xref: /openbmc/linux/net/ipv4/fib_trie.c (revision d3964221)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <net/fib_notifier.h>
85 #include <trace/events/fib.h>
86 #include "fib_lookup.h"
87 
88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
89 				   enum fib_event_type event_type, u32 dst,
90 				   int dst_len, struct fib_info *fi,
91 				   u8 tos, u8 type, u32 tb_id)
92 {
93 	struct fib_entry_notifier_info info = {
94 		.dst = dst,
95 		.dst_len = dst_len,
96 		.fi = fi,
97 		.tos = tos,
98 		.type = type,
99 		.tb_id = tb_id,
100 	};
101 	return call_fib4_notifier(nb, net, event_type, &info.info);
102 }
103 
104 static int call_fib_entry_notifiers(struct net *net,
105 				    enum fib_event_type event_type, u32 dst,
106 				    int dst_len, struct fib_info *fi,
107 				    u8 tos, u8 type, u32 tb_id)
108 {
109 	struct fib_entry_notifier_info info = {
110 		.dst = dst,
111 		.dst_len = dst_len,
112 		.fi = fi,
113 		.tos = tos,
114 		.type = type,
115 		.tb_id = tb_id,
116 	};
117 	return call_fib4_notifiers(net, event_type, &info.info);
118 }
119 
120 #define MAX_STAT_DEPTH 32
121 
122 #define KEYLENGTH	(8*sizeof(t_key))
123 #define KEY_MAX		((t_key)~0)
124 
125 typedef unsigned int t_key;
126 
127 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
128 #define IS_TNODE(n)	((n)->bits)
129 #define IS_LEAF(n)	(!(n)->bits)
130 
131 struct key_vector {
132 	t_key key;
133 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
134 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
135 	unsigned char slen;
136 	union {
137 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
138 		struct hlist_head leaf;
139 		/* This array is valid if (pos | bits) > 0 (TNODE) */
140 		struct key_vector __rcu *tnode[0];
141 	};
142 };
143 
144 struct tnode {
145 	struct rcu_head rcu;
146 	t_key empty_children;		/* KEYLENGTH bits needed */
147 	t_key full_children;		/* KEYLENGTH bits needed */
148 	struct key_vector __rcu *parent;
149 	struct key_vector kv[1];
150 #define tn_bits kv[0].bits
151 };
152 
153 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
154 #define LEAF_SIZE	TNODE_SIZE(1)
155 
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 struct trie_use_stats {
158 	unsigned int gets;
159 	unsigned int backtrack;
160 	unsigned int semantic_match_passed;
161 	unsigned int semantic_match_miss;
162 	unsigned int null_node_hit;
163 	unsigned int resize_node_skipped;
164 };
165 #endif
166 
167 struct trie_stat {
168 	unsigned int totdepth;
169 	unsigned int maxdepth;
170 	unsigned int tnodes;
171 	unsigned int leaves;
172 	unsigned int nullpointers;
173 	unsigned int prefixes;
174 	unsigned int nodesizes[MAX_STAT_DEPTH];
175 };
176 
177 struct trie {
178 	struct key_vector kv[1];
179 #ifdef CONFIG_IP_FIB_TRIE_STATS
180 	struct trie_use_stats __percpu *stats;
181 #endif
182 };
183 
184 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
185 static size_t tnode_free_size;
186 
187 /*
188  * synchronize_rcu after call_rcu for that many pages; it should be especially
189  * useful before resizing the root node with PREEMPT_NONE configs; the value was
190  * obtained experimentally, aiming to avoid visible slowdown.
191  */
192 static const int sync_pages = 128;
193 
194 static struct kmem_cache *fn_alias_kmem __read_mostly;
195 static struct kmem_cache *trie_leaf_kmem __read_mostly;
196 
197 static inline struct tnode *tn_info(struct key_vector *kv)
198 {
199 	return container_of(kv, struct tnode, kv[0]);
200 }
201 
202 /* caller must hold RTNL */
203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
205 
206 /* caller must hold RCU read lock or RTNL */
207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
209 
210 /* wrapper for rcu_assign_pointer */
211 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
212 {
213 	if (n)
214 		rcu_assign_pointer(tn_info(n)->parent, tp);
215 }
216 
217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
218 
219 /* This provides us with the number of children in this node, in the case of a
220  * leaf this will return 0 meaning none of the children are accessible.
221  */
222 static inline unsigned long child_length(const struct key_vector *tn)
223 {
224 	return (1ul << tn->bits) & ~(1ul);
225 }
226 
227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
228 
229 static inline unsigned long get_index(t_key key, struct key_vector *kv)
230 {
231 	unsigned long index = key ^ kv->key;
232 
233 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
234 		return 0;
235 
236 	return index >> kv->pos;
237 }
238 
239 /* To understand this stuff, an understanding of keys and all their bits is
240  * necessary. Every node in the trie has a key associated with it, but not
241  * all of the bits in that key are significant.
242  *
243  * Consider a node 'n' and its parent 'tp'.
244  *
245  * If n is a leaf, every bit in its key is significant. Its presence is
246  * necessitated by path compression, since during a tree traversal (when
247  * searching for a leaf - unless we are doing an insertion) we will completely
248  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
249  * a potentially successful search, that we have indeed been walking the
250  * correct key path.
251  *
252  * Note that we can never "miss" the correct key in the tree if present by
253  * following the wrong path. Path compression ensures that segments of the key
254  * that are the same for all keys with a given prefix are skipped, but the
255  * skipped part *is* identical for each node in the subtrie below the skipped
256  * bit! trie_insert() in this implementation takes care of that.
257  *
258  * if n is an internal node - a 'tnode' here, the various parts of its key
259  * have many different meanings.
260  *
261  * Example:
262  * _________________________________________________________________
263  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
264  * -----------------------------------------------------------------
265  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
266  *
267  * _________________________________________________________________
268  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
269  * -----------------------------------------------------------------
270  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
271  *
272  * tp->pos = 22
273  * tp->bits = 3
274  * n->pos = 13
275  * n->bits = 4
276  *
277  * First, let's just ignore the bits that come before the parent tp, that is
278  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
279  * point we do not use them for anything.
280  *
281  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
282  * index into the parent's child array. That is, they will be used to find
283  * 'n' among tp's children.
284  *
285  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
286  * for the node n.
287  *
288  * All the bits we have seen so far are significant to the node n. The rest
289  * of the bits are really not needed or indeed known in n->key.
290  *
291  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
292  * n's child array, and will of course be different for each child.
293  *
294  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
295  * at this point.
296  */
297 
298 static const int halve_threshold = 25;
299 static const int inflate_threshold = 50;
300 static const int halve_threshold_root = 15;
301 static const int inflate_threshold_root = 30;
302 
303 static void __alias_free_mem(struct rcu_head *head)
304 {
305 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
306 	kmem_cache_free(fn_alias_kmem, fa);
307 }
308 
309 static inline void alias_free_mem_rcu(struct fib_alias *fa)
310 {
311 	call_rcu(&fa->rcu, __alias_free_mem);
312 }
313 
314 #define TNODE_KMALLOC_MAX \
315 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316 #define TNODE_VMALLOC_MAX \
317 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
318 
319 static void __node_free_rcu(struct rcu_head *head)
320 {
321 	struct tnode *n = container_of(head, struct tnode, rcu);
322 
323 	if (!n->tn_bits)
324 		kmem_cache_free(trie_leaf_kmem, n);
325 	else
326 		kvfree(n);
327 }
328 
329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
330 
331 static struct tnode *tnode_alloc(int bits)
332 {
333 	size_t size;
334 
335 	/* verify bits is within bounds */
336 	if (bits > TNODE_VMALLOC_MAX)
337 		return NULL;
338 
339 	/* determine size and verify it is non-zero and didn't overflow */
340 	size = TNODE_SIZE(1ul << bits);
341 
342 	if (size <= PAGE_SIZE)
343 		return kzalloc(size, GFP_KERNEL);
344 	else
345 		return vzalloc(size);
346 }
347 
348 static inline void empty_child_inc(struct key_vector *n)
349 {
350 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
351 }
352 
353 static inline void empty_child_dec(struct key_vector *n)
354 {
355 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
356 }
357 
358 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
359 {
360 	struct key_vector *l;
361 	struct tnode *kv;
362 
363 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
364 	if (!kv)
365 		return NULL;
366 
367 	/* initialize key vector */
368 	l = kv->kv;
369 	l->key = key;
370 	l->pos = 0;
371 	l->bits = 0;
372 	l->slen = fa->fa_slen;
373 
374 	/* link leaf to fib alias */
375 	INIT_HLIST_HEAD(&l->leaf);
376 	hlist_add_head(&fa->fa_list, &l->leaf);
377 
378 	return l;
379 }
380 
381 static struct key_vector *tnode_new(t_key key, int pos, int bits)
382 {
383 	unsigned int shift = pos + bits;
384 	struct key_vector *tn;
385 	struct tnode *tnode;
386 
387 	/* verify bits and pos their msb bits clear and values are valid */
388 	BUG_ON(!bits || (shift > KEYLENGTH));
389 
390 	tnode = tnode_alloc(bits);
391 	if (!tnode)
392 		return NULL;
393 
394 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
395 		 sizeof(struct key_vector *) << bits);
396 
397 	if (bits == KEYLENGTH)
398 		tnode->full_children = 1;
399 	else
400 		tnode->empty_children = 1ul << bits;
401 
402 	tn = tnode->kv;
403 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
404 	tn->pos = pos;
405 	tn->bits = bits;
406 	tn->slen = pos;
407 
408 	return tn;
409 }
410 
411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
412  * and no bits are skipped. See discussion in dyntree paper p. 6
413  */
414 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
415 {
416 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
417 }
418 
419 /* Add a child at position i overwriting the old value.
420  * Update the value of full_children and empty_children.
421  */
422 static void put_child(struct key_vector *tn, unsigned long i,
423 		      struct key_vector *n)
424 {
425 	struct key_vector *chi = get_child(tn, i);
426 	int isfull, wasfull;
427 
428 	BUG_ON(i >= child_length(tn));
429 
430 	/* update emptyChildren, overflow into fullChildren */
431 	if (!n && chi)
432 		empty_child_inc(tn);
433 	if (n && !chi)
434 		empty_child_dec(tn);
435 
436 	/* update fullChildren */
437 	wasfull = tnode_full(tn, chi);
438 	isfull = tnode_full(tn, n);
439 
440 	if (wasfull && !isfull)
441 		tn_info(tn)->full_children--;
442 	else if (!wasfull && isfull)
443 		tn_info(tn)->full_children++;
444 
445 	if (n && (tn->slen < n->slen))
446 		tn->slen = n->slen;
447 
448 	rcu_assign_pointer(tn->tnode[i], n);
449 }
450 
451 static void update_children(struct key_vector *tn)
452 {
453 	unsigned long i;
454 
455 	/* update all of the child parent pointers */
456 	for (i = child_length(tn); i;) {
457 		struct key_vector *inode = get_child(tn, --i);
458 
459 		if (!inode)
460 			continue;
461 
462 		/* Either update the children of a tnode that
463 		 * already belongs to us or update the child
464 		 * to point to ourselves.
465 		 */
466 		if (node_parent(inode) == tn)
467 			update_children(inode);
468 		else
469 			node_set_parent(inode, tn);
470 	}
471 }
472 
473 static inline void put_child_root(struct key_vector *tp, t_key key,
474 				  struct key_vector *n)
475 {
476 	if (IS_TRIE(tp))
477 		rcu_assign_pointer(tp->tnode[0], n);
478 	else
479 		put_child(tp, get_index(key, tp), n);
480 }
481 
482 static inline void tnode_free_init(struct key_vector *tn)
483 {
484 	tn_info(tn)->rcu.next = NULL;
485 }
486 
487 static inline void tnode_free_append(struct key_vector *tn,
488 				     struct key_vector *n)
489 {
490 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
491 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
492 }
493 
494 static void tnode_free(struct key_vector *tn)
495 {
496 	struct callback_head *head = &tn_info(tn)->rcu;
497 
498 	while (head) {
499 		head = head->next;
500 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
501 		node_free(tn);
502 
503 		tn = container_of(head, struct tnode, rcu)->kv;
504 	}
505 
506 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
507 		tnode_free_size = 0;
508 		synchronize_rcu();
509 	}
510 }
511 
512 static struct key_vector *replace(struct trie *t,
513 				  struct key_vector *oldtnode,
514 				  struct key_vector *tn)
515 {
516 	struct key_vector *tp = node_parent(oldtnode);
517 	unsigned long i;
518 
519 	/* setup the parent pointer out of and back into this node */
520 	NODE_INIT_PARENT(tn, tp);
521 	put_child_root(tp, tn->key, tn);
522 
523 	/* update all of the child parent pointers */
524 	update_children(tn);
525 
526 	/* all pointers should be clean so we are done */
527 	tnode_free(oldtnode);
528 
529 	/* resize children now that oldtnode is freed */
530 	for (i = child_length(tn); i;) {
531 		struct key_vector *inode = get_child(tn, --i);
532 
533 		/* resize child node */
534 		if (tnode_full(tn, inode))
535 			tn = resize(t, inode);
536 	}
537 
538 	return tp;
539 }
540 
541 static struct key_vector *inflate(struct trie *t,
542 				  struct key_vector *oldtnode)
543 {
544 	struct key_vector *tn;
545 	unsigned long i;
546 	t_key m;
547 
548 	pr_debug("In inflate\n");
549 
550 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
551 	if (!tn)
552 		goto notnode;
553 
554 	/* prepare oldtnode to be freed */
555 	tnode_free_init(oldtnode);
556 
557 	/* Assemble all of the pointers in our cluster, in this case that
558 	 * represents all of the pointers out of our allocated nodes that
559 	 * point to existing tnodes and the links between our allocated
560 	 * nodes.
561 	 */
562 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
563 		struct key_vector *inode = get_child(oldtnode, --i);
564 		struct key_vector *node0, *node1;
565 		unsigned long j, k;
566 
567 		/* An empty child */
568 		if (!inode)
569 			continue;
570 
571 		/* A leaf or an internal node with skipped bits */
572 		if (!tnode_full(oldtnode, inode)) {
573 			put_child(tn, get_index(inode->key, tn), inode);
574 			continue;
575 		}
576 
577 		/* drop the node in the old tnode free list */
578 		tnode_free_append(oldtnode, inode);
579 
580 		/* An internal node with two children */
581 		if (inode->bits == 1) {
582 			put_child(tn, 2 * i + 1, get_child(inode, 1));
583 			put_child(tn, 2 * i, get_child(inode, 0));
584 			continue;
585 		}
586 
587 		/* We will replace this node 'inode' with two new
588 		 * ones, 'node0' and 'node1', each with half of the
589 		 * original children. The two new nodes will have
590 		 * a position one bit further down the key and this
591 		 * means that the "significant" part of their keys
592 		 * (see the discussion near the top of this file)
593 		 * will differ by one bit, which will be "0" in
594 		 * node0's key and "1" in node1's key. Since we are
595 		 * moving the key position by one step, the bit that
596 		 * we are moving away from - the bit at position
597 		 * (tn->pos) - is the one that will differ between
598 		 * node0 and node1. So... we synthesize that bit in the
599 		 * two new keys.
600 		 */
601 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
602 		if (!node1)
603 			goto nomem;
604 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
605 
606 		tnode_free_append(tn, node1);
607 		if (!node0)
608 			goto nomem;
609 		tnode_free_append(tn, node0);
610 
611 		/* populate child pointers in new nodes */
612 		for (k = child_length(inode), j = k / 2; j;) {
613 			put_child(node1, --j, get_child(inode, --k));
614 			put_child(node0, j, get_child(inode, j));
615 			put_child(node1, --j, get_child(inode, --k));
616 			put_child(node0, j, get_child(inode, j));
617 		}
618 
619 		/* link new nodes to parent */
620 		NODE_INIT_PARENT(node1, tn);
621 		NODE_INIT_PARENT(node0, tn);
622 
623 		/* link parent to nodes */
624 		put_child(tn, 2 * i + 1, node1);
625 		put_child(tn, 2 * i, node0);
626 	}
627 
628 	/* setup the parent pointers into and out of this node */
629 	return replace(t, oldtnode, tn);
630 nomem:
631 	/* all pointers should be clean so we are done */
632 	tnode_free(tn);
633 notnode:
634 	return NULL;
635 }
636 
637 static struct key_vector *halve(struct trie *t,
638 				struct key_vector *oldtnode)
639 {
640 	struct key_vector *tn;
641 	unsigned long i;
642 
643 	pr_debug("In halve\n");
644 
645 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
646 	if (!tn)
647 		goto notnode;
648 
649 	/* prepare oldtnode to be freed */
650 	tnode_free_init(oldtnode);
651 
652 	/* Assemble all of the pointers in our cluster, in this case that
653 	 * represents all of the pointers out of our allocated nodes that
654 	 * point to existing tnodes and the links between our allocated
655 	 * nodes.
656 	 */
657 	for (i = child_length(oldtnode); i;) {
658 		struct key_vector *node1 = get_child(oldtnode, --i);
659 		struct key_vector *node0 = get_child(oldtnode, --i);
660 		struct key_vector *inode;
661 
662 		/* At least one of the children is empty */
663 		if (!node1 || !node0) {
664 			put_child(tn, i / 2, node1 ? : node0);
665 			continue;
666 		}
667 
668 		/* Two nonempty children */
669 		inode = tnode_new(node0->key, oldtnode->pos, 1);
670 		if (!inode)
671 			goto nomem;
672 		tnode_free_append(tn, inode);
673 
674 		/* initialize pointers out of node */
675 		put_child(inode, 1, node1);
676 		put_child(inode, 0, node0);
677 		NODE_INIT_PARENT(inode, tn);
678 
679 		/* link parent to node */
680 		put_child(tn, i / 2, inode);
681 	}
682 
683 	/* setup the parent pointers into and out of this node */
684 	return replace(t, oldtnode, tn);
685 nomem:
686 	/* all pointers should be clean so we are done */
687 	tnode_free(tn);
688 notnode:
689 	return NULL;
690 }
691 
692 static struct key_vector *collapse(struct trie *t,
693 				   struct key_vector *oldtnode)
694 {
695 	struct key_vector *n, *tp;
696 	unsigned long i;
697 
698 	/* scan the tnode looking for that one child that might still exist */
699 	for (n = NULL, i = child_length(oldtnode); !n && i;)
700 		n = get_child(oldtnode, --i);
701 
702 	/* compress one level */
703 	tp = node_parent(oldtnode);
704 	put_child_root(tp, oldtnode->key, n);
705 	node_set_parent(n, tp);
706 
707 	/* drop dead node */
708 	node_free(oldtnode);
709 
710 	return tp;
711 }
712 
713 static unsigned char update_suffix(struct key_vector *tn)
714 {
715 	unsigned char slen = tn->pos;
716 	unsigned long stride, i;
717 	unsigned char slen_max;
718 
719 	/* only vector 0 can have a suffix length greater than or equal to
720 	 * tn->pos + tn->bits, the second highest node will have a suffix
721 	 * length at most of tn->pos + tn->bits - 1
722 	 */
723 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
724 
725 	/* search though the list of children looking for nodes that might
726 	 * have a suffix greater than the one we currently have.  This is
727 	 * why we start with a stride of 2 since a stride of 1 would
728 	 * represent the nodes with suffix length equal to tn->pos
729 	 */
730 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
731 		struct key_vector *n = get_child(tn, i);
732 
733 		if (!n || (n->slen <= slen))
734 			continue;
735 
736 		/* update stride and slen based on new value */
737 		stride <<= (n->slen - slen);
738 		slen = n->slen;
739 		i &= ~(stride - 1);
740 
741 		/* stop searching if we have hit the maximum possible value */
742 		if (slen >= slen_max)
743 			break;
744 	}
745 
746 	tn->slen = slen;
747 
748 	return slen;
749 }
750 
751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
752  * the Helsinki University of Technology and Matti Tikkanen of Nokia
753  * Telecommunications, page 6:
754  * "A node is doubled if the ratio of non-empty children to all
755  * children in the *doubled* node is at least 'high'."
756  *
757  * 'high' in this instance is the variable 'inflate_threshold'. It
758  * is expressed as a percentage, so we multiply it with
759  * child_length() and instead of multiplying by 2 (since the
760  * child array will be doubled by inflate()) and multiplying
761  * the left-hand side by 100 (to handle the percentage thing) we
762  * multiply the left-hand side by 50.
763  *
764  * The left-hand side may look a bit weird: child_length(tn)
765  * - tn->empty_children is of course the number of non-null children
766  * in the current node. tn->full_children is the number of "full"
767  * children, that is non-null tnodes with a skip value of 0.
768  * All of those will be doubled in the resulting inflated tnode, so
769  * we just count them one extra time here.
770  *
771  * A clearer way to write this would be:
772  *
773  * to_be_doubled = tn->full_children;
774  * not_to_be_doubled = child_length(tn) - tn->empty_children -
775  *     tn->full_children;
776  *
777  * new_child_length = child_length(tn) * 2;
778  *
779  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
780  *      new_child_length;
781  * if (new_fill_factor >= inflate_threshold)
782  *
783  * ...and so on, tho it would mess up the while () loop.
784  *
785  * anyway,
786  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
787  *      inflate_threshold
788  *
789  * avoid a division:
790  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
791  *      inflate_threshold * new_child_length
792  *
793  * expand not_to_be_doubled and to_be_doubled, and shorten:
794  * 100 * (child_length(tn) - tn->empty_children +
795  *    tn->full_children) >= inflate_threshold * new_child_length
796  *
797  * expand new_child_length:
798  * 100 * (child_length(tn) - tn->empty_children +
799  *    tn->full_children) >=
800  *      inflate_threshold * child_length(tn) * 2
801  *
802  * shorten again:
803  * 50 * (tn->full_children + child_length(tn) -
804  *    tn->empty_children) >= inflate_threshold *
805  *    child_length(tn)
806  *
807  */
808 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
809 {
810 	unsigned long used = child_length(tn);
811 	unsigned long threshold = used;
812 
813 	/* Keep root node larger */
814 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
815 	used -= tn_info(tn)->empty_children;
816 	used += tn_info(tn)->full_children;
817 
818 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
819 
820 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
821 }
822 
823 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
824 {
825 	unsigned long used = child_length(tn);
826 	unsigned long threshold = used;
827 
828 	/* Keep root node larger */
829 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
830 	used -= tn_info(tn)->empty_children;
831 
832 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833 
834 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
835 }
836 
837 static inline bool should_collapse(struct key_vector *tn)
838 {
839 	unsigned long used = child_length(tn);
840 
841 	used -= tn_info(tn)->empty_children;
842 
843 	/* account for bits == KEYLENGTH case */
844 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
845 		used -= KEY_MAX;
846 
847 	/* One child or none, time to drop us from the trie */
848 	return used < 2;
849 }
850 
851 #define MAX_WORK 10
852 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
853 {
854 #ifdef CONFIG_IP_FIB_TRIE_STATS
855 	struct trie_use_stats __percpu *stats = t->stats;
856 #endif
857 	struct key_vector *tp = node_parent(tn);
858 	unsigned long cindex = get_index(tn->key, tp);
859 	int max_work = MAX_WORK;
860 
861 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
862 		 tn, inflate_threshold, halve_threshold);
863 
864 	/* track the tnode via the pointer from the parent instead of
865 	 * doing it ourselves.  This way we can let RCU fully do its
866 	 * thing without us interfering
867 	 */
868 	BUG_ON(tn != get_child(tp, cindex));
869 
870 	/* Double as long as the resulting node has a number of
871 	 * nonempty nodes that are above the threshold.
872 	 */
873 	while (should_inflate(tp, tn) && max_work) {
874 		tp = inflate(t, tn);
875 		if (!tp) {
876 #ifdef CONFIG_IP_FIB_TRIE_STATS
877 			this_cpu_inc(stats->resize_node_skipped);
878 #endif
879 			break;
880 		}
881 
882 		max_work--;
883 		tn = get_child(tp, cindex);
884 	}
885 
886 	/* update parent in case inflate failed */
887 	tp = node_parent(tn);
888 
889 	/* Return if at least one inflate is run */
890 	if (max_work != MAX_WORK)
891 		return tp;
892 
893 	/* Halve as long as the number of empty children in this
894 	 * node is above threshold.
895 	 */
896 	while (should_halve(tp, tn) && max_work) {
897 		tp = halve(t, tn);
898 		if (!tp) {
899 #ifdef CONFIG_IP_FIB_TRIE_STATS
900 			this_cpu_inc(stats->resize_node_skipped);
901 #endif
902 			break;
903 		}
904 
905 		max_work--;
906 		tn = get_child(tp, cindex);
907 	}
908 
909 	/* Only one child remains */
910 	if (should_collapse(tn))
911 		return collapse(t, tn);
912 
913 	/* update parent in case halve failed */
914 	return node_parent(tn);
915 }
916 
917 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
918 {
919 	unsigned char node_slen = tn->slen;
920 
921 	while ((node_slen > tn->pos) && (node_slen > slen)) {
922 		slen = update_suffix(tn);
923 		if (node_slen == slen)
924 			break;
925 
926 		tn = node_parent(tn);
927 		node_slen = tn->slen;
928 	}
929 }
930 
931 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
932 {
933 	while (tn->slen < slen) {
934 		tn->slen = slen;
935 		tn = node_parent(tn);
936 	}
937 }
938 
939 /* rcu_read_lock needs to be hold by caller from readside */
940 static struct key_vector *fib_find_node(struct trie *t,
941 					struct key_vector **tp, u32 key)
942 {
943 	struct key_vector *pn, *n = t->kv;
944 	unsigned long index = 0;
945 
946 	do {
947 		pn = n;
948 		n = get_child_rcu(n, index);
949 
950 		if (!n)
951 			break;
952 
953 		index = get_cindex(key, n);
954 
955 		/* This bit of code is a bit tricky but it combines multiple
956 		 * checks into a single check.  The prefix consists of the
957 		 * prefix plus zeros for the bits in the cindex. The index
958 		 * is the difference between the key and this value.  From
959 		 * this we can actually derive several pieces of data.
960 		 *   if (index >= (1ul << bits))
961 		 *     we have a mismatch in skip bits and failed
962 		 *   else
963 		 *     we know the value is cindex
964 		 *
965 		 * This check is safe even if bits == KEYLENGTH due to the
966 		 * fact that we can only allocate a node with 32 bits if a
967 		 * long is greater than 32 bits.
968 		 */
969 		if (index >= (1ul << n->bits)) {
970 			n = NULL;
971 			break;
972 		}
973 
974 		/* keep searching until we find a perfect match leaf or NULL */
975 	} while (IS_TNODE(n));
976 
977 	*tp = pn;
978 
979 	return n;
980 }
981 
982 /* Return the first fib alias matching TOS with
983  * priority less than or equal to PRIO.
984  */
985 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
986 					u8 tos, u32 prio, u32 tb_id)
987 {
988 	struct fib_alias *fa;
989 
990 	if (!fah)
991 		return NULL;
992 
993 	hlist_for_each_entry(fa, fah, fa_list) {
994 		if (fa->fa_slen < slen)
995 			continue;
996 		if (fa->fa_slen != slen)
997 			break;
998 		if (fa->tb_id > tb_id)
999 			continue;
1000 		if (fa->tb_id != tb_id)
1001 			break;
1002 		if (fa->fa_tos > tos)
1003 			continue;
1004 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1005 			return fa;
1006 	}
1007 
1008 	return NULL;
1009 }
1010 
1011 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1012 {
1013 	while (!IS_TRIE(tn))
1014 		tn = resize(t, tn);
1015 }
1016 
1017 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1018 			   struct fib_alias *new, t_key key)
1019 {
1020 	struct key_vector *n, *l;
1021 
1022 	l = leaf_new(key, new);
1023 	if (!l)
1024 		goto noleaf;
1025 
1026 	/* retrieve child from parent node */
1027 	n = get_child(tp, get_index(key, tp));
1028 
1029 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 	 *
1031 	 *  Add a new tnode here
1032 	 *  first tnode need some special handling
1033 	 *  leaves us in position for handling as case 3
1034 	 */
1035 	if (n) {
1036 		struct key_vector *tn;
1037 
1038 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1039 		if (!tn)
1040 			goto notnode;
1041 
1042 		/* initialize routes out of node */
1043 		NODE_INIT_PARENT(tn, tp);
1044 		put_child(tn, get_index(key, tn) ^ 1, n);
1045 
1046 		/* start adding routes into the node */
1047 		put_child_root(tp, key, tn);
1048 		node_set_parent(n, tn);
1049 
1050 		/* parent now has a NULL spot where the leaf can go */
1051 		tp = tn;
1052 	}
1053 
1054 	/* Case 3: n is NULL, and will just insert a new leaf */
1055 	node_push_suffix(tp, new->fa_slen);
1056 	NODE_INIT_PARENT(l, tp);
1057 	put_child_root(tp, key, l);
1058 	trie_rebalance(t, tp);
1059 
1060 	return 0;
1061 notnode:
1062 	node_free(l);
1063 noleaf:
1064 	return -ENOMEM;
1065 }
1066 
1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 			    struct key_vector *l, struct fib_alias *new,
1069 			    struct fib_alias *fa, t_key key)
1070 {
1071 	if (!l)
1072 		return fib_insert_node(t, tp, new, key);
1073 
1074 	if (fa) {
1075 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076 	} else {
1077 		struct fib_alias *last;
1078 
1079 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 			if (new->fa_slen < last->fa_slen)
1081 				break;
1082 			if ((new->fa_slen == last->fa_slen) &&
1083 			    (new->tb_id > last->tb_id))
1084 				break;
1085 			fa = last;
1086 		}
1087 
1088 		if (fa)
1089 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 		else
1091 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092 	}
1093 
1094 	/* if we added to the tail node then we need to update slen */
1095 	if (l->slen < new->fa_slen) {
1096 		l->slen = new->fa_slen;
1097 		node_push_suffix(tp, new->fa_slen);
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104 {
1105 	if (plen > KEYLENGTH) {
1106 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107 		return false;
1108 	}
1109 
1110 	if ((plen < KEYLENGTH) && (key << plen)) {
1111 		NL_SET_ERR_MSG(extack,
1112 			       "Invalid prefix for given prefix length");
1113 		return false;
1114 	}
1115 
1116 	return true;
1117 }
1118 
1119 /* Caller must hold RTNL. */
1120 int fib_table_insert(struct net *net, struct fib_table *tb,
1121 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122 {
1123 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124 	struct trie *t = (struct trie *)tb->tb_data;
1125 	struct fib_alias *fa, *new_fa;
1126 	struct key_vector *l, *tp;
1127 	u16 nlflags = NLM_F_EXCL;
1128 	struct fib_info *fi;
1129 	u8 plen = cfg->fc_dst_len;
1130 	u8 slen = KEYLENGTH - plen;
1131 	u8 tos = cfg->fc_tos;
1132 	u32 key;
1133 	int err;
1134 
1135 	key = ntohl(cfg->fc_dst);
1136 
1137 	if (!fib_valid_key_len(key, plen, extack))
1138 		return -EINVAL;
1139 
1140 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141 
1142 	fi = fib_create_info(cfg, extack);
1143 	if (IS_ERR(fi)) {
1144 		err = PTR_ERR(fi);
1145 		goto err;
1146 	}
1147 
1148 	l = fib_find_node(t, &tp, key);
1149 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 				tb->tb_id) : NULL;
1151 
1152 	/* Now fa, if non-NULL, points to the first fib alias
1153 	 * with the same keys [prefix,tos,priority], if such key already
1154 	 * exists or to the node before which we will insert new one.
1155 	 *
1156 	 * If fa is NULL, we will need to allocate a new one and
1157 	 * insert to the tail of the section matching the suffix length
1158 	 * of the new alias.
1159 	 */
1160 
1161 	if (fa && fa->fa_tos == tos &&
1162 	    fa->fa_info->fib_priority == fi->fib_priority) {
1163 		struct fib_alias *fa_first, *fa_match;
1164 
1165 		err = -EEXIST;
1166 		if (cfg->fc_nlflags & NLM_F_EXCL)
1167 			goto out;
1168 
1169 		nlflags &= ~NLM_F_EXCL;
1170 
1171 		/* We have 2 goals:
1172 		 * 1. Find exact match for type, scope, fib_info to avoid
1173 		 * duplicate routes
1174 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 		 */
1176 		fa_match = NULL;
1177 		fa_first = fa;
1178 		hlist_for_each_entry_from(fa, fa_list) {
1179 			if ((fa->fa_slen != slen) ||
1180 			    (fa->tb_id != tb->tb_id) ||
1181 			    (fa->fa_tos != tos))
1182 				break;
1183 			if (fa->fa_info->fib_priority != fi->fib_priority)
1184 				break;
1185 			if (fa->fa_type == cfg->fc_type &&
1186 			    fa->fa_info == fi) {
1187 				fa_match = fa;
1188 				break;
1189 			}
1190 		}
1191 
1192 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 			struct fib_info *fi_drop;
1194 			u8 state;
1195 
1196 			nlflags |= NLM_F_REPLACE;
1197 			fa = fa_first;
1198 			if (fa_match) {
1199 				if (fa == fa_match)
1200 					err = 0;
1201 				goto out;
1202 			}
1203 			err = -ENOBUFS;
1204 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 			if (!new_fa)
1206 				goto out;
1207 
1208 			fi_drop = fa->fa_info;
1209 			new_fa->fa_tos = fa->fa_tos;
1210 			new_fa->fa_info = fi;
1211 			new_fa->fa_type = cfg->fc_type;
1212 			state = fa->fa_state;
1213 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214 			new_fa->fa_slen = fa->fa_slen;
1215 			new_fa->tb_id = tb->tb_id;
1216 			new_fa->fa_default = -1;
1217 
1218 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1219 						 key, plen, fi,
1220 						 new_fa->fa_tos, cfg->fc_type,
1221 						 tb->tb_id);
1222 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1223 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1224 
1225 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1226 
1227 			alias_free_mem_rcu(fa);
1228 
1229 			fib_release_info(fi_drop);
1230 			if (state & FA_S_ACCESSED)
1231 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1232 
1233 			goto succeeded;
1234 		}
1235 		/* Error if we find a perfect match which
1236 		 * uses the same scope, type, and nexthop
1237 		 * information.
1238 		 */
1239 		if (fa_match)
1240 			goto out;
1241 
1242 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1243 			event = FIB_EVENT_ENTRY_APPEND;
1244 			nlflags |= NLM_F_APPEND;
1245 		} else {
1246 			fa = fa_first;
1247 		}
1248 	}
1249 	err = -ENOENT;
1250 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1251 		goto out;
1252 
1253 	nlflags |= NLM_F_CREATE;
1254 	err = -ENOBUFS;
1255 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1256 	if (!new_fa)
1257 		goto out;
1258 
1259 	new_fa->fa_info = fi;
1260 	new_fa->fa_tos = tos;
1261 	new_fa->fa_type = cfg->fc_type;
1262 	new_fa->fa_state = 0;
1263 	new_fa->fa_slen = slen;
1264 	new_fa->tb_id = tb->tb_id;
1265 	new_fa->fa_default = -1;
1266 
1267 	/* Insert new entry to the list. */
1268 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1269 	if (err)
1270 		goto out_free_new_fa;
1271 
1272 	if (!plen)
1273 		tb->tb_num_default++;
1274 
1275 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1276 	call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1277 				 tb->tb_id);
1278 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1279 		  &cfg->fc_nlinfo, nlflags);
1280 succeeded:
1281 	return 0;
1282 
1283 out_free_new_fa:
1284 	kmem_cache_free(fn_alias_kmem, new_fa);
1285 out:
1286 	fib_release_info(fi);
1287 err:
1288 	return err;
1289 }
1290 
1291 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1292 {
1293 	t_key prefix = n->key;
1294 
1295 	return (key ^ prefix) & (prefix | -prefix);
1296 }
1297 
1298 /* should be called with rcu_read_lock */
1299 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1300 		     struct fib_result *res, int fib_flags)
1301 {
1302 	struct trie *t = (struct trie *) tb->tb_data;
1303 #ifdef CONFIG_IP_FIB_TRIE_STATS
1304 	struct trie_use_stats __percpu *stats = t->stats;
1305 #endif
1306 	const t_key key = ntohl(flp->daddr);
1307 	struct key_vector *n, *pn;
1308 	struct fib_alias *fa;
1309 	unsigned long index;
1310 	t_key cindex;
1311 
1312 	trace_fib_table_lookup(tb->tb_id, flp);
1313 
1314 	pn = t->kv;
1315 	cindex = 0;
1316 
1317 	n = get_child_rcu(pn, cindex);
1318 	if (!n)
1319 		return -EAGAIN;
1320 
1321 #ifdef CONFIG_IP_FIB_TRIE_STATS
1322 	this_cpu_inc(stats->gets);
1323 #endif
1324 
1325 	/* Step 1: Travel to the longest prefix match in the trie */
1326 	for (;;) {
1327 		index = get_cindex(key, n);
1328 
1329 		/* This bit of code is a bit tricky but it combines multiple
1330 		 * checks into a single check.  The prefix consists of the
1331 		 * prefix plus zeros for the "bits" in the prefix. The index
1332 		 * is the difference between the key and this value.  From
1333 		 * this we can actually derive several pieces of data.
1334 		 *   if (index >= (1ul << bits))
1335 		 *     we have a mismatch in skip bits and failed
1336 		 *   else
1337 		 *     we know the value is cindex
1338 		 *
1339 		 * This check is safe even if bits == KEYLENGTH due to the
1340 		 * fact that we can only allocate a node with 32 bits if a
1341 		 * long is greater than 32 bits.
1342 		 */
1343 		if (index >= (1ul << n->bits))
1344 			break;
1345 
1346 		/* we have found a leaf. Prefixes have already been compared */
1347 		if (IS_LEAF(n))
1348 			goto found;
1349 
1350 		/* only record pn and cindex if we are going to be chopping
1351 		 * bits later.  Otherwise we are just wasting cycles.
1352 		 */
1353 		if (n->slen > n->pos) {
1354 			pn = n;
1355 			cindex = index;
1356 		}
1357 
1358 		n = get_child_rcu(n, index);
1359 		if (unlikely(!n))
1360 			goto backtrace;
1361 	}
1362 
1363 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1364 	for (;;) {
1365 		/* record the pointer where our next node pointer is stored */
1366 		struct key_vector __rcu **cptr = n->tnode;
1367 
1368 		/* This test verifies that none of the bits that differ
1369 		 * between the key and the prefix exist in the region of
1370 		 * the lsb and higher in the prefix.
1371 		 */
1372 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1373 			goto backtrace;
1374 
1375 		/* exit out and process leaf */
1376 		if (unlikely(IS_LEAF(n)))
1377 			break;
1378 
1379 		/* Don't bother recording parent info.  Since we are in
1380 		 * prefix match mode we will have to come back to wherever
1381 		 * we started this traversal anyway
1382 		 */
1383 
1384 		while ((n = rcu_dereference(*cptr)) == NULL) {
1385 backtrace:
1386 #ifdef CONFIG_IP_FIB_TRIE_STATS
1387 			if (!n)
1388 				this_cpu_inc(stats->null_node_hit);
1389 #endif
1390 			/* If we are at cindex 0 there are no more bits for
1391 			 * us to strip at this level so we must ascend back
1392 			 * up one level to see if there are any more bits to
1393 			 * be stripped there.
1394 			 */
1395 			while (!cindex) {
1396 				t_key pkey = pn->key;
1397 
1398 				/* If we don't have a parent then there is
1399 				 * nothing for us to do as we do not have any
1400 				 * further nodes to parse.
1401 				 */
1402 				if (IS_TRIE(pn))
1403 					return -EAGAIN;
1404 #ifdef CONFIG_IP_FIB_TRIE_STATS
1405 				this_cpu_inc(stats->backtrack);
1406 #endif
1407 				/* Get Child's index */
1408 				pn = node_parent_rcu(pn);
1409 				cindex = get_index(pkey, pn);
1410 			}
1411 
1412 			/* strip the least significant bit from the cindex */
1413 			cindex &= cindex - 1;
1414 
1415 			/* grab pointer for next child node */
1416 			cptr = &pn->tnode[cindex];
1417 		}
1418 	}
1419 
1420 found:
1421 	/* this line carries forward the xor from earlier in the function */
1422 	index = key ^ n->key;
1423 
1424 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1425 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1426 		struct fib_info *fi = fa->fa_info;
1427 		int nhsel, err;
1428 
1429 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1430 			if (index >= (1ul << fa->fa_slen))
1431 				continue;
1432 		}
1433 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1434 			continue;
1435 		if (fi->fib_dead)
1436 			continue;
1437 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1438 			continue;
1439 		fib_alias_accessed(fa);
1440 		err = fib_props[fa->fa_type].error;
1441 		if (unlikely(err < 0)) {
1442 #ifdef CONFIG_IP_FIB_TRIE_STATS
1443 			this_cpu_inc(stats->semantic_match_passed);
1444 #endif
1445 			return err;
1446 		}
1447 		if (fi->fib_flags & RTNH_F_DEAD)
1448 			continue;
1449 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1450 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1451 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1452 
1453 			if (nh->nh_flags & RTNH_F_DEAD)
1454 				continue;
1455 			if (in_dev &&
1456 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1457 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1458 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1459 				continue;
1460 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1461 				if (flp->flowi4_oif &&
1462 				    flp->flowi4_oif != nh->nh_oif)
1463 					continue;
1464 			}
1465 
1466 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1467 				refcount_inc(&fi->fib_clntref);
1468 
1469 			res->prefix = htonl(n->key);
1470 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1471 			res->nh_sel = nhsel;
1472 			res->type = fa->fa_type;
1473 			res->scope = fi->fib_scope;
1474 			res->fi = fi;
1475 			res->table = tb;
1476 			res->fa_head = &n->leaf;
1477 #ifdef CONFIG_IP_FIB_TRIE_STATS
1478 			this_cpu_inc(stats->semantic_match_passed);
1479 #endif
1480 			trace_fib_table_lookup_nh(nh);
1481 
1482 			return err;
1483 		}
1484 	}
1485 #ifdef CONFIG_IP_FIB_TRIE_STATS
1486 	this_cpu_inc(stats->semantic_match_miss);
1487 #endif
1488 	goto backtrace;
1489 }
1490 EXPORT_SYMBOL_GPL(fib_table_lookup);
1491 
1492 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1493 			     struct key_vector *l, struct fib_alias *old)
1494 {
1495 	/* record the location of the previous list_info entry */
1496 	struct hlist_node **pprev = old->fa_list.pprev;
1497 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1498 
1499 	/* remove the fib_alias from the list */
1500 	hlist_del_rcu(&old->fa_list);
1501 
1502 	/* if we emptied the list this leaf will be freed and we can sort
1503 	 * out parent suffix lengths as a part of trie_rebalance
1504 	 */
1505 	if (hlist_empty(&l->leaf)) {
1506 		if (tp->slen == l->slen)
1507 			node_pull_suffix(tp, tp->pos);
1508 		put_child_root(tp, l->key, NULL);
1509 		node_free(l);
1510 		trie_rebalance(t, tp);
1511 		return;
1512 	}
1513 
1514 	/* only access fa if it is pointing at the last valid hlist_node */
1515 	if (*pprev)
1516 		return;
1517 
1518 	/* update the trie with the latest suffix length */
1519 	l->slen = fa->fa_slen;
1520 	node_pull_suffix(tp, fa->fa_slen);
1521 }
1522 
1523 /* Caller must hold RTNL. */
1524 int fib_table_delete(struct net *net, struct fib_table *tb,
1525 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1526 {
1527 	struct trie *t = (struct trie *) tb->tb_data;
1528 	struct fib_alias *fa, *fa_to_delete;
1529 	struct key_vector *l, *tp;
1530 	u8 plen = cfg->fc_dst_len;
1531 	u8 slen = KEYLENGTH - plen;
1532 	u8 tos = cfg->fc_tos;
1533 	u32 key;
1534 
1535 	key = ntohl(cfg->fc_dst);
1536 
1537 	if (!fib_valid_key_len(key, plen, extack))
1538 		return -EINVAL;
1539 
1540 	l = fib_find_node(t, &tp, key);
1541 	if (!l)
1542 		return -ESRCH;
1543 
1544 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1545 	if (!fa)
1546 		return -ESRCH;
1547 
1548 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1549 
1550 	fa_to_delete = NULL;
1551 	hlist_for_each_entry_from(fa, fa_list) {
1552 		struct fib_info *fi = fa->fa_info;
1553 
1554 		if ((fa->fa_slen != slen) ||
1555 		    (fa->tb_id != tb->tb_id) ||
1556 		    (fa->fa_tos != tos))
1557 			break;
1558 
1559 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1560 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1561 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1562 		    (!cfg->fc_prefsrc ||
1563 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1564 		    (!cfg->fc_protocol ||
1565 		     fi->fib_protocol == cfg->fc_protocol) &&
1566 		    fib_nh_match(cfg, fi, extack) == 0 &&
1567 		    fib_metrics_match(cfg, fi)) {
1568 			fa_to_delete = fa;
1569 			break;
1570 		}
1571 	}
1572 
1573 	if (!fa_to_delete)
1574 		return -ESRCH;
1575 
1576 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1577 				 fa_to_delete->fa_info, tos,
1578 				 fa_to_delete->fa_type, tb->tb_id);
1579 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1580 		  &cfg->fc_nlinfo, 0);
1581 
1582 	if (!plen)
1583 		tb->tb_num_default--;
1584 
1585 	fib_remove_alias(t, tp, l, fa_to_delete);
1586 
1587 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1588 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1589 
1590 	fib_release_info(fa_to_delete->fa_info);
1591 	alias_free_mem_rcu(fa_to_delete);
1592 	return 0;
1593 }
1594 
1595 /* Scan for the next leaf starting at the provided key value */
1596 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1597 {
1598 	struct key_vector *pn, *n = *tn;
1599 	unsigned long cindex;
1600 
1601 	/* this loop is meant to try and find the key in the trie */
1602 	do {
1603 		/* record parent and next child index */
1604 		pn = n;
1605 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1606 
1607 		if (cindex >> pn->bits)
1608 			break;
1609 
1610 		/* descend into the next child */
1611 		n = get_child_rcu(pn, cindex++);
1612 		if (!n)
1613 			break;
1614 
1615 		/* guarantee forward progress on the keys */
1616 		if (IS_LEAF(n) && (n->key >= key))
1617 			goto found;
1618 	} while (IS_TNODE(n));
1619 
1620 	/* this loop will search for the next leaf with a greater key */
1621 	while (!IS_TRIE(pn)) {
1622 		/* if we exhausted the parent node we will need to climb */
1623 		if (cindex >= (1ul << pn->bits)) {
1624 			t_key pkey = pn->key;
1625 
1626 			pn = node_parent_rcu(pn);
1627 			cindex = get_index(pkey, pn) + 1;
1628 			continue;
1629 		}
1630 
1631 		/* grab the next available node */
1632 		n = get_child_rcu(pn, cindex++);
1633 		if (!n)
1634 			continue;
1635 
1636 		/* no need to compare keys since we bumped the index */
1637 		if (IS_LEAF(n))
1638 			goto found;
1639 
1640 		/* Rescan start scanning in new node */
1641 		pn = n;
1642 		cindex = 0;
1643 	}
1644 
1645 	*tn = pn;
1646 	return NULL; /* Root of trie */
1647 found:
1648 	/* if we are at the limit for keys just return NULL for the tnode */
1649 	*tn = pn;
1650 	return n;
1651 }
1652 
1653 static void fib_trie_free(struct fib_table *tb)
1654 {
1655 	struct trie *t = (struct trie *)tb->tb_data;
1656 	struct key_vector *pn = t->kv;
1657 	unsigned long cindex = 1;
1658 	struct hlist_node *tmp;
1659 	struct fib_alias *fa;
1660 
1661 	/* walk trie in reverse order and free everything */
1662 	for (;;) {
1663 		struct key_vector *n;
1664 
1665 		if (!(cindex--)) {
1666 			t_key pkey = pn->key;
1667 
1668 			if (IS_TRIE(pn))
1669 				break;
1670 
1671 			n = pn;
1672 			pn = node_parent(pn);
1673 
1674 			/* drop emptied tnode */
1675 			put_child_root(pn, n->key, NULL);
1676 			node_free(n);
1677 
1678 			cindex = get_index(pkey, pn);
1679 
1680 			continue;
1681 		}
1682 
1683 		/* grab the next available node */
1684 		n = get_child(pn, cindex);
1685 		if (!n)
1686 			continue;
1687 
1688 		if (IS_TNODE(n)) {
1689 			/* record pn and cindex for leaf walking */
1690 			pn = n;
1691 			cindex = 1ul << n->bits;
1692 
1693 			continue;
1694 		}
1695 
1696 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1697 			hlist_del_rcu(&fa->fa_list);
1698 			alias_free_mem_rcu(fa);
1699 		}
1700 
1701 		put_child_root(pn, n->key, NULL);
1702 		node_free(n);
1703 	}
1704 
1705 #ifdef CONFIG_IP_FIB_TRIE_STATS
1706 	free_percpu(t->stats);
1707 #endif
1708 	kfree(tb);
1709 }
1710 
1711 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1712 {
1713 	struct trie *ot = (struct trie *)oldtb->tb_data;
1714 	struct key_vector *l, *tp = ot->kv;
1715 	struct fib_table *local_tb;
1716 	struct fib_alias *fa;
1717 	struct trie *lt;
1718 	t_key key = 0;
1719 
1720 	if (oldtb->tb_data == oldtb->__data)
1721 		return oldtb;
1722 
1723 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1724 	if (!local_tb)
1725 		return NULL;
1726 
1727 	lt = (struct trie *)local_tb->tb_data;
1728 
1729 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1730 		struct key_vector *local_l = NULL, *local_tp;
1731 
1732 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1733 			struct fib_alias *new_fa;
1734 
1735 			if (local_tb->tb_id != fa->tb_id)
1736 				continue;
1737 
1738 			/* clone fa for new local table */
1739 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1740 			if (!new_fa)
1741 				goto out;
1742 
1743 			memcpy(new_fa, fa, sizeof(*fa));
1744 
1745 			/* insert clone into table */
1746 			if (!local_l)
1747 				local_l = fib_find_node(lt, &local_tp, l->key);
1748 
1749 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1750 					     NULL, l->key)) {
1751 				kmem_cache_free(fn_alias_kmem, new_fa);
1752 				goto out;
1753 			}
1754 		}
1755 
1756 		/* stop loop if key wrapped back to 0 */
1757 		key = l->key + 1;
1758 		if (key < l->key)
1759 			break;
1760 	}
1761 
1762 	return local_tb;
1763 out:
1764 	fib_trie_free(local_tb);
1765 
1766 	return NULL;
1767 }
1768 
1769 /* Caller must hold RTNL */
1770 void fib_table_flush_external(struct fib_table *tb)
1771 {
1772 	struct trie *t = (struct trie *)tb->tb_data;
1773 	struct key_vector *pn = t->kv;
1774 	unsigned long cindex = 1;
1775 	struct hlist_node *tmp;
1776 	struct fib_alias *fa;
1777 
1778 	/* walk trie in reverse order */
1779 	for (;;) {
1780 		unsigned char slen = 0;
1781 		struct key_vector *n;
1782 
1783 		if (!(cindex--)) {
1784 			t_key pkey = pn->key;
1785 
1786 			/* cannot resize the trie vector */
1787 			if (IS_TRIE(pn))
1788 				break;
1789 
1790 			/* update the suffix to address pulled leaves */
1791 			if (pn->slen > pn->pos)
1792 				update_suffix(pn);
1793 
1794 			/* resize completed node */
1795 			pn = resize(t, pn);
1796 			cindex = get_index(pkey, pn);
1797 
1798 			continue;
1799 		}
1800 
1801 		/* grab the next available node */
1802 		n = get_child(pn, cindex);
1803 		if (!n)
1804 			continue;
1805 
1806 		if (IS_TNODE(n)) {
1807 			/* record pn and cindex for leaf walking */
1808 			pn = n;
1809 			cindex = 1ul << n->bits;
1810 
1811 			continue;
1812 		}
1813 
1814 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1815 			/* if alias was cloned to local then we just
1816 			 * need to remove the local copy from main
1817 			 */
1818 			if (tb->tb_id != fa->tb_id) {
1819 				hlist_del_rcu(&fa->fa_list);
1820 				alias_free_mem_rcu(fa);
1821 				continue;
1822 			}
1823 
1824 			/* record local slen */
1825 			slen = fa->fa_slen;
1826 		}
1827 
1828 		/* update leaf slen */
1829 		n->slen = slen;
1830 
1831 		if (hlist_empty(&n->leaf)) {
1832 			put_child_root(pn, n->key, NULL);
1833 			node_free(n);
1834 		}
1835 	}
1836 }
1837 
1838 /* Caller must hold RTNL. */
1839 int fib_table_flush(struct net *net, struct fib_table *tb)
1840 {
1841 	struct trie *t = (struct trie *)tb->tb_data;
1842 	struct key_vector *pn = t->kv;
1843 	unsigned long cindex = 1;
1844 	struct hlist_node *tmp;
1845 	struct fib_alias *fa;
1846 	int found = 0;
1847 
1848 	/* walk trie in reverse order */
1849 	for (;;) {
1850 		unsigned char slen = 0;
1851 		struct key_vector *n;
1852 
1853 		if (!(cindex--)) {
1854 			t_key pkey = pn->key;
1855 
1856 			/* cannot resize the trie vector */
1857 			if (IS_TRIE(pn))
1858 				break;
1859 
1860 			/* update the suffix to address pulled leaves */
1861 			if (pn->slen > pn->pos)
1862 				update_suffix(pn);
1863 
1864 			/* resize completed node */
1865 			pn = resize(t, pn);
1866 			cindex = get_index(pkey, pn);
1867 
1868 			continue;
1869 		}
1870 
1871 		/* grab the next available node */
1872 		n = get_child(pn, cindex);
1873 		if (!n)
1874 			continue;
1875 
1876 		if (IS_TNODE(n)) {
1877 			/* record pn and cindex for leaf walking */
1878 			pn = n;
1879 			cindex = 1ul << n->bits;
1880 
1881 			continue;
1882 		}
1883 
1884 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1885 			struct fib_info *fi = fa->fa_info;
1886 
1887 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1888 			    tb->tb_id != fa->tb_id) {
1889 				slen = fa->fa_slen;
1890 				continue;
1891 			}
1892 
1893 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1894 						 n->key,
1895 						 KEYLENGTH - fa->fa_slen,
1896 						 fi, fa->fa_tos, fa->fa_type,
1897 						 tb->tb_id);
1898 			hlist_del_rcu(&fa->fa_list);
1899 			fib_release_info(fa->fa_info);
1900 			alias_free_mem_rcu(fa);
1901 			found++;
1902 		}
1903 
1904 		/* update leaf slen */
1905 		n->slen = slen;
1906 
1907 		if (hlist_empty(&n->leaf)) {
1908 			put_child_root(pn, n->key, NULL);
1909 			node_free(n);
1910 		}
1911 	}
1912 
1913 	pr_debug("trie_flush found=%d\n", found);
1914 	return found;
1915 }
1916 
1917 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1918 			    struct fib_table *tb, struct notifier_block *nb)
1919 {
1920 	struct fib_alias *fa;
1921 
1922 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1923 		struct fib_info *fi = fa->fa_info;
1924 
1925 		if (!fi)
1926 			continue;
1927 
1928 		/* local and main table can share the same trie,
1929 		 * so don't notify twice for the same entry.
1930 		 */
1931 		if (tb->tb_id != fa->tb_id)
1932 			continue;
1933 
1934 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1935 					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1936 					fa->fa_type, fa->tb_id);
1937 	}
1938 }
1939 
1940 static void fib_table_notify(struct net *net, struct fib_table *tb,
1941 			     struct notifier_block *nb)
1942 {
1943 	struct trie *t = (struct trie *)tb->tb_data;
1944 	struct key_vector *l, *tp = t->kv;
1945 	t_key key = 0;
1946 
1947 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1948 		fib_leaf_notify(net, l, tb, nb);
1949 
1950 		key = l->key + 1;
1951 		/* stop in case of wrap around */
1952 		if (key < l->key)
1953 			break;
1954 	}
1955 }
1956 
1957 void fib_notify(struct net *net, struct notifier_block *nb)
1958 {
1959 	unsigned int h;
1960 
1961 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1962 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1963 		struct fib_table *tb;
1964 
1965 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1966 			fib_table_notify(net, tb, nb);
1967 	}
1968 }
1969 
1970 static void __trie_free_rcu(struct rcu_head *head)
1971 {
1972 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1973 #ifdef CONFIG_IP_FIB_TRIE_STATS
1974 	struct trie *t = (struct trie *)tb->tb_data;
1975 
1976 	if (tb->tb_data == tb->__data)
1977 		free_percpu(t->stats);
1978 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1979 	kfree(tb);
1980 }
1981 
1982 void fib_free_table(struct fib_table *tb)
1983 {
1984 	call_rcu(&tb->rcu, __trie_free_rcu);
1985 }
1986 
1987 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1988 			     struct sk_buff *skb, struct netlink_callback *cb)
1989 {
1990 	__be32 xkey = htonl(l->key);
1991 	struct fib_alias *fa;
1992 	int i, s_i;
1993 
1994 	s_i = cb->args[4];
1995 	i = 0;
1996 
1997 	/* rcu_read_lock is hold by caller */
1998 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1999 		int err;
2000 
2001 		if (i < s_i) {
2002 			i++;
2003 			continue;
2004 		}
2005 
2006 		if (tb->tb_id != fa->tb_id) {
2007 			i++;
2008 			continue;
2009 		}
2010 
2011 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2012 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2013 				    tb->tb_id, fa->fa_type,
2014 				    xkey, KEYLENGTH - fa->fa_slen,
2015 				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2016 		if (err < 0) {
2017 			cb->args[4] = i;
2018 			return err;
2019 		}
2020 		i++;
2021 	}
2022 
2023 	cb->args[4] = i;
2024 	return skb->len;
2025 }
2026 
2027 /* rcu_read_lock needs to be hold by caller from readside */
2028 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2029 		   struct netlink_callback *cb)
2030 {
2031 	struct trie *t = (struct trie *)tb->tb_data;
2032 	struct key_vector *l, *tp = t->kv;
2033 	/* Dump starting at last key.
2034 	 * Note: 0.0.0.0/0 (ie default) is first key.
2035 	 */
2036 	int count = cb->args[2];
2037 	t_key key = cb->args[3];
2038 
2039 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2040 		int err;
2041 
2042 		err = fn_trie_dump_leaf(l, tb, skb, cb);
2043 		if (err < 0) {
2044 			cb->args[3] = key;
2045 			cb->args[2] = count;
2046 			return err;
2047 		}
2048 
2049 		++count;
2050 		key = l->key + 1;
2051 
2052 		memset(&cb->args[4], 0,
2053 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2054 
2055 		/* stop loop if key wrapped back to 0 */
2056 		if (key < l->key)
2057 			break;
2058 	}
2059 
2060 	cb->args[3] = key;
2061 	cb->args[2] = count;
2062 
2063 	return skb->len;
2064 }
2065 
2066 void __init fib_trie_init(void)
2067 {
2068 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2069 					  sizeof(struct fib_alias),
2070 					  0, SLAB_PANIC, NULL);
2071 
2072 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2073 					   LEAF_SIZE,
2074 					   0, SLAB_PANIC, NULL);
2075 }
2076 
2077 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2078 {
2079 	struct fib_table *tb;
2080 	struct trie *t;
2081 	size_t sz = sizeof(*tb);
2082 
2083 	if (!alias)
2084 		sz += sizeof(struct trie);
2085 
2086 	tb = kzalloc(sz, GFP_KERNEL);
2087 	if (!tb)
2088 		return NULL;
2089 
2090 	tb->tb_id = id;
2091 	tb->tb_num_default = 0;
2092 	tb->tb_data = (alias ? alias->__data : tb->__data);
2093 
2094 	if (alias)
2095 		return tb;
2096 
2097 	t = (struct trie *) tb->tb_data;
2098 	t->kv[0].pos = KEYLENGTH;
2099 	t->kv[0].slen = KEYLENGTH;
2100 #ifdef CONFIG_IP_FIB_TRIE_STATS
2101 	t->stats = alloc_percpu(struct trie_use_stats);
2102 	if (!t->stats) {
2103 		kfree(tb);
2104 		tb = NULL;
2105 	}
2106 #endif
2107 
2108 	return tb;
2109 }
2110 
2111 #ifdef CONFIG_PROC_FS
2112 /* Depth first Trie walk iterator */
2113 struct fib_trie_iter {
2114 	struct seq_net_private p;
2115 	struct fib_table *tb;
2116 	struct key_vector *tnode;
2117 	unsigned int index;
2118 	unsigned int depth;
2119 };
2120 
2121 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2122 {
2123 	unsigned long cindex = iter->index;
2124 	struct key_vector *pn = iter->tnode;
2125 	t_key pkey;
2126 
2127 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2128 		 iter->tnode, iter->index, iter->depth);
2129 
2130 	while (!IS_TRIE(pn)) {
2131 		while (cindex < child_length(pn)) {
2132 			struct key_vector *n = get_child_rcu(pn, cindex++);
2133 
2134 			if (!n)
2135 				continue;
2136 
2137 			if (IS_LEAF(n)) {
2138 				iter->tnode = pn;
2139 				iter->index = cindex;
2140 			} else {
2141 				/* push down one level */
2142 				iter->tnode = n;
2143 				iter->index = 0;
2144 				++iter->depth;
2145 			}
2146 
2147 			return n;
2148 		}
2149 
2150 		/* Current node exhausted, pop back up */
2151 		pkey = pn->key;
2152 		pn = node_parent_rcu(pn);
2153 		cindex = get_index(pkey, pn) + 1;
2154 		--iter->depth;
2155 	}
2156 
2157 	/* record root node so further searches know we are done */
2158 	iter->tnode = pn;
2159 	iter->index = 0;
2160 
2161 	return NULL;
2162 }
2163 
2164 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2165 					     struct trie *t)
2166 {
2167 	struct key_vector *n, *pn;
2168 
2169 	if (!t)
2170 		return NULL;
2171 
2172 	pn = t->kv;
2173 	n = rcu_dereference(pn->tnode[0]);
2174 	if (!n)
2175 		return NULL;
2176 
2177 	if (IS_TNODE(n)) {
2178 		iter->tnode = n;
2179 		iter->index = 0;
2180 		iter->depth = 1;
2181 	} else {
2182 		iter->tnode = pn;
2183 		iter->index = 0;
2184 		iter->depth = 0;
2185 	}
2186 
2187 	return n;
2188 }
2189 
2190 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2191 {
2192 	struct key_vector *n;
2193 	struct fib_trie_iter iter;
2194 
2195 	memset(s, 0, sizeof(*s));
2196 
2197 	rcu_read_lock();
2198 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2199 		if (IS_LEAF(n)) {
2200 			struct fib_alias *fa;
2201 
2202 			s->leaves++;
2203 			s->totdepth += iter.depth;
2204 			if (iter.depth > s->maxdepth)
2205 				s->maxdepth = iter.depth;
2206 
2207 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2208 				++s->prefixes;
2209 		} else {
2210 			s->tnodes++;
2211 			if (n->bits < MAX_STAT_DEPTH)
2212 				s->nodesizes[n->bits]++;
2213 			s->nullpointers += tn_info(n)->empty_children;
2214 		}
2215 	}
2216 	rcu_read_unlock();
2217 }
2218 
2219 /*
2220  *	This outputs /proc/net/fib_triestats
2221  */
2222 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2223 {
2224 	unsigned int i, max, pointers, bytes, avdepth;
2225 
2226 	if (stat->leaves)
2227 		avdepth = stat->totdepth*100 / stat->leaves;
2228 	else
2229 		avdepth = 0;
2230 
2231 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2232 		   avdepth / 100, avdepth % 100);
2233 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2234 
2235 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2236 	bytes = LEAF_SIZE * stat->leaves;
2237 
2238 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2239 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2240 
2241 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2242 	bytes += TNODE_SIZE(0) * stat->tnodes;
2243 
2244 	max = MAX_STAT_DEPTH;
2245 	while (max > 0 && stat->nodesizes[max-1] == 0)
2246 		max--;
2247 
2248 	pointers = 0;
2249 	for (i = 1; i < max; i++)
2250 		if (stat->nodesizes[i] != 0) {
2251 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2252 			pointers += (1<<i) * stat->nodesizes[i];
2253 		}
2254 	seq_putc(seq, '\n');
2255 	seq_printf(seq, "\tPointers: %u\n", pointers);
2256 
2257 	bytes += sizeof(struct key_vector *) * pointers;
2258 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2259 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2260 }
2261 
2262 #ifdef CONFIG_IP_FIB_TRIE_STATS
2263 static void trie_show_usage(struct seq_file *seq,
2264 			    const struct trie_use_stats __percpu *stats)
2265 {
2266 	struct trie_use_stats s = { 0 };
2267 	int cpu;
2268 
2269 	/* loop through all of the CPUs and gather up the stats */
2270 	for_each_possible_cpu(cpu) {
2271 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2272 
2273 		s.gets += pcpu->gets;
2274 		s.backtrack += pcpu->backtrack;
2275 		s.semantic_match_passed += pcpu->semantic_match_passed;
2276 		s.semantic_match_miss += pcpu->semantic_match_miss;
2277 		s.null_node_hit += pcpu->null_node_hit;
2278 		s.resize_node_skipped += pcpu->resize_node_skipped;
2279 	}
2280 
2281 	seq_printf(seq, "\nCounters:\n---------\n");
2282 	seq_printf(seq, "gets = %u\n", s.gets);
2283 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2284 	seq_printf(seq, "semantic match passed = %u\n",
2285 		   s.semantic_match_passed);
2286 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2287 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2288 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2289 }
2290 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2291 
2292 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2293 {
2294 	if (tb->tb_id == RT_TABLE_LOCAL)
2295 		seq_puts(seq, "Local:\n");
2296 	else if (tb->tb_id == RT_TABLE_MAIN)
2297 		seq_puts(seq, "Main:\n");
2298 	else
2299 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2300 }
2301 
2302 
2303 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2304 {
2305 	struct net *net = (struct net *)seq->private;
2306 	unsigned int h;
2307 
2308 	seq_printf(seq,
2309 		   "Basic info: size of leaf:"
2310 		   " %zd bytes, size of tnode: %zd bytes.\n",
2311 		   LEAF_SIZE, TNODE_SIZE(0));
2312 
2313 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2314 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2315 		struct fib_table *tb;
2316 
2317 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2318 			struct trie *t = (struct trie *) tb->tb_data;
2319 			struct trie_stat stat;
2320 
2321 			if (!t)
2322 				continue;
2323 
2324 			fib_table_print(seq, tb);
2325 
2326 			trie_collect_stats(t, &stat);
2327 			trie_show_stats(seq, &stat);
2328 #ifdef CONFIG_IP_FIB_TRIE_STATS
2329 			trie_show_usage(seq, t->stats);
2330 #endif
2331 		}
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2338 {
2339 	return single_open_net(inode, file, fib_triestat_seq_show);
2340 }
2341 
2342 static const struct file_operations fib_triestat_fops = {
2343 	.owner	= THIS_MODULE,
2344 	.open	= fib_triestat_seq_open,
2345 	.read	= seq_read,
2346 	.llseek	= seq_lseek,
2347 	.release = single_release_net,
2348 };
2349 
2350 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2351 {
2352 	struct fib_trie_iter *iter = seq->private;
2353 	struct net *net = seq_file_net(seq);
2354 	loff_t idx = 0;
2355 	unsigned int h;
2356 
2357 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2358 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2359 		struct fib_table *tb;
2360 
2361 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2362 			struct key_vector *n;
2363 
2364 			for (n = fib_trie_get_first(iter,
2365 						    (struct trie *) tb->tb_data);
2366 			     n; n = fib_trie_get_next(iter))
2367 				if (pos == idx++) {
2368 					iter->tb = tb;
2369 					return n;
2370 				}
2371 		}
2372 	}
2373 
2374 	return NULL;
2375 }
2376 
2377 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2378 	__acquires(RCU)
2379 {
2380 	rcu_read_lock();
2381 	return fib_trie_get_idx(seq, *pos);
2382 }
2383 
2384 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2385 {
2386 	struct fib_trie_iter *iter = seq->private;
2387 	struct net *net = seq_file_net(seq);
2388 	struct fib_table *tb = iter->tb;
2389 	struct hlist_node *tb_node;
2390 	unsigned int h;
2391 	struct key_vector *n;
2392 
2393 	++*pos;
2394 	/* next node in same table */
2395 	n = fib_trie_get_next(iter);
2396 	if (n)
2397 		return n;
2398 
2399 	/* walk rest of this hash chain */
2400 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2401 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2402 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2403 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2404 		if (n)
2405 			goto found;
2406 	}
2407 
2408 	/* new hash chain */
2409 	while (++h < FIB_TABLE_HASHSZ) {
2410 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2411 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2412 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2413 			if (n)
2414 				goto found;
2415 		}
2416 	}
2417 	return NULL;
2418 
2419 found:
2420 	iter->tb = tb;
2421 	return n;
2422 }
2423 
2424 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2425 	__releases(RCU)
2426 {
2427 	rcu_read_unlock();
2428 }
2429 
2430 static void seq_indent(struct seq_file *seq, int n)
2431 {
2432 	while (n-- > 0)
2433 		seq_puts(seq, "   ");
2434 }
2435 
2436 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2437 {
2438 	switch (s) {
2439 	case RT_SCOPE_UNIVERSE: return "universe";
2440 	case RT_SCOPE_SITE:	return "site";
2441 	case RT_SCOPE_LINK:	return "link";
2442 	case RT_SCOPE_HOST:	return "host";
2443 	case RT_SCOPE_NOWHERE:	return "nowhere";
2444 	default:
2445 		snprintf(buf, len, "scope=%d", s);
2446 		return buf;
2447 	}
2448 }
2449 
2450 static const char *const rtn_type_names[__RTN_MAX] = {
2451 	[RTN_UNSPEC] = "UNSPEC",
2452 	[RTN_UNICAST] = "UNICAST",
2453 	[RTN_LOCAL] = "LOCAL",
2454 	[RTN_BROADCAST] = "BROADCAST",
2455 	[RTN_ANYCAST] = "ANYCAST",
2456 	[RTN_MULTICAST] = "MULTICAST",
2457 	[RTN_BLACKHOLE] = "BLACKHOLE",
2458 	[RTN_UNREACHABLE] = "UNREACHABLE",
2459 	[RTN_PROHIBIT] = "PROHIBIT",
2460 	[RTN_THROW] = "THROW",
2461 	[RTN_NAT] = "NAT",
2462 	[RTN_XRESOLVE] = "XRESOLVE",
2463 };
2464 
2465 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2466 {
2467 	if (t < __RTN_MAX && rtn_type_names[t])
2468 		return rtn_type_names[t];
2469 	snprintf(buf, len, "type %u", t);
2470 	return buf;
2471 }
2472 
2473 /* Pretty print the trie */
2474 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2475 {
2476 	const struct fib_trie_iter *iter = seq->private;
2477 	struct key_vector *n = v;
2478 
2479 	if (IS_TRIE(node_parent_rcu(n)))
2480 		fib_table_print(seq, iter->tb);
2481 
2482 	if (IS_TNODE(n)) {
2483 		__be32 prf = htonl(n->key);
2484 
2485 		seq_indent(seq, iter->depth-1);
2486 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2487 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2488 			   tn_info(n)->full_children,
2489 			   tn_info(n)->empty_children);
2490 	} else {
2491 		__be32 val = htonl(n->key);
2492 		struct fib_alias *fa;
2493 
2494 		seq_indent(seq, iter->depth);
2495 		seq_printf(seq, "  |-- %pI4\n", &val);
2496 
2497 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2498 			char buf1[32], buf2[32];
2499 
2500 			seq_indent(seq, iter->depth + 1);
2501 			seq_printf(seq, "  /%zu %s %s",
2502 				   KEYLENGTH - fa->fa_slen,
2503 				   rtn_scope(buf1, sizeof(buf1),
2504 					     fa->fa_info->fib_scope),
2505 				   rtn_type(buf2, sizeof(buf2),
2506 					    fa->fa_type));
2507 			if (fa->fa_tos)
2508 				seq_printf(seq, " tos=%d", fa->fa_tos);
2509 			seq_putc(seq, '\n');
2510 		}
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static const struct seq_operations fib_trie_seq_ops = {
2517 	.start  = fib_trie_seq_start,
2518 	.next   = fib_trie_seq_next,
2519 	.stop   = fib_trie_seq_stop,
2520 	.show   = fib_trie_seq_show,
2521 };
2522 
2523 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2524 {
2525 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2526 			    sizeof(struct fib_trie_iter));
2527 }
2528 
2529 static const struct file_operations fib_trie_fops = {
2530 	.owner  = THIS_MODULE,
2531 	.open   = fib_trie_seq_open,
2532 	.read   = seq_read,
2533 	.llseek = seq_lseek,
2534 	.release = seq_release_net,
2535 };
2536 
2537 struct fib_route_iter {
2538 	struct seq_net_private p;
2539 	struct fib_table *main_tb;
2540 	struct key_vector *tnode;
2541 	loff_t	pos;
2542 	t_key	key;
2543 };
2544 
2545 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2546 					    loff_t pos)
2547 {
2548 	struct key_vector *l, **tp = &iter->tnode;
2549 	t_key key;
2550 
2551 	/* use cached location of previously found key */
2552 	if (iter->pos > 0 && pos >= iter->pos) {
2553 		key = iter->key;
2554 	} else {
2555 		iter->pos = 1;
2556 		key = 0;
2557 	}
2558 
2559 	pos -= iter->pos;
2560 
2561 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2562 		key = l->key + 1;
2563 		iter->pos++;
2564 		l = NULL;
2565 
2566 		/* handle unlikely case of a key wrap */
2567 		if (!key)
2568 			break;
2569 	}
2570 
2571 	if (l)
2572 		iter->key = l->key;	/* remember it */
2573 	else
2574 		iter->pos = 0;		/* forget it */
2575 
2576 	return l;
2577 }
2578 
2579 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2580 	__acquires(RCU)
2581 {
2582 	struct fib_route_iter *iter = seq->private;
2583 	struct fib_table *tb;
2584 	struct trie *t;
2585 
2586 	rcu_read_lock();
2587 
2588 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2589 	if (!tb)
2590 		return NULL;
2591 
2592 	iter->main_tb = tb;
2593 	t = (struct trie *)tb->tb_data;
2594 	iter->tnode = t->kv;
2595 
2596 	if (*pos != 0)
2597 		return fib_route_get_idx(iter, *pos);
2598 
2599 	iter->pos = 0;
2600 	iter->key = KEY_MAX;
2601 
2602 	return SEQ_START_TOKEN;
2603 }
2604 
2605 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2606 {
2607 	struct fib_route_iter *iter = seq->private;
2608 	struct key_vector *l = NULL;
2609 	t_key key = iter->key + 1;
2610 
2611 	++*pos;
2612 
2613 	/* only allow key of 0 for start of sequence */
2614 	if ((v == SEQ_START_TOKEN) || key)
2615 		l = leaf_walk_rcu(&iter->tnode, key);
2616 
2617 	if (l) {
2618 		iter->key = l->key;
2619 		iter->pos++;
2620 	} else {
2621 		iter->pos = 0;
2622 	}
2623 
2624 	return l;
2625 }
2626 
2627 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2628 	__releases(RCU)
2629 {
2630 	rcu_read_unlock();
2631 }
2632 
2633 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2634 {
2635 	unsigned int flags = 0;
2636 
2637 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2638 		flags = RTF_REJECT;
2639 	if (fi && fi->fib_nh->nh_gw)
2640 		flags |= RTF_GATEWAY;
2641 	if (mask == htonl(0xFFFFFFFF))
2642 		flags |= RTF_HOST;
2643 	flags |= RTF_UP;
2644 	return flags;
2645 }
2646 
2647 /*
2648  *	This outputs /proc/net/route.
2649  *	The format of the file is not supposed to be changed
2650  *	and needs to be same as fib_hash output to avoid breaking
2651  *	legacy utilities
2652  */
2653 static int fib_route_seq_show(struct seq_file *seq, void *v)
2654 {
2655 	struct fib_route_iter *iter = seq->private;
2656 	struct fib_table *tb = iter->main_tb;
2657 	struct fib_alias *fa;
2658 	struct key_vector *l = v;
2659 	__be32 prefix;
2660 
2661 	if (v == SEQ_START_TOKEN) {
2662 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2663 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2664 			   "\tWindow\tIRTT");
2665 		return 0;
2666 	}
2667 
2668 	prefix = htonl(l->key);
2669 
2670 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2671 		const struct fib_info *fi = fa->fa_info;
2672 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2673 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2674 
2675 		if ((fa->fa_type == RTN_BROADCAST) ||
2676 		    (fa->fa_type == RTN_MULTICAST))
2677 			continue;
2678 
2679 		if (fa->tb_id != tb->tb_id)
2680 			continue;
2681 
2682 		seq_setwidth(seq, 127);
2683 
2684 		if (fi)
2685 			seq_printf(seq,
2686 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2687 				   "%d\t%08X\t%d\t%u\t%u",
2688 				   fi->fib_dev ? fi->fib_dev->name : "*",
2689 				   prefix,
2690 				   fi->fib_nh->nh_gw, flags, 0, 0,
2691 				   fi->fib_priority,
2692 				   mask,
2693 				   (fi->fib_advmss ?
2694 				    fi->fib_advmss + 40 : 0),
2695 				   fi->fib_window,
2696 				   fi->fib_rtt >> 3);
2697 		else
2698 			seq_printf(seq,
2699 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2700 				   "%d\t%08X\t%d\t%u\t%u",
2701 				   prefix, 0, flags, 0, 0, 0,
2702 				   mask, 0, 0, 0);
2703 
2704 		seq_pad(seq, '\n');
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 static const struct seq_operations fib_route_seq_ops = {
2711 	.start  = fib_route_seq_start,
2712 	.next   = fib_route_seq_next,
2713 	.stop   = fib_route_seq_stop,
2714 	.show   = fib_route_seq_show,
2715 };
2716 
2717 static int fib_route_seq_open(struct inode *inode, struct file *file)
2718 {
2719 	return seq_open_net(inode, file, &fib_route_seq_ops,
2720 			    sizeof(struct fib_route_iter));
2721 }
2722 
2723 static const struct file_operations fib_route_fops = {
2724 	.owner  = THIS_MODULE,
2725 	.open   = fib_route_seq_open,
2726 	.read   = seq_read,
2727 	.llseek = seq_lseek,
2728 	.release = seq_release_net,
2729 };
2730 
2731 int __net_init fib_proc_init(struct net *net)
2732 {
2733 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2734 		goto out1;
2735 
2736 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2737 			 &fib_triestat_fops))
2738 		goto out2;
2739 
2740 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2741 		goto out3;
2742 
2743 	return 0;
2744 
2745 out3:
2746 	remove_proc_entry("fib_triestat", net->proc_net);
2747 out2:
2748 	remove_proc_entry("fib_trie", net->proc_net);
2749 out1:
2750 	return -ENOMEM;
2751 }
2752 
2753 void __net_exit fib_proc_exit(struct net *net)
2754 {
2755 	remove_proc_entry("fib_trie", net->proc_net);
2756 	remove_proc_entry("fib_triestat", net->proc_net);
2757 	remove_proc_entry("route", net->proc_net);
2758 }
2759 
2760 #endif /* CONFIG_PROC_FS */
2761