found = false;
670 
671 	if (sk_hashed(req_to_sk(req))) {
672 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
673 
674 		spin_lock(lock);
675 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
676 		spin_unlock(lock);
677 	}
678 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
679 		reqsk_put(req);
680 	return found;
681 }
682 
683 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
684 {
685 	if (reqsk_queue_unlink(req)) {
686 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
687 		reqsk_put(req);
688 	}
689 }
690 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
691 
692 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
693 {
694 	inet_csk_reqsk_queue_drop(sk, req);
695 	reqsk_put(req);
696 }
697 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
698 
699 static void reqsk_timer_handler(struct timer_list *t)
700 {
701 	struct request_sock *req = from_timer(req, t, rsk_timer);
702 	struct sock *sk_listener = req->rsk_listener;
703 	struct net *net = sock_net(sk_listener);
704 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
705 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
706 	int qlen, expire = 0, resend = 0;
707 	int max_retries, thresh;
708 	u8 defer_accept;
709 
710 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
711 		goto drop;
712 
713 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
714 	thresh = max_retries;
715 	/* Normally all the openreqs are young and become mature
716 	 * (i.e. converted to established socket) for first timeout.
717 	 * If synack was not acknowledged for 1 second, it means
718 	 * one of the following things: synack was lost, ack was lost,
719 	 * rtt is high or nobody planned to ack (i.e. synflood).
720 	 * When server is a bit loaded, queue is populated with old
721 	 * open requests, reducing effective size of queue.
722 	 * When server is well loaded, queue size reduces to zero
723 	 * after several minutes of work. It is not synflood,
724 	 * it is normal operation. The solution is pruning
725 	 * too old entries overriding normal timeout, when
726 	 * situation becomes dangerous.
727 	 *
728 	 * Essentially, we reserve half of room for young
729 	 * embrions; and abort old ones without pity, if old
730 	 * ones are about to clog our table.
731 	 */
732 	qlen = reqsk_queue_len(queue);
733 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
734 		int young = reqsk_queue_len_young(queue) << 1;
735 
736 		while (thresh > 2) {
737 			if (qlen < young)
738 				break;
739 			thresh--;
740 			young <<= 1;
741 		}
742 	}
743 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
744 	if (defer_accept)
745 		max_retries = defer_accept;
746 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
747 		       &expire, &resend);
748 	req->rsk_ops->syn_ack_timeout(req);
749 	if (!expire &&
750 	    (!resend ||
751 	     !inet_rtx_syn_ack(sk_listener, req) ||
752 	     inet_rsk(req)->acked)) {
753 		unsigned long timeo;
754 
755 		if (req->num_timeout++ == 0)
756 			atomic_dec(&queue->young);
757 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
758 		mod_timer(&req->rsk_timer, jiffies + timeo);
759 		return;
760 	}
761 drop:
762 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
763 }
764 
765 static void reqsk_queue_hash_req(struct request_sock *req,
766 				 unsigned long timeout)
767 {
768 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
769 	mod_timer(&req->rsk_timer, jiffies + timeout);
770 
771 	inet_ehash_insert(req_to_sk(req), NULL);
772 	/* before letting lookups find us, make sure all req fields
773 	 * are committed to memory and refcnt initialized.
774 	 */
775 	smp_wmb();
776 	refcount_set(&req->rsk_refcnt, 2 + 1);
777 }
778 
779 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
780 				   unsigned long timeout)
781 {
782 	reqsk_queue_hash_req(req, timeout);
783 	inet_csk_reqsk_queue_added(sk);
784 }
785 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
786 
787 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
788 			   const gfp_t priority)
789 {
790 	struct inet_connection_sock *icsk = inet_csk(newsk);
791 
792 	if (!icsk->icsk_ulp_ops)
793 		return;
794 
795 	if (icsk->icsk_ulp_ops->clone)
796 		icsk->icsk_ulp_ops->clone(req, newsk, priority);
797 }
798 
799 /**
800  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
801  *	@sk: the socket to clone
802  *	@req: request_sock
803  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
804  *
805  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
806  */
807 struct sock *inet_csk_clone_lock(const struct sock *sk,
808 				 const struct request_sock *req,
809 				 const gfp_t priority)
810 {
811 	struct sock *newsk = sk_clone_lock(sk, priority);
812 
813 	if (newsk) {
814 		struct inet_connection_sock *newicsk = inet_csk(newsk);
815 
816 		inet_sk_set_state(newsk, TCP_SYN_RECV);
817 		newicsk->icsk_bind_hash = NULL;
818 
819 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
820 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
821 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
822 
823 		/* listeners have SOCK_RCU_FREE, not the children */
824 		sock_reset_flag(newsk, SOCK_RCU_FREE);
825 
826 		inet_sk(newsk)->mc_list = NULL;
827 
828 		newsk->sk_mark = inet_rsk(req)->ir_mark;
829 		atomic64_set(&newsk->sk_cookie,
830 			     atomic64_read(&inet_rsk(req)->ir_cookie));
831 
832 		newicsk->icsk_retransmits = 0;
833 		newicsk->icsk_backoff	  = 0;
834 		newicsk->icsk_probes_out  = 0;
835 
836 		/* Deinitialize accept_queue to trap illegal accesses. */
837 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
838 
839 		inet_clone_ulp(req, newsk, priority);
840 
841 		security_inet_csk_clone(newsk, req);
842 	}
843 	return newsk;
844 }
845 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
846 
847 /*
848  * At this point, there should be no process reference to this
849  * socket, and thus no user references at all.  Therefore we
850  * can assume the socket waitqueue is inactive and nobody will
851  * try to jump onto it.
852  */
853 void inet_csk_destroy_sock(struct sock *sk)
854 {
855 	WARN_ON(sk->sk_state != TCP_CLOSE);
856 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
857 
858 	/* It cannot be in hash table! */
859 	WARN_ON(!sk_unhashed(sk));
860 
861 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
862 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
863 
864 	sk->sk_prot->destroy(sk);
865 
866 	sk_stream_kill_queues(sk);
867 
868 	xfrm_sk_free_policy(sk);
869 
870 	sk_refcnt_debug_release(sk);
871 
872 	percpu_counter_dec(sk->sk_prot->orphan_count);
873 
874 	sock_put(sk);
875 }
876 EXPORT_SYMBOL(inet_csk_destroy_sock);
877 
878 /* This function allows to force a closure of a socket after the call to
879  * tcp/dccp_create_openreq_child().
880  */
881 void inet_csk_prepare_forced_close(struct sock *sk)
882 	__releases(&sk->sk_lock.slock)
883 {
884 	/* sk_clone_lock locked the socket and set refcnt to 2 */
885 	bh_unlock_sock(sk);
886 	sock_put(sk);
887 
888 	/* The below has to be done to allow calling inet_csk_destroy_sock */
889 	sock_set_flag(sk, SOCK_DEAD);
890 	percpu_counter_inc(sk->sk_prot->orphan_count);
891 	inet_sk(sk)->inet_num = 0;
892 }
893 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
894 
895 int inet_csk_listen_start(struct sock *sk, int backlog)
896 {
897 	struct inet_connection_sock *icsk = inet_csk(sk);
898 	struct inet_sock *inet = inet_sk(sk);
899 	int err = -EADDRINUSE;
900 
901 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
902 
903 	sk->sk_ack_backlog = 0;
904 	inet_csk_delack_init(sk);
905 
906 	/* There is race window here: we announce ourselves listening,
907 	 * but this transition is still not validated by get_port().
908 	 * It is OK, because this socket enters to hash table only
909 	 * after validation is complete.
910 	 */
911 	inet_sk_state_store(sk, TCP_LISTEN);
912 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
913 		inet->inet_sport = htons(inet->inet_num);
914 
915 		sk_dst_reset(sk);
916 		err = sk->sk_prot->hash(sk);
917 
918 		if (likely(!err))
919 			return 0;
920 	}
921 
922 	inet_sk_set_state(sk, TCP_CLOSE);
923 	return err;
924 }
925 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
926 
927 static void inet_child_forget(struct sock *sk, struct request_sock *req,
928 			      struct sock *child)
929 {
930 	sk->sk_prot->disconnect(child, O_NONBLOCK);
931 
932 	sock_orphan(child);
933 
934 	percpu_counter_inc(sk->sk_prot->orphan_count);
935 
936 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
937 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
938 		BUG_ON(sk != req->rsk_listener);
939 
940 		/* Paranoid, to prevent race condition if
941 		 * an inbound pkt destined for child is
942 		 * blocked by sock lock in tcp_v4_rcv().
943 		 * Also to satisfy an assertion in
944 		 * tcp_v4_destroy_sock().
945 		 */
946 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
947 	}
948 	inet_csk_destroy_sock(child);
949 }
950 
951 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
952 				      struct request_sock *req,
953 				      struct sock *child)
954 {
955 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
956 
957 	spin_lock(&queue->rskq_lock);
958 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
959 		inet_child_forget(sk, req, child);
960 		child = NULL;
961 	} else {
962 		req->sk = child;
963 		req->dl_next = NULL;
964 		if (queue->rskq_accept_head == NULL)
965 			WRITE_ONCE(queue->rskq_accept_head, req);
966 		else
967 			queue->rskq_accept_tail->dl_next = req;
968 		queue->rskq_accept_tail = req;
969 		sk_acceptq_added(sk);
970 	}
971 	spin_unlock(&queue->rskq_lock);
972 	return child;
973 }
974 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
975 
976 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
977 					 struct request_sock *req, bool own_req)
978 {
979 	if (own_req) {
980 		inet_csk_reqsk_queue_drop(sk, req);
981 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
982 		if (inet_csk_reqsk_queue_add(sk, req, child))
983 			return child;
984 	}
985 	/* Too bad, another child took ownership of the request, undo. */
986 	bh_unlock_sock(child);
987 	sock_put(child);
988 	return NULL;
989 }
990 EXPORT_SYMBOL(inet_csk_complete_hashdance);
991 
992 /*
993  *	This routine closes sockets which have been at least partially
994  *	opened, but not yet accepted.
995  */
996 void inet_csk_listen_stop(struct sock *sk)
997 {
998 	struct inet_connection_sock *icsk = inet_csk(sk);
999 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1000 	struct request_sock *next, *req;
1001 
1002 	/* Following specs, it would be better either to send FIN
1003 	 * (and enter FIN-WAIT-1, it is normal close)
1004 	 * or to send active reset (abort).
1005 	 * Certainly, it is pretty dangerous while synflood, but it is
1006 	 * bad justification for our negligence 8)
1007 	 * To be honest, we are not able to make either
1008 	 * of the variants now.			--ANK
1009 	 */
1010 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1011 		struct sock *child = req->sk;
1012 
1013 		local_bh_disable();
1014 		bh_lock_sock(child);
1015 		WARN_ON(sock_owned_by_user(child));
1016 		sock_hold(child);
1017 
1018 		inet_child_forget(sk, req, child);
1019 		reqsk_put(req);
1020 		bh_unlock_sock(child);
1021 		local_bh_enable();
1022 		sock_put(child);
1023 
1024 		cond_resched();
1025 	}
1026 	if (queue->fastopenq.rskq_rst_head) {
1027 		/* Free all the reqs queued in rskq_rst_head. */
1028 		spin_lock_bh(&queue->fastopenq.lock);
1029 		req = queue->fastopenq.rskq_rst_head;
1030 		queue->fastopenq.rskq_rst_head = NULL;
1031 		spin_unlock_bh(&queue->fastopenq.lock);
1032 		while (req != NULL) {
1033 			next = req->dl_next;
1034 			reqsk_put(req);
1035 			req = next;
1036 		}
1037 	}
1038 	WARN_ON_ONCE(sk->sk_ack_backlog);
1039 }
1040 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1041 
1042 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1043 {
1044 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1045 	const struct inet_sock *inet = inet_sk(sk);
1046 
1047 	sin->sin_family		= AF_INET;
1048 	sin->sin_addr.s_addr	= inet->inet_daddr;
1049 	sin->sin_port		= inet->inet_dport;
1050 }
1051 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1052 
1053 #ifdef CONFIG_COMPAT
1054 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1055 			       char __user *optval, int __user *optlen)
1056 {
1057 	const struct inet_connection_sock *icsk = inet_csk(sk);
1058 
1059 	if (icsk->icsk_af_ops->compat_getsockopt)
1060 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1061 							    optval, optlen);
1062 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1063 					     optval, optlen);
1064 }
1065 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1066 
1067 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1068 			       char __user *optval, unsigned int optlen)
1069 {
1070 	const struct inet_connection_sock *icsk = inet_csk(sk);
1071 
1072 	if (icsk->icsk_af_ops->compat_setsockopt)
1073 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1074 							    optval, optlen);
1075 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1076 					     optval, optlen);
1077 }
1078 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1079 #endif
1080 
1081 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1082 {
1083 	const struct inet_sock *inet = inet_sk(sk);
1084 	const struct ip_options_rcu *inet_opt;
1085 	__be32 daddr = inet->inet_daddr;
1086 	struct flowi4 *fl4;
1087 	struct rtable *rt;
1088 
1089 	rcu_read_lock();
1090 	inet_opt = rcu_dereference(inet->inet_opt);
1091 	if (inet_opt && inet_opt->opt.srr)
1092 		daddr = inet_opt->opt.faddr;
1093 	fl4 = &fl->u.ip4;
1094 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1095 				   inet->inet_saddr, inet->inet_dport,
1096 				   inet->inet_sport, sk->sk_protocol,
1097 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1098 	if (IS_ERR(rt))
1099 		rt = NULL;
1100 	if (rt)
1101 		sk_setup_caps(sk, &rt->dst);
1102 	rcu_read_unlock();
1103 
1104 	return &rt->dst;
1105 }
1106 
1107 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1108 {
1109 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1110 	struct inet_sock *inet = inet_sk(sk);
1111 
1112 	if (!dst) {
1113 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1114 		if (!dst)
1115 			goto out;
1116 	}
1117 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1118 
1119 	dst = __sk_dst_check(sk, 0);
1120 	if (!dst)
1121 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1122 out:
1123 	return dst;
1124 }
1125 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1126