1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally descibed in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <net/net_namespace.h> 75 #include <net/ip.h> 76 #include <net/protocol.h> 77 #include <net/route.h> 78 #include <net/tcp.h> 79 #include <net/sock.h> 80 #include <net/ip_fib.h> 81 #include "fib_lookup.h" 82 83 #define MAX_STAT_DEPTH 32 84 85 #define KEYLENGTH (8*sizeof(t_key)) 86 87 typedef unsigned int t_key; 88 89 #define T_TNODE 0 90 #define T_LEAF 1 91 #define NODE_TYPE_MASK 0x1UL 92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 93 94 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 95 #define IS_LEAF(n) (n->parent & T_LEAF) 96 97 struct node { 98 unsigned long parent; 99 t_key key; 100 }; 101 102 struct leaf { 103 unsigned long parent; 104 t_key key; 105 struct hlist_head list; 106 struct rcu_head rcu; 107 }; 108 109 struct leaf_info { 110 struct hlist_node hlist; 111 struct rcu_head rcu; 112 int plen; 113 struct list_head falh; 114 }; 115 116 struct tnode { 117 unsigned long parent; 118 t_key key; 119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 121 unsigned int full_children; /* KEYLENGTH bits needed */ 122 unsigned int empty_children; /* KEYLENGTH bits needed */ 123 union { 124 struct rcu_head rcu; 125 struct work_struct work; 126 struct tnode *tnode_free; 127 }; 128 struct node *child[0]; 129 }; 130 131 #ifdef CONFIG_IP_FIB_TRIE_STATS 132 struct trie_use_stats { 133 unsigned int gets; 134 unsigned int backtrack; 135 unsigned int semantic_match_passed; 136 unsigned int semantic_match_miss; 137 unsigned int null_node_hit; 138 unsigned int resize_node_skipped; 139 }; 140 #endif 141 142 struct trie_stat { 143 unsigned int totdepth; 144 unsigned int maxdepth; 145 unsigned int tnodes; 146 unsigned int leaves; 147 unsigned int nullpointers; 148 unsigned int prefixes; 149 unsigned int nodesizes[MAX_STAT_DEPTH]; 150 }; 151 152 struct trie { 153 struct node *trie; 154 #ifdef CONFIG_IP_FIB_TRIE_STATS 155 struct trie_use_stats stats; 156 #endif 157 }; 158 159 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); 160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 161 int wasfull); 162 static struct node *resize(struct trie *t, struct tnode *tn); 163 static struct tnode *inflate(struct trie *t, struct tnode *tn); 164 static struct tnode *halve(struct trie *t, struct tnode *tn); 165 /* tnodes to free after resize(); protected by RTNL */ 166 static struct tnode *tnode_free_head; 167 static size_t tnode_free_size; 168 169 /* 170 * synchronize_rcu after call_rcu for that many pages; it should be especially 171 * useful before resizing the root node with PREEMPT_NONE configs; the value was 172 * obtained experimentally, aiming to avoid visible slowdown. 173 */ 174 static const int sync_pages = 128; 175 176 static struct kmem_cache *fn_alias_kmem __read_mostly; 177 static struct kmem_cache *trie_leaf_kmem __read_mostly; 178 179 static inline struct tnode *node_parent(struct node *node) 180 { 181 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK); 182 } 183 184 static inline struct tnode *node_parent_rcu(struct node *node) 185 { 186 struct tnode *ret = node_parent(node); 187 188 return rcu_dereference(ret); 189 } 190 191 /* Same as rcu_assign_pointer 192 * but that macro() assumes that value is a pointer. 193 */ 194 static inline void node_set_parent(struct node *node, struct tnode *ptr) 195 { 196 smp_wmb(); 197 node->parent = (unsigned long)ptr | NODE_TYPE(node); 198 } 199 200 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i) 201 { 202 BUG_ON(i >= 1U << tn->bits); 203 204 return tn->child[i]; 205 } 206 207 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i) 208 { 209 struct node *ret = tnode_get_child(tn, i); 210 211 return rcu_dereference(ret); 212 } 213 214 static inline int tnode_child_length(const struct tnode *tn) 215 { 216 return 1 << tn->bits; 217 } 218 219 static inline t_key mask_pfx(t_key k, unsigned short l) 220 { 221 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 222 } 223 224 static inline t_key tkey_extract_bits(t_key a, int offset, int bits) 225 { 226 if (offset < KEYLENGTH) 227 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 228 else 229 return 0; 230 } 231 232 static inline int tkey_equals(t_key a, t_key b) 233 { 234 return a == b; 235 } 236 237 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 238 { 239 if (bits == 0 || offset >= KEYLENGTH) 240 return 1; 241 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 242 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 243 } 244 245 static inline int tkey_mismatch(t_key a, int offset, t_key b) 246 { 247 t_key diff = a ^ b; 248 int i = offset; 249 250 if (!diff) 251 return 0; 252 while ((diff << i) >> (KEYLENGTH-1) == 0) 253 i++; 254 return i; 255 } 256 257 /* 258 To understand this stuff, an understanding of keys and all their bits is 259 necessary. Every node in the trie has a key associated with it, but not 260 all of the bits in that key are significant. 261 262 Consider a node 'n' and its parent 'tp'. 263 264 If n is a leaf, every bit in its key is significant. Its presence is 265 necessitated by path compression, since during a tree traversal (when 266 searching for a leaf - unless we are doing an insertion) we will completely 267 ignore all skipped bits we encounter. Thus we need to verify, at the end of 268 a potentially successful search, that we have indeed been walking the 269 correct key path. 270 271 Note that we can never "miss" the correct key in the tree if present by 272 following the wrong path. Path compression ensures that segments of the key 273 that are the same for all keys with a given prefix are skipped, but the 274 skipped part *is* identical for each node in the subtrie below the skipped 275 bit! trie_insert() in this implementation takes care of that - note the 276 call to tkey_sub_equals() in trie_insert(). 277 278 if n is an internal node - a 'tnode' here, the various parts of its key 279 have many different meanings. 280 281 Example: 282 _________________________________________________________________ 283 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 284 ----------------------------------------------------------------- 285 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 286 287 _________________________________________________________________ 288 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 289 ----------------------------------------------------------------- 290 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 291 292 tp->pos = 7 293 tp->bits = 3 294 n->pos = 15 295 n->bits = 4 296 297 First, let's just ignore the bits that come before the parent tp, that is 298 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 299 not use them for anything. 300 301 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 302 index into the parent's child array. That is, they will be used to find 303 'n' among tp's children. 304 305 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 306 for the node n. 307 308 All the bits we have seen so far are significant to the node n. The rest 309 of the bits are really not needed or indeed known in n->key. 310 311 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 312 n's child array, and will of course be different for each child. 313 314 315 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 316 at this point. 317 318 */ 319 320 static inline void check_tnode(const struct tnode *tn) 321 { 322 WARN_ON(tn && tn->pos+tn->bits > 32); 323 } 324 325 static const int halve_threshold = 25; 326 static const int inflate_threshold = 50; 327 static const int halve_threshold_root = 15; 328 static const int inflate_threshold_root = 30; 329 330 static void __alias_free_mem(struct rcu_head *head) 331 { 332 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 333 kmem_cache_free(fn_alias_kmem, fa); 334 } 335 336 static inline void alias_free_mem_rcu(struct fib_alias *fa) 337 { 338 call_rcu(&fa->rcu, __alias_free_mem); 339 } 340 341 static void __leaf_free_rcu(struct rcu_head *head) 342 { 343 struct leaf *l = container_of(head, struct leaf, rcu); 344 kmem_cache_free(trie_leaf_kmem, l); 345 } 346 347 static inline void free_leaf(struct leaf *l) 348 { 349 call_rcu_bh(&l->rcu, __leaf_free_rcu); 350 } 351 352 static void __leaf_info_free_rcu(struct rcu_head *head) 353 { 354 kfree(container_of(head, struct leaf_info, rcu)); 355 } 356 357 static inline void free_leaf_info(struct leaf_info *leaf) 358 { 359 call_rcu(&leaf->rcu, __leaf_info_free_rcu); 360 } 361 362 static struct tnode *tnode_alloc(size_t size) 363 { 364 if (size <= PAGE_SIZE) 365 return kzalloc(size, GFP_KERNEL); 366 else 367 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 368 } 369 370 static void __tnode_vfree(struct work_struct *arg) 371 { 372 struct tnode *tn = container_of(arg, struct tnode, work); 373 vfree(tn); 374 } 375 376 static void __tnode_free_rcu(struct rcu_head *head) 377 { 378 struct tnode *tn = container_of(head, struct tnode, rcu); 379 size_t size = sizeof(struct tnode) + 380 (sizeof(struct node *) << tn->bits); 381 382 if (size <= PAGE_SIZE) 383 kfree(tn); 384 else { 385 INIT_WORK(&tn->work, __tnode_vfree); 386 schedule_work(&tn->work); 387 } 388 } 389 390 static inline void tnode_free(struct tnode *tn) 391 { 392 if (IS_LEAF(tn)) 393 free_leaf((struct leaf *) tn); 394 else 395 call_rcu(&tn->rcu, __tnode_free_rcu); 396 } 397 398 static void tnode_free_safe(struct tnode *tn) 399 { 400 BUG_ON(IS_LEAF(tn)); 401 tn->tnode_free = tnode_free_head; 402 tnode_free_head = tn; 403 tnode_free_size += sizeof(struct tnode) + 404 (sizeof(struct node *) << tn->bits); 405 } 406 407 static void tnode_free_flush(void) 408 { 409 struct tnode *tn; 410 411 while ((tn = tnode_free_head)) { 412 tnode_free_head = tn->tnode_free; 413 tn->tnode_free = NULL; 414 tnode_free(tn); 415 } 416 417 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 418 tnode_free_size = 0; 419 synchronize_rcu(); 420 } 421 } 422 423 static struct leaf *leaf_new(void) 424 { 425 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 426 if (l) { 427 l->parent = T_LEAF; 428 INIT_HLIST_HEAD(&l->list); 429 } 430 return l; 431 } 432 433 static struct leaf_info *leaf_info_new(int plen) 434 { 435 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 436 if (li) { 437 li->plen = plen; 438 INIT_LIST_HEAD(&li->falh); 439 } 440 return li; 441 } 442 443 static struct tnode *tnode_new(t_key key, int pos, int bits) 444 { 445 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits); 446 struct tnode *tn = tnode_alloc(sz); 447 448 if (tn) { 449 tn->parent = T_TNODE; 450 tn->pos = pos; 451 tn->bits = bits; 452 tn->key = key; 453 tn->full_children = 0; 454 tn->empty_children = 1<<bits; 455 } 456 457 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode), 458 (unsigned long) (sizeof(struct node) << bits)); 459 return tn; 460 } 461 462 /* 463 * Check whether a tnode 'n' is "full", i.e. it is an internal node 464 * and no bits are skipped. See discussion in dyntree paper p. 6 465 */ 466 467 static inline int tnode_full(const struct tnode *tn, const struct node *n) 468 { 469 if (n == NULL || IS_LEAF(n)) 470 return 0; 471 472 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 473 } 474 475 static inline void put_child(struct trie *t, struct tnode *tn, int i, 476 struct node *n) 477 { 478 tnode_put_child_reorg(tn, i, n, -1); 479 } 480 481 /* 482 * Add a child at position i overwriting the old value. 483 * Update the value of full_children and empty_children. 484 */ 485 486 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 487 int wasfull) 488 { 489 struct node *chi = tn->child[i]; 490 int isfull; 491 492 BUG_ON(i >= 1<<tn->bits); 493 494 /* update emptyChildren */ 495 if (n == NULL && chi != NULL) 496 tn->empty_children++; 497 else if (n != NULL && chi == NULL) 498 tn->empty_children--; 499 500 /* update fullChildren */ 501 if (wasfull == -1) 502 wasfull = tnode_full(tn, chi); 503 504 isfull = tnode_full(tn, n); 505 if (wasfull && !isfull) 506 tn->full_children--; 507 else if (!wasfull && isfull) 508 tn->full_children++; 509 510 if (n) 511 node_set_parent(n, tn); 512 513 rcu_assign_pointer(tn->child[i], n); 514 } 515 516 #define MAX_WORK 10 517 static struct node *resize(struct trie *t, struct tnode *tn) 518 { 519 int i; 520 struct tnode *old_tn; 521 int inflate_threshold_use; 522 int halve_threshold_use; 523 int max_work; 524 525 if (!tn) 526 return NULL; 527 528 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 529 tn, inflate_threshold, halve_threshold); 530 531 /* No children */ 532 if (tn->empty_children == tnode_child_length(tn)) { 533 tnode_free_safe(tn); 534 return NULL; 535 } 536 /* One child */ 537 if (tn->empty_children == tnode_child_length(tn) - 1) 538 goto one_child; 539 /* 540 * Double as long as the resulting node has a number of 541 * nonempty nodes that are above the threshold. 542 */ 543 544 /* 545 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 546 * the Helsinki University of Technology and Matti Tikkanen of Nokia 547 * Telecommunications, page 6: 548 * "A node is doubled if the ratio of non-empty children to all 549 * children in the *doubled* node is at least 'high'." 550 * 551 * 'high' in this instance is the variable 'inflate_threshold'. It 552 * is expressed as a percentage, so we multiply it with 553 * tnode_child_length() and instead of multiplying by 2 (since the 554 * child array will be doubled by inflate()) and multiplying 555 * the left-hand side by 100 (to handle the percentage thing) we 556 * multiply the left-hand side by 50. 557 * 558 * The left-hand side may look a bit weird: tnode_child_length(tn) 559 * - tn->empty_children is of course the number of non-null children 560 * in the current node. tn->full_children is the number of "full" 561 * children, that is non-null tnodes with a skip value of 0. 562 * All of those will be doubled in the resulting inflated tnode, so 563 * we just count them one extra time here. 564 * 565 * A clearer way to write this would be: 566 * 567 * to_be_doubled = tn->full_children; 568 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 569 * tn->full_children; 570 * 571 * new_child_length = tnode_child_length(tn) * 2; 572 * 573 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 574 * new_child_length; 575 * if (new_fill_factor >= inflate_threshold) 576 * 577 * ...and so on, tho it would mess up the while () loop. 578 * 579 * anyway, 580 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 581 * inflate_threshold 582 * 583 * avoid a division: 584 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 585 * inflate_threshold * new_child_length 586 * 587 * expand not_to_be_doubled and to_be_doubled, and shorten: 588 * 100 * (tnode_child_length(tn) - tn->empty_children + 589 * tn->full_children) >= inflate_threshold * new_child_length 590 * 591 * expand new_child_length: 592 * 100 * (tnode_child_length(tn) - tn->empty_children + 593 * tn->full_children) >= 594 * inflate_threshold * tnode_child_length(tn) * 2 595 * 596 * shorten again: 597 * 50 * (tn->full_children + tnode_child_length(tn) - 598 * tn->empty_children) >= inflate_threshold * 599 * tnode_child_length(tn) 600 * 601 */ 602 603 check_tnode(tn); 604 605 /* Keep root node larger */ 606 607 if (!node_parent((struct node*) tn)) { 608 inflate_threshold_use = inflate_threshold_root; 609 halve_threshold_use = halve_threshold_root; 610 } 611 else { 612 inflate_threshold_use = inflate_threshold; 613 halve_threshold_use = halve_threshold; 614 } 615 616 max_work = MAX_WORK; 617 while ((tn->full_children > 0 && max_work-- && 618 50 * (tn->full_children + tnode_child_length(tn) 619 - tn->empty_children) 620 >= inflate_threshold_use * tnode_child_length(tn))) { 621 622 old_tn = tn; 623 tn = inflate(t, tn); 624 625 if (IS_ERR(tn)) { 626 tn = old_tn; 627 #ifdef CONFIG_IP_FIB_TRIE_STATS 628 t->stats.resize_node_skipped++; 629 #endif 630 break; 631 } 632 } 633 634 check_tnode(tn); 635 636 /* Return if at least one inflate is run */ 637 if( max_work != MAX_WORK) 638 return (struct node *) tn; 639 640 /* 641 * Halve as long as the number of empty children in this 642 * node is above threshold. 643 */ 644 645 max_work = MAX_WORK; 646 while (tn->bits > 1 && max_work-- && 647 100 * (tnode_child_length(tn) - tn->empty_children) < 648 halve_threshold_use * tnode_child_length(tn)) { 649 650 old_tn = tn; 651 tn = halve(t, tn); 652 if (IS_ERR(tn)) { 653 tn = old_tn; 654 #ifdef CONFIG_IP_FIB_TRIE_STATS 655 t->stats.resize_node_skipped++; 656 #endif 657 break; 658 } 659 } 660 661 662 /* Only one child remains */ 663 if (tn->empty_children == tnode_child_length(tn) - 1) { 664 one_child: 665 for (i = 0; i < tnode_child_length(tn); i++) { 666 struct node *n; 667 668 n = tn->child[i]; 669 if (!n) 670 continue; 671 672 /* compress one level */ 673 674 node_set_parent(n, NULL); 675 tnode_free_safe(tn); 676 return n; 677 } 678 } 679 return (struct node *) tn; 680 } 681 682 static struct tnode *inflate(struct trie *t, struct tnode *tn) 683 { 684 struct tnode *oldtnode = tn; 685 int olen = tnode_child_length(tn); 686 int i; 687 688 pr_debug("In inflate\n"); 689 690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 691 692 if (!tn) 693 return ERR_PTR(-ENOMEM); 694 695 /* 696 * Preallocate and store tnodes before the actual work so we 697 * don't get into an inconsistent state if memory allocation 698 * fails. In case of failure we return the oldnode and inflate 699 * of tnode is ignored. 700 */ 701 702 for (i = 0; i < olen; i++) { 703 struct tnode *inode; 704 705 inode = (struct tnode *) tnode_get_child(oldtnode, i); 706 if (inode && 707 IS_TNODE(inode) && 708 inode->pos == oldtnode->pos + oldtnode->bits && 709 inode->bits > 1) { 710 struct tnode *left, *right; 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 712 713 left = tnode_new(inode->key&(~m), inode->pos + 1, 714 inode->bits - 1); 715 if (!left) 716 goto nomem; 717 718 right = tnode_new(inode->key|m, inode->pos + 1, 719 inode->bits - 1); 720 721 if (!right) { 722 tnode_free(left); 723 goto nomem; 724 } 725 726 put_child(t, tn, 2*i, (struct node *) left); 727 put_child(t, tn, 2*i+1, (struct node *) right); 728 } 729 } 730 731 for (i = 0; i < olen; i++) { 732 struct tnode *inode; 733 struct node *node = tnode_get_child(oldtnode, i); 734 struct tnode *left, *right; 735 int size, j; 736 737 /* An empty child */ 738 if (node == NULL) 739 continue; 740 741 /* A leaf or an internal node with skipped bits */ 742 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 744 tn->pos + tn->bits - 1) { 745 if (tkey_extract_bits(node->key, 746 oldtnode->pos + oldtnode->bits, 747 1) == 0) 748 put_child(t, tn, 2*i, node); 749 else 750 put_child(t, tn, 2*i+1, node); 751 continue; 752 } 753 754 /* An internal node with two children */ 755 inode = (struct tnode *) node; 756 757 if (inode->bits == 1) { 758 put_child(t, tn, 2*i, inode->child[0]); 759 put_child(t, tn, 2*i+1, inode->child[1]); 760 761 tnode_free_safe(inode); 762 continue; 763 } 764 765 /* An internal node with more than two children */ 766 767 /* We will replace this node 'inode' with two new 768 * ones, 'left' and 'right', each with half of the 769 * original children. The two new nodes will have 770 * a position one bit further down the key and this 771 * means that the "significant" part of their keys 772 * (see the discussion near the top of this file) 773 * will differ by one bit, which will be "0" in 774 * left's key and "1" in right's key. Since we are 775 * moving the key position by one step, the bit that 776 * we are moving away from - the bit at position 777 * (inode->pos) - is the one that will differ between 778 * left and right. So... we synthesize that bit in the 779 * two new keys. 780 * The mask 'm' below will be a single "one" bit at 781 * the position (inode->pos) 782 */ 783 784 /* Use the old key, but set the new significant 785 * bit to zero. 786 */ 787 788 left = (struct tnode *) tnode_get_child(tn, 2*i); 789 put_child(t, tn, 2*i, NULL); 790 791 BUG_ON(!left); 792 793 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 794 put_child(t, tn, 2*i+1, NULL); 795 796 BUG_ON(!right); 797 798 size = tnode_child_length(left); 799 for (j = 0; j < size; j++) { 800 put_child(t, left, j, inode->child[j]); 801 put_child(t, right, j, inode->child[j + size]); 802 } 803 put_child(t, tn, 2*i, resize(t, left)); 804 put_child(t, tn, 2*i+1, resize(t, right)); 805 806 tnode_free_safe(inode); 807 } 808 tnode_free_safe(oldtnode); 809 return tn; 810 nomem: 811 { 812 int size = tnode_child_length(tn); 813 int j; 814 815 for (j = 0; j < size; j++) 816 if (tn->child[j]) 817 tnode_free((struct tnode *)tn->child[j]); 818 819 tnode_free(tn); 820 821 return ERR_PTR(-ENOMEM); 822 } 823 } 824 825 static struct tnode *halve(struct trie *t, struct tnode *tn) 826 { 827 struct tnode *oldtnode = tn; 828 struct node *left, *right; 829 int i; 830 int olen = tnode_child_length(tn); 831 832 pr_debug("In halve\n"); 833 834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 835 836 if (!tn) 837 return ERR_PTR(-ENOMEM); 838 839 /* 840 * Preallocate and store tnodes before the actual work so we 841 * don't get into an inconsistent state if memory allocation 842 * fails. In case of failure we return the oldnode and halve 843 * of tnode is ignored. 844 */ 845 846 for (i = 0; i < olen; i += 2) { 847 left = tnode_get_child(oldtnode, i); 848 right = tnode_get_child(oldtnode, i+1); 849 850 /* Two nonempty children */ 851 if (left && right) { 852 struct tnode *newn; 853 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 855 856 if (!newn) 857 goto nomem; 858 859 put_child(t, tn, i/2, (struct node *)newn); 860 } 861 862 } 863 864 for (i = 0; i < olen; i += 2) { 865 struct tnode *newBinNode; 866 867 left = tnode_get_child(oldtnode, i); 868 right = tnode_get_child(oldtnode, i+1); 869 870 /* At least one of the children is empty */ 871 if (left == NULL) { 872 if (right == NULL) /* Both are empty */ 873 continue; 874 put_child(t, tn, i/2, right); 875 continue; 876 } 877 878 if (right == NULL) { 879 put_child(t, tn, i/2, left); 880 continue; 881 } 882 883 /* Two nonempty children */ 884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 885 put_child(t, tn, i/2, NULL); 886 put_child(t, newBinNode, 0, left); 887 put_child(t, newBinNode, 1, right); 888 put_child(t, tn, i/2, resize(t, newBinNode)); 889 } 890 tnode_free_safe(oldtnode); 891 return tn; 892 nomem: 893 { 894 int size = tnode_child_length(tn); 895 int j; 896 897 for (j = 0; j < size; j++) 898 if (tn->child[j]) 899 tnode_free((struct tnode *)tn->child[j]); 900 901 tnode_free(tn); 902 903 return ERR_PTR(-ENOMEM); 904 } 905 } 906 907 /* readside must use rcu_read_lock currently dump routines 908 via get_fa_head and dump */ 909 910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 911 { 912 struct hlist_head *head = &l->list; 913 struct hlist_node *node; 914 struct leaf_info *li; 915 916 hlist_for_each_entry_rcu(li, node, head, hlist) 917 if (li->plen == plen) 918 return li; 919 920 return NULL; 921 } 922 923 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 924 { 925 struct leaf_info *li = find_leaf_info(l, plen); 926 927 if (!li) 928 return NULL; 929 930 return &li->falh; 931 } 932 933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 934 { 935 struct leaf_info *li = NULL, *last = NULL; 936 struct hlist_node *node; 937 938 if (hlist_empty(head)) { 939 hlist_add_head_rcu(&new->hlist, head); 940 } else { 941 hlist_for_each_entry(li, node, head, hlist) { 942 if (new->plen > li->plen) 943 break; 944 945 last = li; 946 } 947 if (last) 948 hlist_add_after_rcu(&last->hlist, &new->hlist); 949 else 950 hlist_add_before_rcu(&new->hlist, &li->hlist); 951 } 952 } 953 954 /* rcu_read_lock needs to be hold by caller from readside */ 955 956 static struct leaf * 957 fib_find_node(struct trie *t, u32 key) 958 { 959 int pos; 960 struct tnode *tn; 961 struct node *n; 962 963 pos = 0; 964 n = rcu_dereference(t->trie); 965 966 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 967 tn = (struct tnode *) n; 968 969 check_tnode(tn); 970 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 972 pos = tn->pos + tn->bits; 973 n = tnode_get_child_rcu(tn, 974 tkey_extract_bits(key, 975 tn->pos, 976 tn->bits)); 977 } else 978 break; 979 } 980 /* Case we have found a leaf. Compare prefixes */ 981 982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 983 return (struct leaf *)n; 984 985 return NULL; 986 } 987 988 static void trie_rebalance(struct trie *t, struct tnode *tn) 989 { 990 int wasfull; 991 t_key cindex, key; 992 struct tnode *tp; 993 994 key = tn->key; 995 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) { 997 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 999 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1000 1001 tnode_put_child_reorg((struct tnode *)tp, cindex, 1002 (struct node *)tn, wasfull); 1003 1004 tp = node_parent((struct node *) tn); 1005 if (!tp) 1006 rcu_assign_pointer(t->trie, (struct node *)tn); 1007 1008 tnode_free_flush(); 1009 if (!tp) 1010 break; 1011 tn = tp; 1012 } 1013 1014 /* Handle last (top) tnode */ 1015 if (IS_TNODE(tn)) 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1017 1018 rcu_assign_pointer(t->trie, (struct node *)tn); 1019 tnode_free_flush(); 1020 1021 return; 1022 } 1023 1024 /* only used from updater-side */ 1025 1026 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1027 { 1028 int pos, newpos; 1029 struct tnode *tp = NULL, *tn = NULL; 1030 struct node *n; 1031 struct leaf *l; 1032 int missbit; 1033 struct list_head *fa_head = NULL; 1034 struct leaf_info *li; 1035 t_key cindex; 1036 1037 pos = 0; 1038 n = t->trie; 1039 1040 /* If we point to NULL, stop. Either the tree is empty and we should 1041 * just put a new leaf in if, or we have reached an empty child slot, 1042 * and we should just put our new leaf in that. 1043 * If we point to a T_TNODE, check if it matches our key. Note that 1044 * a T_TNODE might be skipping any number of bits - its 'pos' need 1045 * not be the parent's 'pos'+'bits'! 1046 * 1047 * If it does match the current key, get pos/bits from it, extract 1048 * the index from our key, push the T_TNODE and walk the tree. 1049 * 1050 * If it doesn't, we have to replace it with a new T_TNODE. 1051 * 1052 * If we point to a T_LEAF, it might or might not have the same key 1053 * as we do. If it does, just change the value, update the T_LEAF's 1054 * value, and return it. 1055 * If it doesn't, we need to replace it with a T_TNODE. 1056 */ 1057 1058 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1059 tn = (struct tnode *) n; 1060 1061 check_tnode(tn); 1062 1063 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1064 tp = tn; 1065 pos = tn->pos + tn->bits; 1066 n = tnode_get_child(tn, 1067 tkey_extract_bits(key, 1068 tn->pos, 1069 tn->bits)); 1070 1071 BUG_ON(n && node_parent(n) != tn); 1072 } else 1073 break; 1074 } 1075 1076 /* 1077 * n ----> NULL, LEAF or TNODE 1078 * 1079 * tp is n's (parent) ----> NULL or TNODE 1080 */ 1081 1082 BUG_ON(tp && IS_LEAF(tp)); 1083 1084 /* Case 1: n is a leaf. Compare prefixes */ 1085 1086 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1087 l = (struct leaf *) n; 1088 li = leaf_info_new(plen); 1089 1090 if (!li) 1091 return NULL; 1092 1093 fa_head = &li->falh; 1094 insert_leaf_info(&l->list, li); 1095 goto done; 1096 } 1097 l = leaf_new(); 1098 1099 if (!l) 1100 return NULL; 1101 1102 l->key = key; 1103 li = leaf_info_new(plen); 1104 1105 if (!li) { 1106 free_leaf(l); 1107 return NULL; 1108 } 1109 1110 fa_head = &li->falh; 1111 insert_leaf_info(&l->list, li); 1112 1113 if (t->trie && n == NULL) { 1114 /* Case 2: n is NULL, and will just insert a new leaf */ 1115 1116 node_set_parent((struct node *)l, tp); 1117 1118 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1119 put_child(t, (struct tnode *)tp, cindex, (struct node *)l); 1120 } else { 1121 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1122 /* 1123 * Add a new tnode here 1124 * first tnode need some special handling 1125 */ 1126 1127 if (tp) 1128 pos = tp->pos+tp->bits; 1129 else 1130 pos = 0; 1131 1132 if (n) { 1133 newpos = tkey_mismatch(key, pos, n->key); 1134 tn = tnode_new(n->key, newpos, 1); 1135 } else { 1136 newpos = 0; 1137 tn = tnode_new(key, newpos, 1); /* First tnode */ 1138 } 1139 1140 if (!tn) { 1141 free_leaf_info(li); 1142 free_leaf(l); 1143 return NULL; 1144 } 1145 1146 node_set_parent((struct node *)tn, tp); 1147 1148 missbit = tkey_extract_bits(key, newpos, 1); 1149 put_child(t, tn, missbit, (struct node *)l); 1150 put_child(t, tn, 1-missbit, n); 1151 1152 if (tp) { 1153 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1154 put_child(t, (struct tnode *)tp, cindex, 1155 (struct node *)tn); 1156 } else { 1157 rcu_assign_pointer(t->trie, (struct node *)tn); 1158 tp = tn; 1159 } 1160 } 1161 1162 if (tp && tp->pos + tp->bits > 32) 1163 pr_warning("fib_trie" 1164 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1165 tp, tp->pos, tp->bits, key, plen); 1166 1167 /* Rebalance the trie */ 1168 1169 trie_rebalance(t, tp); 1170 done: 1171 return fa_head; 1172 } 1173 1174 /* 1175 * Caller must hold RTNL. 1176 */ 1177 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg) 1178 { 1179 struct trie *t = (struct trie *) tb->tb_data; 1180 struct fib_alias *fa, *new_fa; 1181 struct list_head *fa_head = NULL; 1182 struct fib_info *fi; 1183 int plen = cfg->fc_dst_len; 1184 u8 tos = cfg->fc_tos; 1185 u32 key, mask; 1186 int err; 1187 struct leaf *l; 1188 1189 if (plen > 32) 1190 return -EINVAL; 1191 1192 key = ntohl(cfg->fc_dst); 1193 1194 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1195 1196 mask = ntohl(inet_make_mask(plen)); 1197 1198 if (key & ~mask) 1199 return -EINVAL; 1200 1201 key = key & mask; 1202 1203 fi = fib_create_info(cfg); 1204 if (IS_ERR(fi)) { 1205 err = PTR_ERR(fi); 1206 goto err; 1207 } 1208 1209 l = fib_find_node(t, key); 1210 fa = NULL; 1211 1212 if (l) { 1213 fa_head = get_fa_head(l, plen); 1214 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1215 } 1216 1217 /* Now fa, if non-NULL, points to the first fib alias 1218 * with the same keys [prefix,tos,priority], if such key already 1219 * exists or to the node before which we will insert new one. 1220 * 1221 * If fa is NULL, we will need to allocate a new one and 1222 * insert to the head of f. 1223 * 1224 * If f is NULL, no fib node matched the destination key 1225 * and we need to allocate a new one of those as well. 1226 */ 1227 1228 if (fa && fa->fa_tos == tos && 1229 fa->fa_info->fib_priority == fi->fib_priority) { 1230 struct fib_alias *fa_first, *fa_match; 1231 1232 err = -EEXIST; 1233 if (cfg->fc_nlflags & NLM_F_EXCL) 1234 goto out; 1235 1236 /* We have 2 goals: 1237 * 1. Find exact match for type, scope, fib_info to avoid 1238 * duplicate routes 1239 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1240 */ 1241 fa_match = NULL; 1242 fa_first = fa; 1243 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1244 list_for_each_entry_continue(fa, fa_head, fa_list) { 1245 if (fa->fa_tos != tos) 1246 break; 1247 if (fa->fa_info->fib_priority != fi->fib_priority) 1248 break; 1249 if (fa->fa_type == cfg->fc_type && 1250 fa->fa_scope == cfg->fc_scope && 1251 fa->fa_info == fi) { 1252 fa_match = fa; 1253 break; 1254 } 1255 } 1256 1257 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1258 struct fib_info *fi_drop; 1259 u8 state; 1260 1261 fa = fa_first; 1262 if (fa_match) { 1263 if (fa == fa_match) 1264 err = 0; 1265 goto out; 1266 } 1267 err = -ENOBUFS; 1268 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1269 if (new_fa == NULL) 1270 goto out; 1271 1272 fi_drop = fa->fa_info; 1273 new_fa->fa_tos = fa->fa_tos; 1274 new_fa->fa_info = fi; 1275 new_fa->fa_type = cfg->fc_type; 1276 new_fa->fa_scope = cfg->fc_scope; 1277 state = fa->fa_state; 1278 new_fa->fa_state = state & ~FA_S_ACCESSED; 1279 1280 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1281 alias_free_mem_rcu(fa); 1282 1283 fib_release_info(fi_drop); 1284 if (state & FA_S_ACCESSED) 1285 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1286 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1287 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1288 1289 goto succeeded; 1290 } 1291 /* Error if we find a perfect match which 1292 * uses the same scope, type, and nexthop 1293 * information. 1294 */ 1295 if (fa_match) 1296 goto out; 1297 1298 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1299 fa = fa_first; 1300 } 1301 err = -ENOENT; 1302 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1303 goto out; 1304 1305 err = -ENOBUFS; 1306 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1307 if (new_fa == NULL) 1308 goto out; 1309 1310 new_fa->fa_info = fi; 1311 new_fa->fa_tos = tos; 1312 new_fa->fa_type = cfg->fc_type; 1313 new_fa->fa_scope = cfg->fc_scope; 1314 new_fa->fa_state = 0; 1315 /* 1316 * Insert new entry to the list. 1317 */ 1318 1319 if (!fa_head) { 1320 fa_head = fib_insert_node(t, key, plen); 1321 if (unlikely(!fa_head)) { 1322 err = -ENOMEM; 1323 goto out_free_new_fa; 1324 } 1325 } 1326 1327 list_add_tail_rcu(&new_fa->fa_list, 1328 (fa ? &fa->fa_list : fa_head)); 1329 1330 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1331 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1332 &cfg->fc_nlinfo, 0); 1333 succeeded: 1334 return 0; 1335 1336 out_free_new_fa: 1337 kmem_cache_free(fn_alias_kmem, new_fa); 1338 out: 1339 fib_release_info(fi); 1340 err: 1341 return err; 1342 } 1343 1344 /* should be called with rcu_read_lock */ 1345 static int check_leaf(struct trie *t, struct leaf *l, 1346 t_key key, const struct flowi *flp, 1347 struct fib_result *res) 1348 { 1349 struct leaf_info *li; 1350 struct hlist_head *hhead = &l->list; 1351 struct hlist_node *node; 1352 1353 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1354 int err; 1355 int plen = li->plen; 1356 __be32 mask = inet_make_mask(plen); 1357 1358 if (l->key != (key & ntohl(mask))) 1359 continue; 1360 1361 err = fib_semantic_match(&li->falh, flp, res, plen); 1362 1363 #ifdef CONFIG_IP_FIB_TRIE_STATS 1364 if (err <= 0) 1365 t->stats.semantic_match_passed++; 1366 else 1367 t->stats.semantic_match_miss++; 1368 #endif 1369 if (err <= 0) 1370 return err; 1371 } 1372 1373 return 1; 1374 } 1375 1376 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, 1377 struct fib_result *res) 1378 { 1379 struct trie *t = (struct trie *) tb->tb_data; 1380 int ret; 1381 struct node *n; 1382 struct tnode *pn; 1383 int pos, bits; 1384 t_key key = ntohl(flp->fl4_dst); 1385 int chopped_off; 1386 t_key cindex = 0; 1387 int current_prefix_length = KEYLENGTH; 1388 struct tnode *cn; 1389 t_key node_prefix, key_prefix, pref_mismatch; 1390 int mp; 1391 1392 rcu_read_lock(); 1393 1394 n = rcu_dereference(t->trie); 1395 if (!n) 1396 goto failed; 1397 1398 #ifdef CONFIG_IP_FIB_TRIE_STATS 1399 t->stats.gets++; 1400 #endif 1401 1402 /* Just a leaf? */ 1403 if (IS_LEAF(n)) { 1404 ret = check_leaf(t, (struct leaf *)n, key, flp, res); 1405 goto found; 1406 } 1407 1408 pn = (struct tnode *) n; 1409 chopped_off = 0; 1410 1411 while (pn) { 1412 pos = pn->pos; 1413 bits = pn->bits; 1414 1415 if (!chopped_off) 1416 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1417 pos, bits); 1418 1419 n = tnode_get_child_rcu(pn, cindex); 1420 1421 if (n == NULL) { 1422 #ifdef CONFIG_IP_FIB_TRIE_STATS 1423 t->stats.null_node_hit++; 1424 #endif 1425 goto backtrace; 1426 } 1427 1428 if (IS_LEAF(n)) { 1429 ret = check_leaf(t, (struct leaf *)n, key, flp, res); 1430 if (ret > 0) 1431 goto backtrace; 1432 goto found; 1433 } 1434 1435 cn = (struct tnode *)n; 1436 1437 /* 1438 * It's a tnode, and we can do some extra checks here if we 1439 * like, to avoid descending into a dead-end branch. 1440 * This tnode is in the parent's child array at index 1441 * key[p_pos..p_pos+p_bits] but potentially with some bits 1442 * chopped off, so in reality the index may be just a 1443 * subprefix, padded with zero at the end. 1444 * We can also take a look at any skipped bits in this 1445 * tnode - everything up to p_pos is supposed to be ok, 1446 * and the non-chopped bits of the index (se previous 1447 * paragraph) are also guaranteed ok, but the rest is 1448 * considered unknown. 1449 * 1450 * The skipped bits are key[pos+bits..cn->pos]. 1451 */ 1452 1453 /* If current_prefix_length < pos+bits, we are already doing 1454 * actual prefix matching, which means everything from 1455 * pos+(bits-chopped_off) onward must be zero along some 1456 * branch of this subtree - otherwise there is *no* valid 1457 * prefix present. Here we can only check the skipped 1458 * bits. Remember, since we have already indexed into the 1459 * parent's child array, we know that the bits we chopped of 1460 * *are* zero. 1461 */ 1462 1463 /* NOTA BENE: Checking only skipped bits 1464 for the new node here */ 1465 1466 if (current_prefix_length < pos+bits) { 1467 if (tkey_extract_bits(cn->key, current_prefix_length, 1468 cn->pos - current_prefix_length) 1469 || !(cn->child[0])) 1470 goto backtrace; 1471 } 1472 1473 /* 1474 * If chopped_off=0, the index is fully validated and we 1475 * only need to look at the skipped bits for this, the new, 1476 * tnode. What we actually want to do is to find out if 1477 * these skipped bits match our key perfectly, or if we will 1478 * have to count on finding a matching prefix further down, 1479 * because if we do, we would like to have some way of 1480 * verifying the existence of such a prefix at this point. 1481 */ 1482 1483 /* The only thing we can do at this point is to verify that 1484 * any such matching prefix can indeed be a prefix to our 1485 * key, and if the bits in the node we are inspecting that 1486 * do not match our key are not ZERO, this cannot be true. 1487 * Thus, find out where there is a mismatch (before cn->pos) 1488 * and verify that all the mismatching bits are zero in the 1489 * new tnode's key. 1490 */ 1491 1492 /* 1493 * Note: We aren't very concerned about the piece of 1494 * the key that precede pn->pos+pn->bits, since these 1495 * have already been checked. The bits after cn->pos 1496 * aren't checked since these are by definition 1497 * "unknown" at this point. Thus, what we want to see 1498 * is if we are about to enter the "prefix matching" 1499 * state, and in that case verify that the skipped 1500 * bits that will prevail throughout this subtree are 1501 * zero, as they have to be if we are to find a 1502 * matching prefix. 1503 */ 1504 1505 node_prefix = mask_pfx(cn->key, cn->pos); 1506 key_prefix = mask_pfx(key, cn->pos); 1507 pref_mismatch = key_prefix^node_prefix; 1508 mp = 0; 1509 1510 /* 1511 * In short: If skipped bits in this node do not match 1512 * the search key, enter the "prefix matching" 1513 * state.directly. 1514 */ 1515 if (pref_mismatch) { 1516 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { 1517 mp++; 1518 pref_mismatch = pref_mismatch << 1; 1519 } 1520 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); 1521 1522 if (key_prefix != 0) 1523 goto backtrace; 1524 1525 if (current_prefix_length >= cn->pos) 1526 current_prefix_length = mp; 1527 } 1528 1529 pn = (struct tnode *)n; /* Descend */ 1530 chopped_off = 0; 1531 continue; 1532 1533 backtrace: 1534 chopped_off++; 1535 1536 /* As zero don't change the child key (cindex) */ 1537 while ((chopped_off <= pn->bits) 1538 && !(cindex & (1<<(chopped_off-1)))) 1539 chopped_off++; 1540 1541 /* Decrease current_... with bits chopped off */ 1542 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1543 current_prefix_length = pn->pos + pn->bits 1544 - chopped_off; 1545 1546 /* 1547 * Either we do the actual chop off according or if we have 1548 * chopped off all bits in this tnode walk up to our parent. 1549 */ 1550 1551 if (chopped_off <= pn->bits) { 1552 cindex &= ~(1 << (chopped_off-1)); 1553 } else { 1554 struct tnode *parent = node_parent_rcu((struct node *) pn); 1555 if (!parent) 1556 goto failed; 1557 1558 /* Get Child's index */ 1559 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1560 pn = parent; 1561 chopped_off = 0; 1562 1563 #ifdef CONFIG_IP_FIB_TRIE_STATS 1564 t->stats.backtrack++; 1565 #endif 1566 goto backtrace; 1567 } 1568 } 1569 failed: 1570 ret = 1; 1571 found: 1572 rcu_read_unlock(); 1573 return ret; 1574 } 1575 1576 /* 1577 * Remove the leaf and return parent. 1578 */ 1579 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1580 { 1581 struct tnode *tp = node_parent((struct node *) l); 1582 1583 pr_debug("entering trie_leaf_remove(%p)\n", l); 1584 1585 if (tp) { 1586 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1587 put_child(t, (struct tnode *)tp, cindex, NULL); 1588 trie_rebalance(t, tp); 1589 } else 1590 rcu_assign_pointer(t->trie, NULL); 1591 1592 free_leaf(l); 1593 } 1594 1595 /* 1596 * Caller must hold RTNL. 1597 */ 1598 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg) 1599 { 1600 struct trie *t = (struct trie *) tb->tb_data; 1601 u32 key, mask; 1602 int plen = cfg->fc_dst_len; 1603 u8 tos = cfg->fc_tos; 1604 struct fib_alias *fa, *fa_to_delete; 1605 struct list_head *fa_head; 1606 struct leaf *l; 1607 struct leaf_info *li; 1608 1609 if (plen > 32) 1610 return -EINVAL; 1611 1612 key = ntohl(cfg->fc_dst); 1613 mask = ntohl(inet_make_mask(plen)); 1614 1615 if (key & ~mask) 1616 return -EINVAL; 1617 1618 key = key & mask; 1619 l = fib_find_node(t, key); 1620 1621 if (!l) 1622 return -ESRCH; 1623 1624 fa_head = get_fa_head(l, plen); 1625 fa = fib_find_alias(fa_head, tos, 0); 1626 1627 if (!fa) 1628 return -ESRCH; 1629 1630 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1631 1632 fa_to_delete = NULL; 1633 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1634 list_for_each_entry_continue(fa, fa_head, fa_list) { 1635 struct fib_info *fi = fa->fa_info; 1636 1637 if (fa->fa_tos != tos) 1638 break; 1639 1640 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1641 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1642 fa->fa_scope == cfg->fc_scope) && 1643 (!cfg->fc_protocol || 1644 fi->fib_protocol == cfg->fc_protocol) && 1645 fib_nh_match(cfg, fi) == 0) { 1646 fa_to_delete = fa; 1647 break; 1648 } 1649 } 1650 1651 if (!fa_to_delete) 1652 return -ESRCH; 1653 1654 fa = fa_to_delete; 1655 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1656 &cfg->fc_nlinfo, 0); 1657 1658 l = fib_find_node(t, key); 1659 li = find_leaf_info(l, plen); 1660 1661 list_del_rcu(&fa->fa_list); 1662 1663 if (list_empty(fa_head)) { 1664 hlist_del_rcu(&li->hlist); 1665 free_leaf_info(li); 1666 } 1667 1668 if (hlist_empty(&l->list)) 1669 trie_leaf_remove(t, l); 1670 1671 if (fa->fa_state & FA_S_ACCESSED) 1672 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1673 1674 fib_release_info(fa->fa_info); 1675 alias_free_mem_rcu(fa); 1676 return 0; 1677 } 1678 1679 static int trie_flush_list(struct list_head *head) 1680 { 1681 struct fib_alias *fa, *fa_node; 1682 int found = 0; 1683 1684 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1685 struct fib_info *fi = fa->fa_info; 1686 1687 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1688 list_del_rcu(&fa->fa_list); 1689 fib_release_info(fa->fa_info); 1690 alias_free_mem_rcu(fa); 1691 found++; 1692 } 1693 } 1694 return found; 1695 } 1696 1697 static int trie_flush_leaf(struct leaf *l) 1698 { 1699 int found = 0; 1700 struct hlist_head *lih = &l->list; 1701 struct hlist_node *node, *tmp; 1702 struct leaf_info *li = NULL; 1703 1704 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1705 found += trie_flush_list(&li->falh); 1706 1707 if (list_empty(&li->falh)) { 1708 hlist_del_rcu(&li->hlist); 1709 free_leaf_info(li); 1710 } 1711 } 1712 return found; 1713 } 1714 1715 /* 1716 * Scan for the next right leaf starting at node p->child[idx] 1717 * Since we have back pointer, no recursion necessary. 1718 */ 1719 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c) 1720 { 1721 do { 1722 t_key idx; 1723 1724 if (c) 1725 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1726 else 1727 idx = 0; 1728 1729 while (idx < 1u << p->bits) { 1730 c = tnode_get_child_rcu(p, idx++); 1731 if (!c) 1732 continue; 1733 1734 if (IS_LEAF(c)) { 1735 prefetch(p->child[idx]); 1736 return (struct leaf *) c; 1737 } 1738 1739 /* Rescan start scanning in new node */ 1740 p = (struct tnode *) c; 1741 idx = 0; 1742 } 1743 1744 /* Node empty, walk back up to parent */ 1745 c = (struct node *) p; 1746 } while ( (p = node_parent_rcu(c)) != NULL); 1747 1748 return NULL; /* Root of trie */ 1749 } 1750 1751 static struct leaf *trie_firstleaf(struct trie *t) 1752 { 1753 struct tnode *n = (struct tnode *) rcu_dereference(t->trie); 1754 1755 if (!n) 1756 return NULL; 1757 1758 if (IS_LEAF(n)) /* trie is just a leaf */ 1759 return (struct leaf *) n; 1760 1761 return leaf_walk_rcu(n, NULL); 1762 } 1763 1764 static struct leaf *trie_nextleaf(struct leaf *l) 1765 { 1766 struct node *c = (struct node *) l; 1767 struct tnode *p = node_parent_rcu(c); 1768 1769 if (!p) 1770 return NULL; /* trie with just one leaf */ 1771 1772 return leaf_walk_rcu(p, c); 1773 } 1774 1775 static struct leaf *trie_leafindex(struct trie *t, int index) 1776 { 1777 struct leaf *l = trie_firstleaf(t); 1778 1779 while (l && index-- > 0) 1780 l = trie_nextleaf(l); 1781 1782 return l; 1783 } 1784 1785 1786 /* 1787 * Caller must hold RTNL. 1788 */ 1789 static int fn_trie_flush(struct fib_table *tb) 1790 { 1791 struct trie *t = (struct trie *) tb->tb_data; 1792 struct leaf *l, *ll = NULL; 1793 int found = 0; 1794 1795 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1796 found += trie_flush_leaf(l); 1797 1798 if (ll && hlist_empty(&ll->list)) 1799 trie_leaf_remove(t, ll); 1800 ll = l; 1801 } 1802 1803 if (ll && hlist_empty(&ll->list)) 1804 trie_leaf_remove(t, ll); 1805 1806 pr_debug("trie_flush found=%d\n", found); 1807 return found; 1808 } 1809 1810 static void fn_trie_select_default(struct fib_table *tb, 1811 const struct flowi *flp, 1812 struct fib_result *res) 1813 { 1814 struct trie *t = (struct trie *) tb->tb_data; 1815 int order, last_idx; 1816 struct fib_info *fi = NULL; 1817 struct fib_info *last_resort; 1818 struct fib_alias *fa = NULL; 1819 struct list_head *fa_head; 1820 struct leaf *l; 1821 1822 last_idx = -1; 1823 last_resort = NULL; 1824 order = -1; 1825 1826 rcu_read_lock(); 1827 1828 l = fib_find_node(t, 0); 1829 if (!l) 1830 goto out; 1831 1832 fa_head = get_fa_head(l, 0); 1833 if (!fa_head) 1834 goto out; 1835 1836 if (list_empty(fa_head)) 1837 goto out; 1838 1839 list_for_each_entry_rcu(fa, fa_head, fa_list) { 1840 struct fib_info *next_fi = fa->fa_info; 1841 1842 if (fa->fa_scope != res->scope || 1843 fa->fa_type != RTN_UNICAST) 1844 continue; 1845 1846 if (next_fi->fib_priority > res->fi->fib_priority) 1847 break; 1848 if (!next_fi->fib_nh[0].nh_gw || 1849 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) 1850 continue; 1851 fa->fa_state |= FA_S_ACCESSED; 1852 1853 if (fi == NULL) { 1854 if (next_fi != res->fi) 1855 break; 1856 } else if (!fib_detect_death(fi, order, &last_resort, 1857 &last_idx, tb->tb_default)) { 1858 fib_result_assign(res, fi); 1859 tb->tb_default = order; 1860 goto out; 1861 } 1862 fi = next_fi; 1863 order++; 1864 } 1865 if (order <= 0 || fi == NULL) { 1866 tb->tb_default = -1; 1867 goto out; 1868 } 1869 1870 if (!fib_detect_death(fi, order, &last_resort, &last_idx, 1871 tb->tb_default)) { 1872 fib_result_assign(res, fi); 1873 tb->tb_default = order; 1874 goto out; 1875 } 1876 if (last_idx >= 0) 1877 fib_result_assign(res, last_resort); 1878 tb->tb_default = last_idx; 1879 out: 1880 rcu_read_unlock(); 1881 } 1882 1883 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1884 struct fib_table *tb, 1885 struct sk_buff *skb, struct netlink_callback *cb) 1886 { 1887 int i, s_i; 1888 struct fib_alias *fa; 1889 __be32 xkey = htonl(key); 1890 1891 s_i = cb->args[5]; 1892 i = 0; 1893 1894 /* rcu_read_lock is hold by caller */ 1895 1896 list_for_each_entry_rcu(fa, fah, fa_list) { 1897 if (i < s_i) { 1898 i++; 1899 continue; 1900 } 1901 1902 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1903 cb->nlh->nlmsg_seq, 1904 RTM_NEWROUTE, 1905 tb->tb_id, 1906 fa->fa_type, 1907 fa->fa_scope, 1908 xkey, 1909 plen, 1910 fa->fa_tos, 1911 fa->fa_info, NLM_F_MULTI) < 0) { 1912 cb->args[5] = i; 1913 return -1; 1914 } 1915 i++; 1916 } 1917 cb->args[5] = i; 1918 return skb->len; 1919 } 1920 1921 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1922 struct sk_buff *skb, struct netlink_callback *cb) 1923 { 1924 struct leaf_info *li; 1925 struct hlist_node *node; 1926 int i, s_i; 1927 1928 s_i = cb->args[4]; 1929 i = 0; 1930 1931 /* rcu_read_lock is hold by caller */ 1932 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1933 if (i < s_i) { 1934 i++; 1935 continue; 1936 } 1937 1938 if (i > s_i) 1939 cb->args[5] = 0; 1940 1941 if (list_empty(&li->falh)) 1942 continue; 1943 1944 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1945 cb->args[4] = i; 1946 return -1; 1947 } 1948 i++; 1949 } 1950 1951 cb->args[4] = i; 1952 return skb->len; 1953 } 1954 1955 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, 1956 struct netlink_callback *cb) 1957 { 1958 struct leaf *l; 1959 struct trie *t = (struct trie *) tb->tb_data; 1960 t_key key = cb->args[2]; 1961 int count = cb->args[3]; 1962 1963 rcu_read_lock(); 1964 /* Dump starting at last key. 1965 * Note: 0.0.0.0/0 (ie default) is first key. 1966 */ 1967 if (count == 0) 1968 l = trie_firstleaf(t); 1969 else { 1970 /* Normally, continue from last key, but if that is missing 1971 * fallback to using slow rescan 1972 */ 1973 l = fib_find_node(t, key); 1974 if (!l) 1975 l = trie_leafindex(t, count); 1976 } 1977 1978 while (l) { 1979 cb->args[2] = l->key; 1980 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1981 cb->args[3] = count; 1982 rcu_read_unlock(); 1983 return -1; 1984 } 1985 1986 ++count; 1987 l = trie_nextleaf(l); 1988 memset(&cb->args[4], 0, 1989 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1990 } 1991 cb->args[3] = count; 1992 rcu_read_unlock(); 1993 1994 return skb->len; 1995 } 1996 1997 void __init fib_hash_init(void) 1998 { 1999 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2000 sizeof(struct fib_alias), 2001 0, SLAB_PANIC, NULL); 2002 2003 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2004 max(sizeof(struct leaf), 2005 sizeof(struct leaf_info)), 2006 0, SLAB_PANIC, NULL); 2007 } 2008 2009 2010 /* Fix more generic FIB names for init later */ 2011 struct fib_table *fib_hash_table(u32 id) 2012 { 2013 struct fib_table *tb; 2014 struct trie *t; 2015 2016 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 2017 GFP_KERNEL); 2018 if (tb == NULL) 2019 return NULL; 2020 2021 tb->tb_id = id; 2022 tb->tb_default = -1; 2023 tb->tb_lookup = fn_trie_lookup; 2024 tb->tb_insert = fn_trie_insert; 2025 tb->tb_delete = fn_trie_delete; 2026 tb->tb_flush = fn_trie_flush; 2027 tb->tb_select_default = fn_trie_select_default; 2028 tb->tb_dump = fn_trie_dump; 2029 2030 t = (struct trie *) tb->tb_data; 2031 memset(t, 0, sizeof(*t)); 2032 2033 if (id == RT_TABLE_LOCAL) 2034 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION); 2035 2036 return tb; 2037 } 2038 2039 #ifdef CONFIG_PROC_FS 2040 /* Depth first Trie walk iterator */ 2041 struct fib_trie_iter { 2042 struct seq_net_private p; 2043 struct fib_table *tb; 2044 struct tnode *tnode; 2045 unsigned index; 2046 unsigned depth; 2047 }; 2048 2049 static struct node *fib_trie_get_next(struct fib_trie_iter *iter) 2050 { 2051 struct tnode *tn = iter->tnode; 2052 unsigned cindex = iter->index; 2053 struct tnode *p; 2054 2055 /* A single entry routing table */ 2056 if (!tn) 2057 return NULL; 2058 2059 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2060 iter->tnode, iter->index, iter->depth); 2061 rescan: 2062 while (cindex < (1<<tn->bits)) { 2063 struct node *n = tnode_get_child_rcu(tn, cindex); 2064 2065 if (n) { 2066 if (IS_LEAF(n)) { 2067 iter->tnode = tn; 2068 iter->index = cindex + 1; 2069 } else { 2070 /* push down one level */ 2071 iter->tnode = (struct tnode *) n; 2072 iter->index = 0; 2073 ++iter->depth; 2074 } 2075 return n; 2076 } 2077 2078 ++cindex; 2079 } 2080 2081 /* Current node exhausted, pop back up */ 2082 p = node_parent_rcu((struct node *)tn); 2083 if (p) { 2084 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2085 tn = p; 2086 --iter->depth; 2087 goto rescan; 2088 } 2089 2090 /* got root? */ 2091 return NULL; 2092 } 2093 2094 static struct node *fib_trie_get_first(struct fib_trie_iter *iter, 2095 struct trie *t) 2096 { 2097 struct node *n; 2098 2099 if (!t) 2100 return NULL; 2101 2102 n = rcu_dereference(t->trie); 2103 if (!n) 2104 return NULL; 2105 2106 if (IS_TNODE(n)) { 2107 iter->tnode = (struct tnode *) n; 2108 iter->index = 0; 2109 iter->depth = 1; 2110 } else { 2111 iter->tnode = NULL; 2112 iter->index = 0; 2113 iter->depth = 0; 2114 } 2115 2116 return n; 2117 } 2118 2119 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2120 { 2121 struct node *n; 2122 struct fib_trie_iter iter; 2123 2124 memset(s, 0, sizeof(*s)); 2125 2126 rcu_read_lock(); 2127 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2128 if (IS_LEAF(n)) { 2129 struct leaf *l = (struct leaf *)n; 2130 struct leaf_info *li; 2131 struct hlist_node *tmp; 2132 2133 s->leaves++; 2134 s->totdepth += iter.depth; 2135 if (iter.depth > s->maxdepth) 2136 s->maxdepth = iter.depth; 2137 2138 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2139 ++s->prefixes; 2140 } else { 2141 const struct tnode *tn = (const struct tnode *) n; 2142 int i; 2143 2144 s->tnodes++; 2145 if (tn->bits < MAX_STAT_DEPTH) 2146 s->nodesizes[tn->bits]++; 2147 2148 for (i = 0; i < (1<<tn->bits); i++) 2149 if (!tn->child[i]) 2150 s->nullpointers++; 2151 } 2152 } 2153 rcu_read_unlock(); 2154 } 2155 2156 /* 2157 * This outputs /proc/net/fib_triestats 2158 */ 2159 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2160 { 2161 unsigned i, max, pointers, bytes, avdepth; 2162 2163 if (stat->leaves) 2164 avdepth = stat->totdepth*100 / stat->leaves; 2165 else 2166 avdepth = 0; 2167 2168 seq_printf(seq, "\tAver depth: %u.%02d\n", 2169 avdepth / 100, avdepth % 100); 2170 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2171 2172 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2173 bytes = sizeof(struct leaf) * stat->leaves; 2174 2175 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2176 bytes += sizeof(struct leaf_info) * stat->prefixes; 2177 2178 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2179 bytes += sizeof(struct tnode) * stat->tnodes; 2180 2181 max = MAX_STAT_DEPTH; 2182 while (max > 0 && stat->nodesizes[max-1] == 0) 2183 max--; 2184 2185 pointers = 0; 2186 for (i = 1; i <= max; i++) 2187 if (stat->nodesizes[i] != 0) { 2188 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2189 pointers += (1<<i) * stat->nodesizes[i]; 2190 } 2191 seq_putc(seq, '\n'); 2192 seq_printf(seq, "\tPointers: %u\n", pointers); 2193 2194 bytes += sizeof(struct node *) * pointers; 2195 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2196 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2197 } 2198 2199 #ifdef CONFIG_IP_FIB_TRIE_STATS 2200 static void trie_show_usage(struct seq_file *seq, 2201 const struct trie_use_stats *stats) 2202 { 2203 seq_printf(seq, "\nCounters:\n---------\n"); 2204 seq_printf(seq, "gets = %u\n", stats->gets); 2205 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2206 seq_printf(seq, "semantic match passed = %u\n", 2207 stats->semantic_match_passed); 2208 seq_printf(seq, "semantic match miss = %u\n", 2209 stats->semantic_match_miss); 2210 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2211 seq_printf(seq, "skipped node resize = %u\n\n", 2212 stats->resize_node_skipped); 2213 } 2214 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2215 2216 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2217 { 2218 if (tb->tb_id == RT_TABLE_LOCAL) 2219 seq_puts(seq, "Local:\n"); 2220 else if (tb->tb_id == RT_TABLE_MAIN) 2221 seq_puts(seq, "Main:\n"); 2222 else 2223 seq_printf(seq, "Id %d:\n", tb->tb_id); 2224 } 2225 2226 2227 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2228 { 2229 struct net *net = (struct net *)seq->private; 2230 unsigned int h; 2231 2232 seq_printf(seq, 2233 "Basic info: size of leaf:" 2234 " %Zd bytes, size of tnode: %Zd bytes.\n", 2235 sizeof(struct leaf), sizeof(struct tnode)); 2236 2237 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2238 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2239 struct hlist_node *node; 2240 struct fib_table *tb; 2241 2242 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2243 struct trie *t = (struct trie *) tb->tb_data; 2244 struct trie_stat stat; 2245 2246 if (!t) 2247 continue; 2248 2249 fib_table_print(seq, tb); 2250 2251 trie_collect_stats(t, &stat); 2252 trie_show_stats(seq, &stat); 2253 #ifdef CONFIG_IP_FIB_TRIE_STATS 2254 trie_show_usage(seq, &t->stats); 2255 #endif 2256 } 2257 } 2258 2259 return 0; 2260 } 2261 2262 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2263 { 2264 return single_open_net(inode, file, fib_triestat_seq_show); 2265 } 2266 2267 static const struct file_operations fib_triestat_fops = { 2268 .owner = THIS_MODULE, 2269 .open = fib_triestat_seq_open, 2270 .read = seq_read, 2271 .llseek = seq_lseek, 2272 .release = single_release_net, 2273 }; 2274 2275 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2276 { 2277 struct fib_trie_iter *iter = seq->private; 2278 struct net *net = seq_file_net(seq); 2279 loff_t idx = 0; 2280 unsigned int h; 2281 2282 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2283 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2284 struct hlist_node *node; 2285 struct fib_table *tb; 2286 2287 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2288 struct node *n; 2289 2290 for (n = fib_trie_get_first(iter, 2291 (struct trie *) tb->tb_data); 2292 n; n = fib_trie_get_next(iter)) 2293 if (pos == idx++) { 2294 iter->tb = tb; 2295 return n; 2296 } 2297 } 2298 } 2299 2300 return NULL; 2301 } 2302 2303 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2304 __acquires(RCU) 2305 { 2306 rcu_read_lock(); 2307 return fib_trie_get_idx(seq, *pos); 2308 } 2309 2310 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2311 { 2312 struct fib_trie_iter *iter = seq->private; 2313 struct net *net = seq_file_net(seq); 2314 struct fib_table *tb = iter->tb; 2315 struct hlist_node *tb_node; 2316 unsigned int h; 2317 struct node *n; 2318 2319 ++*pos; 2320 /* next node in same table */ 2321 n = fib_trie_get_next(iter); 2322 if (n) 2323 return n; 2324 2325 /* walk rest of this hash chain */ 2326 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2327 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) { 2328 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2329 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2330 if (n) 2331 goto found; 2332 } 2333 2334 /* new hash chain */ 2335 while (++h < FIB_TABLE_HASHSZ) { 2336 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2337 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2338 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2339 if (n) 2340 goto found; 2341 } 2342 } 2343 return NULL; 2344 2345 found: 2346 iter->tb = tb; 2347 return n; 2348 } 2349 2350 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2351 __releases(RCU) 2352 { 2353 rcu_read_unlock(); 2354 } 2355 2356 static void seq_indent(struct seq_file *seq, int n) 2357 { 2358 while (n-- > 0) seq_puts(seq, " "); 2359 } 2360 2361 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2362 { 2363 switch (s) { 2364 case RT_SCOPE_UNIVERSE: return "universe"; 2365 case RT_SCOPE_SITE: return "site"; 2366 case RT_SCOPE_LINK: return "link"; 2367 case RT_SCOPE_HOST: return "host"; 2368 case RT_SCOPE_NOWHERE: return "nowhere"; 2369 default: 2370 snprintf(buf, len, "scope=%d", s); 2371 return buf; 2372 } 2373 } 2374 2375 static const char *const rtn_type_names[__RTN_MAX] = { 2376 [RTN_UNSPEC] = "UNSPEC", 2377 [RTN_UNICAST] = "UNICAST", 2378 [RTN_LOCAL] = "LOCAL", 2379 [RTN_BROADCAST] = "BROADCAST", 2380 [RTN_ANYCAST] = "ANYCAST", 2381 [RTN_MULTICAST] = "MULTICAST", 2382 [RTN_BLACKHOLE] = "BLACKHOLE", 2383 [RTN_UNREACHABLE] = "UNREACHABLE", 2384 [RTN_PROHIBIT] = "PROHIBIT", 2385 [RTN_THROW] = "THROW", 2386 [RTN_NAT] = "NAT", 2387 [RTN_XRESOLVE] = "XRESOLVE", 2388 }; 2389 2390 static inline const char *rtn_type(char *buf, size_t len, unsigned t) 2391 { 2392 if (t < __RTN_MAX && rtn_type_names[t]) 2393 return rtn_type_names[t]; 2394 snprintf(buf, len, "type %u", t); 2395 return buf; 2396 } 2397 2398 /* Pretty print the trie */ 2399 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2400 { 2401 const struct fib_trie_iter *iter = seq->private; 2402 struct node *n = v; 2403 2404 if (!node_parent_rcu(n)) 2405 fib_table_print(seq, iter->tb); 2406 2407 if (IS_TNODE(n)) { 2408 struct tnode *tn = (struct tnode *) n; 2409 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2410 2411 seq_indent(seq, iter->depth-1); 2412 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2413 &prf, tn->pos, tn->bits, tn->full_children, 2414 tn->empty_children); 2415 2416 } else { 2417 struct leaf *l = (struct leaf *) n; 2418 struct leaf_info *li; 2419 struct hlist_node *node; 2420 __be32 val = htonl(l->key); 2421 2422 seq_indent(seq, iter->depth); 2423 seq_printf(seq, " |-- %pI4\n", &val); 2424 2425 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2426 struct fib_alias *fa; 2427 2428 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2429 char buf1[32], buf2[32]; 2430 2431 seq_indent(seq, iter->depth+1); 2432 seq_printf(seq, " /%d %s %s", li->plen, 2433 rtn_scope(buf1, sizeof(buf1), 2434 fa->fa_scope), 2435 rtn_type(buf2, sizeof(buf2), 2436 fa->fa_type)); 2437 if (fa->fa_tos) 2438 seq_printf(seq, " tos=%d", fa->fa_tos); 2439 seq_putc(seq, '\n'); 2440 } 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 static const struct seq_operations fib_trie_seq_ops = { 2448 .start = fib_trie_seq_start, 2449 .next = fib_trie_seq_next, 2450 .stop = fib_trie_seq_stop, 2451 .show = fib_trie_seq_show, 2452 }; 2453 2454 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2455 { 2456 return seq_open_net(inode, file, &fib_trie_seq_ops, 2457 sizeof(struct fib_trie_iter)); 2458 } 2459 2460 static const struct file_operations fib_trie_fops = { 2461 .owner = THIS_MODULE, 2462 .open = fib_trie_seq_open, 2463 .read = seq_read, 2464 .llseek = seq_lseek, 2465 .release = seq_release_net, 2466 }; 2467 2468 struct fib_route_iter { 2469 struct seq_net_private p; 2470 struct trie *main_trie; 2471 loff_t pos; 2472 t_key key; 2473 }; 2474 2475 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2476 { 2477 struct leaf *l = NULL; 2478 struct trie *t = iter->main_trie; 2479 2480 /* use cache location of last found key */ 2481 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2482 pos -= iter->pos; 2483 else { 2484 iter->pos = 0; 2485 l = trie_firstleaf(t); 2486 } 2487 2488 while (l && pos-- > 0) { 2489 iter->pos++; 2490 l = trie_nextleaf(l); 2491 } 2492 2493 if (l) 2494 iter->key = pos; /* remember it */ 2495 else 2496 iter->pos = 0; /* forget it */ 2497 2498 return l; 2499 } 2500 2501 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2502 __acquires(RCU) 2503 { 2504 struct fib_route_iter *iter = seq->private; 2505 struct fib_table *tb; 2506 2507 rcu_read_lock(); 2508 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2509 if (!tb) 2510 return NULL; 2511 2512 iter->main_trie = (struct trie *) tb->tb_data; 2513 if (*pos == 0) 2514 return SEQ_START_TOKEN; 2515 else 2516 return fib_route_get_idx(iter, *pos - 1); 2517 } 2518 2519 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2520 { 2521 struct fib_route_iter *iter = seq->private; 2522 struct leaf *l = v; 2523 2524 ++*pos; 2525 if (v == SEQ_START_TOKEN) { 2526 iter->pos = 0; 2527 l = trie_firstleaf(iter->main_trie); 2528 } else { 2529 iter->pos++; 2530 l = trie_nextleaf(l); 2531 } 2532 2533 if (l) 2534 iter->key = l->key; 2535 else 2536 iter->pos = 0; 2537 return l; 2538 } 2539 2540 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2541 __releases(RCU) 2542 { 2543 rcu_read_unlock(); 2544 } 2545 2546 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2547 { 2548 static unsigned type2flags[RTN_MAX + 1] = { 2549 [7] = RTF_REJECT, [8] = RTF_REJECT, 2550 }; 2551 unsigned flags = type2flags[type]; 2552 2553 if (fi && fi->fib_nh->nh_gw) 2554 flags |= RTF_GATEWAY; 2555 if (mask == htonl(0xFFFFFFFF)) 2556 flags |= RTF_HOST; 2557 flags |= RTF_UP; 2558 return flags; 2559 } 2560 2561 /* 2562 * This outputs /proc/net/route. 2563 * The format of the file is not supposed to be changed 2564 * and needs to be same as fib_hash output to avoid breaking 2565 * legacy utilities 2566 */ 2567 static int fib_route_seq_show(struct seq_file *seq, void *v) 2568 { 2569 struct leaf *l = v; 2570 struct leaf_info *li; 2571 struct hlist_node *node; 2572 2573 if (v == SEQ_START_TOKEN) { 2574 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2575 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2576 "\tWindow\tIRTT"); 2577 return 0; 2578 } 2579 2580 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2581 struct fib_alias *fa; 2582 __be32 mask, prefix; 2583 2584 mask = inet_make_mask(li->plen); 2585 prefix = htonl(l->key); 2586 2587 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2588 const struct fib_info *fi = fa->fa_info; 2589 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi); 2590 int len; 2591 2592 if (fa->fa_type == RTN_BROADCAST 2593 || fa->fa_type == RTN_MULTICAST) 2594 continue; 2595 2596 if (fi) 2597 seq_printf(seq, 2598 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2599 "%d\t%08X\t%d\t%u\t%u%n", 2600 fi->fib_dev ? fi->fib_dev->name : "*", 2601 prefix, 2602 fi->fib_nh->nh_gw, flags, 0, 0, 2603 fi->fib_priority, 2604 mask, 2605 (fi->fib_advmss ? 2606 fi->fib_advmss + 40 : 0), 2607 fi->fib_window, 2608 fi->fib_rtt >> 3, &len); 2609 else 2610 seq_printf(seq, 2611 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2612 "%d\t%08X\t%d\t%u\t%u%n", 2613 prefix, 0, flags, 0, 0, 0, 2614 mask, 0, 0, 0, &len); 2615 2616 seq_printf(seq, "%*s\n", 127 - len, ""); 2617 } 2618 } 2619 2620 return 0; 2621 } 2622 2623 static const struct seq_operations fib_route_seq_ops = { 2624 .start = fib_route_seq_start, 2625 .next = fib_route_seq_next, 2626 .stop = fib_route_seq_stop, 2627 .show = fib_route_seq_show, 2628 }; 2629 2630 static int fib_route_seq_open(struct inode *inode, struct file *file) 2631 { 2632 return seq_open_net(inode, file, &fib_route_seq_ops, 2633 sizeof(struct fib_route_iter)); 2634 } 2635 2636 static const struct file_operations fib_route_fops = { 2637 .owner = THIS_MODULE, 2638 .open = fib_route_seq_open, 2639 .read = seq_read, 2640 .llseek = seq_lseek, 2641 .release = seq_release_net, 2642 }; 2643 2644 int __net_init fib_proc_init(struct net *net) 2645 { 2646 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2647 goto out1; 2648 2649 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2650 &fib_triestat_fops)) 2651 goto out2; 2652 2653 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2654 goto out3; 2655 2656 return 0; 2657 2658 out3: 2659 proc_net_remove(net, "fib_triestat"); 2660 out2: 2661 proc_net_remove(net, "fib_trie"); 2662 out1: 2663 return -ENOMEM; 2664 } 2665 2666 void __net_exit fib_proc_exit(struct net *net) 2667 { 2668 proc_net_remove(net, "fib_trie"); 2669 proc_net_remove(net, "fib_triestat"); 2670 proc_net_remove(net, "route"); 2671 } 2672 2673 #endif /* CONFIG_PROC_FS */ 2674