1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <net/fib_notifier.h> 85 #include <trace/events/fib.h> 86 #include "fib_lookup.h" 87 88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 89 enum fib_event_type event_type, u32 dst, 90 int dst_len, struct fib_info *fi, 91 u8 tos, u8 type, u32 tb_id) 92 { 93 struct fib_entry_notifier_info info = { 94 .dst = dst, 95 .dst_len = dst_len, 96 .fi = fi, 97 .tos = tos, 98 .type = type, 99 .tb_id = tb_id, 100 }; 101 return call_fib4_notifier(nb, net, event_type, &info.info); 102 } 103 104 static int call_fib_entry_notifiers(struct net *net, 105 enum fib_event_type event_type, u32 dst, 106 int dst_len, struct fib_info *fi, 107 u8 tos, u8 type, u32 tb_id) 108 { 109 struct fib_entry_notifier_info info = { 110 .dst = dst, 111 .dst_len = dst_len, 112 .fi = fi, 113 .tos = tos, 114 .type = type, 115 .tb_id = tb_id, 116 }; 117 return call_fib4_notifiers(net, event_type, &info.info); 118 } 119 120 #define MAX_STAT_DEPTH 32 121 122 #define KEYLENGTH (8*sizeof(t_key)) 123 #define KEY_MAX ((t_key)~0) 124 125 typedef unsigned int t_key; 126 127 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 128 #define IS_TNODE(n) ((n)->bits) 129 #define IS_LEAF(n) (!(n)->bits) 130 131 struct key_vector { 132 t_key key; 133 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 134 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 135 unsigned char slen; 136 union { 137 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 138 struct hlist_head leaf; 139 /* This array is valid if (pos | bits) > 0 (TNODE) */ 140 struct key_vector __rcu *tnode[0]; 141 }; 142 }; 143 144 struct tnode { 145 struct rcu_head rcu; 146 t_key empty_children; /* KEYLENGTH bits needed */ 147 t_key full_children; /* KEYLENGTH bits needed */ 148 struct key_vector __rcu *parent; 149 struct key_vector kv[1]; 150 #define tn_bits kv[0].bits 151 }; 152 153 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 154 #define LEAF_SIZE TNODE_SIZE(1) 155 156 #ifdef CONFIG_IP_FIB_TRIE_STATS 157 struct trie_use_stats { 158 unsigned int gets; 159 unsigned int backtrack; 160 unsigned int semantic_match_passed; 161 unsigned int semantic_match_miss; 162 unsigned int null_node_hit; 163 unsigned int resize_node_skipped; 164 }; 165 #endif 166 167 struct trie_stat { 168 unsigned int totdepth; 169 unsigned int maxdepth; 170 unsigned int tnodes; 171 unsigned int leaves; 172 unsigned int nullpointers; 173 unsigned int prefixes; 174 unsigned int nodesizes[MAX_STAT_DEPTH]; 175 }; 176 177 struct trie { 178 struct key_vector kv[1]; 179 #ifdef CONFIG_IP_FIB_TRIE_STATS 180 struct trie_use_stats __percpu *stats; 181 #endif 182 }; 183 184 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 185 static size_t tnode_free_size; 186 187 /* 188 * synchronize_rcu after call_rcu for that many pages; it should be especially 189 * useful before resizing the root node with PREEMPT_NONE configs; the value was 190 * obtained experimentally, aiming to avoid visible slowdown. 191 */ 192 static const int sync_pages = 128; 193 194 static struct kmem_cache *fn_alias_kmem __read_mostly; 195 static struct kmem_cache *trie_leaf_kmem __read_mostly; 196 197 static inline struct tnode *tn_info(struct key_vector *kv) 198 { 199 return container_of(kv, struct tnode, kv[0]); 200 } 201 202 /* caller must hold RTNL */ 203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 205 206 /* caller must hold RCU read lock or RTNL */ 207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 209 210 /* wrapper for rcu_assign_pointer */ 211 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 212 { 213 if (n) 214 rcu_assign_pointer(tn_info(n)->parent, tp); 215 } 216 217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 218 219 /* This provides us with the number of children in this node, in the case of a 220 * leaf this will return 0 meaning none of the children are accessible. 221 */ 222 static inline unsigned long child_length(const struct key_vector *tn) 223 { 224 return (1ul << tn->bits) & ~(1ul); 225 } 226 227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 228 229 static inline unsigned long get_index(t_key key, struct key_vector *kv) 230 { 231 unsigned long index = key ^ kv->key; 232 233 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 234 return 0; 235 236 return index >> kv->pos; 237 } 238 239 /* To understand this stuff, an understanding of keys and all their bits is 240 * necessary. Every node in the trie has a key associated with it, but not 241 * all of the bits in that key are significant. 242 * 243 * Consider a node 'n' and its parent 'tp'. 244 * 245 * If n is a leaf, every bit in its key is significant. Its presence is 246 * necessitated by path compression, since during a tree traversal (when 247 * searching for a leaf - unless we are doing an insertion) we will completely 248 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 249 * a potentially successful search, that we have indeed been walking the 250 * correct key path. 251 * 252 * Note that we can never "miss" the correct key in the tree if present by 253 * following the wrong path. Path compression ensures that segments of the key 254 * that are the same for all keys with a given prefix are skipped, but the 255 * skipped part *is* identical for each node in the subtrie below the skipped 256 * bit! trie_insert() in this implementation takes care of that. 257 * 258 * if n is an internal node - a 'tnode' here, the various parts of its key 259 * have many different meanings. 260 * 261 * Example: 262 * _________________________________________________________________ 263 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 264 * ----------------------------------------------------------------- 265 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 266 * 267 * _________________________________________________________________ 268 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 269 * ----------------------------------------------------------------- 270 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 271 * 272 * tp->pos = 22 273 * tp->bits = 3 274 * n->pos = 13 275 * n->bits = 4 276 * 277 * First, let's just ignore the bits that come before the parent tp, that is 278 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 279 * point we do not use them for anything. 280 * 281 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 282 * index into the parent's child array. That is, they will be used to find 283 * 'n' among tp's children. 284 * 285 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 286 * for the node n. 287 * 288 * All the bits we have seen so far are significant to the node n. The rest 289 * of the bits are really not needed or indeed known in n->key. 290 * 291 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 292 * n's child array, and will of course be different for each child. 293 * 294 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 295 * at this point. 296 */ 297 298 static const int halve_threshold = 25; 299 static const int inflate_threshold = 50; 300 static const int halve_threshold_root = 15; 301 static const int inflate_threshold_root = 30; 302 303 static void __alias_free_mem(struct rcu_head *head) 304 { 305 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 306 kmem_cache_free(fn_alias_kmem, fa); 307 } 308 309 static inline void alias_free_mem_rcu(struct fib_alias *fa) 310 { 311 call_rcu(&fa->rcu, __alias_free_mem); 312 } 313 314 #define TNODE_KMALLOC_MAX \ 315 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 316 #define TNODE_VMALLOC_MAX \ 317 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 318 319 static void __node_free_rcu(struct rcu_head *head) 320 { 321 struct tnode *n = container_of(head, struct tnode, rcu); 322 323 if (!n->tn_bits) 324 kmem_cache_free(trie_leaf_kmem, n); 325 else 326 kvfree(n); 327 } 328 329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 330 331 static struct tnode *tnode_alloc(int bits) 332 { 333 size_t size; 334 335 /* verify bits is within bounds */ 336 if (bits > TNODE_VMALLOC_MAX) 337 return NULL; 338 339 /* determine size and verify it is non-zero and didn't overflow */ 340 size = TNODE_SIZE(1ul << bits); 341 342 if (size <= PAGE_SIZE) 343 return kzalloc(size, GFP_KERNEL); 344 else 345 return vzalloc(size); 346 } 347 348 static inline void empty_child_inc(struct key_vector *n) 349 { 350 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 351 } 352 353 static inline void empty_child_dec(struct key_vector *n) 354 { 355 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 356 } 357 358 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 359 { 360 struct key_vector *l; 361 struct tnode *kv; 362 363 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 364 if (!kv) 365 return NULL; 366 367 /* initialize key vector */ 368 l = kv->kv; 369 l->key = key; 370 l->pos = 0; 371 l->bits = 0; 372 l->slen = fa->fa_slen; 373 374 /* link leaf to fib alias */ 375 INIT_HLIST_HEAD(&l->leaf); 376 hlist_add_head(&fa->fa_list, &l->leaf); 377 378 return l; 379 } 380 381 static struct key_vector *tnode_new(t_key key, int pos, int bits) 382 { 383 unsigned int shift = pos + bits; 384 struct key_vector *tn; 385 struct tnode *tnode; 386 387 /* verify bits and pos their msb bits clear and values are valid */ 388 BUG_ON(!bits || (shift > KEYLENGTH)); 389 390 tnode = tnode_alloc(bits); 391 if (!tnode) 392 return NULL; 393 394 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 395 sizeof(struct key_vector *) << bits); 396 397 if (bits == KEYLENGTH) 398 tnode->full_children = 1; 399 else 400 tnode->empty_children = 1ul << bits; 401 402 tn = tnode->kv; 403 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 404 tn->pos = pos; 405 tn->bits = bits; 406 tn->slen = pos; 407 408 return tn; 409 } 410 411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 412 * and no bits are skipped. See discussion in dyntree paper p. 6 413 */ 414 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 415 { 416 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 417 } 418 419 /* Add a child at position i overwriting the old value. 420 * Update the value of full_children and empty_children. 421 */ 422 static void put_child(struct key_vector *tn, unsigned long i, 423 struct key_vector *n) 424 { 425 struct key_vector *chi = get_child(tn, i); 426 int isfull, wasfull; 427 428 BUG_ON(i >= child_length(tn)); 429 430 /* update emptyChildren, overflow into fullChildren */ 431 if (!n && chi) 432 empty_child_inc(tn); 433 if (n && !chi) 434 empty_child_dec(tn); 435 436 /* update fullChildren */ 437 wasfull = tnode_full(tn, chi); 438 isfull = tnode_full(tn, n); 439 440 if (wasfull && !isfull) 441 tn_info(tn)->full_children--; 442 else if (!wasfull && isfull) 443 tn_info(tn)->full_children++; 444 445 if (n && (tn->slen < n->slen)) 446 tn->slen = n->slen; 447 448 rcu_assign_pointer(tn->tnode[i], n); 449 } 450 451 static void update_children(struct key_vector *tn) 452 { 453 unsigned long i; 454 455 /* update all of the child parent pointers */ 456 for (i = child_length(tn); i;) { 457 struct key_vector *inode = get_child(tn, --i); 458 459 if (!inode) 460 continue; 461 462 /* Either update the children of a tnode that 463 * already belongs to us or update the child 464 * to point to ourselves. 465 */ 466 if (node_parent(inode) == tn) 467 update_children(inode); 468 else 469 node_set_parent(inode, tn); 470 } 471 } 472 473 static inline void put_child_root(struct key_vector *tp, t_key key, 474 struct key_vector *n) 475 { 476 if (IS_TRIE(tp)) 477 rcu_assign_pointer(tp->tnode[0], n); 478 else 479 put_child(tp, get_index(key, tp), n); 480 } 481 482 static inline void tnode_free_init(struct key_vector *tn) 483 { 484 tn_info(tn)->rcu.next = NULL; 485 } 486 487 static inline void tnode_free_append(struct key_vector *tn, 488 struct key_vector *n) 489 { 490 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 491 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 492 } 493 494 static void tnode_free(struct key_vector *tn) 495 { 496 struct callback_head *head = &tn_info(tn)->rcu; 497 498 while (head) { 499 head = head->next; 500 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 501 node_free(tn); 502 503 tn = container_of(head, struct tnode, rcu)->kv; 504 } 505 506 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 507 tnode_free_size = 0; 508 synchronize_rcu(); 509 } 510 } 511 512 static struct key_vector *replace(struct trie *t, 513 struct key_vector *oldtnode, 514 struct key_vector *tn) 515 { 516 struct key_vector *tp = node_parent(oldtnode); 517 unsigned long i; 518 519 /* setup the parent pointer out of and back into this node */ 520 NODE_INIT_PARENT(tn, tp); 521 put_child_root(tp, tn->key, tn); 522 523 /* update all of the child parent pointers */ 524 update_children(tn); 525 526 /* all pointers should be clean so we are done */ 527 tnode_free(oldtnode); 528 529 /* resize children now that oldtnode is freed */ 530 for (i = child_length(tn); i;) { 531 struct key_vector *inode = get_child(tn, --i); 532 533 /* resize child node */ 534 if (tnode_full(tn, inode)) 535 tn = resize(t, inode); 536 } 537 538 return tp; 539 } 540 541 static struct key_vector *inflate(struct trie *t, 542 struct key_vector *oldtnode) 543 { 544 struct key_vector *tn; 545 unsigned long i; 546 t_key m; 547 548 pr_debug("In inflate\n"); 549 550 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 551 if (!tn) 552 goto notnode; 553 554 /* prepare oldtnode to be freed */ 555 tnode_free_init(oldtnode); 556 557 /* Assemble all of the pointers in our cluster, in this case that 558 * represents all of the pointers out of our allocated nodes that 559 * point to existing tnodes and the links between our allocated 560 * nodes. 561 */ 562 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 563 struct key_vector *inode = get_child(oldtnode, --i); 564 struct key_vector *node0, *node1; 565 unsigned long j, k; 566 567 /* An empty child */ 568 if (!inode) 569 continue; 570 571 /* A leaf or an internal node with skipped bits */ 572 if (!tnode_full(oldtnode, inode)) { 573 put_child(tn, get_index(inode->key, tn), inode); 574 continue; 575 } 576 577 /* drop the node in the old tnode free list */ 578 tnode_free_append(oldtnode, inode); 579 580 /* An internal node with two children */ 581 if (inode->bits == 1) { 582 put_child(tn, 2 * i + 1, get_child(inode, 1)); 583 put_child(tn, 2 * i, get_child(inode, 0)); 584 continue; 585 } 586 587 /* We will replace this node 'inode' with two new 588 * ones, 'node0' and 'node1', each with half of the 589 * original children. The two new nodes will have 590 * a position one bit further down the key and this 591 * means that the "significant" part of their keys 592 * (see the discussion near the top of this file) 593 * will differ by one bit, which will be "0" in 594 * node0's key and "1" in node1's key. Since we are 595 * moving the key position by one step, the bit that 596 * we are moving away from - the bit at position 597 * (tn->pos) - is the one that will differ between 598 * node0 and node1. So... we synthesize that bit in the 599 * two new keys. 600 */ 601 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 602 if (!node1) 603 goto nomem; 604 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 605 606 tnode_free_append(tn, node1); 607 if (!node0) 608 goto nomem; 609 tnode_free_append(tn, node0); 610 611 /* populate child pointers in new nodes */ 612 for (k = child_length(inode), j = k / 2; j;) { 613 put_child(node1, --j, get_child(inode, --k)); 614 put_child(node0, j, get_child(inode, j)); 615 put_child(node1, --j, get_child(inode, --k)); 616 put_child(node0, j, get_child(inode, j)); 617 } 618 619 /* link new nodes to parent */ 620 NODE_INIT_PARENT(node1, tn); 621 NODE_INIT_PARENT(node0, tn); 622 623 /* link parent to nodes */ 624 put_child(tn, 2 * i + 1, node1); 625 put_child(tn, 2 * i, node0); 626 } 627 628 /* setup the parent pointers into and out of this node */ 629 return replace(t, oldtnode, tn); 630 nomem: 631 /* all pointers should be clean so we are done */ 632 tnode_free(tn); 633 notnode: 634 return NULL; 635 } 636 637 static struct key_vector *halve(struct trie *t, 638 struct key_vector *oldtnode) 639 { 640 struct key_vector *tn; 641 unsigned long i; 642 643 pr_debug("In halve\n"); 644 645 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 646 if (!tn) 647 goto notnode; 648 649 /* prepare oldtnode to be freed */ 650 tnode_free_init(oldtnode); 651 652 /* Assemble all of the pointers in our cluster, in this case that 653 * represents all of the pointers out of our allocated nodes that 654 * point to existing tnodes and the links between our allocated 655 * nodes. 656 */ 657 for (i = child_length(oldtnode); i;) { 658 struct key_vector *node1 = get_child(oldtnode, --i); 659 struct key_vector *node0 = get_child(oldtnode, --i); 660 struct key_vector *inode; 661 662 /* At least one of the children is empty */ 663 if (!node1 || !node0) { 664 put_child(tn, i / 2, node1 ? : node0); 665 continue; 666 } 667 668 /* Two nonempty children */ 669 inode = tnode_new(node0->key, oldtnode->pos, 1); 670 if (!inode) 671 goto nomem; 672 tnode_free_append(tn, inode); 673 674 /* initialize pointers out of node */ 675 put_child(inode, 1, node1); 676 put_child(inode, 0, node0); 677 NODE_INIT_PARENT(inode, tn); 678 679 /* link parent to node */ 680 put_child(tn, i / 2, inode); 681 } 682 683 /* setup the parent pointers into and out of this node */ 684 return replace(t, oldtnode, tn); 685 nomem: 686 /* all pointers should be clean so we are done */ 687 tnode_free(tn); 688 notnode: 689 return NULL; 690 } 691 692 static struct key_vector *collapse(struct trie *t, 693 struct key_vector *oldtnode) 694 { 695 struct key_vector *n, *tp; 696 unsigned long i; 697 698 /* scan the tnode looking for that one child that might still exist */ 699 for (n = NULL, i = child_length(oldtnode); !n && i;) 700 n = get_child(oldtnode, --i); 701 702 /* compress one level */ 703 tp = node_parent(oldtnode); 704 put_child_root(tp, oldtnode->key, n); 705 node_set_parent(n, tp); 706 707 /* drop dead node */ 708 node_free(oldtnode); 709 710 return tp; 711 } 712 713 static unsigned char update_suffix(struct key_vector *tn) 714 { 715 unsigned char slen = tn->pos; 716 unsigned long stride, i; 717 unsigned char slen_max; 718 719 /* only vector 0 can have a suffix length greater than or equal to 720 * tn->pos + tn->bits, the second highest node will have a suffix 721 * length at most of tn->pos + tn->bits - 1 722 */ 723 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 724 725 /* search though the list of children looking for nodes that might 726 * have a suffix greater than the one we currently have. This is 727 * why we start with a stride of 2 since a stride of 1 would 728 * represent the nodes with suffix length equal to tn->pos 729 */ 730 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 731 struct key_vector *n = get_child(tn, i); 732 733 if (!n || (n->slen <= slen)) 734 continue; 735 736 /* update stride and slen based on new value */ 737 stride <<= (n->slen - slen); 738 slen = n->slen; 739 i &= ~(stride - 1); 740 741 /* stop searching if we have hit the maximum possible value */ 742 if (slen >= slen_max) 743 break; 744 } 745 746 tn->slen = slen; 747 748 return slen; 749 } 750 751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 752 * the Helsinki University of Technology and Matti Tikkanen of Nokia 753 * Telecommunications, page 6: 754 * "A node is doubled if the ratio of non-empty children to all 755 * children in the *doubled* node is at least 'high'." 756 * 757 * 'high' in this instance is the variable 'inflate_threshold'. It 758 * is expressed as a percentage, so we multiply it with 759 * child_length() and instead of multiplying by 2 (since the 760 * child array will be doubled by inflate()) and multiplying 761 * the left-hand side by 100 (to handle the percentage thing) we 762 * multiply the left-hand side by 50. 763 * 764 * The left-hand side may look a bit weird: child_length(tn) 765 * - tn->empty_children is of course the number of non-null children 766 * in the current node. tn->full_children is the number of "full" 767 * children, that is non-null tnodes with a skip value of 0. 768 * All of those will be doubled in the resulting inflated tnode, so 769 * we just count them one extra time here. 770 * 771 * A clearer way to write this would be: 772 * 773 * to_be_doubled = tn->full_children; 774 * not_to_be_doubled = child_length(tn) - tn->empty_children - 775 * tn->full_children; 776 * 777 * new_child_length = child_length(tn) * 2; 778 * 779 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 780 * new_child_length; 781 * if (new_fill_factor >= inflate_threshold) 782 * 783 * ...and so on, tho it would mess up the while () loop. 784 * 785 * anyway, 786 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 787 * inflate_threshold 788 * 789 * avoid a division: 790 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 791 * inflate_threshold * new_child_length 792 * 793 * expand not_to_be_doubled and to_be_doubled, and shorten: 794 * 100 * (child_length(tn) - tn->empty_children + 795 * tn->full_children) >= inflate_threshold * new_child_length 796 * 797 * expand new_child_length: 798 * 100 * (child_length(tn) - tn->empty_children + 799 * tn->full_children) >= 800 * inflate_threshold * child_length(tn) * 2 801 * 802 * shorten again: 803 * 50 * (tn->full_children + child_length(tn) - 804 * tn->empty_children) >= inflate_threshold * 805 * child_length(tn) 806 * 807 */ 808 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 809 { 810 unsigned long used = child_length(tn); 811 unsigned long threshold = used; 812 813 /* Keep root node larger */ 814 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 815 used -= tn_info(tn)->empty_children; 816 used += tn_info(tn)->full_children; 817 818 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 819 820 return (used > 1) && tn->pos && ((50 * used) >= threshold); 821 } 822 823 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 824 { 825 unsigned long used = child_length(tn); 826 unsigned long threshold = used; 827 828 /* Keep root node larger */ 829 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 830 used -= tn_info(tn)->empty_children; 831 832 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 833 834 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 835 } 836 837 static inline bool should_collapse(struct key_vector *tn) 838 { 839 unsigned long used = child_length(tn); 840 841 used -= tn_info(tn)->empty_children; 842 843 /* account for bits == KEYLENGTH case */ 844 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 845 used -= KEY_MAX; 846 847 /* One child or none, time to drop us from the trie */ 848 return used < 2; 849 } 850 851 #define MAX_WORK 10 852 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 853 { 854 #ifdef CONFIG_IP_FIB_TRIE_STATS 855 struct trie_use_stats __percpu *stats = t->stats; 856 #endif 857 struct key_vector *tp = node_parent(tn); 858 unsigned long cindex = get_index(tn->key, tp); 859 int max_work = MAX_WORK; 860 861 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 862 tn, inflate_threshold, halve_threshold); 863 864 /* track the tnode via the pointer from the parent instead of 865 * doing it ourselves. This way we can let RCU fully do its 866 * thing without us interfering 867 */ 868 BUG_ON(tn != get_child(tp, cindex)); 869 870 /* Double as long as the resulting node has a number of 871 * nonempty nodes that are above the threshold. 872 */ 873 while (should_inflate(tp, tn) && max_work) { 874 tp = inflate(t, tn); 875 if (!tp) { 876 #ifdef CONFIG_IP_FIB_TRIE_STATS 877 this_cpu_inc(stats->resize_node_skipped); 878 #endif 879 break; 880 } 881 882 max_work--; 883 tn = get_child(tp, cindex); 884 } 885 886 /* update parent in case inflate failed */ 887 tp = node_parent(tn); 888 889 /* Return if at least one inflate is run */ 890 if (max_work != MAX_WORK) 891 return tp; 892 893 /* Halve as long as the number of empty children in this 894 * node is above threshold. 895 */ 896 while (should_halve(tp, tn) && max_work) { 897 tp = halve(t, tn); 898 if (!tp) { 899 #ifdef CONFIG_IP_FIB_TRIE_STATS 900 this_cpu_inc(stats->resize_node_skipped); 901 #endif 902 break; 903 } 904 905 max_work--; 906 tn = get_child(tp, cindex); 907 } 908 909 /* Only one child remains */ 910 if (should_collapse(tn)) 911 return collapse(t, tn); 912 913 /* update parent in case halve failed */ 914 return node_parent(tn); 915 } 916 917 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 918 { 919 unsigned char node_slen = tn->slen; 920 921 while ((node_slen > tn->pos) && (node_slen > slen)) { 922 slen = update_suffix(tn); 923 if (node_slen == slen) 924 break; 925 926 tn = node_parent(tn); 927 node_slen = tn->slen; 928 } 929 } 930 931 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 932 { 933 while (tn->slen < slen) { 934 tn->slen = slen; 935 tn = node_parent(tn); 936 } 937 } 938 939 /* rcu_read_lock needs to be hold by caller from readside */ 940 static struct key_vector *fib_find_node(struct trie *t, 941 struct key_vector **tp, u32 key) 942 { 943 struct key_vector *pn, *n = t->kv; 944 unsigned long index = 0; 945 946 do { 947 pn = n; 948 n = get_child_rcu(n, index); 949 950 if (!n) 951 break; 952 953 index = get_cindex(key, n); 954 955 /* This bit of code is a bit tricky but it combines multiple 956 * checks into a single check. The prefix consists of the 957 * prefix plus zeros for the bits in the cindex. The index 958 * is the difference between the key and this value. From 959 * this we can actually derive several pieces of data. 960 * if (index >= (1ul << bits)) 961 * we have a mismatch in skip bits and failed 962 * else 963 * we know the value is cindex 964 * 965 * This check is safe even if bits == KEYLENGTH due to the 966 * fact that we can only allocate a node with 32 bits if a 967 * long is greater than 32 bits. 968 */ 969 if (index >= (1ul << n->bits)) { 970 n = NULL; 971 break; 972 } 973 974 /* keep searching until we find a perfect match leaf or NULL */ 975 } while (IS_TNODE(n)); 976 977 *tp = pn; 978 979 return n; 980 } 981 982 /* Return the first fib alias matching TOS with 983 * priority less than or equal to PRIO. 984 */ 985 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 986 u8 tos, u32 prio, u32 tb_id) 987 { 988 struct fib_alias *fa; 989 990 if (!fah) 991 return NULL; 992 993 hlist_for_each_entry(fa, fah, fa_list) { 994 if (fa->fa_slen < slen) 995 continue; 996 if (fa->fa_slen != slen) 997 break; 998 if (fa->tb_id > tb_id) 999 continue; 1000 if (fa->tb_id != tb_id) 1001 break; 1002 if (fa->fa_tos > tos) 1003 continue; 1004 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1005 return fa; 1006 } 1007 1008 return NULL; 1009 } 1010 1011 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1012 { 1013 while (!IS_TRIE(tn)) 1014 tn = resize(t, tn); 1015 } 1016 1017 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1018 struct fib_alias *new, t_key key) 1019 { 1020 struct key_vector *n, *l; 1021 1022 l = leaf_new(key, new); 1023 if (!l) 1024 goto noleaf; 1025 1026 /* retrieve child from parent node */ 1027 n = get_child(tp, get_index(key, tp)); 1028 1029 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1030 * 1031 * Add a new tnode here 1032 * first tnode need some special handling 1033 * leaves us in position for handling as case 3 1034 */ 1035 if (n) { 1036 struct key_vector *tn; 1037 1038 tn = tnode_new(key, __fls(key ^ n->key), 1); 1039 if (!tn) 1040 goto notnode; 1041 1042 /* initialize routes out of node */ 1043 NODE_INIT_PARENT(tn, tp); 1044 put_child(tn, get_index(key, tn) ^ 1, n); 1045 1046 /* start adding routes into the node */ 1047 put_child_root(tp, key, tn); 1048 node_set_parent(n, tn); 1049 1050 /* parent now has a NULL spot where the leaf can go */ 1051 tp = tn; 1052 } 1053 1054 /* Case 3: n is NULL, and will just insert a new leaf */ 1055 node_push_suffix(tp, new->fa_slen); 1056 NODE_INIT_PARENT(l, tp); 1057 put_child_root(tp, key, l); 1058 trie_rebalance(t, tp); 1059 1060 return 0; 1061 notnode: 1062 node_free(l); 1063 noleaf: 1064 return -ENOMEM; 1065 } 1066 1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1068 struct key_vector *l, struct fib_alias *new, 1069 struct fib_alias *fa, t_key key) 1070 { 1071 if (!l) 1072 return fib_insert_node(t, tp, new, key); 1073 1074 if (fa) { 1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1076 } else { 1077 struct fib_alias *last; 1078 1079 hlist_for_each_entry(last, &l->leaf, fa_list) { 1080 if (new->fa_slen < last->fa_slen) 1081 break; 1082 if ((new->fa_slen == last->fa_slen) && 1083 (new->tb_id > last->tb_id)) 1084 break; 1085 fa = last; 1086 } 1087 1088 if (fa) 1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1090 else 1091 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1092 } 1093 1094 /* if we added to the tail node then we need to update slen */ 1095 if (l->slen < new->fa_slen) { 1096 l->slen = new->fa_slen; 1097 node_push_suffix(tp, new->fa_slen); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1104 { 1105 if (plen > KEYLENGTH) { 1106 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1107 return false; 1108 } 1109 1110 if ((plen < KEYLENGTH) && (key << plen)) { 1111 NL_SET_ERR_MSG(extack, 1112 "Invalid prefix for given prefix length"); 1113 return false; 1114 } 1115 1116 return true; 1117 } 1118 1119 /* Caller must hold RTNL. */ 1120 int fib_table_insert(struct net *net, struct fib_table *tb, 1121 struct fib_config *cfg, struct netlink_ext_ack *extack) 1122 { 1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1124 struct trie *t = (struct trie *)tb->tb_data; 1125 struct fib_alias *fa, *new_fa; 1126 struct key_vector *l, *tp; 1127 u16 nlflags = NLM_F_EXCL; 1128 struct fib_info *fi; 1129 u8 plen = cfg->fc_dst_len; 1130 u8 slen = KEYLENGTH - plen; 1131 u8 tos = cfg->fc_tos; 1132 u32 key; 1133 int err; 1134 1135 key = ntohl(cfg->fc_dst); 1136 1137 if (!fib_valid_key_len(key, plen, extack)) 1138 return -EINVAL; 1139 1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1141 1142 fi = fib_create_info(cfg, extack); 1143 if (IS_ERR(fi)) { 1144 err = PTR_ERR(fi); 1145 goto err; 1146 } 1147 1148 l = fib_find_node(t, &tp, key); 1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1150 tb->tb_id) : NULL; 1151 1152 /* Now fa, if non-NULL, points to the first fib alias 1153 * with the same keys [prefix,tos,priority], if such key already 1154 * exists or to the node before which we will insert new one. 1155 * 1156 * If fa is NULL, we will need to allocate a new one and 1157 * insert to the tail of the section matching the suffix length 1158 * of the new alias. 1159 */ 1160 1161 if (fa && fa->fa_tos == tos && 1162 fa->fa_info->fib_priority == fi->fib_priority) { 1163 struct fib_alias *fa_first, *fa_match; 1164 1165 err = -EEXIST; 1166 if (cfg->fc_nlflags & NLM_F_EXCL) 1167 goto out; 1168 1169 nlflags &= ~NLM_F_EXCL; 1170 1171 /* We have 2 goals: 1172 * 1. Find exact match for type, scope, fib_info to avoid 1173 * duplicate routes 1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1175 */ 1176 fa_match = NULL; 1177 fa_first = fa; 1178 hlist_for_each_entry_from(fa, fa_list) { 1179 if ((fa->fa_slen != slen) || 1180 (fa->tb_id != tb->tb_id) || 1181 (fa->fa_tos != tos)) 1182 break; 1183 if (fa->fa_info->fib_priority != fi->fib_priority) 1184 break; 1185 if (fa->fa_type == cfg->fc_type && 1186 fa->fa_info == fi) { 1187 fa_match = fa; 1188 break; 1189 } 1190 } 1191 1192 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1193 struct fib_info *fi_drop; 1194 u8 state; 1195 1196 nlflags |= NLM_F_REPLACE; 1197 fa = fa_first; 1198 if (fa_match) { 1199 if (fa == fa_match) 1200 err = 0; 1201 goto out; 1202 } 1203 err = -ENOBUFS; 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1205 if (!new_fa) 1206 goto out; 1207 1208 fi_drop = fa->fa_info; 1209 new_fa->fa_tos = fa->fa_tos; 1210 new_fa->fa_info = fi; 1211 new_fa->fa_type = cfg->fc_type; 1212 state = fa->fa_state; 1213 new_fa->fa_state = state & ~FA_S_ACCESSED; 1214 new_fa->fa_slen = fa->fa_slen; 1215 new_fa->tb_id = tb->tb_id; 1216 new_fa->fa_default = -1; 1217 1218 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1219 key, plen, fi, 1220 new_fa->fa_tos, cfg->fc_type, 1221 tb->tb_id); 1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1223 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1224 1225 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1226 1227 alias_free_mem_rcu(fa); 1228 1229 fib_release_info(fi_drop); 1230 if (state & FA_S_ACCESSED) 1231 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1232 1233 goto succeeded; 1234 } 1235 /* Error if we find a perfect match which 1236 * uses the same scope, type, and nexthop 1237 * information. 1238 */ 1239 if (fa_match) 1240 goto out; 1241 1242 if (cfg->fc_nlflags & NLM_F_APPEND) { 1243 event = FIB_EVENT_ENTRY_APPEND; 1244 nlflags |= NLM_F_APPEND; 1245 } else { 1246 fa = fa_first; 1247 } 1248 } 1249 err = -ENOENT; 1250 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1251 goto out; 1252 1253 nlflags |= NLM_F_CREATE; 1254 err = -ENOBUFS; 1255 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1256 if (!new_fa) 1257 goto out; 1258 1259 new_fa->fa_info = fi; 1260 new_fa->fa_tos = tos; 1261 new_fa->fa_type = cfg->fc_type; 1262 new_fa->fa_state = 0; 1263 new_fa->fa_slen = slen; 1264 new_fa->tb_id = tb->tb_id; 1265 new_fa->fa_default = -1; 1266 1267 /* Insert new entry to the list. */ 1268 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1269 if (err) 1270 goto out_free_new_fa; 1271 1272 if (!plen) 1273 tb->tb_num_default++; 1274 1275 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1276 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type, 1277 tb->tb_id); 1278 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1279 &cfg->fc_nlinfo, nlflags); 1280 succeeded: 1281 return 0; 1282 1283 out_free_new_fa: 1284 kmem_cache_free(fn_alias_kmem, new_fa); 1285 out: 1286 fib_release_info(fi); 1287 err: 1288 return err; 1289 } 1290 1291 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1292 { 1293 t_key prefix = n->key; 1294 1295 return (key ^ prefix) & (prefix | -prefix); 1296 } 1297 1298 /* should be called with rcu_read_lock */ 1299 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1300 struct fib_result *res, int fib_flags) 1301 { 1302 struct trie *t = (struct trie *) tb->tb_data; 1303 #ifdef CONFIG_IP_FIB_TRIE_STATS 1304 struct trie_use_stats __percpu *stats = t->stats; 1305 #endif 1306 const t_key key = ntohl(flp->daddr); 1307 struct key_vector *n, *pn; 1308 struct fib_alias *fa; 1309 unsigned long index; 1310 t_key cindex; 1311 1312 trace_fib_table_lookup(tb->tb_id, flp); 1313 1314 pn = t->kv; 1315 cindex = 0; 1316 1317 n = get_child_rcu(pn, cindex); 1318 if (!n) 1319 return -EAGAIN; 1320 1321 #ifdef CONFIG_IP_FIB_TRIE_STATS 1322 this_cpu_inc(stats->gets); 1323 #endif 1324 1325 /* Step 1: Travel to the longest prefix match in the trie */ 1326 for (;;) { 1327 index = get_cindex(key, n); 1328 1329 /* This bit of code is a bit tricky but it combines multiple 1330 * checks into a single check. The prefix consists of the 1331 * prefix plus zeros for the "bits" in the prefix. The index 1332 * is the difference between the key and this value. From 1333 * this we can actually derive several pieces of data. 1334 * if (index >= (1ul << bits)) 1335 * we have a mismatch in skip bits and failed 1336 * else 1337 * we know the value is cindex 1338 * 1339 * This check is safe even if bits == KEYLENGTH due to the 1340 * fact that we can only allocate a node with 32 bits if a 1341 * long is greater than 32 bits. 1342 */ 1343 if (index >= (1ul << n->bits)) 1344 break; 1345 1346 /* we have found a leaf. Prefixes have already been compared */ 1347 if (IS_LEAF(n)) 1348 goto found; 1349 1350 /* only record pn and cindex if we are going to be chopping 1351 * bits later. Otherwise we are just wasting cycles. 1352 */ 1353 if (n->slen > n->pos) { 1354 pn = n; 1355 cindex = index; 1356 } 1357 1358 n = get_child_rcu(n, index); 1359 if (unlikely(!n)) 1360 goto backtrace; 1361 } 1362 1363 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1364 for (;;) { 1365 /* record the pointer where our next node pointer is stored */ 1366 struct key_vector __rcu **cptr = n->tnode; 1367 1368 /* This test verifies that none of the bits that differ 1369 * between the key and the prefix exist in the region of 1370 * the lsb and higher in the prefix. 1371 */ 1372 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1373 goto backtrace; 1374 1375 /* exit out and process leaf */ 1376 if (unlikely(IS_LEAF(n))) 1377 break; 1378 1379 /* Don't bother recording parent info. Since we are in 1380 * prefix match mode we will have to come back to wherever 1381 * we started this traversal anyway 1382 */ 1383 1384 while ((n = rcu_dereference(*cptr)) == NULL) { 1385 backtrace: 1386 #ifdef CONFIG_IP_FIB_TRIE_STATS 1387 if (!n) 1388 this_cpu_inc(stats->null_node_hit); 1389 #endif 1390 /* If we are at cindex 0 there are no more bits for 1391 * us to strip at this level so we must ascend back 1392 * up one level to see if there are any more bits to 1393 * be stripped there. 1394 */ 1395 while (!cindex) { 1396 t_key pkey = pn->key; 1397 1398 /* If we don't have a parent then there is 1399 * nothing for us to do as we do not have any 1400 * further nodes to parse. 1401 */ 1402 if (IS_TRIE(pn)) 1403 return -EAGAIN; 1404 #ifdef CONFIG_IP_FIB_TRIE_STATS 1405 this_cpu_inc(stats->backtrack); 1406 #endif 1407 /* Get Child's index */ 1408 pn = node_parent_rcu(pn); 1409 cindex = get_index(pkey, pn); 1410 } 1411 1412 /* strip the least significant bit from the cindex */ 1413 cindex &= cindex - 1; 1414 1415 /* grab pointer for next child node */ 1416 cptr = &pn->tnode[cindex]; 1417 } 1418 } 1419 1420 found: 1421 /* this line carries forward the xor from earlier in the function */ 1422 index = key ^ n->key; 1423 1424 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1425 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1426 struct fib_info *fi = fa->fa_info; 1427 int nhsel, err; 1428 1429 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1430 if (index >= (1ul << fa->fa_slen)) 1431 continue; 1432 } 1433 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1434 continue; 1435 if (fi->fib_dead) 1436 continue; 1437 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1438 continue; 1439 fib_alias_accessed(fa); 1440 err = fib_props[fa->fa_type].error; 1441 if (unlikely(err < 0)) { 1442 #ifdef CONFIG_IP_FIB_TRIE_STATS 1443 this_cpu_inc(stats->semantic_match_passed); 1444 #endif 1445 return err; 1446 } 1447 if (fi->fib_flags & RTNH_F_DEAD) 1448 continue; 1449 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1450 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1451 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1452 1453 if (nh->nh_flags & RTNH_F_DEAD) 1454 continue; 1455 if (in_dev && 1456 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1457 nh->nh_flags & RTNH_F_LINKDOWN && 1458 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1459 continue; 1460 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1461 if (flp->flowi4_oif && 1462 flp->flowi4_oif != nh->nh_oif) 1463 continue; 1464 } 1465 1466 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1467 refcount_inc(&fi->fib_clntref); 1468 1469 res->prefix = htonl(n->key); 1470 res->prefixlen = KEYLENGTH - fa->fa_slen; 1471 res->nh_sel = nhsel; 1472 res->type = fa->fa_type; 1473 res->scope = fi->fib_scope; 1474 res->fi = fi; 1475 res->table = tb; 1476 res->fa_head = &n->leaf; 1477 #ifdef CONFIG_IP_FIB_TRIE_STATS 1478 this_cpu_inc(stats->semantic_match_passed); 1479 #endif 1480 trace_fib_table_lookup_nh(nh); 1481 1482 return err; 1483 } 1484 } 1485 #ifdef CONFIG_IP_FIB_TRIE_STATS 1486 this_cpu_inc(stats->semantic_match_miss); 1487 #endif 1488 goto backtrace; 1489 } 1490 EXPORT_SYMBOL_GPL(fib_table_lookup); 1491 1492 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1493 struct key_vector *l, struct fib_alias *old) 1494 { 1495 /* record the location of the previous list_info entry */ 1496 struct hlist_node **pprev = old->fa_list.pprev; 1497 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1498 1499 /* remove the fib_alias from the list */ 1500 hlist_del_rcu(&old->fa_list); 1501 1502 /* if we emptied the list this leaf will be freed and we can sort 1503 * out parent suffix lengths as a part of trie_rebalance 1504 */ 1505 if (hlist_empty(&l->leaf)) { 1506 if (tp->slen == l->slen) 1507 node_pull_suffix(tp, tp->pos); 1508 put_child_root(tp, l->key, NULL); 1509 node_free(l); 1510 trie_rebalance(t, tp); 1511 return; 1512 } 1513 1514 /* only access fa if it is pointing at the last valid hlist_node */ 1515 if (*pprev) 1516 return; 1517 1518 /* update the trie with the latest suffix length */ 1519 l->slen = fa->fa_slen; 1520 node_pull_suffix(tp, fa->fa_slen); 1521 } 1522 1523 /* Caller must hold RTNL. */ 1524 int fib_table_delete(struct net *net, struct fib_table *tb, 1525 struct fib_config *cfg, struct netlink_ext_ack *extack) 1526 { 1527 struct trie *t = (struct trie *) tb->tb_data; 1528 struct fib_alias *fa, *fa_to_delete; 1529 struct key_vector *l, *tp; 1530 u8 plen = cfg->fc_dst_len; 1531 u8 slen = KEYLENGTH - plen; 1532 u8 tos = cfg->fc_tos; 1533 u32 key; 1534 1535 key = ntohl(cfg->fc_dst); 1536 1537 if (!fib_valid_key_len(key, plen, extack)) 1538 return -EINVAL; 1539 1540 l = fib_find_node(t, &tp, key); 1541 if (!l) 1542 return -ESRCH; 1543 1544 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1545 if (!fa) 1546 return -ESRCH; 1547 1548 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1549 1550 fa_to_delete = NULL; 1551 hlist_for_each_entry_from(fa, fa_list) { 1552 struct fib_info *fi = fa->fa_info; 1553 1554 if ((fa->fa_slen != slen) || 1555 (fa->tb_id != tb->tb_id) || 1556 (fa->fa_tos != tos)) 1557 break; 1558 1559 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1560 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1561 fa->fa_info->fib_scope == cfg->fc_scope) && 1562 (!cfg->fc_prefsrc || 1563 fi->fib_prefsrc == cfg->fc_prefsrc) && 1564 (!cfg->fc_protocol || 1565 fi->fib_protocol == cfg->fc_protocol) && 1566 fib_nh_match(cfg, fi, extack) == 0 && 1567 fib_metrics_match(cfg, fi)) { 1568 fa_to_delete = fa; 1569 break; 1570 } 1571 } 1572 1573 if (!fa_to_delete) 1574 return -ESRCH; 1575 1576 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1577 fa_to_delete->fa_info, tos, 1578 fa_to_delete->fa_type, tb->tb_id); 1579 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1580 &cfg->fc_nlinfo, 0); 1581 1582 if (!plen) 1583 tb->tb_num_default--; 1584 1585 fib_remove_alias(t, tp, l, fa_to_delete); 1586 1587 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1588 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1589 1590 fib_release_info(fa_to_delete->fa_info); 1591 alias_free_mem_rcu(fa_to_delete); 1592 return 0; 1593 } 1594 1595 /* Scan for the next leaf starting at the provided key value */ 1596 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1597 { 1598 struct key_vector *pn, *n = *tn; 1599 unsigned long cindex; 1600 1601 /* this loop is meant to try and find the key in the trie */ 1602 do { 1603 /* record parent and next child index */ 1604 pn = n; 1605 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1606 1607 if (cindex >> pn->bits) 1608 break; 1609 1610 /* descend into the next child */ 1611 n = get_child_rcu(pn, cindex++); 1612 if (!n) 1613 break; 1614 1615 /* guarantee forward progress on the keys */ 1616 if (IS_LEAF(n) && (n->key >= key)) 1617 goto found; 1618 } while (IS_TNODE(n)); 1619 1620 /* this loop will search for the next leaf with a greater key */ 1621 while (!IS_TRIE(pn)) { 1622 /* if we exhausted the parent node we will need to climb */ 1623 if (cindex >= (1ul << pn->bits)) { 1624 t_key pkey = pn->key; 1625 1626 pn = node_parent_rcu(pn); 1627 cindex = get_index(pkey, pn) + 1; 1628 continue; 1629 } 1630 1631 /* grab the next available node */ 1632 n = get_child_rcu(pn, cindex++); 1633 if (!n) 1634 continue; 1635 1636 /* no need to compare keys since we bumped the index */ 1637 if (IS_LEAF(n)) 1638 goto found; 1639 1640 /* Rescan start scanning in new node */ 1641 pn = n; 1642 cindex = 0; 1643 } 1644 1645 *tn = pn; 1646 return NULL; /* Root of trie */ 1647 found: 1648 /* if we are at the limit for keys just return NULL for the tnode */ 1649 *tn = pn; 1650 return n; 1651 } 1652 1653 static void fib_trie_free(struct fib_table *tb) 1654 { 1655 struct trie *t = (struct trie *)tb->tb_data; 1656 struct key_vector *pn = t->kv; 1657 unsigned long cindex = 1; 1658 struct hlist_node *tmp; 1659 struct fib_alias *fa; 1660 1661 /* walk trie in reverse order and free everything */ 1662 for (;;) { 1663 struct key_vector *n; 1664 1665 if (!(cindex--)) { 1666 t_key pkey = pn->key; 1667 1668 if (IS_TRIE(pn)) 1669 break; 1670 1671 n = pn; 1672 pn = node_parent(pn); 1673 1674 /* drop emptied tnode */ 1675 put_child_root(pn, n->key, NULL); 1676 node_free(n); 1677 1678 cindex = get_index(pkey, pn); 1679 1680 continue; 1681 } 1682 1683 /* grab the next available node */ 1684 n = get_child(pn, cindex); 1685 if (!n) 1686 continue; 1687 1688 if (IS_TNODE(n)) { 1689 /* record pn and cindex for leaf walking */ 1690 pn = n; 1691 cindex = 1ul << n->bits; 1692 1693 continue; 1694 } 1695 1696 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1697 hlist_del_rcu(&fa->fa_list); 1698 alias_free_mem_rcu(fa); 1699 } 1700 1701 put_child_root(pn, n->key, NULL); 1702 node_free(n); 1703 } 1704 1705 #ifdef CONFIG_IP_FIB_TRIE_STATS 1706 free_percpu(t->stats); 1707 #endif 1708 kfree(tb); 1709 } 1710 1711 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1712 { 1713 struct trie *ot = (struct trie *)oldtb->tb_data; 1714 struct key_vector *l, *tp = ot->kv; 1715 struct fib_table *local_tb; 1716 struct fib_alias *fa; 1717 struct trie *lt; 1718 t_key key = 0; 1719 1720 if (oldtb->tb_data == oldtb->__data) 1721 return oldtb; 1722 1723 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1724 if (!local_tb) 1725 return NULL; 1726 1727 lt = (struct trie *)local_tb->tb_data; 1728 1729 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1730 struct key_vector *local_l = NULL, *local_tp; 1731 1732 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1733 struct fib_alias *new_fa; 1734 1735 if (local_tb->tb_id != fa->tb_id) 1736 continue; 1737 1738 /* clone fa for new local table */ 1739 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1740 if (!new_fa) 1741 goto out; 1742 1743 memcpy(new_fa, fa, sizeof(*fa)); 1744 1745 /* insert clone into table */ 1746 if (!local_l) 1747 local_l = fib_find_node(lt, &local_tp, l->key); 1748 1749 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1750 NULL, l->key)) { 1751 kmem_cache_free(fn_alias_kmem, new_fa); 1752 goto out; 1753 } 1754 } 1755 1756 /* stop loop if key wrapped back to 0 */ 1757 key = l->key + 1; 1758 if (key < l->key) 1759 break; 1760 } 1761 1762 return local_tb; 1763 out: 1764 fib_trie_free(local_tb); 1765 1766 return NULL; 1767 } 1768 1769 /* Caller must hold RTNL */ 1770 void fib_table_flush_external(struct fib_table *tb) 1771 { 1772 struct trie *t = (struct trie *)tb->tb_data; 1773 struct key_vector *pn = t->kv; 1774 unsigned long cindex = 1; 1775 struct hlist_node *tmp; 1776 struct fib_alias *fa; 1777 1778 /* walk trie in reverse order */ 1779 for (;;) { 1780 unsigned char slen = 0; 1781 struct key_vector *n; 1782 1783 if (!(cindex--)) { 1784 t_key pkey = pn->key; 1785 1786 /* cannot resize the trie vector */ 1787 if (IS_TRIE(pn)) 1788 break; 1789 1790 /* update the suffix to address pulled leaves */ 1791 if (pn->slen > pn->pos) 1792 update_suffix(pn); 1793 1794 /* resize completed node */ 1795 pn = resize(t, pn); 1796 cindex = get_index(pkey, pn); 1797 1798 continue; 1799 } 1800 1801 /* grab the next available node */ 1802 n = get_child(pn, cindex); 1803 if (!n) 1804 continue; 1805 1806 if (IS_TNODE(n)) { 1807 /* record pn and cindex for leaf walking */ 1808 pn = n; 1809 cindex = 1ul << n->bits; 1810 1811 continue; 1812 } 1813 1814 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1815 /* if alias was cloned to local then we just 1816 * need to remove the local copy from main 1817 */ 1818 if (tb->tb_id != fa->tb_id) { 1819 hlist_del_rcu(&fa->fa_list); 1820 alias_free_mem_rcu(fa); 1821 continue; 1822 } 1823 1824 /* record local slen */ 1825 slen = fa->fa_slen; 1826 } 1827 1828 /* update leaf slen */ 1829 n->slen = slen; 1830 1831 if (hlist_empty(&n->leaf)) { 1832 put_child_root(pn, n->key, NULL); 1833 node_free(n); 1834 } 1835 } 1836 } 1837 1838 /* Caller must hold RTNL. */ 1839 int fib_table_flush(struct net *net, struct fib_table *tb) 1840 { 1841 struct trie *t = (struct trie *)tb->tb_data; 1842 struct key_vector *pn = t->kv; 1843 unsigned long cindex = 1; 1844 struct hlist_node *tmp; 1845 struct fib_alias *fa; 1846 int found = 0; 1847 1848 /* walk trie in reverse order */ 1849 for (;;) { 1850 unsigned char slen = 0; 1851 struct key_vector *n; 1852 1853 if (!(cindex--)) { 1854 t_key pkey = pn->key; 1855 1856 /* cannot resize the trie vector */ 1857 if (IS_TRIE(pn)) 1858 break; 1859 1860 /* update the suffix to address pulled leaves */ 1861 if (pn->slen > pn->pos) 1862 update_suffix(pn); 1863 1864 /* resize completed node */ 1865 pn = resize(t, pn); 1866 cindex = get_index(pkey, pn); 1867 1868 continue; 1869 } 1870 1871 /* grab the next available node */ 1872 n = get_child(pn, cindex); 1873 if (!n) 1874 continue; 1875 1876 if (IS_TNODE(n)) { 1877 /* record pn and cindex for leaf walking */ 1878 pn = n; 1879 cindex = 1ul << n->bits; 1880 1881 continue; 1882 } 1883 1884 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1885 struct fib_info *fi = fa->fa_info; 1886 1887 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1888 tb->tb_id != fa->tb_id) { 1889 slen = fa->fa_slen; 1890 continue; 1891 } 1892 1893 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1894 n->key, 1895 KEYLENGTH - fa->fa_slen, 1896 fi, fa->fa_tos, fa->fa_type, 1897 tb->tb_id); 1898 hlist_del_rcu(&fa->fa_list); 1899 fib_release_info(fa->fa_info); 1900 alias_free_mem_rcu(fa); 1901 found++; 1902 } 1903 1904 /* update leaf slen */ 1905 n->slen = slen; 1906 1907 if (hlist_empty(&n->leaf)) { 1908 put_child_root(pn, n->key, NULL); 1909 node_free(n); 1910 } 1911 } 1912 1913 pr_debug("trie_flush found=%d\n", found); 1914 return found; 1915 } 1916 1917 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1918 struct fib_table *tb, struct notifier_block *nb) 1919 { 1920 struct fib_alias *fa; 1921 1922 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1923 struct fib_info *fi = fa->fa_info; 1924 1925 if (!fi) 1926 continue; 1927 1928 /* local and main table can share the same trie, 1929 * so don't notify twice for the same entry. 1930 */ 1931 if (tb->tb_id != fa->tb_id) 1932 continue; 1933 1934 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1935 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, 1936 fa->fa_type, fa->tb_id); 1937 } 1938 } 1939 1940 static void fib_table_notify(struct net *net, struct fib_table *tb, 1941 struct notifier_block *nb) 1942 { 1943 struct trie *t = (struct trie *)tb->tb_data; 1944 struct key_vector *l, *tp = t->kv; 1945 t_key key = 0; 1946 1947 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1948 fib_leaf_notify(net, l, tb, nb); 1949 1950 key = l->key + 1; 1951 /* stop in case of wrap around */ 1952 if (key < l->key) 1953 break; 1954 } 1955 } 1956 1957 void fib_notify(struct net *net, struct notifier_block *nb) 1958 { 1959 unsigned int h; 1960 1961 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1962 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1963 struct fib_table *tb; 1964 1965 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1966 fib_table_notify(net, tb, nb); 1967 } 1968 } 1969 1970 static void __trie_free_rcu(struct rcu_head *head) 1971 { 1972 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1973 #ifdef CONFIG_IP_FIB_TRIE_STATS 1974 struct trie *t = (struct trie *)tb->tb_data; 1975 1976 if (tb->tb_data == tb->__data) 1977 free_percpu(t->stats); 1978 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1979 kfree(tb); 1980 } 1981 1982 void fib_free_table(struct fib_table *tb) 1983 { 1984 call_rcu(&tb->rcu, __trie_free_rcu); 1985 } 1986 1987 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1988 struct sk_buff *skb, struct netlink_callback *cb) 1989 { 1990 __be32 xkey = htonl(l->key); 1991 struct fib_alias *fa; 1992 int i, s_i; 1993 1994 s_i = cb->args[4]; 1995 i = 0; 1996 1997 /* rcu_read_lock is hold by caller */ 1998 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1999 int err; 2000 2001 if (i < s_i) { 2002 i++; 2003 continue; 2004 } 2005 2006 if (tb->tb_id != fa->tb_id) { 2007 i++; 2008 continue; 2009 } 2010 2011 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2012 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2013 tb->tb_id, fa->fa_type, 2014 xkey, KEYLENGTH - fa->fa_slen, 2015 fa->fa_tos, fa->fa_info, NLM_F_MULTI); 2016 if (err < 0) { 2017 cb->args[4] = i; 2018 return err; 2019 } 2020 i++; 2021 } 2022 2023 cb->args[4] = i; 2024 return skb->len; 2025 } 2026 2027 /* rcu_read_lock needs to be hold by caller from readside */ 2028 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2029 struct netlink_callback *cb) 2030 { 2031 struct trie *t = (struct trie *)tb->tb_data; 2032 struct key_vector *l, *tp = t->kv; 2033 /* Dump starting at last key. 2034 * Note: 0.0.0.0/0 (ie default) is first key. 2035 */ 2036 int count = cb->args[2]; 2037 t_key key = cb->args[3]; 2038 2039 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2040 int err; 2041 2042 err = fn_trie_dump_leaf(l, tb, skb, cb); 2043 if (err < 0) { 2044 cb->args[3] = key; 2045 cb->args[2] = count; 2046 return err; 2047 } 2048 2049 ++count; 2050 key = l->key + 1; 2051 2052 memset(&cb->args[4], 0, 2053 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2054 2055 /* stop loop if key wrapped back to 0 */ 2056 if (key < l->key) 2057 break; 2058 } 2059 2060 cb->args[3] = key; 2061 cb->args[2] = count; 2062 2063 return skb->len; 2064 } 2065 2066 void __init fib_trie_init(void) 2067 { 2068 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2069 sizeof(struct fib_alias), 2070 0, SLAB_PANIC, NULL); 2071 2072 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2073 LEAF_SIZE, 2074 0, SLAB_PANIC, NULL); 2075 } 2076 2077 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2078 { 2079 struct fib_table *tb; 2080 struct trie *t; 2081 size_t sz = sizeof(*tb); 2082 2083 if (!alias) 2084 sz += sizeof(struct trie); 2085 2086 tb = kzalloc(sz, GFP_KERNEL); 2087 if (!tb) 2088 return NULL; 2089 2090 tb->tb_id = id; 2091 tb->tb_num_default = 0; 2092 tb->tb_data = (alias ? alias->__data : tb->__data); 2093 2094 if (alias) 2095 return tb; 2096 2097 t = (struct trie *) tb->tb_data; 2098 t->kv[0].pos = KEYLENGTH; 2099 t->kv[0].slen = KEYLENGTH; 2100 #ifdef CONFIG_IP_FIB_TRIE_STATS 2101 t->stats = alloc_percpu(struct trie_use_stats); 2102 if (!t->stats) { 2103 kfree(tb); 2104 tb = NULL; 2105 } 2106 #endif 2107 2108 return tb; 2109 } 2110 2111 #ifdef CONFIG_PROC_FS 2112 /* Depth first Trie walk iterator */ 2113 struct fib_trie_iter { 2114 struct seq_net_private p; 2115 struct fib_table *tb; 2116 struct key_vector *tnode; 2117 unsigned int index; 2118 unsigned int depth; 2119 }; 2120 2121 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2122 { 2123 unsigned long cindex = iter->index; 2124 struct key_vector *pn = iter->tnode; 2125 t_key pkey; 2126 2127 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2128 iter->tnode, iter->index, iter->depth); 2129 2130 while (!IS_TRIE(pn)) { 2131 while (cindex < child_length(pn)) { 2132 struct key_vector *n = get_child_rcu(pn, cindex++); 2133 2134 if (!n) 2135 continue; 2136 2137 if (IS_LEAF(n)) { 2138 iter->tnode = pn; 2139 iter->index = cindex; 2140 } else { 2141 /* push down one level */ 2142 iter->tnode = n; 2143 iter->index = 0; 2144 ++iter->depth; 2145 } 2146 2147 return n; 2148 } 2149 2150 /* Current node exhausted, pop back up */ 2151 pkey = pn->key; 2152 pn = node_parent_rcu(pn); 2153 cindex = get_index(pkey, pn) + 1; 2154 --iter->depth; 2155 } 2156 2157 /* record root node so further searches know we are done */ 2158 iter->tnode = pn; 2159 iter->index = 0; 2160 2161 return NULL; 2162 } 2163 2164 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2165 struct trie *t) 2166 { 2167 struct key_vector *n, *pn; 2168 2169 if (!t) 2170 return NULL; 2171 2172 pn = t->kv; 2173 n = rcu_dereference(pn->tnode[0]); 2174 if (!n) 2175 return NULL; 2176 2177 if (IS_TNODE(n)) { 2178 iter->tnode = n; 2179 iter->index = 0; 2180 iter->depth = 1; 2181 } else { 2182 iter->tnode = pn; 2183 iter->index = 0; 2184 iter->depth = 0; 2185 } 2186 2187 return n; 2188 } 2189 2190 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2191 { 2192 struct key_vector *n; 2193 struct fib_trie_iter iter; 2194 2195 memset(s, 0, sizeof(*s)); 2196 2197 rcu_read_lock(); 2198 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2199 if (IS_LEAF(n)) { 2200 struct fib_alias *fa; 2201 2202 s->leaves++; 2203 s->totdepth += iter.depth; 2204 if (iter.depth > s->maxdepth) 2205 s->maxdepth = iter.depth; 2206 2207 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2208 ++s->prefixes; 2209 } else { 2210 s->tnodes++; 2211 if (n->bits < MAX_STAT_DEPTH) 2212 s->nodesizes[n->bits]++; 2213 s->nullpointers += tn_info(n)->empty_children; 2214 } 2215 } 2216 rcu_read_unlock(); 2217 } 2218 2219 /* 2220 * This outputs /proc/net/fib_triestats 2221 */ 2222 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2223 { 2224 unsigned int i, max, pointers, bytes, avdepth; 2225 2226 if (stat->leaves) 2227 avdepth = stat->totdepth*100 / stat->leaves; 2228 else 2229 avdepth = 0; 2230 2231 seq_printf(seq, "\tAver depth: %u.%02d\n", 2232 avdepth / 100, avdepth % 100); 2233 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2234 2235 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2236 bytes = LEAF_SIZE * stat->leaves; 2237 2238 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2239 bytes += sizeof(struct fib_alias) * stat->prefixes; 2240 2241 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2242 bytes += TNODE_SIZE(0) * stat->tnodes; 2243 2244 max = MAX_STAT_DEPTH; 2245 while (max > 0 && stat->nodesizes[max-1] == 0) 2246 max--; 2247 2248 pointers = 0; 2249 for (i = 1; i < max; i++) 2250 if (stat->nodesizes[i] != 0) { 2251 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2252 pointers += (1<<i) * stat->nodesizes[i]; 2253 } 2254 seq_putc(seq, '\n'); 2255 seq_printf(seq, "\tPointers: %u\n", pointers); 2256 2257 bytes += sizeof(struct key_vector *) * pointers; 2258 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2259 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2260 } 2261 2262 #ifdef CONFIG_IP_FIB_TRIE_STATS 2263 static void trie_show_usage(struct seq_file *seq, 2264 const struct trie_use_stats __percpu *stats) 2265 { 2266 struct trie_use_stats s = { 0 }; 2267 int cpu; 2268 2269 /* loop through all of the CPUs and gather up the stats */ 2270 for_each_possible_cpu(cpu) { 2271 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2272 2273 s.gets += pcpu->gets; 2274 s.backtrack += pcpu->backtrack; 2275 s.semantic_match_passed += pcpu->semantic_match_passed; 2276 s.semantic_match_miss += pcpu->semantic_match_miss; 2277 s.null_node_hit += pcpu->null_node_hit; 2278 s.resize_node_skipped += pcpu->resize_node_skipped; 2279 } 2280 2281 seq_printf(seq, "\nCounters:\n---------\n"); 2282 seq_printf(seq, "gets = %u\n", s.gets); 2283 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2284 seq_printf(seq, "semantic match passed = %u\n", 2285 s.semantic_match_passed); 2286 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2287 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2288 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2289 } 2290 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2291 2292 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2293 { 2294 if (tb->tb_id == RT_TABLE_LOCAL) 2295 seq_puts(seq, "Local:\n"); 2296 else if (tb->tb_id == RT_TABLE_MAIN) 2297 seq_puts(seq, "Main:\n"); 2298 else 2299 seq_printf(seq, "Id %d:\n", tb->tb_id); 2300 } 2301 2302 2303 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2304 { 2305 struct net *net = (struct net *)seq->private; 2306 unsigned int h; 2307 2308 seq_printf(seq, 2309 "Basic info: size of leaf:" 2310 " %zd bytes, size of tnode: %zd bytes.\n", 2311 LEAF_SIZE, TNODE_SIZE(0)); 2312 2313 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2314 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2315 struct fib_table *tb; 2316 2317 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2318 struct trie *t = (struct trie *) tb->tb_data; 2319 struct trie_stat stat; 2320 2321 if (!t) 2322 continue; 2323 2324 fib_table_print(seq, tb); 2325 2326 trie_collect_stats(t, &stat); 2327 trie_show_stats(seq, &stat); 2328 #ifdef CONFIG_IP_FIB_TRIE_STATS 2329 trie_show_usage(seq, t->stats); 2330 #endif 2331 } 2332 } 2333 2334 return 0; 2335 } 2336 2337 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2338 { 2339 return single_open_net(inode, file, fib_triestat_seq_show); 2340 } 2341 2342 static const struct file_operations fib_triestat_fops = { 2343 .owner = THIS_MODULE, 2344 .open = fib_triestat_seq_open, 2345 .read = seq_read, 2346 .llseek = seq_lseek, 2347 .release = single_release_net, 2348 }; 2349 2350 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2351 { 2352 struct fib_trie_iter *iter = seq->private; 2353 struct net *net = seq_file_net(seq); 2354 loff_t idx = 0; 2355 unsigned int h; 2356 2357 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2358 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2359 struct fib_table *tb; 2360 2361 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2362 struct key_vector *n; 2363 2364 for (n = fib_trie_get_first(iter, 2365 (struct trie *) tb->tb_data); 2366 n; n = fib_trie_get_next(iter)) 2367 if (pos == idx++) { 2368 iter->tb = tb; 2369 return n; 2370 } 2371 } 2372 } 2373 2374 return NULL; 2375 } 2376 2377 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2378 __acquires(RCU) 2379 { 2380 rcu_read_lock(); 2381 return fib_trie_get_idx(seq, *pos); 2382 } 2383 2384 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2385 { 2386 struct fib_trie_iter *iter = seq->private; 2387 struct net *net = seq_file_net(seq); 2388 struct fib_table *tb = iter->tb; 2389 struct hlist_node *tb_node; 2390 unsigned int h; 2391 struct key_vector *n; 2392 2393 ++*pos; 2394 /* next node in same table */ 2395 n = fib_trie_get_next(iter); 2396 if (n) 2397 return n; 2398 2399 /* walk rest of this hash chain */ 2400 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2401 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2402 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2403 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2404 if (n) 2405 goto found; 2406 } 2407 2408 /* new hash chain */ 2409 while (++h < FIB_TABLE_HASHSZ) { 2410 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2411 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2412 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2413 if (n) 2414 goto found; 2415 } 2416 } 2417 return NULL; 2418 2419 found: 2420 iter->tb = tb; 2421 return n; 2422 } 2423 2424 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2425 __releases(RCU) 2426 { 2427 rcu_read_unlock(); 2428 } 2429 2430 static void seq_indent(struct seq_file *seq, int n) 2431 { 2432 while (n-- > 0) 2433 seq_puts(seq, " "); 2434 } 2435 2436 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2437 { 2438 switch (s) { 2439 case RT_SCOPE_UNIVERSE: return "universe"; 2440 case RT_SCOPE_SITE: return "site"; 2441 case RT_SCOPE_LINK: return "link"; 2442 case RT_SCOPE_HOST: return "host"; 2443 case RT_SCOPE_NOWHERE: return "nowhere"; 2444 default: 2445 snprintf(buf, len, "scope=%d", s); 2446 return buf; 2447 } 2448 } 2449 2450 static const char *const rtn_type_names[__RTN_MAX] = { 2451 [RTN_UNSPEC] = "UNSPEC", 2452 [RTN_UNICAST] = "UNICAST", 2453 [RTN_LOCAL] = "LOCAL", 2454 [RTN_BROADCAST] = "BROADCAST", 2455 [RTN_ANYCAST] = "ANYCAST", 2456 [RTN_MULTICAST] = "MULTICAST", 2457 [RTN_BLACKHOLE] = "BLACKHOLE", 2458 [RTN_UNREACHABLE] = "UNREACHABLE", 2459 [RTN_PROHIBIT] = "PROHIBIT", 2460 [RTN_THROW] = "THROW", 2461 [RTN_NAT] = "NAT", 2462 [RTN_XRESOLVE] = "XRESOLVE", 2463 }; 2464 2465 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2466 { 2467 if (t < __RTN_MAX && rtn_type_names[t]) 2468 return rtn_type_names[t]; 2469 snprintf(buf, len, "type %u", t); 2470 return buf; 2471 } 2472 2473 /* Pretty print the trie */ 2474 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2475 { 2476 const struct fib_trie_iter *iter = seq->private; 2477 struct key_vector *n = v; 2478 2479 if (IS_TRIE(node_parent_rcu(n))) 2480 fib_table_print(seq, iter->tb); 2481 2482 if (IS_TNODE(n)) { 2483 __be32 prf = htonl(n->key); 2484 2485 seq_indent(seq, iter->depth-1); 2486 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2487 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2488 tn_info(n)->full_children, 2489 tn_info(n)->empty_children); 2490 } else { 2491 __be32 val = htonl(n->key); 2492 struct fib_alias *fa; 2493 2494 seq_indent(seq, iter->depth); 2495 seq_printf(seq, " |-- %pI4\n", &val); 2496 2497 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2498 char buf1[32], buf2[32]; 2499 2500 seq_indent(seq, iter->depth + 1); 2501 seq_printf(seq, " /%zu %s %s", 2502 KEYLENGTH - fa->fa_slen, 2503 rtn_scope(buf1, sizeof(buf1), 2504 fa->fa_info->fib_scope), 2505 rtn_type(buf2, sizeof(buf2), 2506 fa->fa_type)); 2507 if (fa->fa_tos) 2508 seq_printf(seq, " tos=%d", fa->fa_tos); 2509 seq_putc(seq, '\n'); 2510 } 2511 } 2512 2513 return 0; 2514 } 2515 2516 static const struct seq_operations fib_trie_seq_ops = { 2517 .start = fib_trie_seq_start, 2518 .next = fib_trie_seq_next, 2519 .stop = fib_trie_seq_stop, 2520 .show = fib_trie_seq_show, 2521 }; 2522 2523 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2524 { 2525 return seq_open_net(inode, file, &fib_trie_seq_ops, 2526 sizeof(struct fib_trie_iter)); 2527 } 2528 2529 static const struct file_operations fib_trie_fops = { 2530 .owner = THIS_MODULE, 2531 .open = fib_trie_seq_open, 2532 .read = seq_read, 2533 .llseek = seq_lseek, 2534 .release = seq_release_net, 2535 }; 2536 2537 struct fib_route_iter { 2538 struct seq_net_private p; 2539 struct fib_table *main_tb; 2540 struct key_vector *tnode; 2541 loff_t pos; 2542 t_key key; 2543 }; 2544 2545 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2546 loff_t pos) 2547 { 2548 struct key_vector *l, **tp = &iter->tnode; 2549 t_key key; 2550 2551 /* use cached location of previously found key */ 2552 if (iter->pos > 0 && pos >= iter->pos) { 2553 key = iter->key; 2554 } else { 2555 iter->pos = 1; 2556 key = 0; 2557 } 2558 2559 pos -= iter->pos; 2560 2561 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2562 key = l->key + 1; 2563 iter->pos++; 2564 l = NULL; 2565 2566 /* handle unlikely case of a key wrap */ 2567 if (!key) 2568 break; 2569 } 2570 2571 if (l) 2572 iter->key = l->key; /* remember it */ 2573 else 2574 iter->pos = 0; /* forget it */ 2575 2576 return l; 2577 } 2578 2579 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2580 __acquires(RCU) 2581 { 2582 struct fib_route_iter *iter = seq->private; 2583 struct fib_table *tb; 2584 struct trie *t; 2585 2586 rcu_read_lock(); 2587 2588 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2589 if (!tb) 2590 return NULL; 2591 2592 iter->main_tb = tb; 2593 t = (struct trie *)tb->tb_data; 2594 iter->tnode = t->kv; 2595 2596 if (*pos != 0) 2597 return fib_route_get_idx(iter, *pos); 2598 2599 iter->pos = 0; 2600 iter->key = KEY_MAX; 2601 2602 return SEQ_START_TOKEN; 2603 } 2604 2605 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2606 { 2607 struct fib_route_iter *iter = seq->private; 2608 struct key_vector *l = NULL; 2609 t_key key = iter->key + 1; 2610 2611 ++*pos; 2612 2613 /* only allow key of 0 for start of sequence */ 2614 if ((v == SEQ_START_TOKEN) || key) 2615 l = leaf_walk_rcu(&iter->tnode, key); 2616 2617 if (l) { 2618 iter->key = l->key; 2619 iter->pos++; 2620 } else { 2621 iter->pos = 0; 2622 } 2623 2624 return l; 2625 } 2626 2627 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2628 __releases(RCU) 2629 { 2630 rcu_read_unlock(); 2631 } 2632 2633 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2634 { 2635 unsigned int flags = 0; 2636 2637 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2638 flags = RTF_REJECT; 2639 if (fi && fi->fib_nh->nh_gw) 2640 flags |= RTF_GATEWAY; 2641 if (mask == htonl(0xFFFFFFFF)) 2642 flags |= RTF_HOST; 2643 flags |= RTF_UP; 2644 return flags; 2645 } 2646 2647 /* 2648 * This outputs /proc/net/route. 2649 * The format of the file is not supposed to be changed 2650 * and needs to be same as fib_hash output to avoid breaking 2651 * legacy utilities 2652 */ 2653 static int fib_route_seq_show(struct seq_file *seq, void *v) 2654 { 2655 struct fib_route_iter *iter = seq->private; 2656 struct fib_table *tb = iter->main_tb; 2657 struct fib_alias *fa; 2658 struct key_vector *l = v; 2659 __be32 prefix; 2660 2661 if (v == SEQ_START_TOKEN) { 2662 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2663 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2664 "\tWindow\tIRTT"); 2665 return 0; 2666 } 2667 2668 prefix = htonl(l->key); 2669 2670 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2671 const struct fib_info *fi = fa->fa_info; 2672 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2673 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2674 2675 if ((fa->fa_type == RTN_BROADCAST) || 2676 (fa->fa_type == RTN_MULTICAST)) 2677 continue; 2678 2679 if (fa->tb_id != tb->tb_id) 2680 continue; 2681 2682 seq_setwidth(seq, 127); 2683 2684 if (fi) 2685 seq_printf(seq, 2686 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2687 "%d\t%08X\t%d\t%u\t%u", 2688 fi->fib_dev ? fi->fib_dev->name : "*", 2689 prefix, 2690 fi->fib_nh->nh_gw, flags, 0, 0, 2691 fi->fib_priority, 2692 mask, 2693 (fi->fib_advmss ? 2694 fi->fib_advmss + 40 : 0), 2695 fi->fib_window, 2696 fi->fib_rtt >> 3); 2697 else 2698 seq_printf(seq, 2699 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2700 "%d\t%08X\t%d\t%u\t%u", 2701 prefix, 0, flags, 0, 0, 0, 2702 mask, 0, 0, 0); 2703 2704 seq_pad(seq, '\n'); 2705 } 2706 2707 return 0; 2708 } 2709 2710 static const struct seq_operations fib_route_seq_ops = { 2711 .start = fib_route_seq_start, 2712 .next = fib_route_seq_next, 2713 .stop = fib_route_seq_stop, 2714 .show = fib_route_seq_show, 2715 }; 2716 2717 static int fib_route_seq_open(struct inode *inode, struct file *file) 2718 { 2719 return seq_open_net(inode, file, &fib_route_seq_ops, 2720 sizeof(struct fib_route_iter)); 2721 } 2722 2723 static const struct file_operations fib_route_fops = { 2724 .owner = THIS_MODULE, 2725 .open = fib_route_seq_open, 2726 .read = seq_read, 2727 .llseek = seq_lseek, 2728 .release = seq_release_net, 2729 }; 2730 2731 int __net_init fib_proc_init(struct net *net) 2732 { 2733 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2734 goto out1; 2735 2736 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2737 &fib_triestat_fops)) 2738 goto out2; 2739 2740 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2741 goto out3; 2742 2743 return 0; 2744 2745 out3: 2746 remove_proc_entry("fib_triestat", net->proc_net); 2747 out2: 2748 remove_proc_entry("fib_trie", net->proc_net); 2749 out1: 2750 return -ENOMEM; 2751 } 2752 2753 void __net_exit fib_proc_exit(struct net *net) 2754 { 2755 remove_proc_entry("fib_trie", net->proc_net); 2756 remove_proc_entry("fib_triestat", net->proc_net); 2757 remove_proc_entry("route", net->proc_net); 2758 } 2759 2760 #endif /* CONFIG_PROC_FS */ 2761