xref: /openbmc/linux/net/ipv4/fib_trie.c (revision dd5b2498)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/cache.h>
54 #include <linux/uaccess.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <linux/export.h>
76 #include <linux/vmalloc.h>
77 #include <linux/notifier.h>
78 #include <net/net_namespace.h>
79 #include <net/ip.h>
80 #include <net/protocol.h>
81 #include <net/route.h>
82 #include <net/tcp.h>
83 #include <net/sock.h>
84 #include <net/ip_fib.h>
85 #include <net/fib_notifier.h>
86 #include <trace/events/fib.h>
87 #include "fib_lookup.h"
88 
89 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
90 				   enum fib_event_type event_type, u32 dst,
91 				   int dst_len, struct fib_alias *fa)
92 {
93 	struct fib_entry_notifier_info info = {
94 		.dst = dst,
95 		.dst_len = dst_len,
96 		.fi = fa->fa_info,
97 		.tos = fa->fa_tos,
98 		.type = fa->fa_type,
99 		.tb_id = fa->tb_id,
100 	};
101 	return call_fib4_notifier(nb, net, event_type, &info.info);
102 }
103 
104 static int call_fib_entry_notifiers(struct net *net,
105 				    enum fib_event_type event_type, u32 dst,
106 				    int dst_len, struct fib_alias *fa,
107 				    struct netlink_ext_ack *extack)
108 {
109 	struct fib_entry_notifier_info info = {
110 		.info.extack = extack,
111 		.dst = dst,
112 		.dst_len = dst_len,
113 		.fi = fa->fa_info,
114 		.tos = fa->fa_tos,
115 		.type = fa->fa_type,
116 		.tb_id = fa->tb_id,
117 	};
118 	return call_fib4_notifiers(net, event_type, &info.info);
119 }
120 
121 #define MAX_STAT_DEPTH 32
122 
123 #define KEYLENGTH	(8*sizeof(t_key))
124 #define KEY_MAX		((t_key)~0)
125 
126 typedef unsigned int t_key;
127 
128 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
129 #define IS_TNODE(n)	((n)->bits)
130 #define IS_LEAF(n)	(!(n)->bits)
131 
132 struct key_vector {
133 	t_key key;
134 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
135 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
136 	unsigned char slen;
137 	union {
138 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
139 		struct hlist_head leaf;
140 		/* This array is valid if (pos | bits) > 0 (TNODE) */
141 		struct key_vector __rcu *tnode[0];
142 	};
143 };
144 
145 struct tnode {
146 	struct rcu_head rcu;
147 	t_key empty_children;		/* KEYLENGTH bits needed */
148 	t_key full_children;		/* KEYLENGTH bits needed */
149 	struct key_vector __rcu *parent;
150 	struct key_vector kv[1];
151 #define tn_bits kv[0].bits
152 };
153 
154 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
155 #define LEAF_SIZE	TNODE_SIZE(1)
156 
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats {
159 	unsigned int gets;
160 	unsigned int backtrack;
161 	unsigned int semantic_match_passed;
162 	unsigned int semantic_match_miss;
163 	unsigned int null_node_hit;
164 	unsigned int resize_node_skipped;
165 };
166 #endif
167 
168 struct trie_stat {
169 	unsigned int totdepth;
170 	unsigned int maxdepth;
171 	unsigned int tnodes;
172 	unsigned int leaves;
173 	unsigned int nullpointers;
174 	unsigned int prefixes;
175 	unsigned int nodesizes[MAX_STAT_DEPTH];
176 };
177 
178 struct trie {
179 	struct key_vector kv[1];
180 #ifdef CONFIG_IP_FIB_TRIE_STATS
181 	struct trie_use_stats __percpu *stats;
182 #endif
183 };
184 
185 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
186 static unsigned int tnode_free_size;
187 
188 /*
189  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
190  * especially useful before resizing the root node with PREEMPT_NONE configs;
191  * the value was obtained experimentally, aiming to avoid visible slowdown.
192  */
193 unsigned int sysctl_fib_sync_mem = 512 * 1024;
194 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
195 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
196 
197 static struct kmem_cache *fn_alias_kmem __ro_after_init;
198 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
199 
200 static inline struct tnode *tn_info(struct key_vector *kv)
201 {
202 	return container_of(kv, struct tnode, kv[0]);
203 }
204 
205 /* caller must hold RTNL */
206 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
207 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
208 
209 /* caller must hold RCU read lock or RTNL */
210 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
211 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
212 
213 /* wrapper for rcu_assign_pointer */
214 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
215 {
216 	if (n)
217 		rcu_assign_pointer(tn_info(n)->parent, tp);
218 }
219 
220 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
221 
222 /* This provides us with the number of children in this node, in the case of a
223  * leaf this will return 0 meaning none of the children are accessible.
224  */
225 static inline unsigned long child_length(const struct key_vector *tn)
226 {
227 	return (1ul << tn->bits) & ~(1ul);
228 }
229 
230 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
231 
232 static inline unsigned long get_index(t_key key, struct key_vector *kv)
233 {
234 	unsigned long index = key ^ kv->key;
235 
236 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
237 		return 0;
238 
239 	return index >> kv->pos;
240 }
241 
242 /* To understand this stuff, an understanding of keys and all their bits is
243  * necessary. Every node in the trie has a key associated with it, but not
244  * all of the bits in that key are significant.
245  *
246  * Consider a node 'n' and its parent 'tp'.
247  *
248  * If n is a leaf, every bit in its key is significant. Its presence is
249  * necessitated by path compression, since during a tree traversal (when
250  * searching for a leaf - unless we are doing an insertion) we will completely
251  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
252  * a potentially successful search, that we have indeed been walking the
253  * correct key path.
254  *
255  * Note that we can never "miss" the correct key in the tree if present by
256  * following the wrong path. Path compression ensures that segments of the key
257  * that are the same for all keys with a given prefix are skipped, but the
258  * skipped part *is* identical for each node in the subtrie below the skipped
259  * bit! trie_insert() in this implementation takes care of that.
260  *
261  * if n is an internal node - a 'tnode' here, the various parts of its key
262  * have many different meanings.
263  *
264  * Example:
265  * _________________________________________________________________
266  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
267  * -----------------------------------------------------------------
268  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
269  *
270  * _________________________________________________________________
271  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
272  * -----------------------------------------------------------------
273  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
274  *
275  * tp->pos = 22
276  * tp->bits = 3
277  * n->pos = 13
278  * n->bits = 4
279  *
280  * First, let's just ignore the bits that come before the parent tp, that is
281  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
282  * point we do not use them for anything.
283  *
284  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
285  * index into the parent's child array. That is, they will be used to find
286  * 'n' among tp's children.
287  *
288  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
289  * for the node n.
290  *
291  * All the bits we have seen so far are significant to the node n. The rest
292  * of the bits are really not needed or indeed known in n->key.
293  *
294  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
295  * n's child array, and will of course be different for each child.
296  *
297  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
298  * at this point.
299  */
300 
301 static const int halve_threshold = 25;
302 static const int inflate_threshold = 50;
303 static const int halve_threshold_root = 15;
304 static const int inflate_threshold_root = 30;
305 
306 static void __alias_free_mem(struct rcu_head *head)
307 {
308 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
309 	kmem_cache_free(fn_alias_kmem, fa);
310 }
311 
312 static inline void alias_free_mem_rcu(struct fib_alias *fa)
313 {
314 	call_rcu(&fa->rcu, __alias_free_mem);
315 }
316 
317 #define TNODE_KMALLOC_MAX \
318 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
319 #define TNODE_VMALLOC_MAX \
320 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
321 
322 static void __node_free_rcu(struct rcu_head *head)
323 {
324 	struct tnode *n = container_of(head, struct tnode, rcu);
325 
326 	if (!n->tn_bits)
327 		kmem_cache_free(trie_leaf_kmem, n);
328 	else
329 		kvfree(n);
330 }
331 
332 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
333 
334 static struct tnode *tnode_alloc(int bits)
335 {
336 	size_t size;
337 
338 	/* verify bits is within bounds */
339 	if (bits > TNODE_VMALLOC_MAX)
340 		return NULL;
341 
342 	/* determine size and verify it is non-zero and didn't overflow */
343 	size = TNODE_SIZE(1ul << bits);
344 
345 	if (size <= PAGE_SIZE)
346 		return kzalloc(size, GFP_KERNEL);
347 	else
348 		return vzalloc(size);
349 }
350 
351 static inline void empty_child_inc(struct key_vector *n)
352 {
353 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
354 }
355 
356 static inline void empty_child_dec(struct key_vector *n)
357 {
358 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
359 }
360 
361 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
362 {
363 	struct key_vector *l;
364 	struct tnode *kv;
365 
366 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
367 	if (!kv)
368 		return NULL;
369 
370 	/* initialize key vector */
371 	l = kv->kv;
372 	l->key = key;
373 	l->pos = 0;
374 	l->bits = 0;
375 	l->slen = fa->fa_slen;
376 
377 	/* link leaf to fib alias */
378 	INIT_HLIST_HEAD(&l->leaf);
379 	hlist_add_head(&fa->fa_list, &l->leaf);
380 
381 	return l;
382 }
383 
384 static struct key_vector *tnode_new(t_key key, int pos, int bits)
385 {
386 	unsigned int shift = pos + bits;
387 	struct key_vector *tn;
388 	struct tnode *tnode;
389 
390 	/* verify bits and pos their msb bits clear and values are valid */
391 	BUG_ON(!bits || (shift > KEYLENGTH));
392 
393 	tnode = tnode_alloc(bits);
394 	if (!tnode)
395 		return NULL;
396 
397 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
398 		 sizeof(struct key_vector *) << bits);
399 
400 	if (bits == KEYLENGTH)
401 		tnode->full_children = 1;
402 	else
403 		tnode->empty_children = 1ul << bits;
404 
405 	tn = tnode->kv;
406 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
407 	tn->pos = pos;
408 	tn->bits = bits;
409 	tn->slen = pos;
410 
411 	return tn;
412 }
413 
414 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
415  * and no bits are skipped. See discussion in dyntree paper p. 6
416  */
417 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
418 {
419 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
420 }
421 
422 /* Add a child at position i overwriting the old value.
423  * Update the value of full_children and empty_children.
424  */
425 static void put_child(struct key_vector *tn, unsigned long i,
426 		      struct key_vector *n)
427 {
428 	struct key_vector *chi = get_child(tn, i);
429 	int isfull, wasfull;
430 
431 	BUG_ON(i >= child_length(tn));
432 
433 	/* update emptyChildren, overflow into fullChildren */
434 	if (!n && chi)
435 		empty_child_inc(tn);
436 	if (n && !chi)
437 		empty_child_dec(tn);
438 
439 	/* update fullChildren */
440 	wasfull = tnode_full(tn, chi);
441 	isfull = tnode_full(tn, n);
442 
443 	if (wasfull && !isfull)
444 		tn_info(tn)->full_children--;
445 	else if (!wasfull && isfull)
446 		tn_info(tn)->full_children++;
447 
448 	if (n && (tn->slen < n->slen))
449 		tn->slen = n->slen;
450 
451 	rcu_assign_pointer(tn->tnode[i], n);
452 }
453 
454 static void update_children(struct key_vector *tn)
455 {
456 	unsigned long i;
457 
458 	/* update all of the child parent pointers */
459 	for (i = child_length(tn); i;) {
460 		struct key_vector *inode = get_child(tn, --i);
461 
462 		if (!inode)
463 			continue;
464 
465 		/* Either update the children of a tnode that
466 		 * already belongs to us or update the child
467 		 * to point to ourselves.
468 		 */
469 		if (node_parent(inode) == tn)
470 			update_children(inode);
471 		else
472 			node_set_parent(inode, tn);
473 	}
474 }
475 
476 static inline void put_child_root(struct key_vector *tp, t_key key,
477 				  struct key_vector *n)
478 {
479 	if (IS_TRIE(tp))
480 		rcu_assign_pointer(tp->tnode[0], n);
481 	else
482 		put_child(tp, get_index(key, tp), n);
483 }
484 
485 static inline void tnode_free_init(struct key_vector *tn)
486 {
487 	tn_info(tn)->rcu.next = NULL;
488 }
489 
490 static inline void tnode_free_append(struct key_vector *tn,
491 				     struct key_vector *n)
492 {
493 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
494 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
495 }
496 
497 static void tnode_free(struct key_vector *tn)
498 {
499 	struct callback_head *head = &tn_info(tn)->rcu;
500 
501 	while (head) {
502 		head = head->next;
503 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
504 		node_free(tn);
505 
506 		tn = container_of(head, struct tnode, rcu)->kv;
507 	}
508 
509 	if (tnode_free_size >= sysctl_fib_sync_mem) {
510 		tnode_free_size = 0;
511 		synchronize_rcu();
512 	}
513 }
514 
515 static struct key_vector *replace(struct trie *t,
516 				  struct key_vector *oldtnode,
517 				  struct key_vector *tn)
518 {
519 	struct key_vector *tp = node_parent(oldtnode);
520 	unsigned long i;
521 
522 	/* setup the parent pointer out of and back into this node */
523 	NODE_INIT_PARENT(tn, tp);
524 	put_child_root(tp, tn->key, tn);
525 
526 	/* update all of the child parent pointers */
527 	update_children(tn);
528 
529 	/* all pointers should be clean so we are done */
530 	tnode_free(oldtnode);
531 
532 	/* resize children now that oldtnode is freed */
533 	for (i = child_length(tn); i;) {
534 		struct key_vector *inode = get_child(tn, --i);
535 
536 		/* resize child node */
537 		if (tnode_full(tn, inode))
538 			tn = resize(t, inode);
539 	}
540 
541 	return tp;
542 }
543 
544 static struct key_vector *inflate(struct trie *t,
545 				  struct key_vector *oldtnode)
546 {
547 	struct key_vector *tn;
548 	unsigned long i;
549 	t_key m;
550 
551 	pr_debug("In inflate\n");
552 
553 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
554 	if (!tn)
555 		goto notnode;
556 
557 	/* prepare oldtnode to be freed */
558 	tnode_free_init(oldtnode);
559 
560 	/* Assemble all of the pointers in our cluster, in this case that
561 	 * represents all of the pointers out of our allocated nodes that
562 	 * point to existing tnodes and the links between our allocated
563 	 * nodes.
564 	 */
565 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
566 		struct key_vector *inode = get_child(oldtnode, --i);
567 		struct key_vector *node0, *node1;
568 		unsigned long j, k;
569 
570 		/* An empty child */
571 		if (!inode)
572 			continue;
573 
574 		/* A leaf or an internal node with skipped bits */
575 		if (!tnode_full(oldtnode, inode)) {
576 			put_child(tn, get_index(inode->key, tn), inode);
577 			continue;
578 		}
579 
580 		/* drop the node in the old tnode free list */
581 		tnode_free_append(oldtnode, inode);
582 
583 		/* An internal node with two children */
584 		if (inode->bits == 1) {
585 			put_child(tn, 2 * i + 1, get_child(inode, 1));
586 			put_child(tn, 2 * i, get_child(inode, 0));
587 			continue;
588 		}
589 
590 		/* We will replace this node 'inode' with two new
591 		 * ones, 'node0' and 'node1', each with half of the
592 		 * original children. The two new nodes will have
593 		 * a position one bit further down the key and this
594 		 * means that the "significant" part of their keys
595 		 * (see the discussion near the top of this file)
596 		 * will differ by one bit, which will be "0" in
597 		 * node0's key and "1" in node1's key. Since we are
598 		 * moving the key position by one step, the bit that
599 		 * we are moving away from - the bit at position
600 		 * (tn->pos) - is the one that will differ between
601 		 * node0 and node1. So... we synthesize that bit in the
602 		 * two new keys.
603 		 */
604 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
605 		if (!node1)
606 			goto nomem;
607 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
608 
609 		tnode_free_append(tn, node1);
610 		if (!node0)
611 			goto nomem;
612 		tnode_free_append(tn, node0);
613 
614 		/* populate child pointers in new nodes */
615 		for (k = child_length(inode), j = k / 2; j;) {
616 			put_child(node1, --j, get_child(inode, --k));
617 			put_child(node0, j, get_child(inode, j));
618 			put_child(node1, --j, get_child(inode, --k));
619 			put_child(node0, j, get_child(inode, j));
620 		}
621 
622 		/* link new nodes to parent */
623 		NODE_INIT_PARENT(node1, tn);
624 		NODE_INIT_PARENT(node0, tn);
625 
626 		/* link parent to nodes */
627 		put_child(tn, 2 * i + 1, node1);
628 		put_child(tn, 2 * i, node0);
629 	}
630 
631 	/* setup the parent pointers into and out of this node */
632 	return replace(t, oldtnode, tn);
633 nomem:
634 	/* all pointers should be clean so we are done */
635 	tnode_free(tn);
636 notnode:
637 	return NULL;
638 }
639 
640 static struct key_vector *halve(struct trie *t,
641 				struct key_vector *oldtnode)
642 {
643 	struct key_vector *tn;
644 	unsigned long i;
645 
646 	pr_debug("In halve\n");
647 
648 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
649 	if (!tn)
650 		goto notnode;
651 
652 	/* prepare oldtnode to be freed */
653 	tnode_free_init(oldtnode);
654 
655 	/* Assemble all of the pointers in our cluster, in this case that
656 	 * represents all of the pointers out of our allocated nodes that
657 	 * point to existing tnodes and the links between our allocated
658 	 * nodes.
659 	 */
660 	for (i = child_length(oldtnode); i;) {
661 		struct key_vector *node1 = get_child(oldtnode, --i);
662 		struct key_vector *node0 = get_child(oldtnode, --i);
663 		struct key_vector *inode;
664 
665 		/* At least one of the children is empty */
666 		if (!node1 || !node0) {
667 			put_child(tn, i / 2, node1 ? : node0);
668 			continue;
669 		}
670 
671 		/* Two nonempty children */
672 		inode = tnode_new(node0->key, oldtnode->pos, 1);
673 		if (!inode)
674 			goto nomem;
675 		tnode_free_append(tn, inode);
676 
677 		/* initialize pointers out of node */
678 		put_child(inode, 1, node1);
679 		put_child(inode, 0, node0);
680 		NODE_INIT_PARENT(inode, tn);
681 
682 		/* link parent to node */
683 		put_child(tn, i / 2, inode);
684 	}
685 
686 	/* setup the parent pointers into and out of this node */
687 	return replace(t, oldtnode, tn);
688 nomem:
689 	/* all pointers should be clean so we are done */
690 	tnode_free(tn);
691 notnode:
692 	return NULL;
693 }
694 
695 static struct key_vector *collapse(struct trie *t,
696 				   struct key_vector *oldtnode)
697 {
698 	struct key_vector *n, *tp;
699 	unsigned long i;
700 
701 	/* scan the tnode looking for that one child that might still exist */
702 	for (n = NULL, i = child_length(oldtnode); !n && i;)
703 		n = get_child(oldtnode, --i);
704 
705 	/* compress one level */
706 	tp = node_parent(oldtnode);
707 	put_child_root(tp, oldtnode->key, n);
708 	node_set_parent(n, tp);
709 
710 	/* drop dead node */
711 	node_free(oldtnode);
712 
713 	return tp;
714 }
715 
716 static unsigned char update_suffix(struct key_vector *tn)
717 {
718 	unsigned char slen = tn->pos;
719 	unsigned long stride, i;
720 	unsigned char slen_max;
721 
722 	/* only vector 0 can have a suffix length greater than or equal to
723 	 * tn->pos + tn->bits, the second highest node will have a suffix
724 	 * length at most of tn->pos + tn->bits - 1
725 	 */
726 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
727 
728 	/* search though the list of children looking for nodes that might
729 	 * have a suffix greater than the one we currently have.  This is
730 	 * why we start with a stride of 2 since a stride of 1 would
731 	 * represent the nodes with suffix length equal to tn->pos
732 	 */
733 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
734 		struct key_vector *n = get_child(tn, i);
735 
736 		if (!n || (n->slen <= slen))
737 			continue;
738 
739 		/* update stride and slen based on new value */
740 		stride <<= (n->slen - slen);
741 		slen = n->slen;
742 		i &= ~(stride - 1);
743 
744 		/* stop searching if we have hit the maximum possible value */
745 		if (slen >= slen_max)
746 			break;
747 	}
748 
749 	tn->slen = slen;
750 
751 	return slen;
752 }
753 
754 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
755  * the Helsinki University of Technology and Matti Tikkanen of Nokia
756  * Telecommunications, page 6:
757  * "A node is doubled if the ratio of non-empty children to all
758  * children in the *doubled* node is at least 'high'."
759  *
760  * 'high' in this instance is the variable 'inflate_threshold'. It
761  * is expressed as a percentage, so we multiply it with
762  * child_length() and instead of multiplying by 2 (since the
763  * child array will be doubled by inflate()) and multiplying
764  * the left-hand side by 100 (to handle the percentage thing) we
765  * multiply the left-hand side by 50.
766  *
767  * The left-hand side may look a bit weird: child_length(tn)
768  * - tn->empty_children is of course the number of non-null children
769  * in the current node. tn->full_children is the number of "full"
770  * children, that is non-null tnodes with a skip value of 0.
771  * All of those will be doubled in the resulting inflated tnode, so
772  * we just count them one extra time here.
773  *
774  * A clearer way to write this would be:
775  *
776  * to_be_doubled = tn->full_children;
777  * not_to_be_doubled = child_length(tn) - tn->empty_children -
778  *     tn->full_children;
779  *
780  * new_child_length = child_length(tn) * 2;
781  *
782  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
783  *      new_child_length;
784  * if (new_fill_factor >= inflate_threshold)
785  *
786  * ...and so on, tho it would mess up the while () loop.
787  *
788  * anyway,
789  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
790  *      inflate_threshold
791  *
792  * avoid a division:
793  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
794  *      inflate_threshold * new_child_length
795  *
796  * expand not_to_be_doubled and to_be_doubled, and shorten:
797  * 100 * (child_length(tn) - tn->empty_children +
798  *    tn->full_children) >= inflate_threshold * new_child_length
799  *
800  * expand new_child_length:
801  * 100 * (child_length(tn) - tn->empty_children +
802  *    tn->full_children) >=
803  *      inflate_threshold * child_length(tn) * 2
804  *
805  * shorten again:
806  * 50 * (tn->full_children + child_length(tn) -
807  *    tn->empty_children) >= inflate_threshold *
808  *    child_length(tn)
809  *
810  */
811 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
812 {
813 	unsigned long used = child_length(tn);
814 	unsigned long threshold = used;
815 
816 	/* Keep root node larger */
817 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
818 	used -= tn_info(tn)->empty_children;
819 	used += tn_info(tn)->full_children;
820 
821 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
822 
823 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
824 }
825 
826 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
827 {
828 	unsigned long used = child_length(tn);
829 	unsigned long threshold = used;
830 
831 	/* Keep root node larger */
832 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
833 	used -= tn_info(tn)->empty_children;
834 
835 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
836 
837 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
838 }
839 
840 static inline bool should_collapse(struct key_vector *tn)
841 {
842 	unsigned long used = child_length(tn);
843 
844 	used -= tn_info(tn)->empty_children;
845 
846 	/* account for bits == KEYLENGTH case */
847 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
848 		used -= KEY_MAX;
849 
850 	/* One child or none, time to drop us from the trie */
851 	return used < 2;
852 }
853 
854 #define MAX_WORK 10
855 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
856 {
857 #ifdef CONFIG_IP_FIB_TRIE_STATS
858 	struct trie_use_stats __percpu *stats = t->stats;
859 #endif
860 	struct key_vector *tp = node_parent(tn);
861 	unsigned long cindex = get_index(tn->key, tp);
862 	int max_work = MAX_WORK;
863 
864 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
865 		 tn, inflate_threshold, halve_threshold);
866 
867 	/* track the tnode via the pointer from the parent instead of
868 	 * doing it ourselves.  This way we can let RCU fully do its
869 	 * thing without us interfering
870 	 */
871 	BUG_ON(tn != get_child(tp, cindex));
872 
873 	/* Double as long as the resulting node has a number of
874 	 * nonempty nodes that are above the threshold.
875 	 */
876 	while (should_inflate(tp, tn) && max_work) {
877 		tp = inflate(t, tn);
878 		if (!tp) {
879 #ifdef CONFIG_IP_FIB_TRIE_STATS
880 			this_cpu_inc(stats->resize_node_skipped);
881 #endif
882 			break;
883 		}
884 
885 		max_work--;
886 		tn = get_child(tp, cindex);
887 	}
888 
889 	/* update parent in case inflate failed */
890 	tp = node_parent(tn);
891 
892 	/* Return if at least one inflate is run */
893 	if (max_work != MAX_WORK)
894 		return tp;
895 
896 	/* Halve as long as the number of empty children in this
897 	 * node is above threshold.
898 	 */
899 	while (should_halve(tp, tn) && max_work) {
900 		tp = halve(t, tn);
901 		if (!tp) {
902 #ifdef CONFIG_IP_FIB_TRIE_STATS
903 			this_cpu_inc(stats->resize_node_skipped);
904 #endif
905 			break;
906 		}
907 
908 		max_work--;
909 		tn = get_child(tp, cindex);
910 	}
911 
912 	/* Only one child remains */
913 	if (should_collapse(tn))
914 		return collapse(t, tn);
915 
916 	/* update parent in case halve failed */
917 	return node_parent(tn);
918 }
919 
920 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
921 {
922 	unsigned char node_slen = tn->slen;
923 
924 	while ((node_slen > tn->pos) && (node_slen > slen)) {
925 		slen = update_suffix(tn);
926 		if (node_slen == slen)
927 			break;
928 
929 		tn = node_parent(tn);
930 		node_slen = tn->slen;
931 	}
932 }
933 
934 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
935 {
936 	while (tn->slen < slen) {
937 		tn->slen = slen;
938 		tn = node_parent(tn);
939 	}
940 }
941 
942 /* rcu_read_lock needs to be hold by caller from readside */
943 static struct key_vector *fib_find_node(struct trie *t,
944 					struct key_vector **tp, u32 key)
945 {
946 	struct key_vector *pn, *n = t->kv;
947 	unsigned long index = 0;
948 
949 	do {
950 		pn = n;
951 		n = get_child_rcu(n, index);
952 
953 		if (!n)
954 			break;
955 
956 		index = get_cindex(key, n);
957 
958 		/* This bit of code is a bit tricky but it combines multiple
959 		 * checks into a single check.  The prefix consists of the
960 		 * prefix plus zeros for the bits in the cindex. The index
961 		 * is the difference between the key and this value.  From
962 		 * this we can actually derive several pieces of data.
963 		 *   if (index >= (1ul << bits))
964 		 *     we have a mismatch in skip bits and failed
965 		 *   else
966 		 *     we know the value is cindex
967 		 *
968 		 * This check is safe even if bits == KEYLENGTH due to the
969 		 * fact that we can only allocate a node with 32 bits if a
970 		 * long is greater than 32 bits.
971 		 */
972 		if (index >= (1ul << n->bits)) {
973 			n = NULL;
974 			break;
975 		}
976 
977 		/* keep searching until we find a perfect match leaf or NULL */
978 	} while (IS_TNODE(n));
979 
980 	*tp = pn;
981 
982 	return n;
983 }
984 
985 /* Return the first fib alias matching TOS with
986  * priority less than or equal to PRIO.
987  */
988 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
989 					u8 tos, u32 prio, u32 tb_id)
990 {
991 	struct fib_alias *fa;
992 
993 	if (!fah)
994 		return NULL;
995 
996 	hlist_for_each_entry(fa, fah, fa_list) {
997 		if (fa->fa_slen < slen)
998 			continue;
999 		if (fa->fa_slen != slen)
1000 			break;
1001 		if (fa->tb_id > tb_id)
1002 			continue;
1003 		if (fa->tb_id != tb_id)
1004 			break;
1005 		if (fa->fa_tos > tos)
1006 			continue;
1007 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1008 			return fa;
1009 	}
1010 
1011 	return NULL;
1012 }
1013 
1014 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1015 {
1016 	while (!IS_TRIE(tn))
1017 		tn = resize(t, tn);
1018 }
1019 
1020 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1021 			   struct fib_alias *new, t_key key)
1022 {
1023 	struct key_vector *n, *l;
1024 
1025 	l = leaf_new(key, new);
1026 	if (!l)
1027 		goto noleaf;
1028 
1029 	/* retrieve child from parent node */
1030 	n = get_child(tp, get_index(key, tp));
1031 
1032 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1033 	 *
1034 	 *  Add a new tnode here
1035 	 *  first tnode need some special handling
1036 	 *  leaves us in position for handling as case 3
1037 	 */
1038 	if (n) {
1039 		struct key_vector *tn;
1040 
1041 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1042 		if (!tn)
1043 			goto notnode;
1044 
1045 		/* initialize routes out of node */
1046 		NODE_INIT_PARENT(tn, tp);
1047 		put_child(tn, get_index(key, tn) ^ 1, n);
1048 
1049 		/* start adding routes into the node */
1050 		put_child_root(tp, key, tn);
1051 		node_set_parent(n, tn);
1052 
1053 		/* parent now has a NULL spot where the leaf can go */
1054 		tp = tn;
1055 	}
1056 
1057 	/* Case 3: n is NULL, and will just insert a new leaf */
1058 	node_push_suffix(tp, new->fa_slen);
1059 	NODE_INIT_PARENT(l, tp);
1060 	put_child_root(tp, key, l);
1061 	trie_rebalance(t, tp);
1062 
1063 	return 0;
1064 notnode:
1065 	node_free(l);
1066 noleaf:
1067 	return -ENOMEM;
1068 }
1069 
1070 /* fib notifier for ADD is sent before calling fib_insert_alias with
1071  * the expectation that the only possible failure ENOMEM
1072  */
1073 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1074 			    struct key_vector *l, struct fib_alias *new,
1075 			    struct fib_alias *fa, t_key key)
1076 {
1077 	if (!l)
1078 		return fib_insert_node(t, tp, new, key);
1079 
1080 	if (fa) {
1081 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1082 	} else {
1083 		struct fib_alias *last;
1084 
1085 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1086 			if (new->fa_slen < last->fa_slen)
1087 				break;
1088 			if ((new->fa_slen == last->fa_slen) &&
1089 			    (new->tb_id > last->tb_id))
1090 				break;
1091 			fa = last;
1092 		}
1093 
1094 		if (fa)
1095 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1096 		else
1097 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1098 	}
1099 
1100 	/* if we added to the tail node then we need to update slen */
1101 	if (l->slen < new->fa_slen) {
1102 		l->slen = new->fa_slen;
1103 		node_push_suffix(tp, new->fa_slen);
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1110 {
1111 	if (plen > KEYLENGTH) {
1112 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1113 		return false;
1114 	}
1115 
1116 	if ((plen < KEYLENGTH) && (key << plen)) {
1117 		NL_SET_ERR_MSG(extack,
1118 			       "Invalid prefix for given prefix length");
1119 		return false;
1120 	}
1121 
1122 	return true;
1123 }
1124 
1125 /* Caller must hold RTNL. */
1126 int fib_table_insert(struct net *net, struct fib_table *tb,
1127 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1128 {
1129 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1130 	struct trie *t = (struct trie *)tb->tb_data;
1131 	struct fib_alias *fa, *new_fa;
1132 	struct key_vector *l, *tp;
1133 	u16 nlflags = NLM_F_EXCL;
1134 	struct fib_info *fi;
1135 	u8 plen = cfg->fc_dst_len;
1136 	u8 slen = KEYLENGTH - plen;
1137 	u8 tos = cfg->fc_tos;
1138 	u32 key;
1139 	int err;
1140 
1141 	key = ntohl(cfg->fc_dst);
1142 
1143 	if (!fib_valid_key_len(key, plen, extack))
1144 		return -EINVAL;
1145 
1146 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1147 
1148 	fi = fib_create_info(cfg, extack);
1149 	if (IS_ERR(fi)) {
1150 		err = PTR_ERR(fi);
1151 		goto err;
1152 	}
1153 
1154 	l = fib_find_node(t, &tp, key);
1155 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1156 				tb->tb_id) : NULL;
1157 
1158 	/* Now fa, if non-NULL, points to the first fib alias
1159 	 * with the same keys [prefix,tos,priority], if such key already
1160 	 * exists or to the node before which we will insert new one.
1161 	 *
1162 	 * If fa is NULL, we will need to allocate a new one and
1163 	 * insert to the tail of the section matching the suffix length
1164 	 * of the new alias.
1165 	 */
1166 
1167 	if (fa && fa->fa_tos == tos &&
1168 	    fa->fa_info->fib_priority == fi->fib_priority) {
1169 		struct fib_alias *fa_first, *fa_match;
1170 
1171 		err = -EEXIST;
1172 		if (cfg->fc_nlflags & NLM_F_EXCL)
1173 			goto out;
1174 
1175 		nlflags &= ~NLM_F_EXCL;
1176 
1177 		/* We have 2 goals:
1178 		 * 1. Find exact match for type, scope, fib_info to avoid
1179 		 * duplicate routes
1180 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1181 		 */
1182 		fa_match = NULL;
1183 		fa_first = fa;
1184 		hlist_for_each_entry_from(fa, fa_list) {
1185 			if ((fa->fa_slen != slen) ||
1186 			    (fa->tb_id != tb->tb_id) ||
1187 			    (fa->fa_tos != tos))
1188 				break;
1189 			if (fa->fa_info->fib_priority != fi->fib_priority)
1190 				break;
1191 			if (fa->fa_type == cfg->fc_type &&
1192 			    fa->fa_info == fi) {
1193 				fa_match = fa;
1194 				break;
1195 			}
1196 		}
1197 
1198 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1199 			struct fib_info *fi_drop;
1200 			u8 state;
1201 
1202 			nlflags |= NLM_F_REPLACE;
1203 			fa = fa_first;
1204 			if (fa_match) {
1205 				if (fa == fa_match)
1206 					err = 0;
1207 				goto out;
1208 			}
1209 			err = -ENOBUFS;
1210 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1211 			if (!new_fa)
1212 				goto out;
1213 
1214 			fi_drop = fa->fa_info;
1215 			new_fa->fa_tos = fa->fa_tos;
1216 			new_fa->fa_info = fi;
1217 			new_fa->fa_type = cfg->fc_type;
1218 			state = fa->fa_state;
1219 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1220 			new_fa->fa_slen = fa->fa_slen;
1221 			new_fa->tb_id = tb->tb_id;
1222 			new_fa->fa_default = -1;
1223 
1224 			err = call_fib_entry_notifiers(net,
1225 						       FIB_EVENT_ENTRY_REPLACE,
1226 						       key, plen, new_fa,
1227 						       extack);
1228 			if (err)
1229 				goto out_free_new_fa;
1230 
1231 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1232 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1233 
1234 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1235 
1236 			alias_free_mem_rcu(fa);
1237 
1238 			fib_release_info(fi_drop);
1239 			if (state & FA_S_ACCESSED)
1240 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1241 
1242 			goto succeeded;
1243 		}
1244 		/* Error if we find a perfect match which
1245 		 * uses the same scope, type, and nexthop
1246 		 * information.
1247 		 */
1248 		if (fa_match)
1249 			goto out;
1250 
1251 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1252 			event = FIB_EVENT_ENTRY_APPEND;
1253 			nlflags |= NLM_F_APPEND;
1254 		} else {
1255 			fa = fa_first;
1256 		}
1257 	}
1258 	err = -ENOENT;
1259 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1260 		goto out;
1261 
1262 	nlflags |= NLM_F_CREATE;
1263 	err = -ENOBUFS;
1264 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1265 	if (!new_fa)
1266 		goto out;
1267 
1268 	new_fa->fa_info = fi;
1269 	new_fa->fa_tos = tos;
1270 	new_fa->fa_type = cfg->fc_type;
1271 	new_fa->fa_state = 0;
1272 	new_fa->fa_slen = slen;
1273 	new_fa->tb_id = tb->tb_id;
1274 	new_fa->fa_default = -1;
1275 
1276 	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1277 	if (err)
1278 		goto out_free_new_fa;
1279 
1280 	/* Insert new entry to the list. */
1281 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1282 	if (err)
1283 		goto out_fib_notif;
1284 
1285 	if (!plen)
1286 		tb->tb_num_default++;
1287 
1288 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1289 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1290 		  &cfg->fc_nlinfo, nlflags);
1291 succeeded:
1292 	return 0;
1293 
1294 out_fib_notif:
1295 	/* notifier was sent that entry would be added to trie, but
1296 	 * the add failed and need to recover. Only failure for
1297 	 * fib_insert_alias is ENOMEM.
1298 	 */
1299 	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1300 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1301 				 plen, new_fa, NULL);
1302 out_free_new_fa:
1303 	kmem_cache_free(fn_alias_kmem, new_fa);
1304 out:
1305 	fib_release_info(fi);
1306 err:
1307 	return err;
1308 }
1309 
1310 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1311 {
1312 	t_key prefix = n->key;
1313 
1314 	return (key ^ prefix) & (prefix | -prefix);
1315 }
1316 
1317 /* should be called with rcu_read_lock */
1318 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1319 		     struct fib_result *res, int fib_flags)
1320 {
1321 	struct trie *t = (struct trie *) tb->tb_data;
1322 #ifdef CONFIG_IP_FIB_TRIE_STATS
1323 	struct trie_use_stats __percpu *stats = t->stats;
1324 #endif
1325 	const t_key key = ntohl(flp->daddr);
1326 	struct key_vector *n, *pn;
1327 	struct fib_alias *fa;
1328 	unsigned long index;
1329 	t_key cindex;
1330 
1331 	pn = t->kv;
1332 	cindex = 0;
1333 
1334 	n = get_child_rcu(pn, cindex);
1335 	if (!n) {
1336 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1337 		return -EAGAIN;
1338 	}
1339 
1340 #ifdef CONFIG_IP_FIB_TRIE_STATS
1341 	this_cpu_inc(stats->gets);
1342 #endif
1343 
1344 	/* Step 1: Travel to the longest prefix match in the trie */
1345 	for (;;) {
1346 		index = get_cindex(key, n);
1347 
1348 		/* This bit of code is a bit tricky but it combines multiple
1349 		 * checks into a single check.  The prefix consists of the
1350 		 * prefix plus zeros for the "bits" in the prefix. The index
1351 		 * is the difference between the key and this value.  From
1352 		 * this we can actually derive several pieces of data.
1353 		 *   if (index >= (1ul << bits))
1354 		 *     we have a mismatch in skip bits and failed
1355 		 *   else
1356 		 *     we know the value is cindex
1357 		 *
1358 		 * This check is safe even if bits == KEYLENGTH due to the
1359 		 * fact that we can only allocate a node with 32 bits if a
1360 		 * long is greater than 32 bits.
1361 		 */
1362 		if (index >= (1ul << n->bits))
1363 			break;
1364 
1365 		/* we have found a leaf. Prefixes have already been compared */
1366 		if (IS_LEAF(n))
1367 			goto found;
1368 
1369 		/* only record pn and cindex if we are going to be chopping
1370 		 * bits later.  Otherwise we are just wasting cycles.
1371 		 */
1372 		if (n->slen > n->pos) {
1373 			pn = n;
1374 			cindex = index;
1375 		}
1376 
1377 		n = get_child_rcu(n, index);
1378 		if (unlikely(!n))
1379 			goto backtrace;
1380 	}
1381 
1382 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1383 	for (;;) {
1384 		/* record the pointer where our next node pointer is stored */
1385 		struct key_vector __rcu **cptr = n->tnode;
1386 
1387 		/* This test verifies that none of the bits that differ
1388 		 * between the key and the prefix exist in the region of
1389 		 * the lsb and higher in the prefix.
1390 		 */
1391 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1392 			goto backtrace;
1393 
1394 		/* exit out and process leaf */
1395 		if (unlikely(IS_LEAF(n)))
1396 			break;
1397 
1398 		/* Don't bother recording parent info.  Since we are in
1399 		 * prefix match mode we will have to come back to wherever
1400 		 * we started this traversal anyway
1401 		 */
1402 
1403 		while ((n = rcu_dereference(*cptr)) == NULL) {
1404 backtrace:
1405 #ifdef CONFIG_IP_FIB_TRIE_STATS
1406 			if (!n)
1407 				this_cpu_inc(stats->null_node_hit);
1408 #endif
1409 			/* If we are at cindex 0 there are no more bits for
1410 			 * us to strip at this level so we must ascend back
1411 			 * up one level to see if there are any more bits to
1412 			 * be stripped there.
1413 			 */
1414 			while (!cindex) {
1415 				t_key pkey = pn->key;
1416 
1417 				/* If we don't have a parent then there is
1418 				 * nothing for us to do as we do not have any
1419 				 * further nodes to parse.
1420 				 */
1421 				if (IS_TRIE(pn)) {
1422 					trace_fib_table_lookup(tb->tb_id, flp,
1423 							       NULL, -EAGAIN);
1424 					return -EAGAIN;
1425 				}
1426 #ifdef CONFIG_IP_FIB_TRIE_STATS
1427 				this_cpu_inc(stats->backtrack);
1428 #endif
1429 				/* Get Child's index */
1430 				pn = node_parent_rcu(pn);
1431 				cindex = get_index(pkey, pn);
1432 			}
1433 
1434 			/* strip the least significant bit from the cindex */
1435 			cindex &= cindex - 1;
1436 
1437 			/* grab pointer for next child node */
1438 			cptr = &pn->tnode[cindex];
1439 		}
1440 	}
1441 
1442 found:
1443 	/* this line carries forward the xor from earlier in the function */
1444 	index = key ^ n->key;
1445 
1446 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1447 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1448 		struct fib_info *fi = fa->fa_info;
1449 		int nhsel, err;
1450 
1451 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1452 			if (index >= (1ul << fa->fa_slen))
1453 				continue;
1454 		}
1455 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1456 			continue;
1457 		if (fi->fib_dead)
1458 			continue;
1459 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1460 			continue;
1461 		fib_alias_accessed(fa);
1462 		err = fib_props[fa->fa_type].error;
1463 		if (unlikely(err < 0)) {
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465 			this_cpu_inc(stats->semantic_match_passed);
1466 #endif
1467 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1468 			return err;
1469 		}
1470 		if (fi->fib_flags & RTNH_F_DEAD)
1471 			continue;
1472 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1473 			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1474 
1475 			if (nhc->nhc_flags & RTNH_F_DEAD)
1476 				continue;
1477 			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1478 			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1479 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1480 				continue;
1481 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1482 				if (flp->flowi4_oif &&
1483 				    flp->flowi4_oif != nhc->nhc_oif)
1484 					continue;
1485 			}
1486 
1487 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1488 				refcount_inc(&fi->fib_clntref);
1489 
1490 			res->prefix = htonl(n->key);
1491 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1492 			res->nh_sel = nhsel;
1493 			res->nhc = nhc;
1494 			res->type = fa->fa_type;
1495 			res->scope = fi->fib_scope;
1496 			res->fi = fi;
1497 			res->table = tb;
1498 			res->fa_head = &n->leaf;
1499 #ifdef CONFIG_IP_FIB_TRIE_STATS
1500 			this_cpu_inc(stats->semantic_match_passed);
1501 #endif
1502 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1503 
1504 			return err;
1505 		}
1506 	}
1507 #ifdef CONFIG_IP_FIB_TRIE_STATS
1508 	this_cpu_inc(stats->semantic_match_miss);
1509 #endif
1510 	goto backtrace;
1511 }
1512 EXPORT_SYMBOL_GPL(fib_table_lookup);
1513 
1514 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1515 			     struct key_vector *l, struct fib_alias *old)
1516 {
1517 	/* record the location of the previous list_info entry */
1518 	struct hlist_node **pprev = old->fa_list.pprev;
1519 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1520 
1521 	/* remove the fib_alias from the list */
1522 	hlist_del_rcu(&old->fa_list);
1523 
1524 	/* if we emptied the list this leaf will be freed and we can sort
1525 	 * out parent suffix lengths as a part of trie_rebalance
1526 	 */
1527 	if (hlist_empty(&l->leaf)) {
1528 		if (tp->slen == l->slen)
1529 			node_pull_suffix(tp, tp->pos);
1530 		put_child_root(tp, l->key, NULL);
1531 		node_free(l);
1532 		trie_rebalance(t, tp);
1533 		return;
1534 	}
1535 
1536 	/* only access fa if it is pointing at the last valid hlist_node */
1537 	if (*pprev)
1538 		return;
1539 
1540 	/* update the trie with the latest suffix length */
1541 	l->slen = fa->fa_slen;
1542 	node_pull_suffix(tp, fa->fa_slen);
1543 }
1544 
1545 /* Caller must hold RTNL. */
1546 int fib_table_delete(struct net *net, struct fib_table *tb,
1547 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1548 {
1549 	struct trie *t = (struct trie *) tb->tb_data;
1550 	struct fib_alias *fa, *fa_to_delete;
1551 	struct key_vector *l, *tp;
1552 	u8 plen = cfg->fc_dst_len;
1553 	u8 slen = KEYLENGTH - plen;
1554 	u8 tos = cfg->fc_tos;
1555 	u32 key;
1556 
1557 	key = ntohl(cfg->fc_dst);
1558 
1559 	if (!fib_valid_key_len(key, plen, extack))
1560 		return -EINVAL;
1561 
1562 	l = fib_find_node(t, &tp, key);
1563 	if (!l)
1564 		return -ESRCH;
1565 
1566 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1567 	if (!fa)
1568 		return -ESRCH;
1569 
1570 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1571 
1572 	fa_to_delete = NULL;
1573 	hlist_for_each_entry_from(fa, fa_list) {
1574 		struct fib_info *fi = fa->fa_info;
1575 
1576 		if ((fa->fa_slen != slen) ||
1577 		    (fa->tb_id != tb->tb_id) ||
1578 		    (fa->fa_tos != tos))
1579 			break;
1580 
1581 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1582 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1583 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1584 		    (!cfg->fc_prefsrc ||
1585 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1586 		    (!cfg->fc_protocol ||
1587 		     fi->fib_protocol == cfg->fc_protocol) &&
1588 		    fib_nh_match(cfg, fi, extack) == 0 &&
1589 		    fib_metrics_match(cfg, fi)) {
1590 			fa_to_delete = fa;
1591 			break;
1592 		}
1593 	}
1594 
1595 	if (!fa_to_delete)
1596 		return -ESRCH;
1597 
1598 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1599 				 fa_to_delete, extack);
1600 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1601 		  &cfg->fc_nlinfo, 0);
1602 
1603 	if (!plen)
1604 		tb->tb_num_default--;
1605 
1606 	fib_remove_alias(t, tp, l, fa_to_delete);
1607 
1608 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1609 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1610 
1611 	fib_release_info(fa_to_delete->fa_info);
1612 	alias_free_mem_rcu(fa_to_delete);
1613 	return 0;
1614 }
1615 
1616 /* Scan for the next leaf starting at the provided key value */
1617 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1618 {
1619 	struct key_vector *pn, *n = *tn;
1620 	unsigned long cindex;
1621 
1622 	/* this loop is meant to try and find the key in the trie */
1623 	do {
1624 		/* record parent and next child index */
1625 		pn = n;
1626 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1627 
1628 		if (cindex >> pn->bits)
1629 			break;
1630 
1631 		/* descend into the next child */
1632 		n = get_child_rcu(pn, cindex++);
1633 		if (!n)
1634 			break;
1635 
1636 		/* guarantee forward progress on the keys */
1637 		if (IS_LEAF(n) && (n->key >= key))
1638 			goto found;
1639 	} while (IS_TNODE(n));
1640 
1641 	/* this loop will search for the next leaf with a greater key */
1642 	while (!IS_TRIE(pn)) {
1643 		/* if we exhausted the parent node we will need to climb */
1644 		if (cindex >= (1ul << pn->bits)) {
1645 			t_key pkey = pn->key;
1646 
1647 			pn = node_parent_rcu(pn);
1648 			cindex = get_index(pkey, pn) + 1;
1649 			continue;
1650 		}
1651 
1652 		/* grab the next available node */
1653 		n = get_child_rcu(pn, cindex++);
1654 		if (!n)
1655 			continue;
1656 
1657 		/* no need to compare keys since we bumped the index */
1658 		if (IS_LEAF(n))
1659 			goto found;
1660 
1661 		/* Rescan start scanning in new node */
1662 		pn = n;
1663 		cindex = 0;
1664 	}
1665 
1666 	*tn = pn;
1667 	return NULL; /* Root of trie */
1668 found:
1669 	/* if we are at the limit for keys just return NULL for the tnode */
1670 	*tn = pn;
1671 	return n;
1672 }
1673 
1674 static void fib_trie_free(struct fib_table *tb)
1675 {
1676 	struct trie *t = (struct trie *)tb->tb_data;
1677 	struct key_vector *pn = t->kv;
1678 	unsigned long cindex = 1;
1679 	struct hlist_node *tmp;
1680 	struct fib_alias *fa;
1681 
1682 	/* walk trie in reverse order and free everything */
1683 	for (;;) {
1684 		struct key_vector *n;
1685 
1686 		if (!(cindex--)) {
1687 			t_key pkey = pn->key;
1688 
1689 			if (IS_TRIE(pn))
1690 				break;
1691 
1692 			n = pn;
1693 			pn = node_parent(pn);
1694 
1695 			/* drop emptied tnode */
1696 			put_child_root(pn, n->key, NULL);
1697 			node_free(n);
1698 
1699 			cindex = get_index(pkey, pn);
1700 
1701 			continue;
1702 		}
1703 
1704 		/* grab the next available node */
1705 		n = get_child(pn, cindex);
1706 		if (!n)
1707 			continue;
1708 
1709 		if (IS_TNODE(n)) {
1710 			/* record pn and cindex for leaf walking */
1711 			pn = n;
1712 			cindex = 1ul << n->bits;
1713 
1714 			continue;
1715 		}
1716 
1717 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1718 			hlist_del_rcu(&fa->fa_list);
1719 			alias_free_mem_rcu(fa);
1720 		}
1721 
1722 		put_child_root(pn, n->key, NULL);
1723 		node_free(n);
1724 	}
1725 
1726 #ifdef CONFIG_IP_FIB_TRIE_STATS
1727 	free_percpu(t->stats);
1728 #endif
1729 	kfree(tb);
1730 }
1731 
1732 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1733 {
1734 	struct trie *ot = (struct trie *)oldtb->tb_data;
1735 	struct key_vector *l, *tp = ot->kv;
1736 	struct fib_table *local_tb;
1737 	struct fib_alias *fa;
1738 	struct trie *lt;
1739 	t_key key = 0;
1740 
1741 	if (oldtb->tb_data == oldtb->__data)
1742 		return oldtb;
1743 
1744 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1745 	if (!local_tb)
1746 		return NULL;
1747 
1748 	lt = (struct trie *)local_tb->tb_data;
1749 
1750 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1751 		struct key_vector *local_l = NULL, *local_tp;
1752 
1753 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1754 			struct fib_alias *new_fa;
1755 
1756 			if (local_tb->tb_id != fa->tb_id)
1757 				continue;
1758 
1759 			/* clone fa for new local table */
1760 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1761 			if (!new_fa)
1762 				goto out;
1763 
1764 			memcpy(new_fa, fa, sizeof(*fa));
1765 
1766 			/* insert clone into table */
1767 			if (!local_l)
1768 				local_l = fib_find_node(lt, &local_tp, l->key);
1769 
1770 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1771 					     NULL, l->key)) {
1772 				kmem_cache_free(fn_alias_kmem, new_fa);
1773 				goto out;
1774 			}
1775 		}
1776 
1777 		/* stop loop if key wrapped back to 0 */
1778 		key = l->key + 1;
1779 		if (key < l->key)
1780 			break;
1781 	}
1782 
1783 	return local_tb;
1784 out:
1785 	fib_trie_free(local_tb);
1786 
1787 	return NULL;
1788 }
1789 
1790 /* Caller must hold RTNL */
1791 void fib_table_flush_external(struct fib_table *tb)
1792 {
1793 	struct trie *t = (struct trie *)tb->tb_data;
1794 	struct key_vector *pn = t->kv;
1795 	unsigned long cindex = 1;
1796 	struct hlist_node *tmp;
1797 	struct fib_alias *fa;
1798 
1799 	/* walk trie in reverse order */
1800 	for (;;) {
1801 		unsigned char slen = 0;
1802 		struct key_vector *n;
1803 
1804 		if (!(cindex--)) {
1805 			t_key pkey = pn->key;
1806 
1807 			/* cannot resize the trie vector */
1808 			if (IS_TRIE(pn))
1809 				break;
1810 
1811 			/* update the suffix to address pulled leaves */
1812 			if (pn->slen > pn->pos)
1813 				update_suffix(pn);
1814 
1815 			/* resize completed node */
1816 			pn = resize(t, pn);
1817 			cindex = get_index(pkey, pn);
1818 
1819 			continue;
1820 		}
1821 
1822 		/* grab the next available node */
1823 		n = get_child(pn, cindex);
1824 		if (!n)
1825 			continue;
1826 
1827 		if (IS_TNODE(n)) {
1828 			/* record pn and cindex for leaf walking */
1829 			pn = n;
1830 			cindex = 1ul << n->bits;
1831 
1832 			continue;
1833 		}
1834 
1835 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1836 			/* if alias was cloned to local then we just
1837 			 * need to remove the local copy from main
1838 			 */
1839 			if (tb->tb_id != fa->tb_id) {
1840 				hlist_del_rcu(&fa->fa_list);
1841 				alias_free_mem_rcu(fa);
1842 				continue;
1843 			}
1844 
1845 			/* record local slen */
1846 			slen = fa->fa_slen;
1847 		}
1848 
1849 		/* update leaf slen */
1850 		n->slen = slen;
1851 
1852 		if (hlist_empty(&n->leaf)) {
1853 			put_child_root(pn, n->key, NULL);
1854 			node_free(n);
1855 		}
1856 	}
1857 }
1858 
1859 /* Caller must hold RTNL. */
1860 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1861 {
1862 	struct trie *t = (struct trie *)tb->tb_data;
1863 	struct key_vector *pn = t->kv;
1864 	unsigned long cindex = 1;
1865 	struct hlist_node *tmp;
1866 	struct fib_alias *fa;
1867 	int found = 0;
1868 
1869 	/* walk trie in reverse order */
1870 	for (;;) {
1871 		unsigned char slen = 0;
1872 		struct key_vector *n;
1873 
1874 		if (!(cindex--)) {
1875 			t_key pkey = pn->key;
1876 
1877 			/* cannot resize the trie vector */
1878 			if (IS_TRIE(pn))
1879 				break;
1880 
1881 			/* update the suffix to address pulled leaves */
1882 			if (pn->slen > pn->pos)
1883 				update_suffix(pn);
1884 
1885 			/* resize completed node */
1886 			pn = resize(t, pn);
1887 			cindex = get_index(pkey, pn);
1888 
1889 			continue;
1890 		}
1891 
1892 		/* grab the next available node */
1893 		n = get_child(pn, cindex);
1894 		if (!n)
1895 			continue;
1896 
1897 		if (IS_TNODE(n)) {
1898 			/* record pn and cindex for leaf walking */
1899 			pn = n;
1900 			cindex = 1ul << n->bits;
1901 
1902 			continue;
1903 		}
1904 
1905 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1906 			struct fib_info *fi = fa->fa_info;
1907 
1908 			if (!fi || tb->tb_id != fa->tb_id ||
1909 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1910 			     !fib_props[fa->fa_type].error)) {
1911 				slen = fa->fa_slen;
1912 				continue;
1913 			}
1914 
1915 			/* Do not flush error routes if network namespace is
1916 			 * not being dismantled
1917 			 */
1918 			if (!flush_all && fib_props[fa->fa_type].error) {
1919 				slen = fa->fa_slen;
1920 				continue;
1921 			}
1922 
1923 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1924 						 n->key,
1925 						 KEYLENGTH - fa->fa_slen, fa,
1926 						 NULL);
1927 			hlist_del_rcu(&fa->fa_list);
1928 			fib_release_info(fa->fa_info);
1929 			alias_free_mem_rcu(fa);
1930 			found++;
1931 		}
1932 
1933 		/* update leaf slen */
1934 		n->slen = slen;
1935 
1936 		if (hlist_empty(&n->leaf)) {
1937 			put_child_root(pn, n->key, NULL);
1938 			node_free(n);
1939 		}
1940 	}
1941 
1942 	pr_debug("trie_flush found=%d\n", found);
1943 	return found;
1944 }
1945 
1946 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1947 			    struct fib_table *tb, struct notifier_block *nb)
1948 {
1949 	struct fib_alias *fa;
1950 
1951 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1952 		struct fib_info *fi = fa->fa_info;
1953 
1954 		if (!fi)
1955 			continue;
1956 
1957 		/* local and main table can share the same trie,
1958 		 * so don't notify twice for the same entry.
1959 		 */
1960 		if (tb->tb_id != fa->tb_id)
1961 			continue;
1962 
1963 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1964 					KEYLENGTH - fa->fa_slen, fa);
1965 	}
1966 }
1967 
1968 static void fib_table_notify(struct net *net, struct fib_table *tb,
1969 			     struct notifier_block *nb)
1970 {
1971 	struct trie *t = (struct trie *)tb->tb_data;
1972 	struct key_vector *l, *tp = t->kv;
1973 	t_key key = 0;
1974 
1975 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1976 		fib_leaf_notify(net, l, tb, nb);
1977 
1978 		key = l->key + 1;
1979 		/* stop in case of wrap around */
1980 		if (key < l->key)
1981 			break;
1982 	}
1983 }
1984 
1985 void fib_notify(struct net *net, struct notifier_block *nb)
1986 {
1987 	unsigned int h;
1988 
1989 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1990 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1991 		struct fib_table *tb;
1992 
1993 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1994 			fib_table_notify(net, tb, nb);
1995 	}
1996 }
1997 
1998 static void __trie_free_rcu(struct rcu_head *head)
1999 {
2000 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2001 #ifdef CONFIG_IP_FIB_TRIE_STATS
2002 	struct trie *t = (struct trie *)tb->tb_data;
2003 
2004 	if (tb->tb_data == tb->__data)
2005 		free_percpu(t->stats);
2006 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2007 	kfree(tb);
2008 }
2009 
2010 void fib_free_table(struct fib_table *tb)
2011 {
2012 	call_rcu(&tb->rcu, __trie_free_rcu);
2013 }
2014 
2015 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2016 			     struct sk_buff *skb, struct netlink_callback *cb,
2017 			     struct fib_dump_filter *filter)
2018 {
2019 	unsigned int flags = NLM_F_MULTI;
2020 	__be32 xkey = htonl(l->key);
2021 	struct fib_alias *fa;
2022 	int i, s_i;
2023 
2024 	if (filter->filter_set)
2025 		flags |= NLM_F_DUMP_FILTERED;
2026 
2027 	s_i = cb->args[4];
2028 	i = 0;
2029 
2030 	/* rcu_read_lock is hold by caller */
2031 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2032 		int err;
2033 
2034 		if (i < s_i)
2035 			goto next;
2036 
2037 		if (tb->tb_id != fa->tb_id)
2038 			goto next;
2039 
2040 		if (filter->filter_set) {
2041 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2042 				goto next;
2043 
2044 			if ((filter->protocol &&
2045 			     fa->fa_info->fib_protocol != filter->protocol))
2046 				goto next;
2047 
2048 			if (filter->dev &&
2049 			    !fib_info_nh_uses_dev(fa->fa_info, filter->dev))
2050 				goto next;
2051 		}
2052 
2053 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2054 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2055 				    tb->tb_id, fa->fa_type,
2056 				    xkey, KEYLENGTH - fa->fa_slen,
2057 				    fa->fa_tos, fa->fa_info, flags);
2058 		if (err < 0) {
2059 			cb->args[4] = i;
2060 			return err;
2061 		}
2062 next:
2063 		i++;
2064 	}
2065 
2066 	cb->args[4] = i;
2067 	return skb->len;
2068 }
2069 
2070 /* rcu_read_lock needs to be hold by caller from readside */
2071 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2072 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2073 {
2074 	struct trie *t = (struct trie *)tb->tb_data;
2075 	struct key_vector *l, *tp = t->kv;
2076 	/* Dump starting at last key.
2077 	 * Note: 0.0.0.0/0 (ie default) is first key.
2078 	 */
2079 	int count = cb->args[2];
2080 	t_key key = cb->args[3];
2081 
2082 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2083 		int err;
2084 
2085 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2086 		if (err < 0) {
2087 			cb->args[3] = key;
2088 			cb->args[2] = count;
2089 			return err;
2090 		}
2091 
2092 		++count;
2093 		key = l->key + 1;
2094 
2095 		memset(&cb->args[4], 0,
2096 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2097 
2098 		/* stop loop if key wrapped back to 0 */
2099 		if (key < l->key)
2100 			break;
2101 	}
2102 
2103 	cb->args[3] = key;
2104 	cb->args[2] = count;
2105 
2106 	return skb->len;
2107 }
2108 
2109 void __init fib_trie_init(void)
2110 {
2111 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2112 					  sizeof(struct fib_alias),
2113 					  0, SLAB_PANIC, NULL);
2114 
2115 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2116 					   LEAF_SIZE,
2117 					   0, SLAB_PANIC, NULL);
2118 }
2119 
2120 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2121 {
2122 	struct fib_table *tb;
2123 	struct trie *t;
2124 	size_t sz = sizeof(*tb);
2125 
2126 	if (!alias)
2127 		sz += sizeof(struct trie);
2128 
2129 	tb = kzalloc(sz, GFP_KERNEL);
2130 	if (!tb)
2131 		return NULL;
2132 
2133 	tb->tb_id = id;
2134 	tb->tb_num_default = 0;
2135 	tb->tb_data = (alias ? alias->__data : tb->__data);
2136 
2137 	if (alias)
2138 		return tb;
2139 
2140 	t = (struct trie *) tb->tb_data;
2141 	t->kv[0].pos = KEYLENGTH;
2142 	t->kv[0].slen = KEYLENGTH;
2143 #ifdef CONFIG_IP_FIB_TRIE_STATS
2144 	t->stats = alloc_percpu(struct trie_use_stats);
2145 	if (!t->stats) {
2146 		kfree(tb);
2147 		tb = NULL;
2148 	}
2149 #endif
2150 
2151 	return tb;
2152 }
2153 
2154 #ifdef CONFIG_PROC_FS
2155 /* Depth first Trie walk iterator */
2156 struct fib_trie_iter {
2157 	struct seq_net_private p;
2158 	struct fib_table *tb;
2159 	struct key_vector *tnode;
2160 	unsigned int index;
2161 	unsigned int depth;
2162 };
2163 
2164 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2165 {
2166 	unsigned long cindex = iter->index;
2167 	struct key_vector *pn = iter->tnode;
2168 	t_key pkey;
2169 
2170 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2171 		 iter->tnode, iter->index, iter->depth);
2172 
2173 	while (!IS_TRIE(pn)) {
2174 		while (cindex < child_length(pn)) {
2175 			struct key_vector *n = get_child_rcu(pn, cindex++);
2176 
2177 			if (!n)
2178 				continue;
2179 
2180 			if (IS_LEAF(n)) {
2181 				iter->tnode = pn;
2182 				iter->index = cindex;
2183 			} else {
2184 				/* push down one level */
2185 				iter->tnode = n;
2186 				iter->index = 0;
2187 				++iter->depth;
2188 			}
2189 
2190 			return n;
2191 		}
2192 
2193 		/* Current node exhausted, pop back up */
2194 		pkey = pn->key;
2195 		pn = node_parent_rcu(pn);
2196 		cindex = get_index(pkey, pn) + 1;
2197 		--iter->depth;
2198 	}
2199 
2200 	/* record root node so further searches know we are done */
2201 	iter->tnode = pn;
2202 	iter->index = 0;
2203 
2204 	return NULL;
2205 }
2206 
2207 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2208 					     struct trie *t)
2209 {
2210 	struct key_vector *n, *pn;
2211 
2212 	if (!t)
2213 		return NULL;
2214 
2215 	pn = t->kv;
2216 	n = rcu_dereference(pn->tnode[0]);
2217 	if (!n)
2218 		return NULL;
2219 
2220 	if (IS_TNODE(n)) {
2221 		iter->tnode = n;
2222 		iter->index = 0;
2223 		iter->depth = 1;
2224 	} else {
2225 		iter->tnode = pn;
2226 		iter->index = 0;
2227 		iter->depth = 0;
2228 	}
2229 
2230 	return n;
2231 }
2232 
2233 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2234 {
2235 	struct key_vector *n;
2236 	struct fib_trie_iter iter;
2237 
2238 	memset(s, 0, sizeof(*s));
2239 
2240 	rcu_read_lock();
2241 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2242 		if (IS_LEAF(n)) {
2243 			struct fib_alias *fa;
2244 
2245 			s->leaves++;
2246 			s->totdepth += iter.depth;
2247 			if (iter.depth > s->maxdepth)
2248 				s->maxdepth = iter.depth;
2249 
2250 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2251 				++s->prefixes;
2252 		} else {
2253 			s->tnodes++;
2254 			if (n->bits < MAX_STAT_DEPTH)
2255 				s->nodesizes[n->bits]++;
2256 			s->nullpointers += tn_info(n)->empty_children;
2257 		}
2258 	}
2259 	rcu_read_unlock();
2260 }
2261 
2262 /*
2263  *	This outputs /proc/net/fib_triestats
2264  */
2265 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2266 {
2267 	unsigned int i, max, pointers, bytes, avdepth;
2268 
2269 	if (stat->leaves)
2270 		avdepth = stat->totdepth*100 / stat->leaves;
2271 	else
2272 		avdepth = 0;
2273 
2274 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2275 		   avdepth / 100, avdepth % 100);
2276 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2277 
2278 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2279 	bytes = LEAF_SIZE * stat->leaves;
2280 
2281 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2282 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2283 
2284 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2285 	bytes += TNODE_SIZE(0) * stat->tnodes;
2286 
2287 	max = MAX_STAT_DEPTH;
2288 	while (max > 0 && stat->nodesizes[max-1] == 0)
2289 		max--;
2290 
2291 	pointers = 0;
2292 	for (i = 1; i < max; i++)
2293 		if (stat->nodesizes[i] != 0) {
2294 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2295 			pointers += (1<<i) * stat->nodesizes[i];
2296 		}
2297 	seq_putc(seq, '\n');
2298 	seq_printf(seq, "\tPointers: %u\n", pointers);
2299 
2300 	bytes += sizeof(struct key_vector *) * pointers;
2301 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2302 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2303 }
2304 
2305 #ifdef CONFIG_IP_FIB_TRIE_STATS
2306 static void trie_show_usage(struct seq_file *seq,
2307 			    const struct trie_use_stats __percpu *stats)
2308 {
2309 	struct trie_use_stats s = { 0 };
2310 	int cpu;
2311 
2312 	/* loop through all of the CPUs and gather up the stats */
2313 	for_each_possible_cpu(cpu) {
2314 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2315 
2316 		s.gets += pcpu->gets;
2317 		s.backtrack += pcpu->backtrack;
2318 		s.semantic_match_passed += pcpu->semantic_match_passed;
2319 		s.semantic_match_miss += pcpu->semantic_match_miss;
2320 		s.null_node_hit += pcpu->null_node_hit;
2321 		s.resize_node_skipped += pcpu->resize_node_skipped;
2322 	}
2323 
2324 	seq_printf(seq, "\nCounters:\n---------\n");
2325 	seq_printf(seq, "gets = %u\n", s.gets);
2326 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2327 	seq_printf(seq, "semantic match passed = %u\n",
2328 		   s.semantic_match_passed);
2329 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2330 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2331 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2332 }
2333 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2334 
2335 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2336 {
2337 	if (tb->tb_id == RT_TABLE_LOCAL)
2338 		seq_puts(seq, "Local:\n");
2339 	else if (tb->tb_id == RT_TABLE_MAIN)
2340 		seq_puts(seq, "Main:\n");
2341 	else
2342 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2343 }
2344 
2345 
2346 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2347 {
2348 	struct net *net = (struct net *)seq->private;
2349 	unsigned int h;
2350 
2351 	seq_printf(seq,
2352 		   "Basic info: size of leaf:"
2353 		   " %zd bytes, size of tnode: %zd bytes.\n",
2354 		   LEAF_SIZE, TNODE_SIZE(0));
2355 
2356 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2357 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2358 		struct fib_table *tb;
2359 
2360 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2361 			struct trie *t = (struct trie *) tb->tb_data;
2362 			struct trie_stat stat;
2363 
2364 			if (!t)
2365 				continue;
2366 
2367 			fib_table_print(seq, tb);
2368 
2369 			trie_collect_stats(t, &stat);
2370 			trie_show_stats(seq, &stat);
2371 #ifdef CONFIG_IP_FIB_TRIE_STATS
2372 			trie_show_usage(seq, t->stats);
2373 #endif
2374 		}
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2381 {
2382 	struct fib_trie_iter *iter = seq->private;
2383 	struct net *net = seq_file_net(seq);
2384 	loff_t idx = 0;
2385 	unsigned int h;
2386 
2387 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2388 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2389 		struct fib_table *tb;
2390 
2391 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2392 			struct key_vector *n;
2393 
2394 			for (n = fib_trie_get_first(iter,
2395 						    (struct trie *) tb->tb_data);
2396 			     n; n = fib_trie_get_next(iter))
2397 				if (pos == idx++) {
2398 					iter->tb = tb;
2399 					return n;
2400 				}
2401 		}
2402 	}
2403 
2404 	return NULL;
2405 }
2406 
2407 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2408 	__acquires(RCU)
2409 {
2410 	rcu_read_lock();
2411 	return fib_trie_get_idx(seq, *pos);
2412 }
2413 
2414 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2415 {
2416 	struct fib_trie_iter *iter = seq->private;
2417 	struct net *net = seq_file_net(seq);
2418 	struct fib_table *tb = iter->tb;
2419 	struct hlist_node *tb_node;
2420 	unsigned int h;
2421 	struct key_vector *n;
2422 
2423 	++*pos;
2424 	/* next node in same table */
2425 	n = fib_trie_get_next(iter);
2426 	if (n)
2427 		return n;
2428 
2429 	/* walk rest of this hash chain */
2430 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2431 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2432 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2433 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2434 		if (n)
2435 			goto found;
2436 	}
2437 
2438 	/* new hash chain */
2439 	while (++h < FIB_TABLE_HASHSZ) {
2440 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2441 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2442 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2443 			if (n)
2444 				goto found;
2445 		}
2446 	}
2447 	return NULL;
2448 
2449 found:
2450 	iter->tb = tb;
2451 	return n;
2452 }
2453 
2454 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2455 	__releases(RCU)
2456 {
2457 	rcu_read_unlock();
2458 }
2459 
2460 static void seq_indent(struct seq_file *seq, int n)
2461 {
2462 	while (n-- > 0)
2463 		seq_puts(seq, "   ");
2464 }
2465 
2466 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2467 {
2468 	switch (s) {
2469 	case RT_SCOPE_UNIVERSE: return "universe";
2470 	case RT_SCOPE_SITE:	return "site";
2471 	case RT_SCOPE_LINK:	return "link";
2472 	case RT_SCOPE_HOST:	return "host";
2473 	case RT_SCOPE_NOWHERE:	return "nowhere";
2474 	default:
2475 		snprintf(buf, len, "scope=%d", s);
2476 		return buf;
2477 	}
2478 }
2479 
2480 static const char *const rtn_type_names[__RTN_MAX] = {
2481 	[RTN_UNSPEC] = "UNSPEC",
2482 	[RTN_UNICAST] = "UNICAST",
2483 	[RTN_LOCAL] = "LOCAL",
2484 	[RTN_BROADCAST] = "BROADCAST",
2485 	[RTN_ANYCAST] = "ANYCAST",
2486 	[RTN_MULTICAST] = "MULTICAST",
2487 	[RTN_BLACKHOLE] = "BLACKHOLE",
2488 	[RTN_UNREACHABLE] = "UNREACHABLE",
2489 	[RTN_PROHIBIT] = "PROHIBIT",
2490 	[RTN_THROW] = "THROW",
2491 	[RTN_NAT] = "NAT",
2492 	[RTN_XRESOLVE] = "XRESOLVE",
2493 };
2494 
2495 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2496 {
2497 	if (t < __RTN_MAX && rtn_type_names[t])
2498 		return rtn_type_names[t];
2499 	snprintf(buf, len, "type %u", t);
2500 	return buf;
2501 }
2502 
2503 /* Pretty print the trie */
2504 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2505 {
2506 	const struct fib_trie_iter *iter = seq->private;
2507 	struct key_vector *n = v;
2508 
2509 	if (IS_TRIE(node_parent_rcu(n)))
2510 		fib_table_print(seq, iter->tb);
2511 
2512 	if (IS_TNODE(n)) {
2513 		__be32 prf = htonl(n->key);
2514 
2515 		seq_indent(seq, iter->depth-1);
2516 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2517 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2518 			   tn_info(n)->full_children,
2519 			   tn_info(n)->empty_children);
2520 	} else {
2521 		__be32 val = htonl(n->key);
2522 		struct fib_alias *fa;
2523 
2524 		seq_indent(seq, iter->depth);
2525 		seq_printf(seq, "  |-- %pI4\n", &val);
2526 
2527 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2528 			char buf1[32], buf2[32];
2529 
2530 			seq_indent(seq, iter->depth + 1);
2531 			seq_printf(seq, "  /%zu %s %s",
2532 				   KEYLENGTH - fa->fa_slen,
2533 				   rtn_scope(buf1, sizeof(buf1),
2534 					     fa->fa_info->fib_scope),
2535 				   rtn_type(buf2, sizeof(buf2),
2536 					    fa->fa_type));
2537 			if (fa->fa_tos)
2538 				seq_printf(seq, " tos=%d", fa->fa_tos);
2539 			seq_putc(seq, '\n');
2540 		}
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 static const struct seq_operations fib_trie_seq_ops = {
2547 	.start  = fib_trie_seq_start,
2548 	.next   = fib_trie_seq_next,
2549 	.stop   = fib_trie_seq_stop,
2550 	.show   = fib_trie_seq_show,
2551 };
2552 
2553 struct fib_route_iter {
2554 	struct seq_net_private p;
2555 	struct fib_table *main_tb;
2556 	struct key_vector *tnode;
2557 	loff_t	pos;
2558 	t_key	key;
2559 };
2560 
2561 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2562 					    loff_t pos)
2563 {
2564 	struct key_vector *l, **tp = &iter->tnode;
2565 	t_key key;
2566 
2567 	/* use cached location of previously found key */
2568 	if (iter->pos > 0 && pos >= iter->pos) {
2569 		key = iter->key;
2570 	} else {
2571 		iter->pos = 1;
2572 		key = 0;
2573 	}
2574 
2575 	pos -= iter->pos;
2576 
2577 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2578 		key = l->key + 1;
2579 		iter->pos++;
2580 		l = NULL;
2581 
2582 		/* handle unlikely case of a key wrap */
2583 		if (!key)
2584 			break;
2585 	}
2586 
2587 	if (l)
2588 		iter->key = l->key;	/* remember it */
2589 	else
2590 		iter->pos = 0;		/* forget it */
2591 
2592 	return l;
2593 }
2594 
2595 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2596 	__acquires(RCU)
2597 {
2598 	struct fib_route_iter *iter = seq->private;
2599 	struct fib_table *tb;
2600 	struct trie *t;
2601 
2602 	rcu_read_lock();
2603 
2604 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2605 	if (!tb)
2606 		return NULL;
2607 
2608 	iter->main_tb = tb;
2609 	t = (struct trie *)tb->tb_data;
2610 	iter->tnode = t->kv;
2611 
2612 	if (*pos != 0)
2613 		return fib_route_get_idx(iter, *pos);
2614 
2615 	iter->pos = 0;
2616 	iter->key = KEY_MAX;
2617 
2618 	return SEQ_START_TOKEN;
2619 }
2620 
2621 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2622 {
2623 	struct fib_route_iter *iter = seq->private;
2624 	struct key_vector *l = NULL;
2625 	t_key key = iter->key + 1;
2626 
2627 	++*pos;
2628 
2629 	/* only allow key of 0 for start of sequence */
2630 	if ((v == SEQ_START_TOKEN) || key)
2631 		l = leaf_walk_rcu(&iter->tnode, key);
2632 
2633 	if (l) {
2634 		iter->key = l->key;
2635 		iter->pos++;
2636 	} else {
2637 		iter->pos = 0;
2638 	}
2639 
2640 	return l;
2641 }
2642 
2643 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2644 	__releases(RCU)
2645 {
2646 	rcu_read_unlock();
2647 }
2648 
2649 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2650 {
2651 	unsigned int flags = 0;
2652 
2653 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2654 		flags = RTF_REJECT;
2655 	if (fi && fi->fib_nh->fib_nh_gw4)
2656 		flags |= RTF_GATEWAY;
2657 	if (mask == htonl(0xFFFFFFFF))
2658 		flags |= RTF_HOST;
2659 	flags |= RTF_UP;
2660 	return flags;
2661 }
2662 
2663 /*
2664  *	This outputs /proc/net/route.
2665  *	The format of the file is not supposed to be changed
2666  *	and needs to be same as fib_hash output to avoid breaking
2667  *	legacy utilities
2668  */
2669 static int fib_route_seq_show(struct seq_file *seq, void *v)
2670 {
2671 	struct fib_route_iter *iter = seq->private;
2672 	struct fib_table *tb = iter->main_tb;
2673 	struct fib_alias *fa;
2674 	struct key_vector *l = v;
2675 	__be32 prefix;
2676 
2677 	if (v == SEQ_START_TOKEN) {
2678 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2679 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2680 			   "\tWindow\tIRTT");
2681 		return 0;
2682 	}
2683 
2684 	prefix = htonl(l->key);
2685 
2686 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2687 		const struct fib_info *fi = fa->fa_info;
2688 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2689 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2690 
2691 		if ((fa->fa_type == RTN_BROADCAST) ||
2692 		    (fa->fa_type == RTN_MULTICAST))
2693 			continue;
2694 
2695 		if (fa->tb_id != tb->tb_id)
2696 			continue;
2697 
2698 		seq_setwidth(seq, 127);
2699 
2700 		if (fi)
2701 			seq_printf(seq,
2702 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2703 				   "%d\t%08X\t%d\t%u\t%u",
2704 				   fi->fib_dev ? fi->fib_dev->name : "*",
2705 				   prefix,
2706 				   fi->fib_nh->fib_nh_gw4, flags, 0, 0,
2707 				   fi->fib_priority,
2708 				   mask,
2709 				   (fi->fib_advmss ?
2710 				    fi->fib_advmss + 40 : 0),
2711 				   fi->fib_window,
2712 				   fi->fib_rtt >> 3);
2713 		else
2714 			seq_printf(seq,
2715 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2716 				   "%d\t%08X\t%d\t%u\t%u",
2717 				   prefix, 0, flags, 0, 0, 0,
2718 				   mask, 0, 0, 0);
2719 
2720 		seq_pad(seq, '\n');
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 static const struct seq_operations fib_route_seq_ops = {
2727 	.start  = fib_route_seq_start,
2728 	.next   = fib_route_seq_next,
2729 	.stop   = fib_route_seq_stop,
2730 	.show   = fib_route_seq_show,
2731 };
2732 
2733 int __net_init fib_proc_init(struct net *net)
2734 {
2735 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2736 			sizeof(struct fib_trie_iter)))
2737 		goto out1;
2738 
2739 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2740 			fib_triestat_seq_show, NULL))
2741 		goto out2;
2742 
2743 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2744 			sizeof(struct fib_route_iter)))
2745 		goto out3;
2746 
2747 	return 0;
2748 
2749 out3:
2750 	remove_proc_entry("fib_triestat", net->proc_net);
2751 out2:
2752 	remove_proc_entry("fib_trie", net->proc_net);
2753 out1:
2754 	return -ENOMEM;
2755 }
2756 
2757 void __net_exit fib_proc_exit(struct net *net)
2758 {
2759 	remove_proc_entry("fib_trie", net->proc_net);
2760 	remove_proc_entry("fib_triestat", net->proc_net);
2761 	remove_proc_entry("route", net->proc_net);
2762 }
2763 
2764 #endif /* CONFIG_PROC_FS */
2765