1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Support for INET connection oriented protocols. 7 * 8 * Authors: See the TCP sources 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or(at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/jhash.h> 18 19 #include <net/inet_connection_sock.h> 20 #include <net/inet_hashtables.h> 21 #include <net/inet_timewait_sock.h> 22 #include <net/ip.h> 23 #include <net/route.h> 24 #include <net/tcp_states.h> 25 #include <net/xfrm.h> 26 #include <net/tcp.h> 27 #include <net/sock_reuseport.h> 28 #include <net/addrconf.h> 29 30 #ifdef INET_CSK_DEBUG 31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n"; 32 EXPORT_SYMBOL(inet_csk_timer_bug_msg); 33 #endif 34 35 #if IS_ENABLED(CONFIG_IPV6) 36 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 37 * only, and any IPv4 addresses if not IPv6 only 38 * match_wildcard == false: addresses must be exactly the same, i.e. 39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 40 * and 0.0.0.0 equals to 0.0.0.0 only 41 */ 42 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 43 const struct in6_addr *sk2_rcv_saddr6, 44 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 45 bool sk1_ipv6only, bool sk2_ipv6only, 46 bool match_wildcard) 47 { 48 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 49 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 50 51 /* if both are mapped, treat as IPv4 */ 52 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 53 if (!sk2_ipv6only) { 54 if (sk1_rcv_saddr == sk2_rcv_saddr) 55 return true; 56 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 57 return match_wildcard; 58 } 59 return false; 60 } 61 62 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 63 return true; 64 65 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 66 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 67 return true; 68 69 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 70 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 71 return true; 72 73 if (sk2_rcv_saddr6 && 74 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 75 return true; 76 77 return false; 78 } 79 #endif 80 81 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 82 * match_wildcard == false: addresses must be exactly the same, i.e. 83 * 0.0.0.0 only equals to 0.0.0.0 84 */ 85 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 86 bool sk2_ipv6only, bool match_wildcard) 87 { 88 if (!sk2_ipv6only) { 89 if (sk1_rcv_saddr == sk2_rcv_saddr) 90 return true; 91 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 92 return match_wildcard; 93 } 94 return false; 95 } 96 97 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 98 bool match_wildcard) 99 { 100 #if IS_ENABLED(CONFIG_IPV6) 101 if (sk->sk_family == AF_INET6) 102 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 103 inet6_rcv_saddr(sk2), 104 sk->sk_rcv_saddr, 105 sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk), 107 ipv6_only_sock(sk2), 108 match_wildcard); 109 #endif 110 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 111 ipv6_only_sock(sk2), match_wildcard); 112 } 113 EXPORT_SYMBOL(inet_rcv_saddr_equal); 114 115 void inet_get_local_port_range(struct net *net, int *low, int *high) 116 { 117 unsigned int seq; 118 119 do { 120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 121 122 *low = net->ipv4.ip_local_ports.range[0]; 123 *high = net->ipv4.ip_local_ports.range[1]; 124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 125 } 126 EXPORT_SYMBOL(inet_get_local_port_range); 127 128 static int inet_csk_bind_conflict(const struct sock *sk, 129 const struct inet_bind_bucket *tb, 130 bool relax, bool reuseport_ok) 131 { 132 struct sock *sk2; 133 bool reuse = sk->sk_reuse; 134 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 135 kuid_t uid = sock_i_uid((struct sock *)sk); 136 137 /* 138 * Unlike other sk lookup places we do not check 139 * for sk_net here, since _all_ the socks listed 140 * in tb->owners list belong to the same net - the 141 * one this bucket belongs to. 142 */ 143 144 sk_for_each_bound(sk2, &tb->owners) { 145 if (sk != sk2 && 146 (!sk->sk_bound_dev_if || 147 !sk2->sk_bound_dev_if || 148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 149 if ((!reuse || !sk2->sk_reuse || 150 sk2->sk_state == TCP_LISTEN) && 151 (!reuseport || !sk2->sk_reuseport || 152 rcu_access_pointer(sk->sk_reuseport_cb) || 153 (sk2->sk_state != TCP_TIME_WAIT && 154 !uid_eq(uid, sock_i_uid(sk2))))) { 155 if (inet_rcv_saddr_equal(sk, sk2, true)) 156 break; 157 } 158 if (!relax && reuse && sk2->sk_reuse && 159 sk2->sk_state != TCP_LISTEN) { 160 if (inet_rcv_saddr_equal(sk, sk2, true)) 161 break; 162 } 163 } 164 } 165 return sk2 != NULL; 166 } 167 168 /* 169 * Find an open port number for the socket. Returns with the 170 * inet_bind_hashbucket lock held. 171 */ 172 static struct inet_bind_hashbucket * 173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 174 { 175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 176 int port = 0; 177 struct inet_bind_hashbucket *head; 178 struct net *net = sock_net(sk); 179 int i, low, high, attempt_half; 180 struct inet_bind_bucket *tb; 181 u32 remaining, offset; 182 183 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 184 other_half_scan: 185 inet_get_local_port_range(net, &low, &high); 186 high++; /* [32768, 60999] -> [32768, 61000[ */ 187 if (high - low < 4) 188 attempt_half = 0; 189 if (attempt_half) { 190 int half = low + (((high - low) >> 2) << 1); 191 192 if (attempt_half == 1) 193 high = half; 194 else 195 low = half; 196 } 197 remaining = high - low; 198 if (likely(remaining > 1)) 199 remaining &= ~1U; 200 201 offset = prandom_u32() % remaining; 202 /* __inet_hash_connect() favors ports having @low parity 203 * We do the opposite to not pollute connect() users. 204 */ 205 offset |= 1U; 206 207 other_parity_scan: 208 port = low + offset; 209 for (i = 0; i < remaining; i += 2, port += 2) { 210 if (unlikely(port >= high)) 211 port -= remaining; 212 if (inet_is_local_reserved_port(net, port)) 213 continue; 214 head = &hinfo->bhash[inet_bhashfn(net, port, 215 hinfo->bhash_size)]; 216 spin_lock_bh(&head->lock); 217 inet_bind_bucket_for_each(tb, &head->chain) 218 if (net_eq(ib_net(tb), net) && tb->port == port) { 219 if (!inet_csk_bind_conflict(sk, tb, false, false)) 220 goto success; 221 goto next_port; 222 } 223 tb = NULL; 224 goto success; 225 next_port: 226 spin_unlock_bh(&head->lock); 227 cond_resched(); 228 } 229 230 offset--; 231 if (!(offset & 1)) 232 goto other_parity_scan; 233 234 if (attempt_half == 1) { 235 /* OK we now try the upper half of the range */ 236 attempt_half = 2; 237 goto other_half_scan; 238 } 239 return NULL; 240 success: 241 *port_ret = port; 242 *tb_ret = tb; 243 return head; 244 } 245 246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 247 struct sock *sk) 248 { 249 kuid_t uid = sock_i_uid(sk); 250 251 if (tb->fastreuseport <= 0) 252 return 0; 253 if (!sk->sk_reuseport) 254 return 0; 255 if (rcu_access_pointer(sk->sk_reuseport_cb)) 256 return 0; 257 if (!uid_eq(tb->fastuid, uid)) 258 return 0; 259 /* We only need to check the rcv_saddr if this tb was once marked 260 * without fastreuseport and then was reset, as we can only know that 261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 262 * owners list. 263 */ 264 if (tb->fastreuseport == FASTREUSEPORT_ANY) 265 return 1; 266 #if IS_ENABLED(CONFIG_IPV6) 267 if (tb->fast_sk_family == AF_INET6) 268 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 269 inet6_rcv_saddr(sk), 270 tb->fast_rcv_saddr, 271 sk->sk_rcv_saddr, 272 tb->fast_ipv6_only, 273 ipv6_only_sock(sk), true); 274 #endif 275 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 276 ipv6_only_sock(sk), true); 277 } 278 279 /* Obtain a reference to a local port for the given sock, 280 * if snum is zero it means select any available local port. 281 * We try to allocate an odd port (and leave even ports for connect()) 282 */ 283 int inet_csk_get_port(struct sock *sk, unsigned short snum) 284 { 285 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 286 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 287 int ret = 1, port = snum; 288 struct inet_bind_hashbucket *head; 289 struct net *net = sock_net(sk); 290 struct inet_bind_bucket *tb = NULL; 291 kuid_t uid = sock_i_uid(sk); 292 293 if (!port) { 294 head = inet_csk_find_open_port(sk, &tb, &port); 295 if (!head) 296 return ret; 297 if (!tb) 298 goto tb_not_found; 299 goto success; 300 } 301 head = &hinfo->bhash[inet_bhashfn(net, port, 302 hinfo->bhash_size)]; 303 spin_lock_bh(&head->lock); 304 inet_bind_bucket_for_each(tb, &head->chain) 305 if (net_eq(ib_net(tb), net) && tb->port == port) 306 goto tb_found; 307 tb_not_found: 308 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 309 net, head, port); 310 if (!tb) 311 goto fail_unlock; 312 tb_found: 313 if (!hlist_empty(&tb->owners)) { 314 if (sk->sk_reuse == SK_FORCE_REUSE) 315 goto success; 316 317 if ((tb->fastreuse > 0 && reuse) || 318 sk_reuseport_match(tb, sk)) 319 goto success; 320 if (inet_csk_bind_conflict(sk, tb, true, true)) 321 goto fail_unlock; 322 } 323 success: 324 if (hlist_empty(&tb->owners)) { 325 tb->fastreuse = reuse; 326 if (sk->sk_reuseport) { 327 tb->fastreuseport = FASTREUSEPORT_ANY; 328 tb->fastuid = uid; 329 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 330 tb->fast_ipv6_only = ipv6_only_sock(sk); 331 tb->fast_sk_family = sk->sk_family; 332 #if IS_ENABLED(CONFIG_IPV6) 333 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 334 #endif 335 } else { 336 tb->fastreuseport = 0; 337 } 338 } else { 339 if (!reuse) 340 tb->fastreuse = 0; 341 if (sk->sk_reuseport) { 342 /* We didn't match or we don't have fastreuseport set on 343 * the tb, but we have sk_reuseport set on this socket 344 * and we know that there are no bind conflicts with 345 * this socket in this tb, so reset our tb's reuseport 346 * settings so that any subsequent sockets that match 347 * our current socket will be put on the fast path. 348 * 349 * If we reset we need to set FASTREUSEPORT_STRICT so we 350 * do extra checking for all subsequent sk_reuseport 351 * socks. 352 */ 353 if (!sk_reuseport_match(tb, sk)) { 354 tb->fastreuseport = FASTREUSEPORT_STRICT; 355 tb->fastuid = uid; 356 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 357 tb->fast_ipv6_only = ipv6_only_sock(sk); 358 tb->fast_sk_family = sk->sk_family; 359 #if IS_ENABLED(CONFIG_IPV6) 360 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 361 #endif 362 } 363 } else { 364 tb->fastreuseport = 0; 365 } 366 } 367 if (!inet_csk(sk)->icsk_bind_hash) 368 inet_bind_hash(sk, tb, port); 369 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 370 ret = 0; 371 372 fail_unlock: 373 spin_unlock_bh(&head->lock); 374 return ret; 375 } 376 EXPORT_SYMBOL_GPL(inet_csk_get_port); 377 378 /* 379 * Wait for an incoming connection, avoid race conditions. This must be called 380 * with the socket locked. 381 */ 382 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 383 { 384 struct inet_connection_sock *icsk = inet_csk(sk); 385 DEFINE_WAIT(wait); 386 int err; 387 388 /* 389 * True wake-one mechanism for incoming connections: only 390 * one process gets woken up, not the 'whole herd'. 391 * Since we do not 'race & poll' for established sockets 392 * anymore, the common case will execute the loop only once. 393 * 394 * Subtle issue: "add_wait_queue_exclusive()" will be added 395 * after any current non-exclusive waiters, and we know that 396 * it will always _stay_ after any new non-exclusive waiters 397 * because all non-exclusive waiters are added at the 398 * beginning of the wait-queue. As such, it's ok to "drop" 399 * our exclusiveness temporarily when we get woken up without 400 * having to remove and re-insert us on the wait queue. 401 */ 402 for (;;) { 403 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 404 TASK_INTERRUPTIBLE); 405 release_sock(sk); 406 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 407 timeo = schedule_timeout(timeo); 408 sched_annotate_sleep(); 409 lock_sock(sk); 410 err = 0; 411 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 412 break; 413 err = -EINVAL; 414 if (sk->sk_state != TCP_LISTEN) 415 break; 416 err = sock_intr_errno(timeo); 417 if (signal_pending(current)) 418 break; 419 err = -EAGAIN; 420 if (!timeo) 421 break; 422 } 423 finish_wait(sk_sleep(sk), &wait); 424 return err; 425 } 426 427 /* 428 * This will accept the next outstanding connection. 429 */ 430 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 431 { 432 struct inet_connection_sock *icsk = inet_csk(sk); 433 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 434 struct request_sock *req; 435 struct sock *newsk; 436 int error; 437 438 lock_sock(sk); 439 440 /* We need to make sure that this socket is listening, 441 * and that it has something pending. 442 */ 443 error = -EINVAL; 444 if (sk->sk_state != TCP_LISTEN) 445 goto out_err; 446 447 /* Find already established connection */ 448 if (reqsk_queue_empty(queue)) { 449 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 450 451 /* If this is a non blocking socket don't sleep */ 452 error = -EAGAIN; 453 if (!timeo) 454 goto out_err; 455 456 error = inet_csk_wait_for_connect(sk, timeo); 457 if (error) 458 goto out_err; 459 } 460 req = reqsk_queue_remove(queue, sk); 461 newsk = req->sk; 462 463 if (sk->sk_protocol == IPPROTO_TCP && 464 tcp_rsk(req)->tfo_listener) { 465 spin_lock_bh(&queue->fastopenq.lock); 466 if (tcp_rsk(req)->tfo_listener) { 467 /* We are still waiting for the final ACK from 3WHS 468 * so can't free req now. Instead, we set req->sk to 469 * NULL to signify that the child socket is taken 470 * so reqsk_fastopen_remove() will free the req 471 * when 3WHS finishes (or is aborted). 472 */ 473 req->sk = NULL; 474 req = NULL; 475 } 476 spin_unlock_bh(&queue->fastopenq.lock); 477 } 478 out: 479 release_sock(sk); 480 if (req) 481 reqsk_put(req); 482 return newsk; 483 out_err: 484 newsk = NULL; 485 req = NULL; 486 *err = error; 487 goto out; 488 } 489 EXPORT_SYMBOL(inet_csk_accept); 490 491 /* 492 * Using different timers for retransmit, delayed acks and probes 493 * We may wish use just one timer maintaining a list of expire jiffies 494 * to optimize. 495 */ 496 void inet_csk_init_xmit_timers(struct sock *sk, 497 void (*retransmit_handler)(struct timer_list *t), 498 void (*delack_handler)(struct timer_list *t), 499 void (*keepalive_handler)(struct timer_list *t)) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 503 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 504 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 505 timer_setup(&sk->sk_timer, keepalive_handler, 0); 506 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 507 } 508 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 509 510 void inet_csk_clear_xmit_timers(struct sock *sk) 511 { 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 514 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 515 516 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 517 sk_stop_timer(sk, &icsk->icsk_delack_timer); 518 sk_stop_timer(sk, &sk->sk_timer); 519 } 520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 521 522 void inet_csk_delete_keepalive_timer(struct sock *sk) 523 { 524 sk_stop_timer(sk, &sk->sk_timer); 525 } 526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 527 528 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 529 { 530 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 531 } 532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 533 534 struct dst_entry *inet_csk_route_req(const struct sock *sk, 535 struct flowi4 *fl4, 536 const struct request_sock *req) 537 { 538 const struct inet_request_sock *ireq = inet_rsk(req); 539 struct net *net = read_pnet(&ireq->ireq_net); 540 struct ip_options_rcu *opt; 541 struct rtable *rt; 542 543 opt = ireq_opt_deref(ireq); 544 545 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 546 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 547 sk->sk_protocol, inet_sk_flowi_flags(sk), 548 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 549 ireq->ir_loc_addr, ireq->ir_rmt_port, 550 htons(ireq->ir_num), sk->sk_uid); 551 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 552 rt = ip_route_output_flow(net, fl4, sk); 553 if (IS_ERR(rt)) 554 goto no_route; 555 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 556 goto route_err; 557 return &rt->dst; 558 559 route_err: 560 ip_rt_put(rt); 561 no_route: 562 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 563 return NULL; 564 } 565 EXPORT_SYMBOL_GPL(inet_csk_route_req); 566 567 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 568 struct sock *newsk, 569 const struct request_sock *req) 570 { 571 const struct inet_request_sock *ireq = inet_rsk(req); 572 struct net *net = read_pnet(&ireq->ireq_net); 573 struct inet_sock *newinet = inet_sk(newsk); 574 struct ip_options_rcu *opt; 575 struct flowi4 *fl4; 576 struct rtable *rt; 577 578 opt = rcu_dereference(ireq->ireq_opt); 579 fl4 = &newinet->cork.fl.u.ip4; 580 581 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 582 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 583 sk->sk_protocol, inet_sk_flowi_flags(sk), 584 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 585 ireq->ir_loc_addr, ireq->ir_rmt_port, 586 htons(ireq->ir_num), sk->sk_uid); 587 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 588 rt = ip_route_output_flow(net, fl4, sk); 589 if (IS_ERR(rt)) 590 goto no_route; 591 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 592 goto route_err; 593 return &rt->dst; 594 595 route_err: 596 ip_rt_put(rt); 597 no_route: 598 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 599 return NULL; 600 } 601 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 602 603 #if IS_ENABLED(CONFIG_IPV6) 604 #define AF_INET_FAMILY(fam) ((fam) == AF_INET) 605 #else 606 #define AF_INET_FAMILY(fam) true 607 #endif 608 609 /* Decide when to expire the request and when to resend SYN-ACK */ 610 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 611 const int max_retries, 612 const u8 rskq_defer_accept, 613 int *expire, int *resend) 614 { 615 if (!rskq_defer_accept) { 616 *expire = req->num_timeout >= thresh; 617 *resend = 1; 618 return; 619 } 620 *expire = req->num_timeout >= thresh && 621 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 622 /* 623 * Do not resend while waiting for data after ACK, 624 * start to resend on end of deferring period to give 625 * last chance for data or ACK to create established socket. 626 */ 627 *resend = !inet_rsk(req)->acked || 628 req->num_timeout >= rskq_defer_accept - 1; 629 } 630 631 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 632 { 633 int err = req->rsk_ops->rtx_syn_ack(parent, req); 634 635 if (!err) 636 req->num_retrans++; 637 return err; 638 } 639 EXPORT_SYMBOL(inet_rtx_syn_ack); 640 641 /* return true if req was found in the ehash table */ 642 static bool reqsk_queue_unlink(struct request_sock_queue *queue, 643 struct request_sock *req) 644 { 645 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 646 bool found = false; 647 648 if (sk_hashed(req_to_sk(req))) { 649 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 650 651 spin_lock(lock); 652 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 653 spin_unlock(lock); 654 } 655 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 656 reqsk_put(req); 657 return found; 658 } 659 660 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 661 { 662 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { 663 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 664 reqsk_put(req); 665 } 666 } 667 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 668 669 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 670 { 671 inet_csk_reqsk_queue_drop(sk, req); 672 reqsk_put(req); 673 } 674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 675 676 static void reqsk_timer_handler(struct timer_list *t) 677 { 678 struct request_sock *req = from_timer(req, t, rsk_timer); 679 struct sock *sk_listener = req->rsk_listener; 680 struct net *net = sock_net(sk_listener); 681 struct inet_connection_sock *icsk = inet_csk(sk_listener); 682 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 683 int qlen, expire = 0, resend = 0; 684 int max_retries, thresh; 685 u8 defer_accept; 686 687 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) 688 goto drop; 689 690 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 691 thresh = max_retries; 692 /* Normally all the openreqs are young and become mature 693 * (i.e. converted to established socket) for first timeout. 694 * If synack was not acknowledged for 1 second, it means 695 * one of the following things: synack was lost, ack was lost, 696 * rtt is high or nobody planned to ack (i.e. synflood). 697 * When server is a bit loaded, queue is populated with old 698 * open requests, reducing effective size of queue. 699 * When server is well loaded, queue size reduces to zero 700 * after several minutes of work. It is not synflood, 701 * it is normal operation. The solution is pruning 702 * too old entries overriding normal timeout, when 703 * situation becomes dangerous. 704 * 705 * Essentially, we reserve half of room for young 706 * embrions; and abort old ones without pity, if old 707 * ones are about to clog our table. 708 */ 709 qlen = reqsk_queue_len(queue); 710 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) { 711 int young = reqsk_queue_len_young(queue) << 1; 712 713 while (thresh > 2) { 714 if (qlen < young) 715 break; 716 thresh--; 717 young <<= 1; 718 } 719 } 720 defer_accept = READ_ONCE(queue->rskq_defer_accept); 721 if (defer_accept) 722 max_retries = defer_accept; 723 syn_ack_recalc(req, thresh, max_retries, defer_accept, 724 &expire, &resend); 725 req->rsk_ops->syn_ack_timeout(req); 726 if (!expire && 727 (!resend || 728 !inet_rtx_syn_ack(sk_listener, req) || 729 inet_rsk(req)->acked)) { 730 unsigned long timeo; 731 732 if (req->num_timeout++ == 0) 733 atomic_dec(&queue->young); 734 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 735 mod_timer(&req->rsk_timer, jiffies + timeo); 736 return; 737 } 738 drop: 739 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 740 } 741 742 static void reqsk_queue_hash_req(struct request_sock *req, 743 unsigned long timeout) 744 { 745 req->num_retrans = 0; 746 req->num_timeout = 0; 747 req->sk = NULL; 748 749 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 750 mod_timer(&req->rsk_timer, jiffies + timeout); 751 752 inet_ehash_insert(req_to_sk(req), NULL); 753 /* before letting lookups find us, make sure all req fields 754 * are committed to memory and refcnt initialized. 755 */ 756 smp_wmb(); 757 refcount_set(&req->rsk_refcnt, 2 + 1); 758 } 759 760 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 761 unsigned long timeout) 762 { 763 reqsk_queue_hash_req(req, timeout); 764 inet_csk_reqsk_queue_added(sk); 765 } 766 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 767 768 /** 769 * inet_csk_clone_lock - clone an inet socket, and lock its clone 770 * @sk: the socket to clone 771 * @req: request_sock 772 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 773 * 774 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 775 */ 776 struct sock *inet_csk_clone_lock(const struct sock *sk, 777 const struct request_sock *req, 778 const gfp_t priority) 779 { 780 struct sock *newsk = sk_clone_lock(sk, priority); 781 782 if (newsk) { 783 struct inet_connection_sock *newicsk = inet_csk(newsk); 784 785 inet_sk_set_state(newsk, TCP_SYN_RECV); 786 newicsk->icsk_bind_hash = NULL; 787 788 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 789 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 790 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 791 792 /* listeners have SOCK_RCU_FREE, not the children */ 793 sock_reset_flag(newsk, SOCK_RCU_FREE); 794 795 inet_sk(newsk)->mc_list = NULL; 796 797 newsk->sk_mark = inet_rsk(req)->ir_mark; 798 atomic64_set(&newsk->sk_cookie, 799 atomic64_read(&inet_rsk(req)->ir_cookie)); 800 801 newicsk->icsk_retransmits = 0; 802 newicsk->icsk_backoff = 0; 803 newicsk->icsk_probes_out = 0; 804 805 /* Deinitialize accept_queue to trap illegal accesses. */ 806 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 807 808 security_inet_csk_clone(newsk, req); 809 } 810 return newsk; 811 } 812 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 813 814 /* 815 * At this point, there should be no process reference to this 816 * socket, and thus no user references at all. Therefore we 817 * can assume the socket waitqueue is inactive and nobody will 818 * try to jump onto it. 819 */ 820 void inet_csk_destroy_sock(struct sock *sk) 821 { 822 WARN_ON(sk->sk_state != TCP_CLOSE); 823 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 824 825 /* It cannot be in hash table! */ 826 WARN_ON(!sk_unhashed(sk)); 827 828 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 829 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 830 831 sk->sk_prot->destroy(sk); 832 833 sk_stream_kill_queues(sk); 834 835 xfrm_sk_free_policy(sk); 836 837 sk_refcnt_debug_release(sk); 838 839 percpu_counter_dec(sk->sk_prot->orphan_count); 840 841 sock_put(sk); 842 } 843 EXPORT_SYMBOL(inet_csk_destroy_sock); 844 845 /* This function allows to force a closure of a socket after the call to 846 * tcp/dccp_create_openreq_child(). 847 */ 848 void inet_csk_prepare_forced_close(struct sock *sk) 849 __releases(&sk->sk_lock.slock) 850 { 851 /* sk_clone_lock locked the socket and set refcnt to 2 */ 852 bh_unlock_sock(sk); 853 sock_put(sk); 854 855 /* The below has to be done to allow calling inet_csk_destroy_sock */ 856 sock_set_flag(sk, SOCK_DEAD); 857 percpu_counter_inc(sk->sk_prot->orphan_count); 858 inet_sk(sk)->inet_num = 0; 859 } 860 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 861 862 int inet_csk_listen_start(struct sock *sk, int backlog) 863 { 864 struct inet_connection_sock *icsk = inet_csk(sk); 865 struct inet_sock *inet = inet_sk(sk); 866 int err = -EADDRINUSE; 867 868 reqsk_queue_alloc(&icsk->icsk_accept_queue); 869 870 sk->sk_max_ack_backlog = backlog; 871 sk->sk_ack_backlog = 0; 872 inet_csk_delack_init(sk); 873 874 /* There is race window here: we announce ourselves listening, 875 * but this transition is still not validated by get_port(). 876 * It is OK, because this socket enters to hash table only 877 * after validation is complete. 878 */ 879 inet_sk_state_store(sk, TCP_LISTEN); 880 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 881 inet->inet_sport = htons(inet->inet_num); 882 883 sk_dst_reset(sk); 884 err = sk->sk_prot->hash(sk); 885 886 if (likely(!err)) 887 return 0; 888 } 889 890 inet_sk_set_state(sk, TCP_CLOSE); 891 return err; 892 } 893 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 894 895 static void inet_child_forget(struct sock *sk, struct request_sock *req, 896 struct sock *child) 897 { 898 sk->sk_prot->disconnect(child, O_NONBLOCK); 899 900 sock_orphan(child); 901 902 percpu_counter_inc(sk->sk_prot->orphan_count); 903 904 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 905 BUG_ON(tcp_sk(child)->fastopen_rsk != req); 906 BUG_ON(sk != req->rsk_listener); 907 908 /* Paranoid, to prevent race condition if 909 * an inbound pkt destined for child is 910 * blocked by sock lock in tcp_v4_rcv(). 911 * Also to satisfy an assertion in 912 * tcp_v4_destroy_sock(). 913 */ 914 tcp_sk(child)->fastopen_rsk = NULL; 915 } 916 inet_csk_destroy_sock(child); 917 } 918 919 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 920 struct request_sock *req, 921 struct sock *child) 922 { 923 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 924 925 spin_lock(&queue->rskq_lock); 926 if (unlikely(sk->sk_state != TCP_LISTEN)) { 927 inet_child_forget(sk, req, child); 928 child = NULL; 929 } else { 930 req->sk = child; 931 req->dl_next = NULL; 932 if (queue->rskq_accept_head == NULL) 933 queue->rskq_accept_head = req; 934 else 935 queue->rskq_accept_tail->dl_next = req; 936 queue->rskq_accept_tail = req; 937 sk_acceptq_added(sk); 938 } 939 spin_unlock(&queue->rskq_lock); 940 return child; 941 } 942 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 943 944 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 945 struct request_sock *req, bool own_req) 946 { 947 if (own_req) { 948 inet_csk_reqsk_queue_drop(sk, req); 949 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 950 if (inet_csk_reqsk_queue_add(sk, req, child)) 951 return child; 952 } 953 /* Too bad, another child took ownership of the request, undo. */ 954 bh_unlock_sock(child); 955 sock_put(child); 956 return NULL; 957 } 958 EXPORT_SYMBOL(inet_csk_complete_hashdance); 959 960 /* 961 * This routine closes sockets which have been at least partially 962 * opened, but not yet accepted. 963 */ 964 void inet_csk_listen_stop(struct sock *sk) 965 { 966 struct inet_connection_sock *icsk = inet_csk(sk); 967 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 968 struct request_sock *next, *req; 969 970 /* Following specs, it would be better either to send FIN 971 * (and enter FIN-WAIT-1, it is normal close) 972 * or to send active reset (abort). 973 * Certainly, it is pretty dangerous while synflood, but it is 974 * bad justification for our negligence 8) 975 * To be honest, we are not able to make either 976 * of the variants now. --ANK 977 */ 978 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 979 struct sock *child = req->sk; 980 981 local_bh_disable(); 982 bh_lock_sock(child); 983 WARN_ON(sock_owned_by_user(child)); 984 sock_hold(child); 985 986 inet_child_forget(sk, req, child); 987 reqsk_put(req); 988 bh_unlock_sock(child); 989 local_bh_enable(); 990 sock_put(child); 991 992 cond_resched(); 993 } 994 if (queue->fastopenq.rskq_rst_head) { 995 /* Free all the reqs queued in rskq_rst_head. */ 996 spin_lock_bh(&queue->fastopenq.lock); 997 req = queue->fastopenq.rskq_rst_head; 998 queue->fastopenq.rskq_rst_head = NULL; 999 spin_unlock_bh(&queue->fastopenq.lock); 1000 while (req != NULL) { 1001 next = req->dl_next; 1002 reqsk_put(req); 1003 req = next; 1004 } 1005 } 1006 WARN_ON_ONCE(sk->sk_ack_backlog); 1007 } 1008 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1009 1010 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1011 { 1012 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1013 const struct inet_sock *inet = inet_sk(sk); 1014 1015 sin->sin_family = AF_INET; 1016 sin->sin_addr.s_addr = inet->inet_daddr; 1017 sin->sin_port = inet->inet_dport; 1018 } 1019 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1020 1021 #ifdef CONFIG_COMPAT 1022 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1023 char __user *optval, int __user *optlen) 1024 { 1025 const struct inet_connection_sock *icsk = inet_csk(sk); 1026 1027 if (icsk->icsk_af_ops->compat_getsockopt) 1028 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1029 optval, optlen); 1030 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1031 optval, optlen); 1032 } 1033 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1034 1035 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1036 char __user *optval, unsigned int optlen) 1037 { 1038 const struct inet_connection_sock *icsk = inet_csk(sk); 1039 1040 if (icsk->icsk_af_ops->compat_setsockopt) 1041 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1042 optval, optlen); 1043 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1044 optval, optlen); 1045 } 1046 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1047 #endif 1048 1049 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1050 { 1051 const struct inet_sock *inet = inet_sk(sk); 1052 const struct ip_options_rcu *inet_opt; 1053 __be32 daddr = inet->inet_daddr; 1054 struct flowi4 *fl4; 1055 struct rtable *rt; 1056 1057 rcu_read_lock(); 1058 inet_opt = rcu_dereference(inet->inet_opt); 1059 if (inet_opt && inet_opt->opt.srr) 1060 daddr = inet_opt->opt.faddr; 1061 fl4 = &fl->u.ip4; 1062 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1063 inet->inet_saddr, inet->inet_dport, 1064 inet->inet_sport, sk->sk_protocol, 1065 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1066 if (IS_ERR(rt)) 1067 rt = NULL; 1068 if (rt) 1069 sk_setup_caps(sk, &rt->dst); 1070 rcu_read_unlock(); 1071 1072 return &rt->dst; 1073 } 1074 1075 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1076 { 1077 struct dst_entry *dst = __sk_dst_check(sk, 0); 1078 struct inet_sock *inet = inet_sk(sk); 1079 1080 if (!dst) { 1081 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1082 if (!dst) 1083 goto out; 1084 } 1085 dst->ops->update_pmtu(dst, sk, NULL, mtu); 1086 1087 dst = __sk_dst_check(sk, 0); 1088 if (!dst) 1089 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1090 out: 1091 return dst; 1092 } 1093 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1094