1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Support for INET connection oriented protocols. 7 * 8 * Authors: See the TCP sources 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or(at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/jhash.h> 18 19 #include <net/inet_connection_sock.h> 20 #include <net/inet_hashtables.h> 21 #include <net/inet_timewait_sock.h> 22 #include <net/ip.h> 23 #include <net/route.h> 24 #include <net/tcp_states.h> 25 #include <net/xfrm.h> 26 #include <net/tcp.h> 27 #include <net/sock_reuseport.h> 28 #include <net/addrconf.h> 29 30 #if IS_ENABLED(CONFIG_IPV6) 31 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 32 * only, and any IPv4 addresses if not IPv6 only 33 * match_wildcard == false: addresses must be exactly the same, i.e. 34 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 35 * and 0.0.0.0 equals to 0.0.0.0 only 36 */ 37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 38 const struct in6_addr *sk2_rcv_saddr6, 39 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 40 bool sk1_ipv6only, bool sk2_ipv6only, 41 bool match_wildcard) 42 { 43 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 44 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 45 46 /* if both are mapped, treat as IPv4 */ 47 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 48 if (!sk2_ipv6only) { 49 if (sk1_rcv_saddr == sk2_rcv_saddr) 50 return true; 51 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 52 return match_wildcard; 53 } 54 return false; 55 } 56 57 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 58 return true; 59 60 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 61 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 62 return true; 63 64 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 65 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 66 return true; 67 68 if (sk2_rcv_saddr6 && 69 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 70 return true; 71 72 return false; 73 } 74 #endif 75 76 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 77 * match_wildcard == false: addresses must be exactly the same, i.e. 78 * 0.0.0.0 only equals to 0.0.0.0 79 */ 80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 81 bool sk2_ipv6only, bool match_wildcard) 82 { 83 if (!sk2_ipv6only) { 84 if (sk1_rcv_saddr == sk2_rcv_saddr) 85 return true; 86 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 87 return match_wildcard; 88 } 89 return false; 90 } 91 92 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 93 bool match_wildcard) 94 { 95 #if IS_ENABLED(CONFIG_IPV6) 96 if (sk->sk_family == AF_INET6) 97 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 98 inet6_rcv_saddr(sk2), 99 sk->sk_rcv_saddr, 100 sk2->sk_rcv_saddr, 101 ipv6_only_sock(sk), 102 ipv6_only_sock(sk2), 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard); 107 } 108 EXPORT_SYMBOL(inet_rcv_saddr_equal); 109 110 bool inet_rcv_saddr_any(const struct sock *sk) 111 { 112 #if IS_ENABLED(CONFIG_IPV6) 113 if (sk->sk_family == AF_INET6) 114 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 115 #endif 116 return !sk->sk_rcv_saddr; 117 } 118 119 void inet_get_local_port_range(struct net *net, int *low, int *high) 120 { 121 unsigned int seq; 122 123 do { 124 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 125 126 *low = net->ipv4.ip_local_ports.range[0]; 127 *high = net->ipv4.ip_local_ports.range[1]; 128 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 129 } 130 EXPORT_SYMBOL(inet_get_local_port_range); 131 132 static int inet_csk_bind_conflict(const struct sock *sk, 133 const struct inet_bind_bucket *tb, 134 bool relax, bool reuseport_ok) 135 { 136 struct sock *sk2; 137 bool reuse = sk->sk_reuse; 138 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 139 kuid_t uid = sock_i_uid((struct sock *)sk); 140 141 /* 142 * Unlike other sk lookup places we do not check 143 * for sk_net here, since _all_ the socks listed 144 * in tb->owners list belong to the same net - the 145 * one this bucket belongs to. 146 */ 147 148 sk_for_each_bound(sk2, &tb->owners) { 149 if (sk != sk2 && 150 (!sk->sk_bound_dev_if || 151 !sk2->sk_bound_dev_if || 152 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 153 if ((!reuse || !sk2->sk_reuse || 154 sk2->sk_state == TCP_LISTEN) && 155 (!reuseport || !sk2->sk_reuseport || 156 rcu_access_pointer(sk->sk_reuseport_cb) || 157 (sk2->sk_state != TCP_TIME_WAIT && 158 !uid_eq(uid, sock_i_uid(sk2))))) { 159 if (inet_rcv_saddr_equal(sk, sk2, true)) 160 break; 161 } 162 if (!relax && reuse && sk2->sk_reuse && 163 sk2->sk_state != TCP_LISTEN) { 164 if (inet_rcv_saddr_equal(sk, sk2, true)) 165 break; 166 } 167 } 168 } 169 return sk2 != NULL; 170 } 171 172 /* 173 * Find an open port number for the socket. Returns with the 174 * inet_bind_hashbucket lock held. 175 */ 176 static struct inet_bind_hashbucket * 177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 178 { 179 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 180 int port = 0; 181 struct inet_bind_hashbucket *head; 182 struct net *net = sock_net(sk); 183 int i, low, high, attempt_half; 184 struct inet_bind_bucket *tb; 185 u32 remaining, offset; 186 187 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 188 other_half_scan: 189 inet_get_local_port_range(net, &low, &high); 190 high++; /* [32768, 60999] -> [32768, 61000[ */ 191 if (high - low < 4) 192 attempt_half = 0; 193 if (attempt_half) { 194 int half = low + (((high - low) >> 2) << 1); 195 196 if (attempt_half == 1) 197 high = half; 198 else 199 low = half; 200 } 201 remaining = high - low; 202 if (likely(remaining > 1)) 203 remaining &= ~1U; 204 205 offset = prandom_u32() % remaining; 206 /* __inet_hash_connect() favors ports having @low parity 207 * We do the opposite to not pollute connect() users. 208 */ 209 offset |= 1U; 210 211 other_parity_scan: 212 port = low + offset; 213 for (i = 0; i < remaining; i += 2, port += 2) { 214 if (unlikely(port >= high)) 215 port -= remaining; 216 if (inet_is_local_reserved_port(net, port)) 217 continue; 218 head = &hinfo->bhash[inet_bhashfn(net, port, 219 hinfo->bhash_size)]; 220 spin_lock_bh(&head->lock); 221 inet_bind_bucket_for_each(tb, &head->chain) 222 if (net_eq(ib_net(tb), net) && tb->port == port) { 223 if (!inet_csk_bind_conflict(sk, tb, false, false)) 224 goto success; 225 goto next_port; 226 } 227 tb = NULL; 228 goto success; 229 next_port: 230 spin_unlock_bh(&head->lock); 231 cond_resched(); 232 } 233 234 offset--; 235 if (!(offset & 1)) 236 goto other_parity_scan; 237 238 if (attempt_half == 1) { 239 /* OK we now try the upper half of the range */ 240 attempt_half = 2; 241 goto other_half_scan; 242 } 243 return NULL; 244 success: 245 *port_ret = port; 246 *tb_ret = tb; 247 return head; 248 } 249 250 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 251 struct sock *sk) 252 { 253 kuid_t uid = sock_i_uid(sk); 254 255 if (tb->fastreuseport <= 0) 256 return 0; 257 if (!sk->sk_reuseport) 258 return 0; 259 if (rcu_access_pointer(sk->sk_reuseport_cb)) 260 return 0; 261 if (!uid_eq(tb->fastuid, uid)) 262 return 0; 263 /* We only need to check the rcv_saddr if this tb was once marked 264 * without fastreuseport and then was reset, as we can only know that 265 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 266 * owners list. 267 */ 268 if (tb->fastreuseport == FASTREUSEPORT_ANY) 269 return 1; 270 #if IS_ENABLED(CONFIG_IPV6) 271 if (tb->fast_sk_family == AF_INET6) 272 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 273 inet6_rcv_saddr(sk), 274 tb->fast_rcv_saddr, 275 sk->sk_rcv_saddr, 276 tb->fast_ipv6_only, 277 ipv6_only_sock(sk), true); 278 #endif 279 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 280 ipv6_only_sock(sk), true); 281 } 282 283 /* Obtain a reference to a local port for the given sock, 284 * if snum is zero it means select any available local port. 285 * We try to allocate an odd port (and leave even ports for connect()) 286 */ 287 int inet_csk_get_port(struct sock *sk, unsigned short snum) 288 { 289 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 290 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 291 int ret = 1, port = snum; 292 struct inet_bind_hashbucket *head; 293 struct net *net = sock_net(sk); 294 struct inet_bind_bucket *tb = NULL; 295 kuid_t uid = sock_i_uid(sk); 296 297 if (!port) { 298 head = inet_csk_find_open_port(sk, &tb, &port); 299 if (!head) 300 return ret; 301 if (!tb) 302 goto tb_not_found; 303 goto success; 304 } 305 head = &hinfo->bhash[inet_bhashfn(net, port, 306 hinfo->bhash_size)]; 307 spin_lock_bh(&head->lock); 308 inet_bind_bucket_for_each(tb, &head->chain) 309 if (net_eq(ib_net(tb), net) && tb->port == port) 310 goto tb_found; 311 tb_not_found: 312 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 313 net, head, port); 314 if (!tb) 315 goto fail_unlock; 316 tb_found: 317 if (!hlist_empty(&tb->owners)) { 318 if (sk->sk_reuse == SK_FORCE_REUSE) 319 goto success; 320 321 if ((tb->fastreuse > 0 && reuse) || 322 sk_reuseport_match(tb, sk)) 323 goto success; 324 if (inet_csk_bind_conflict(sk, tb, true, true)) 325 goto fail_unlock; 326 } 327 success: 328 if (hlist_empty(&tb->owners)) { 329 tb->fastreuse = reuse; 330 if (sk->sk_reuseport) { 331 tb->fastreuseport = FASTREUSEPORT_ANY; 332 tb->fastuid = uid; 333 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 334 tb->fast_ipv6_only = ipv6_only_sock(sk); 335 tb->fast_sk_family = sk->sk_family; 336 #if IS_ENABLED(CONFIG_IPV6) 337 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 338 #endif 339 } else { 340 tb->fastreuseport = 0; 341 } 342 } else { 343 if (!reuse) 344 tb->fastreuse = 0; 345 if (sk->sk_reuseport) { 346 /* We didn't match or we don't have fastreuseport set on 347 * the tb, but we have sk_reuseport set on this socket 348 * and we know that there are no bind conflicts with 349 * this socket in this tb, so reset our tb's reuseport 350 * settings so that any subsequent sockets that match 351 * our current socket will be put on the fast path. 352 * 353 * If we reset we need to set FASTREUSEPORT_STRICT so we 354 * do extra checking for all subsequent sk_reuseport 355 * socks. 356 */ 357 if (!sk_reuseport_match(tb, sk)) { 358 tb->fastreuseport = FASTREUSEPORT_STRICT; 359 tb->fastuid = uid; 360 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 361 tb->fast_ipv6_only = ipv6_only_sock(sk); 362 tb->fast_sk_family = sk->sk_family; 363 #if IS_ENABLED(CONFIG_IPV6) 364 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 365 #endif 366 } 367 } else { 368 tb->fastreuseport = 0; 369 } 370 } 371 if (!inet_csk(sk)->icsk_bind_hash) 372 inet_bind_hash(sk, tb, port); 373 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 374 ret = 0; 375 376 fail_unlock: 377 spin_unlock_bh(&head->lock); 378 return ret; 379 } 380 EXPORT_SYMBOL_GPL(inet_csk_get_port); 381 382 /* 383 * Wait for an incoming connection, avoid race conditions. This must be called 384 * with the socket locked. 385 */ 386 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 387 { 388 struct inet_connection_sock *icsk = inet_csk(sk); 389 DEFINE_WAIT(wait); 390 int err; 391 392 /* 393 * True wake-one mechanism for incoming connections: only 394 * one process gets woken up, not the 'whole herd'. 395 * Since we do not 'race & poll' for established sockets 396 * anymore, the common case will execute the loop only once. 397 * 398 * Subtle issue: "add_wait_queue_exclusive()" will be added 399 * after any current non-exclusive waiters, and we know that 400 * it will always _stay_ after any new non-exclusive waiters 401 * because all non-exclusive waiters are added at the 402 * beginning of the wait-queue. As such, it's ok to "drop" 403 * our exclusiveness temporarily when we get woken up without 404 * having to remove and re-insert us on the wait queue. 405 */ 406 for (;;) { 407 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 408 TASK_INTERRUPTIBLE); 409 release_sock(sk); 410 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 411 timeo = schedule_timeout(timeo); 412 sched_annotate_sleep(); 413 lock_sock(sk); 414 err = 0; 415 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 416 break; 417 err = -EINVAL; 418 if (sk->sk_state != TCP_LISTEN) 419 break; 420 err = sock_intr_errno(timeo); 421 if (signal_pending(current)) 422 break; 423 err = -EAGAIN; 424 if (!timeo) 425 break; 426 } 427 finish_wait(sk_sleep(sk), &wait); 428 return err; 429 } 430 431 /* 432 * This will accept the next outstanding connection. 433 */ 434 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 435 { 436 struct inet_connection_sock *icsk = inet_csk(sk); 437 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 438 struct request_sock *req; 439 struct sock *newsk; 440 int error; 441 442 lock_sock(sk); 443 444 /* We need to make sure that this socket is listening, 445 * and that it has something pending. 446 */ 447 error = -EINVAL; 448 if (sk->sk_state != TCP_LISTEN) 449 goto out_err; 450 451 /* Find already established connection */ 452 if (reqsk_queue_empty(queue)) { 453 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 454 455 /* If this is a non blocking socket don't sleep */ 456 error = -EAGAIN; 457 if (!timeo) 458 goto out_err; 459 460 error = inet_csk_wait_for_connect(sk, timeo); 461 if (error) 462 goto out_err; 463 } 464 req = reqsk_queue_remove(queue, sk); 465 newsk = req->sk; 466 467 if (sk->sk_protocol == IPPROTO_TCP && 468 tcp_rsk(req)->tfo_listener) { 469 spin_lock_bh(&queue->fastopenq.lock); 470 if (tcp_rsk(req)->tfo_listener) { 471 /* We are still waiting for the final ACK from 3WHS 472 * so can't free req now. Instead, we set req->sk to 473 * NULL to signify that the child socket is taken 474 * so reqsk_fastopen_remove() will free the req 475 * when 3WHS finishes (or is aborted). 476 */ 477 req->sk = NULL; 478 req = NULL; 479 } 480 spin_unlock_bh(&queue->fastopenq.lock); 481 } 482 out: 483 release_sock(sk); 484 if (req) 485 reqsk_put(req); 486 return newsk; 487 out_err: 488 newsk = NULL; 489 req = NULL; 490 *err = error; 491 goto out; 492 } 493 EXPORT_SYMBOL(inet_csk_accept); 494 495 /* 496 * Using different timers for retransmit, delayed acks and probes 497 * We may wish use just one timer maintaining a list of expire jiffies 498 * to optimize. 499 */ 500 void inet_csk_init_xmit_timers(struct sock *sk, 501 void (*retransmit_handler)(struct timer_list *t), 502 void (*delack_handler)(struct timer_list *t), 503 void (*keepalive_handler)(struct timer_list *t)) 504 { 505 struct inet_connection_sock *icsk = inet_csk(sk); 506 507 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 508 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 509 timer_setup(&sk->sk_timer, keepalive_handler, 0); 510 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 511 } 512 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 513 514 void inet_csk_clear_xmit_timers(struct sock *sk) 515 { 516 struct inet_connection_sock *icsk = inet_csk(sk); 517 518 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 519 520 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 521 sk_stop_timer(sk, &icsk->icsk_delack_timer); 522 sk_stop_timer(sk, &sk->sk_timer); 523 } 524 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 525 526 void inet_csk_delete_keepalive_timer(struct sock *sk) 527 { 528 sk_stop_timer(sk, &sk->sk_timer); 529 } 530 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 531 532 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 533 { 534 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 535 } 536 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 537 538 struct dst_entry *inet_csk_route_req(const struct sock *sk, 539 struct flowi4 *fl4, 540 const struct request_sock *req) 541 { 542 const struct inet_request_sock *ireq = inet_rsk(req); 543 struct net *net = read_pnet(&ireq->ireq_net); 544 struct ip_options_rcu *opt; 545 struct rtable *rt; 546 547 rcu_read_lock(); 548 opt = rcu_dereference(ireq->ireq_opt); 549 550 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 551 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 552 sk->sk_protocol, inet_sk_flowi_flags(sk), 553 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 554 ireq->ir_loc_addr, ireq->ir_rmt_port, 555 htons(ireq->ir_num), sk->sk_uid); 556 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 557 rt = ip_route_output_flow(net, fl4, sk); 558 if (IS_ERR(rt)) 559 goto no_route; 560 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 561 goto route_err; 562 rcu_read_unlock(); 563 return &rt->dst; 564 565 route_err: 566 ip_rt_put(rt); 567 no_route: 568 rcu_read_unlock(); 569 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 570 return NULL; 571 } 572 EXPORT_SYMBOL_GPL(inet_csk_route_req); 573 574 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 575 struct sock *newsk, 576 const struct request_sock *req) 577 { 578 const struct inet_request_sock *ireq = inet_rsk(req); 579 struct net *net = read_pnet(&ireq->ireq_net); 580 struct inet_sock *newinet = inet_sk(newsk); 581 struct ip_options_rcu *opt; 582 struct flowi4 *fl4; 583 struct rtable *rt; 584 585 opt = rcu_dereference(ireq->ireq_opt); 586 fl4 = &newinet->cork.fl.u.ip4; 587 588 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 589 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 590 sk->sk_protocol, inet_sk_flowi_flags(sk), 591 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 592 ireq->ir_loc_addr, ireq->ir_rmt_port, 593 htons(ireq->ir_num), sk->sk_uid); 594 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 595 rt = ip_route_output_flow(net, fl4, sk); 596 if (IS_ERR(rt)) 597 goto no_route; 598 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 599 goto route_err; 600 return &rt->dst; 601 602 route_err: 603 ip_rt_put(rt); 604 no_route: 605 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 606 return NULL; 607 } 608 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 609 610 #if IS_ENABLED(CONFIG_IPV6) 611 #define AF_INET_FAMILY(fam) ((fam) == AF_INET) 612 #else 613 #define AF_INET_FAMILY(fam) true 614 #endif 615 616 /* Decide when to expire the request and when to resend SYN-ACK */ 617 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 618 const int max_retries, 619 const u8 rskq_defer_accept, 620 int *expire, int *resend) 621 { 622 if (!rskq_defer_accept) { 623 *expire = req->num_timeout >= thresh; 624 *resend = 1; 625 return; 626 } 627 *expire = req->num_timeout >= thresh && 628 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 629 /* 630 * Do not resend while waiting for data after ACK, 631 * start to resend on end of deferring period to give 632 * last chance for data or ACK to create established socket. 633 */ 634 *resend = !inet_rsk(req)->acked || 635 req->num_timeout >= rskq_defer_accept - 1; 636 } 637 638 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 639 { 640 int err = req->rsk_ops->rtx_syn_ack(parent, req); 641 642 if (!err) 643 req->num_retrans++; 644 return err; 645 } 646 EXPORT_SYMBOL(inet_rtx_syn_ack); 647 648 /* return true if req was found in the ehash table */ 649 static bool reqsk_queue_unlink(struct request_sock_queue *queue, 650 struct request_sock *req) 651 { 652 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 653 bool found = false; 654 655 if (sk_hashed(req_to_sk(req))) { 656 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 657 658 spin_lock(lock); 659 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 660 spin_unlock(lock); 661 } 662 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 663 reqsk_put(req); 664 return found; 665 } 666 667 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 668 { 669 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { 670 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 671 reqsk_put(req); 672 } 673 } 674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 675 676 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 677 { 678 inet_csk_reqsk_queue_drop(sk, req); 679 reqsk_put(req); 680 } 681 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 682 683 static void reqsk_timer_handler(struct timer_list *t) 684 { 685 struct request_sock *req = from_timer(req, t, rsk_timer); 686 struct sock *sk_listener = req->rsk_listener; 687 struct net *net = sock_net(sk_listener); 688 struct inet_connection_sock *icsk = inet_csk(sk_listener); 689 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 690 int qlen, expire = 0, resend = 0; 691 int max_retries, thresh; 692 u8 defer_accept; 693 694 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) 695 goto drop; 696 697 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 698 thresh = max_retries; 699 /* Normally all the openreqs are young and become mature 700 * (i.e. converted to established socket) for first timeout. 701 * If synack was not acknowledged for 1 second, it means 702 * one of the following things: synack was lost, ack was lost, 703 * rtt is high or nobody planned to ack (i.e. synflood). 704 * When server is a bit loaded, queue is populated with old 705 * open requests, reducing effective size of queue. 706 * When server is well loaded, queue size reduces to zero 707 * after several minutes of work. It is not synflood, 708 * it is normal operation. The solution is pruning 709 * too old entries overriding normal timeout, when 710 * situation becomes dangerous. 711 * 712 * Essentially, we reserve half of room for young 713 * embrions; and abort old ones without pity, if old 714 * ones are about to clog our table. 715 */ 716 qlen = reqsk_queue_len(queue); 717 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) { 718 int young = reqsk_queue_len_young(queue) << 1; 719 720 while (thresh > 2) { 721 if (qlen < young) 722 break; 723 thresh--; 724 young <<= 1; 725 } 726 } 727 defer_accept = READ_ONCE(queue->rskq_defer_accept); 728 if (defer_accept) 729 max_retries = defer_accept; 730 syn_ack_recalc(req, thresh, max_retries, defer_accept, 731 &expire, &resend); 732 req->rsk_ops->syn_ack_timeout(req); 733 if (!expire && 734 (!resend || 735 !inet_rtx_syn_ack(sk_listener, req) || 736 inet_rsk(req)->acked)) { 737 unsigned long timeo; 738 739 if (req->num_timeout++ == 0) 740 atomic_dec(&queue->young); 741 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 742 mod_timer(&req->rsk_timer, jiffies + timeo); 743 return; 744 } 745 drop: 746 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 747 } 748 749 static void reqsk_queue_hash_req(struct request_sock *req, 750 unsigned long timeout) 751 { 752 req->num_retrans = 0; 753 req->num_timeout = 0; 754 req->sk = NULL; 755 756 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 757 mod_timer(&req->rsk_timer, jiffies + timeout); 758 759 inet_ehash_insert(req_to_sk(req), NULL); 760 /* before letting lookups find us, make sure all req fields 761 * are committed to memory and refcnt initialized. 762 */ 763 smp_wmb(); 764 refcount_set(&req->rsk_refcnt, 2 + 1); 765 } 766 767 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 768 unsigned long timeout) 769 { 770 reqsk_queue_hash_req(req, timeout); 771 inet_csk_reqsk_queue_added(sk); 772 } 773 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 774 775 /** 776 * inet_csk_clone_lock - clone an inet socket, and lock its clone 777 * @sk: the socket to clone 778 * @req: request_sock 779 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 780 * 781 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 782 */ 783 struct sock *inet_csk_clone_lock(const struct sock *sk, 784 const struct request_sock *req, 785 const gfp_t priority) 786 { 787 struct sock *newsk = sk_clone_lock(sk, priority); 788 789 if (newsk) { 790 struct inet_connection_sock *newicsk = inet_csk(newsk); 791 792 inet_sk_set_state(newsk, TCP_SYN_RECV); 793 newicsk->icsk_bind_hash = NULL; 794 795 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 796 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 797 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 798 799 /* listeners have SOCK_RCU_FREE, not the children */ 800 sock_reset_flag(newsk, SOCK_RCU_FREE); 801 802 inet_sk(newsk)->mc_list = NULL; 803 804 newsk->sk_mark = inet_rsk(req)->ir_mark; 805 atomic64_set(&newsk->sk_cookie, 806 atomic64_read(&inet_rsk(req)->ir_cookie)); 807 808 newicsk->icsk_retransmits = 0; 809 newicsk->icsk_backoff = 0; 810 newicsk->icsk_probes_out = 0; 811 812 /* Deinitialize accept_queue to trap illegal accesses. */ 813 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 814 815 security_inet_csk_clone(newsk, req); 816 } 817 return newsk; 818 } 819 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 820 821 /* 822 * At this point, there should be no process reference to this 823 * socket, and thus no user references at all. Therefore we 824 * can assume the socket waitqueue is inactive and nobody will 825 * try to jump onto it. 826 */ 827 void inet_csk_destroy_sock(struct sock *sk) 828 { 829 WARN_ON(sk->sk_state != TCP_CLOSE); 830 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 831 832 /* It cannot be in hash table! */ 833 WARN_ON(!sk_unhashed(sk)); 834 835 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 836 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 837 838 sk->sk_prot->destroy(sk); 839 840 sk_stream_kill_queues(sk); 841 842 xfrm_sk_free_policy(sk); 843 844 sk_refcnt_debug_release(sk); 845 846 percpu_counter_dec(sk->sk_prot->orphan_count); 847 848 sock_put(sk); 849 } 850 EXPORT_SYMBOL(inet_csk_destroy_sock); 851 852 /* This function allows to force a closure of a socket after the call to 853 * tcp/dccp_create_openreq_child(). 854 */ 855 void inet_csk_prepare_forced_close(struct sock *sk) 856 __releases(&sk->sk_lock.slock) 857 { 858 /* sk_clone_lock locked the socket and set refcnt to 2 */ 859 bh_unlock_sock(sk); 860 sock_put(sk); 861 862 /* The below has to be done to allow calling inet_csk_destroy_sock */ 863 sock_set_flag(sk, SOCK_DEAD); 864 percpu_counter_inc(sk->sk_prot->orphan_count); 865 inet_sk(sk)->inet_num = 0; 866 } 867 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 868 869 int inet_csk_listen_start(struct sock *sk, int backlog) 870 { 871 struct inet_connection_sock *icsk = inet_csk(sk); 872 struct inet_sock *inet = inet_sk(sk); 873 int err = -EADDRINUSE; 874 875 reqsk_queue_alloc(&icsk->icsk_accept_queue); 876 877 sk->sk_max_ack_backlog = backlog; 878 sk->sk_ack_backlog = 0; 879 inet_csk_delack_init(sk); 880 881 /* There is race window here: we announce ourselves listening, 882 * but this transition is still not validated by get_port(). 883 * It is OK, because this socket enters to hash table only 884 * after validation is complete. 885 */ 886 inet_sk_state_store(sk, TCP_LISTEN); 887 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 888 inet->inet_sport = htons(inet->inet_num); 889 890 sk_dst_reset(sk); 891 err = sk->sk_prot->hash(sk); 892 893 if (likely(!err)) 894 return 0; 895 } 896 897 inet_sk_set_state(sk, TCP_CLOSE); 898 return err; 899 } 900 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 901 902 static void inet_child_forget(struct sock *sk, struct request_sock *req, 903 struct sock *child) 904 { 905 sk->sk_prot->disconnect(child, O_NONBLOCK); 906 907 sock_orphan(child); 908 909 percpu_counter_inc(sk->sk_prot->orphan_count); 910 911 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 912 BUG_ON(tcp_sk(child)->fastopen_rsk != req); 913 BUG_ON(sk != req->rsk_listener); 914 915 /* Paranoid, to prevent race condition if 916 * an inbound pkt destined for child is 917 * blocked by sock lock in tcp_v4_rcv(). 918 * Also to satisfy an assertion in 919 * tcp_v4_destroy_sock(). 920 */ 921 tcp_sk(child)->fastopen_rsk = NULL; 922 } 923 inet_csk_destroy_sock(child); 924 } 925 926 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 927 struct request_sock *req, 928 struct sock *child) 929 { 930 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 931 932 spin_lock(&queue->rskq_lock); 933 if (unlikely(sk->sk_state != TCP_LISTEN)) { 934 inet_child_forget(sk, req, child); 935 child = NULL; 936 } else { 937 req->sk = child; 938 req->dl_next = NULL; 939 if (queue->rskq_accept_head == NULL) 940 queue->rskq_accept_head = req; 941 else 942 queue->rskq_accept_tail->dl_next = req; 943 queue->rskq_accept_tail = req; 944 sk_acceptq_added(sk); 945 } 946 spin_unlock(&queue->rskq_lock); 947 return child; 948 } 949 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 950 951 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 952 struct request_sock *req, bool own_req) 953 { 954 if (own_req) { 955 inet_csk_reqsk_queue_drop(sk, req); 956 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 957 if (inet_csk_reqsk_queue_add(sk, req, child)) 958 return child; 959 } 960 /* Too bad, another child took ownership of the request, undo. */ 961 bh_unlock_sock(child); 962 sock_put(child); 963 return NULL; 964 } 965 EXPORT_SYMBOL(inet_csk_complete_hashdance); 966 967 /* 968 * This routine closes sockets which have been at least partially 969 * opened, but not yet accepted. 970 */ 971 void inet_csk_listen_stop(struct sock *sk) 972 { 973 struct inet_connection_sock *icsk = inet_csk(sk); 974 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 975 struct request_sock *next, *req; 976 977 /* Following specs, it would be better either to send FIN 978 * (and enter FIN-WAIT-1, it is normal close) 979 * or to send active reset (abort). 980 * Certainly, it is pretty dangerous while synflood, but it is 981 * bad justification for our negligence 8) 982 * To be honest, we are not able to make either 983 * of the variants now. --ANK 984 */ 985 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 986 struct sock *child = req->sk; 987 988 local_bh_disable(); 989 bh_lock_sock(child); 990 WARN_ON(sock_owned_by_user(child)); 991 sock_hold(child); 992 993 inet_child_forget(sk, req, child); 994 reqsk_put(req); 995 bh_unlock_sock(child); 996 local_bh_enable(); 997 sock_put(child); 998 999 cond_resched(); 1000 } 1001 if (queue->fastopenq.rskq_rst_head) { 1002 /* Free all the reqs queued in rskq_rst_head. */ 1003 spin_lock_bh(&queue->fastopenq.lock); 1004 req = queue->fastopenq.rskq_rst_head; 1005 queue->fastopenq.rskq_rst_head = NULL; 1006 spin_unlock_bh(&queue->fastopenq.lock); 1007 while (req != NULL) { 1008 next = req->dl_next; 1009 reqsk_put(req); 1010 req = next; 1011 } 1012 } 1013 WARN_ON_ONCE(sk->sk_ack_backlog); 1014 } 1015 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1016 1017 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1018 { 1019 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1020 const struct inet_sock *inet = inet_sk(sk); 1021 1022 sin->sin_family = AF_INET; 1023 sin->sin_addr.s_addr = inet->inet_daddr; 1024 sin->sin_port = inet->inet_dport; 1025 } 1026 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1027 1028 #ifdef CONFIG_COMPAT 1029 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1030 char __user *optval, int __user *optlen) 1031 { 1032 const struct inet_connection_sock *icsk = inet_csk(sk); 1033 1034 if (icsk->icsk_af_ops->compat_getsockopt) 1035 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1036 optval, optlen); 1037 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1038 optval, optlen); 1039 } 1040 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1041 1042 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1043 char __user *optval, unsigned int optlen) 1044 { 1045 const struct inet_connection_sock *icsk = inet_csk(sk); 1046 1047 if (icsk->icsk_af_ops->compat_setsockopt) 1048 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1049 optval, optlen); 1050 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1051 optval, optlen); 1052 } 1053 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1054 #endif 1055 1056 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1057 { 1058 const struct inet_sock *inet = inet_sk(sk); 1059 const struct ip_options_rcu *inet_opt; 1060 __be32 daddr = inet->inet_daddr; 1061 struct flowi4 *fl4; 1062 struct rtable *rt; 1063 1064 rcu_read_lock(); 1065 inet_opt = rcu_dereference(inet->inet_opt); 1066 if (inet_opt && inet_opt->opt.srr) 1067 daddr = inet_opt->opt.faddr; 1068 fl4 = &fl->u.ip4; 1069 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1070 inet->inet_saddr, inet->inet_dport, 1071 inet->inet_sport, sk->sk_protocol, 1072 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1073 if (IS_ERR(rt)) 1074 rt = NULL; 1075 if (rt) 1076 sk_setup_caps(sk, &rt->dst); 1077 rcu_read_unlock(); 1078 1079 return &rt->dst; 1080 } 1081 1082 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1083 { 1084 struct dst_entry *dst = __sk_dst_check(sk, 0); 1085 struct inet_sock *inet = inet_sk(sk); 1086 1087 if (!dst) { 1088 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1089 if (!dst) 1090 goto out; 1091 } 1092 dst->ops->update_pmtu(dst, sk, NULL, mtu); 1093 1094 dst = __sk_dst_check(sk, 0); 1095 if (!dst) 1096 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1097 out: 1098 return dst; 1099 } 1100 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1101