xref: /openbmc/linux/net/ipv4/fib_trie.c (revision c537b994)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally descibed in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  * Version:	$Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26  *
27  *
28  * Code from fib_hash has been reused which includes the following header:
29  *
30  *
31  * INET		An implementation of the TCP/IP protocol suite for the LINUX
32  *		operating system.  INET is implemented using the  BSD Socket
33  *		interface as the means of communication with the user level.
34  *
35  *		IPv4 FIB: lookup engine and maintenance routines.
36  *
37  *
38  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39  *
40  *		This program is free software; you can redistribute it and/or
41  *		modify it under the terms of the GNU General Public License
42  *		as published by the Free Software Foundation; either version
43  *		2 of the License, or (at your option) any later version.
44  *
45  * Substantial contributions to this work comes from:
46  *
47  *		David S. Miller, <davem@davemloft.net>
48  *		Stephen Hemminger <shemminger@osdl.org>
49  *		Paul E. McKenney <paulmck@us.ibm.com>
50  *		Patrick McHardy <kaber@trash.net>
51  */
52 
53 #define VERSION "0.407"
54 
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <asm/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83 
84 #undef CONFIG_IP_FIB_TRIE_STATS
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
89 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
90 
91 typedef unsigned int t_key;
92 
93 #define T_TNODE 0
94 #define T_LEAF  1
95 #define NODE_TYPE_MASK	0x1UL
96 #define NODE_PARENT(node) \
97 	((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
98 
99 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
100 
101 #define NODE_SET_PARENT(node, ptr)		\
102 	rcu_assign_pointer((node)->parent,	\
103 			   ((unsigned long)(ptr)) | NODE_TYPE(node))
104 
105 #define IS_TNODE(n) (!(n->parent & T_LEAF))
106 #define IS_LEAF(n) (n->parent & T_LEAF)
107 
108 struct node {
109 	t_key key;
110 	unsigned long parent;
111 };
112 
113 struct leaf {
114 	t_key key;
115 	unsigned long parent;
116 	struct hlist_head list;
117 	struct rcu_head rcu;
118 };
119 
120 struct leaf_info {
121 	struct hlist_node hlist;
122 	struct rcu_head rcu;
123 	int plen;
124 	struct list_head falh;
125 };
126 
127 struct tnode {
128 	t_key key;
129 	unsigned long parent;
130 	unsigned short pos:5;		/* 2log(KEYLENGTH) bits needed */
131 	unsigned short bits:5;		/* 2log(KEYLENGTH) bits needed */
132 	unsigned short full_children;	/* KEYLENGTH bits needed */
133 	unsigned short empty_children;	/* KEYLENGTH bits needed */
134 	struct rcu_head rcu;
135 	struct node *child[0];
136 };
137 
138 #ifdef CONFIG_IP_FIB_TRIE_STATS
139 struct trie_use_stats {
140 	unsigned int gets;
141 	unsigned int backtrack;
142 	unsigned int semantic_match_passed;
143 	unsigned int semantic_match_miss;
144 	unsigned int null_node_hit;
145 	unsigned int resize_node_skipped;
146 };
147 #endif
148 
149 struct trie_stat {
150 	unsigned int totdepth;
151 	unsigned int maxdepth;
152 	unsigned int tnodes;
153 	unsigned int leaves;
154 	unsigned int nullpointers;
155 	unsigned int nodesizes[MAX_STAT_DEPTH];
156 };
157 
158 struct trie {
159 	struct node *trie;
160 #ifdef CONFIG_IP_FIB_TRIE_STATS
161 	struct trie_use_stats stats;
162 #endif
163 	int size;
164 	unsigned int revision;
165 };
166 
167 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
168 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
169 static struct node *resize(struct trie *t, struct tnode *tn);
170 static struct tnode *inflate(struct trie *t, struct tnode *tn);
171 static struct tnode *halve(struct trie *t, struct tnode *tn);
172 static void tnode_free(struct tnode *tn);
173 
174 static struct kmem_cache *fn_alias_kmem __read_mostly;
175 static struct trie *trie_local = NULL, *trie_main = NULL;
176 
177 
178 /* rcu_read_lock needs to be hold by caller from readside */
179 
180 static inline struct node *tnode_get_child(struct tnode *tn, int i)
181 {
182 	BUG_ON(i >= 1 << tn->bits);
183 
184 	return rcu_dereference(tn->child[i]);
185 }
186 
187 static inline int tnode_child_length(const struct tnode *tn)
188 {
189 	return 1 << tn->bits;
190 }
191 
192 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
193 {
194 	if (offset < KEYLENGTH)
195 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
196 	else
197 		return 0;
198 }
199 
200 static inline int tkey_equals(t_key a, t_key b)
201 {
202 	return a == b;
203 }
204 
205 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
206 {
207 	if (bits == 0 || offset >= KEYLENGTH)
208 		return 1;
209 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
210 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
211 }
212 
213 static inline int tkey_mismatch(t_key a, int offset, t_key b)
214 {
215 	t_key diff = a ^ b;
216 	int i = offset;
217 
218 	if (!diff)
219 		return 0;
220 	while ((diff << i) >> (KEYLENGTH-1) == 0)
221 		i++;
222 	return i;
223 }
224 
225 /*
226   To understand this stuff, an understanding of keys and all their bits is
227   necessary. Every node in the trie has a key associated with it, but not
228   all of the bits in that key are significant.
229 
230   Consider a node 'n' and its parent 'tp'.
231 
232   If n is a leaf, every bit in its key is significant. Its presence is
233   necessitated by path compression, since during a tree traversal (when
234   searching for a leaf - unless we are doing an insertion) we will completely
235   ignore all skipped bits we encounter. Thus we need to verify, at the end of
236   a potentially successful search, that we have indeed been walking the
237   correct key path.
238 
239   Note that we can never "miss" the correct key in the tree if present by
240   following the wrong path. Path compression ensures that segments of the key
241   that are the same for all keys with a given prefix are skipped, but the
242   skipped part *is* identical for each node in the subtrie below the skipped
243   bit! trie_insert() in this implementation takes care of that - note the
244   call to tkey_sub_equals() in trie_insert().
245 
246   if n is an internal node - a 'tnode' here, the various parts of its key
247   have many different meanings.
248 
249   Example:
250   _________________________________________________________________
251   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
252   -----------------------------------------------------------------
253     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
254 
255   _________________________________________________________________
256   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
257   -----------------------------------------------------------------
258    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
259 
260   tp->pos = 7
261   tp->bits = 3
262   n->pos = 15
263   n->bits = 4
264 
265   First, let's just ignore the bits that come before the parent tp, that is
266   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
267   not use them for anything.
268 
269   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
270   index into the parent's child array. That is, they will be used to find
271   'n' among tp's children.
272 
273   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
274   for the node n.
275 
276   All the bits we have seen so far are significant to the node n. The rest
277   of the bits are really not needed or indeed known in n->key.
278 
279   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
280   n's child array, and will of course be different for each child.
281 
282 
283   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
284   at this point.
285 
286 */
287 
288 static inline void check_tnode(const struct tnode *tn)
289 {
290 	WARN_ON(tn && tn->pos+tn->bits > 32);
291 }
292 
293 static int halve_threshold = 25;
294 static int inflate_threshold = 50;
295 static int halve_threshold_root = 15;
296 static int inflate_threshold_root = 25;
297 
298 
299 static void __alias_free_mem(struct rcu_head *head)
300 {
301 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
302 	kmem_cache_free(fn_alias_kmem, fa);
303 }
304 
305 static inline void alias_free_mem_rcu(struct fib_alias *fa)
306 {
307 	call_rcu(&fa->rcu, __alias_free_mem);
308 }
309 
310 static void __leaf_free_rcu(struct rcu_head *head)
311 {
312 	kfree(container_of(head, struct leaf, rcu));
313 }
314 
315 static void __leaf_info_free_rcu(struct rcu_head *head)
316 {
317 	kfree(container_of(head, struct leaf_info, rcu));
318 }
319 
320 static inline void free_leaf_info(struct leaf_info *leaf)
321 {
322 	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
323 }
324 
325 static struct tnode *tnode_alloc(unsigned int size)
326 {
327 	struct page *pages;
328 
329 	if (size <= PAGE_SIZE)
330 		return kcalloc(size, 1, GFP_KERNEL);
331 
332 	pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 	if (!pages)
334 		return NULL;
335 
336 	return page_address(pages);
337 }
338 
339 static void __tnode_free_rcu(struct rcu_head *head)
340 {
341 	struct tnode *tn = container_of(head, struct tnode, rcu);
342 	unsigned int size = sizeof(struct tnode) +
343 		(1 << tn->bits) * sizeof(struct node *);
344 
345 	if (size <= PAGE_SIZE)
346 		kfree(tn);
347 	else
348 		free_pages((unsigned long)tn, get_order(size));
349 }
350 
351 static inline void tnode_free(struct tnode *tn)
352 {
353 	if(IS_LEAF(tn)) {
354 		struct leaf *l = (struct leaf *) tn;
355 		call_rcu_bh(&l->rcu, __leaf_free_rcu);
356 	}
357 	else
358 		call_rcu(&tn->rcu, __tnode_free_rcu);
359 }
360 
361 static struct leaf *leaf_new(void)
362 {
363 	struct leaf *l = kmalloc(sizeof(struct leaf),  GFP_KERNEL);
364 	if (l) {
365 		l->parent = T_LEAF;
366 		INIT_HLIST_HEAD(&l->list);
367 	}
368 	return l;
369 }
370 
371 static struct leaf_info *leaf_info_new(int plen)
372 {
373 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
374 	if (li) {
375 		li->plen = plen;
376 		INIT_LIST_HEAD(&li->falh);
377 	}
378 	return li;
379 }
380 
381 static struct tnode* tnode_new(t_key key, int pos, int bits)
382 {
383 	int nchildren = 1<<bits;
384 	int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
385 	struct tnode *tn = tnode_alloc(sz);
386 
387 	if (tn) {
388 		memset(tn, 0, sz);
389 		tn->parent = T_TNODE;
390 		tn->pos = pos;
391 		tn->bits = bits;
392 		tn->key = key;
393 		tn->full_children = 0;
394 		tn->empty_children = 1<<bits;
395 	}
396 
397 	pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
398 		 (unsigned int) (sizeof(struct node) * 1<<bits));
399 	return tn;
400 }
401 
402 /*
403  * Check whether a tnode 'n' is "full", i.e. it is an internal node
404  * and no bits are skipped. See discussion in dyntree paper p. 6
405  */
406 
407 static inline int tnode_full(const struct tnode *tn, const struct node *n)
408 {
409 	if (n == NULL || IS_LEAF(n))
410 		return 0;
411 
412 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
413 }
414 
415 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
416 {
417 	tnode_put_child_reorg(tn, i, n, -1);
418 }
419 
420  /*
421   * Add a child at position i overwriting the old value.
422   * Update the value of full_children and empty_children.
423   */
424 
425 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
426 {
427 	struct node *chi = tn->child[i];
428 	int isfull;
429 
430 	BUG_ON(i >= 1<<tn->bits);
431 
432 
433 	/* update emptyChildren */
434 	if (n == NULL && chi != NULL)
435 		tn->empty_children++;
436 	else if (n != NULL && chi == NULL)
437 		tn->empty_children--;
438 
439 	/* update fullChildren */
440 	if (wasfull == -1)
441 		wasfull = tnode_full(tn, chi);
442 
443 	isfull = tnode_full(tn, n);
444 	if (wasfull && !isfull)
445 		tn->full_children--;
446 	else if (!wasfull && isfull)
447 		tn->full_children++;
448 
449 	if (n)
450 		NODE_SET_PARENT(n, tn);
451 
452 	rcu_assign_pointer(tn->child[i], n);
453 }
454 
455 static struct node *resize(struct trie *t, struct tnode *tn)
456 {
457 	int i;
458 	int err = 0;
459 	struct tnode *old_tn;
460 	int inflate_threshold_use;
461 	int halve_threshold_use;
462 
463 	if (!tn)
464 		return NULL;
465 
466 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
467 		 tn, inflate_threshold, halve_threshold);
468 
469 	/* No children */
470 	if (tn->empty_children == tnode_child_length(tn)) {
471 		tnode_free(tn);
472 		return NULL;
473 	}
474 	/* One child */
475 	if (tn->empty_children == tnode_child_length(tn) - 1)
476 		for (i = 0; i < tnode_child_length(tn); i++) {
477 			struct node *n;
478 
479 			n = tn->child[i];
480 			if (!n)
481 				continue;
482 
483 			/* compress one level */
484 			NODE_SET_PARENT(n, NULL);
485 			tnode_free(tn);
486 			return n;
487 		}
488 	/*
489 	 * Double as long as the resulting node has a number of
490 	 * nonempty nodes that are above the threshold.
491 	 */
492 
493 	/*
494 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
495 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
496 	 * Telecommunications, page 6:
497 	 * "A node is doubled if the ratio of non-empty children to all
498 	 * children in the *doubled* node is at least 'high'."
499 	 *
500 	 * 'high' in this instance is the variable 'inflate_threshold'. It
501 	 * is expressed as a percentage, so we multiply it with
502 	 * tnode_child_length() and instead of multiplying by 2 (since the
503 	 * child array will be doubled by inflate()) and multiplying
504 	 * the left-hand side by 100 (to handle the percentage thing) we
505 	 * multiply the left-hand side by 50.
506 	 *
507 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
508 	 * - tn->empty_children is of course the number of non-null children
509 	 * in the current node. tn->full_children is the number of "full"
510 	 * children, that is non-null tnodes with a skip value of 0.
511 	 * All of those will be doubled in the resulting inflated tnode, so
512 	 * we just count them one extra time here.
513 	 *
514 	 * A clearer way to write this would be:
515 	 *
516 	 * to_be_doubled = tn->full_children;
517 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
518 	 *     tn->full_children;
519 	 *
520 	 * new_child_length = tnode_child_length(tn) * 2;
521 	 *
522 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
523 	 *      new_child_length;
524 	 * if (new_fill_factor >= inflate_threshold)
525 	 *
526 	 * ...and so on, tho it would mess up the while () loop.
527 	 *
528 	 * anyway,
529 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
530 	 *      inflate_threshold
531 	 *
532 	 * avoid a division:
533 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
534 	 *      inflate_threshold * new_child_length
535 	 *
536 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
537 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
538 	 *    tn->full_children) >= inflate_threshold * new_child_length
539 	 *
540 	 * expand new_child_length:
541 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
542 	 *    tn->full_children) >=
543 	 *      inflate_threshold * tnode_child_length(tn) * 2
544 	 *
545 	 * shorten again:
546 	 * 50 * (tn->full_children + tnode_child_length(tn) -
547 	 *    tn->empty_children) >= inflate_threshold *
548 	 *    tnode_child_length(tn)
549 	 *
550 	 */
551 
552 	check_tnode(tn);
553 
554 	/* Keep root node larger  */
555 
556 	if(!tn->parent)
557 		inflate_threshold_use = inflate_threshold_root;
558 	else
559 		inflate_threshold_use = inflate_threshold;
560 
561 	err = 0;
562 	while ((tn->full_children > 0 &&
563 	       50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
564 				inflate_threshold_use * tnode_child_length(tn))) {
565 
566 		old_tn = tn;
567 		tn = inflate(t, tn);
568 		if (IS_ERR(tn)) {
569 			tn = old_tn;
570 #ifdef CONFIG_IP_FIB_TRIE_STATS
571 			t->stats.resize_node_skipped++;
572 #endif
573 			break;
574 		}
575 	}
576 
577 	check_tnode(tn);
578 
579 	/*
580 	 * Halve as long as the number of empty children in this
581 	 * node is above threshold.
582 	 */
583 
584 
585 	/* Keep root node larger  */
586 
587 	if(!tn->parent)
588 		halve_threshold_use = halve_threshold_root;
589 	else
590 		halve_threshold_use = halve_threshold;
591 
592 	err = 0;
593 	while (tn->bits > 1 &&
594 	       100 * (tnode_child_length(tn) - tn->empty_children) <
595 	       halve_threshold_use * tnode_child_length(tn)) {
596 
597 		old_tn = tn;
598 		tn = halve(t, tn);
599 		if (IS_ERR(tn)) {
600 			tn = old_tn;
601 #ifdef CONFIG_IP_FIB_TRIE_STATS
602 			t->stats.resize_node_skipped++;
603 #endif
604 			break;
605 		}
606 	}
607 
608 
609 	/* Only one child remains */
610 	if (tn->empty_children == tnode_child_length(tn) - 1)
611 		for (i = 0; i < tnode_child_length(tn); i++) {
612 			struct node *n;
613 
614 			n = tn->child[i];
615 			if (!n)
616 				continue;
617 
618 			/* compress one level */
619 
620 			NODE_SET_PARENT(n, NULL);
621 			tnode_free(tn);
622 			return n;
623 		}
624 
625 	return (struct node *) tn;
626 }
627 
628 static struct tnode *inflate(struct trie *t, struct tnode *tn)
629 {
630 	struct tnode *inode;
631 	struct tnode *oldtnode = tn;
632 	int olen = tnode_child_length(tn);
633 	int i;
634 
635 	pr_debug("In inflate\n");
636 
637 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
638 
639 	if (!tn)
640 		return ERR_PTR(-ENOMEM);
641 
642 	/*
643 	 * Preallocate and store tnodes before the actual work so we
644 	 * don't get into an inconsistent state if memory allocation
645 	 * fails. In case of failure we return the oldnode and  inflate
646 	 * of tnode is ignored.
647 	 */
648 
649 	for (i = 0; i < olen; i++) {
650 		struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
651 
652 		if (inode &&
653 		    IS_TNODE(inode) &&
654 		    inode->pos == oldtnode->pos + oldtnode->bits &&
655 		    inode->bits > 1) {
656 			struct tnode *left, *right;
657 			t_key m = TKEY_GET_MASK(inode->pos, 1);
658 
659 			left = tnode_new(inode->key&(~m), inode->pos + 1,
660 					 inode->bits - 1);
661 			if (!left)
662 				goto nomem;
663 
664 			right = tnode_new(inode->key|m, inode->pos + 1,
665 					  inode->bits - 1);
666 
667 			if (!right) {
668 				tnode_free(left);
669 				goto nomem;
670 			}
671 
672 			put_child(t, tn, 2*i, (struct node *) left);
673 			put_child(t, tn, 2*i+1, (struct node *) right);
674 		}
675 	}
676 
677 	for (i = 0; i < olen; i++) {
678 		struct node *node = tnode_get_child(oldtnode, i);
679 		struct tnode *left, *right;
680 		int size, j;
681 
682 		/* An empty child */
683 		if (node == NULL)
684 			continue;
685 
686 		/* A leaf or an internal node with skipped bits */
687 
688 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
689 		   tn->pos + tn->bits - 1) {
690 			if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
691 					     1) == 0)
692 				put_child(t, tn, 2*i, node);
693 			else
694 				put_child(t, tn, 2*i+1, node);
695 			continue;
696 		}
697 
698 		/* An internal node with two children */
699 		inode = (struct tnode *) node;
700 
701 		if (inode->bits == 1) {
702 			put_child(t, tn, 2*i, inode->child[0]);
703 			put_child(t, tn, 2*i+1, inode->child[1]);
704 
705 			tnode_free(inode);
706 			continue;
707 		}
708 
709 		/* An internal node with more than two children */
710 
711 		/* We will replace this node 'inode' with two new
712 		 * ones, 'left' and 'right', each with half of the
713 		 * original children. The two new nodes will have
714 		 * a position one bit further down the key and this
715 		 * means that the "significant" part of their keys
716 		 * (see the discussion near the top of this file)
717 		 * will differ by one bit, which will be "0" in
718 		 * left's key and "1" in right's key. Since we are
719 		 * moving the key position by one step, the bit that
720 		 * we are moving away from - the bit at position
721 		 * (inode->pos) - is the one that will differ between
722 		 * left and right. So... we synthesize that bit in the
723 		 * two  new keys.
724 		 * The mask 'm' below will be a single "one" bit at
725 		 * the position (inode->pos)
726 		 */
727 
728 		/* Use the old key, but set the new significant
729 		 *   bit to zero.
730 		 */
731 
732 		left = (struct tnode *) tnode_get_child(tn, 2*i);
733 		put_child(t, tn, 2*i, NULL);
734 
735 		BUG_ON(!left);
736 
737 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
738 		put_child(t, tn, 2*i+1, NULL);
739 
740 		BUG_ON(!right);
741 
742 		size = tnode_child_length(left);
743 		for (j = 0; j < size; j++) {
744 			put_child(t, left, j, inode->child[j]);
745 			put_child(t, right, j, inode->child[j + size]);
746 		}
747 		put_child(t, tn, 2*i, resize(t, left));
748 		put_child(t, tn, 2*i+1, resize(t, right));
749 
750 		tnode_free(inode);
751 	}
752 	tnode_free(oldtnode);
753 	return tn;
754 nomem:
755 	{
756 		int size = tnode_child_length(tn);
757 		int j;
758 
759 		for (j = 0; j < size; j++)
760 			if (tn->child[j])
761 				tnode_free((struct tnode *)tn->child[j]);
762 
763 		tnode_free(tn);
764 
765 		return ERR_PTR(-ENOMEM);
766 	}
767 }
768 
769 static struct tnode *halve(struct trie *t, struct tnode *tn)
770 {
771 	struct tnode *oldtnode = tn;
772 	struct node *left, *right;
773 	int i;
774 	int olen = tnode_child_length(tn);
775 
776 	pr_debug("In halve\n");
777 
778 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
779 
780 	if (!tn)
781 		return ERR_PTR(-ENOMEM);
782 
783 	/*
784 	 * Preallocate and store tnodes before the actual work so we
785 	 * don't get into an inconsistent state if memory allocation
786 	 * fails. In case of failure we return the oldnode and halve
787 	 * of tnode is ignored.
788 	 */
789 
790 	for (i = 0; i < olen; i += 2) {
791 		left = tnode_get_child(oldtnode, i);
792 		right = tnode_get_child(oldtnode, i+1);
793 
794 		/* Two nonempty children */
795 		if (left && right) {
796 			struct tnode *newn;
797 
798 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
799 
800 			if (!newn)
801 				goto nomem;
802 
803 			put_child(t, tn, i/2, (struct node *)newn);
804 		}
805 
806 	}
807 
808 	for (i = 0; i < olen; i += 2) {
809 		struct tnode *newBinNode;
810 
811 		left = tnode_get_child(oldtnode, i);
812 		right = tnode_get_child(oldtnode, i+1);
813 
814 		/* At least one of the children is empty */
815 		if (left == NULL) {
816 			if (right == NULL)    /* Both are empty */
817 				continue;
818 			put_child(t, tn, i/2, right);
819 			continue;
820 		}
821 
822 		if (right == NULL) {
823 			put_child(t, tn, i/2, left);
824 			continue;
825 		}
826 
827 		/* Two nonempty children */
828 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
829 		put_child(t, tn, i/2, NULL);
830 		put_child(t, newBinNode, 0, left);
831 		put_child(t, newBinNode, 1, right);
832 		put_child(t, tn, i/2, resize(t, newBinNode));
833 	}
834 	tnode_free(oldtnode);
835 	return tn;
836 nomem:
837 	{
838 		int size = tnode_child_length(tn);
839 		int j;
840 
841 		for (j = 0; j < size; j++)
842 			if (tn->child[j])
843 				tnode_free((struct tnode *)tn->child[j]);
844 
845 		tnode_free(tn);
846 
847 		return ERR_PTR(-ENOMEM);
848 	}
849 }
850 
851 static void trie_init(struct trie *t)
852 {
853 	if (!t)
854 		return;
855 
856 	t->size = 0;
857 	rcu_assign_pointer(t->trie, NULL);
858 	t->revision = 0;
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 	memset(&t->stats, 0, sizeof(struct trie_use_stats));
861 #endif
862 }
863 
864 /* readside must use rcu_read_lock currently dump routines
865  via get_fa_head and dump */
866 
867 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
868 {
869 	struct hlist_head *head = &l->list;
870 	struct hlist_node *node;
871 	struct leaf_info *li;
872 
873 	hlist_for_each_entry_rcu(li, node, head, hlist)
874 		if (li->plen == plen)
875 			return li;
876 
877 	return NULL;
878 }
879 
880 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
881 {
882 	struct leaf_info *li = find_leaf_info(l, plen);
883 
884 	if (!li)
885 		return NULL;
886 
887 	return &li->falh;
888 }
889 
890 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
891 {
892 	struct leaf_info *li = NULL, *last = NULL;
893 	struct hlist_node *node;
894 
895 	if (hlist_empty(head)) {
896 		hlist_add_head_rcu(&new->hlist, head);
897 	} else {
898 		hlist_for_each_entry(li, node, head, hlist) {
899 			if (new->plen > li->plen)
900 				break;
901 
902 			last = li;
903 		}
904 		if (last)
905 			hlist_add_after_rcu(&last->hlist, &new->hlist);
906 		else
907 			hlist_add_before_rcu(&new->hlist, &li->hlist);
908 	}
909 }
910 
911 /* rcu_read_lock needs to be hold by caller from readside */
912 
913 static struct leaf *
914 fib_find_node(struct trie *t, u32 key)
915 {
916 	int pos;
917 	struct tnode *tn;
918 	struct node *n;
919 
920 	pos = 0;
921 	n = rcu_dereference(t->trie);
922 
923 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
924 		tn = (struct tnode *) n;
925 
926 		check_tnode(tn);
927 
928 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
929 			pos = tn->pos + tn->bits;
930 			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
931 		} else
932 			break;
933 	}
934 	/* Case we have found a leaf. Compare prefixes */
935 
936 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
937 		return (struct leaf *)n;
938 
939 	return NULL;
940 }
941 
942 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
943 {
944 	int wasfull;
945 	t_key cindex, key;
946 	struct tnode *tp = NULL;
947 
948 	key = tn->key;
949 
950 	while (tn != NULL && NODE_PARENT(tn) != NULL) {
951 
952 		tp = NODE_PARENT(tn);
953 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
954 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
955 		tn = (struct tnode *) resize (t, (struct tnode *)tn);
956 		tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
957 
958 		if (!NODE_PARENT(tn))
959 			break;
960 
961 		tn = NODE_PARENT(tn);
962 	}
963 	/* Handle last (top) tnode */
964 	if (IS_TNODE(tn))
965 		tn = (struct tnode*) resize(t, (struct tnode *)tn);
966 
967 	return (struct node*) tn;
968 }
969 
970 /* only used from updater-side */
971 
972 static  struct list_head *
973 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
974 {
975 	int pos, newpos;
976 	struct tnode *tp = NULL, *tn = NULL;
977 	struct node *n;
978 	struct leaf *l;
979 	int missbit;
980 	struct list_head *fa_head = NULL;
981 	struct leaf_info *li;
982 	t_key cindex;
983 
984 	pos = 0;
985 	n = t->trie;
986 
987 	/* If we point to NULL, stop. Either the tree is empty and we should
988 	 * just put a new leaf in if, or we have reached an empty child slot,
989 	 * and we should just put our new leaf in that.
990 	 * If we point to a T_TNODE, check if it matches our key. Note that
991 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
992 	 * not be the parent's 'pos'+'bits'!
993 	 *
994 	 * If it does match the current key, get pos/bits from it, extract
995 	 * the index from our key, push the T_TNODE and walk the tree.
996 	 *
997 	 * If it doesn't, we have to replace it with a new T_TNODE.
998 	 *
999 	 * If we point to a T_LEAF, it might or might not have the same key
1000 	 * as we do. If it does, just change the value, update the T_LEAF's
1001 	 * value, and return it.
1002 	 * If it doesn't, we need to replace it with a T_TNODE.
1003 	 */
1004 
1005 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1006 		tn = (struct tnode *) n;
1007 
1008 		check_tnode(tn);
1009 
1010 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1011 			tp = tn;
1012 			pos = tn->pos + tn->bits;
1013 			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1014 
1015 			BUG_ON(n && NODE_PARENT(n) != tn);
1016 		} else
1017 			break;
1018 	}
1019 
1020 	/*
1021 	 * n  ----> NULL, LEAF or TNODE
1022 	 *
1023 	 * tp is n's (parent) ----> NULL or TNODE
1024 	 */
1025 
1026 	BUG_ON(tp && IS_LEAF(tp));
1027 
1028 	/* Case 1: n is a leaf. Compare prefixes */
1029 
1030 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1031 		struct leaf *l = (struct leaf *) n;
1032 
1033 		li = leaf_info_new(plen);
1034 
1035 		if (!li) {
1036 			*err = -ENOMEM;
1037 			goto err;
1038 		}
1039 
1040 		fa_head = &li->falh;
1041 		insert_leaf_info(&l->list, li);
1042 		goto done;
1043 	}
1044 	t->size++;
1045 	l = leaf_new();
1046 
1047 	if (!l) {
1048 		*err = -ENOMEM;
1049 		goto err;
1050 	}
1051 
1052 	l->key = key;
1053 	li = leaf_info_new(plen);
1054 
1055 	if (!li) {
1056 		tnode_free((struct tnode *) l);
1057 		*err = -ENOMEM;
1058 		goto err;
1059 	}
1060 
1061 	fa_head = &li->falh;
1062 	insert_leaf_info(&l->list, li);
1063 
1064 	if (t->trie && n == NULL) {
1065 		/* Case 2: n is NULL, and will just insert a new leaf */
1066 
1067 		NODE_SET_PARENT(l, tp);
1068 
1069 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1070 		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1071 	} else {
1072 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1073 		/*
1074 		 *  Add a new tnode here
1075 		 *  first tnode need some special handling
1076 		 */
1077 
1078 		if (tp)
1079 			pos = tp->pos+tp->bits;
1080 		else
1081 			pos = 0;
1082 
1083 		if (n) {
1084 			newpos = tkey_mismatch(key, pos, n->key);
1085 			tn = tnode_new(n->key, newpos, 1);
1086 		} else {
1087 			newpos = 0;
1088 			tn = tnode_new(key, newpos, 1); /* First tnode */
1089 		}
1090 
1091 		if (!tn) {
1092 			free_leaf_info(li);
1093 			tnode_free((struct tnode *) l);
1094 			*err = -ENOMEM;
1095 			goto err;
1096 		}
1097 
1098 		NODE_SET_PARENT(tn, tp);
1099 
1100 		missbit = tkey_extract_bits(key, newpos, 1);
1101 		put_child(t, tn, missbit, (struct node *)l);
1102 		put_child(t, tn, 1-missbit, n);
1103 
1104 		if (tp) {
1105 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1106 			put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1107 		} else {
1108 			rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1109 			tp = tn;
1110 		}
1111 	}
1112 
1113 	if (tp && tp->pos + tp->bits > 32)
1114 		printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1115 		       tp, tp->pos, tp->bits, key, plen);
1116 
1117 	/* Rebalance the trie */
1118 
1119 	rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1120 done:
1121 	t->revision++;
1122 err:
1123 	return fa_head;
1124 }
1125 
1126 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1127 {
1128 	struct trie *t = (struct trie *) tb->tb_data;
1129 	struct fib_alias *fa, *new_fa;
1130 	struct list_head *fa_head = NULL;
1131 	struct fib_info *fi;
1132 	int plen = cfg->fc_dst_len;
1133 	u8 tos = cfg->fc_tos;
1134 	u32 key, mask;
1135 	int err;
1136 	struct leaf *l;
1137 
1138 	if (plen > 32)
1139 		return -EINVAL;
1140 
1141 	key = ntohl(cfg->fc_dst);
1142 
1143 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1144 
1145 	mask = ntohl(inet_make_mask(plen));
1146 
1147 	if (key & ~mask)
1148 		return -EINVAL;
1149 
1150 	key = key & mask;
1151 
1152 	fi = fib_create_info(cfg);
1153 	if (IS_ERR(fi)) {
1154 		err = PTR_ERR(fi);
1155 		goto err;
1156 	}
1157 
1158 	l = fib_find_node(t, key);
1159 	fa = NULL;
1160 
1161 	if (l) {
1162 		fa_head = get_fa_head(l, plen);
1163 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1164 	}
1165 
1166 	/* Now fa, if non-NULL, points to the first fib alias
1167 	 * with the same keys [prefix,tos,priority], if such key already
1168 	 * exists or to the node before which we will insert new one.
1169 	 *
1170 	 * If fa is NULL, we will need to allocate a new one and
1171 	 * insert to the head of f.
1172 	 *
1173 	 * If f is NULL, no fib node matched the destination key
1174 	 * and we need to allocate a new one of those as well.
1175 	 */
1176 
1177 	if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1178 		struct fib_alias *fa_orig;
1179 
1180 		err = -EEXIST;
1181 		if (cfg->fc_nlflags & NLM_F_EXCL)
1182 			goto out;
1183 
1184 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1185 			struct fib_info *fi_drop;
1186 			u8 state;
1187 
1188 			err = -ENOBUFS;
1189 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1190 			if (new_fa == NULL)
1191 				goto out;
1192 
1193 			fi_drop = fa->fa_info;
1194 			new_fa->fa_tos = fa->fa_tos;
1195 			new_fa->fa_info = fi;
1196 			new_fa->fa_type = cfg->fc_type;
1197 			new_fa->fa_scope = cfg->fc_scope;
1198 			state = fa->fa_state;
1199 			new_fa->fa_state &= ~FA_S_ACCESSED;
1200 
1201 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1202 			alias_free_mem_rcu(fa);
1203 
1204 			fib_release_info(fi_drop);
1205 			if (state & FA_S_ACCESSED)
1206 				rt_cache_flush(-1);
1207 
1208 			goto succeeded;
1209 		}
1210 		/* Error if we find a perfect match which
1211 		 * uses the same scope, type, and nexthop
1212 		 * information.
1213 		 */
1214 		fa_orig = fa;
1215 		list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1216 			if (fa->fa_tos != tos)
1217 				break;
1218 			if (fa->fa_info->fib_priority != fi->fib_priority)
1219 				break;
1220 			if (fa->fa_type == cfg->fc_type &&
1221 			    fa->fa_scope == cfg->fc_scope &&
1222 			    fa->fa_info == fi) {
1223 				goto out;
1224 			}
1225 		}
1226 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1227 			fa = fa_orig;
1228 	}
1229 	err = -ENOENT;
1230 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1231 		goto out;
1232 
1233 	err = -ENOBUFS;
1234 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1235 	if (new_fa == NULL)
1236 		goto out;
1237 
1238 	new_fa->fa_info = fi;
1239 	new_fa->fa_tos = tos;
1240 	new_fa->fa_type = cfg->fc_type;
1241 	new_fa->fa_scope = cfg->fc_scope;
1242 	new_fa->fa_state = 0;
1243 	/*
1244 	 * Insert new entry to the list.
1245 	 */
1246 
1247 	if (!fa_head) {
1248 		err = 0;
1249 		fa_head = fib_insert_node(t, &err, key, plen);
1250 		if (err)
1251 			goto out_free_new_fa;
1252 	}
1253 
1254 	list_add_tail_rcu(&new_fa->fa_list,
1255 			  (fa ? &fa->fa_list : fa_head));
1256 
1257 	rt_cache_flush(-1);
1258 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1259 		  &cfg->fc_nlinfo);
1260 succeeded:
1261 	return 0;
1262 
1263 out_free_new_fa:
1264 	kmem_cache_free(fn_alias_kmem, new_fa);
1265 out:
1266 	fib_release_info(fi);
1267 err:
1268 	return err;
1269 }
1270 
1271 
1272 /* should be called with rcu_read_lock */
1273 static inline int check_leaf(struct trie *t, struct leaf *l,
1274 			     t_key key, int *plen, const struct flowi *flp,
1275 			     struct fib_result *res)
1276 {
1277 	int err, i;
1278 	__be32 mask;
1279 	struct leaf_info *li;
1280 	struct hlist_head *hhead = &l->list;
1281 	struct hlist_node *node;
1282 
1283 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1284 		i = li->plen;
1285 		mask = inet_make_mask(i);
1286 		if (l->key != (key & ntohl(mask)))
1287 			continue;
1288 
1289 		if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1290 			*plen = i;
1291 #ifdef CONFIG_IP_FIB_TRIE_STATS
1292 			t->stats.semantic_match_passed++;
1293 #endif
1294 			return err;
1295 		}
1296 #ifdef CONFIG_IP_FIB_TRIE_STATS
1297 		t->stats.semantic_match_miss++;
1298 #endif
1299 	}
1300 	return 1;
1301 }
1302 
1303 static int
1304 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1305 {
1306 	struct trie *t = (struct trie *) tb->tb_data;
1307 	int plen, ret = 0;
1308 	struct node *n;
1309 	struct tnode *pn;
1310 	int pos, bits;
1311 	t_key key = ntohl(flp->fl4_dst);
1312 	int chopped_off;
1313 	t_key cindex = 0;
1314 	int current_prefix_length = KEYLENGTH;
1315 	struct tnode *cn;
1316 	t_key node_prefix, key_prefix, pref_mismatch;
1317 	int mp;
1318 
1319 	rcu_read_lock();
1320 
1321 	n = rcu_dereference(t->trie);
1322 	if (!n)
1323 		goto failed;
1324 
1325 #ifdef CONFIG_IP_FIB_TRIE_STATS
1326 	t->stats.gets++;
1327 #endif
1328 
1329 	/* Just a leaf? */
1330 	if (IS_LEAF(n)) {
1331 		if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1332 			goto found;
1333 		goto failed;
1334 	}
1335 	pn = (struct tnode *) n;
1336 	chopped_off = 0;
1337 
1338 	while (pn) {
1339 		pos = pn->pos;
1340 		bits = pn->bits;
1341 
1342 		if (!chopped_off)
1343 			cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1344 
1345 		n = tnode_get_child(pn, cindex);
1346 
1347 		if (n == NULL) {
1348 #ifdef CONFIG_IP_FIB_TRIE_STATS
1349 			t->stats.null_node_hit++;
1350 #endif
1351 			goto backtrace;
1352 		}
1353 
1354 		if (IS_LEAF(n)) {
1355 			if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1356 				goto found;
1357 			else
1358 				goto backtrace;
1359 		}
1360 
1361 #define HL_OPTIMIZE
1362 #ifdef HL_OPTIMIZE
1363 		cn = (struct tnode *)n;
1364 
1365 		/*
1366 		 * It's a tnode, and we can do some extra checks here if we
1367 		 * like, to avoid descending into a dead-end branch.
1368 		 * This tnode is in the parent's child array at index
1369 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1370 		 * chopped off, so in reality the index may be just a
1371 		 * subprefix, padded with zero at the end.
1372 		 * We can also take a look at any skipped bits in this
1373 		 * tnode - everything up to p_pos is supposed to be ok,
1374 		 * and the non-chopped bits of the index (se previous
1375 		 * paragraph) are also guaranteed ok, but the rest is
1376 		 * considered unknown.
1377 		 *
1378 		 * The skipped bits are key[pos+bits..cn->pos].
1379 		 */
1380 
1381 		/* If current_prefix_length < pos+bits, we are already doing
1382 		 * actual prefix  matching, which means everything from
1383 		 * pos+(bits-chopped_off) onward must be zero along some
1384 		 * branch of this subtree - otherwise there is *no* valid
1385 		 * prefix present. Here we can only check the skipped
1386 		 * bits. Remember, since we have already indexed into the
1387 		 * parent's child array, we know that the bits we chopped of
1388 		 * *are* zero.
1389 		 */
1390 
1391 		/* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1392 
1393 		if (current_prefix_length < pos+bits) {
1394 			if (tkey_extract_bits(cn->key, current_prefix_length,
1395 						cn->pos - current_prefix_length) != 0 ||
1396 			    !(cn->child[0]))
1397 				goto backtrace;
1398 		}
1399 
1400 		/*
1401 		 * If chopped_off=0, the index is fully validated and we
1402 		 * only need to look at the skipped bits for this, the new,
1403 		 * tnode. What we actually want to do is to find out if
1404 		 * these skipped bits match our key perfectly, or if we will
1405 		 * have to count on finding a matching prefix further down,
1406 		 * because if we do, we would like to have some way of
1407 		 * verifying the existence of such a prefix at this point.
1408 		 */
1409 
1410 		/* The only thing we can do at this point is to verify that
1411 		 * any such matching prefix can indeed be a prefix to our
1412 		 * key, and if the bits in the node we are inspecting that
1413 		 * do not match our key are not ZERO, this cannot be true.
1414 		 * Thus, find out where there is a mismatch (before cn->pos)
1415 		 * and verify that all the mismatching bits are zero in the
1416 		 * new tnode's key.
1417 		 */
1418 
1419 		/* Note: We aren't very concerned about the piece of the key
1420 		 * that precede pn->pos+pn->bits, since these have already been
1421 		 * checked. The bits after cn->pos aren't checked since these are
1422 		 * by definition "unknown" at this point. Thus, what we want to
1423 		 * see is if we are about to enter the "prefix matching" state,
1424 		 * and in that case verify that the skipped bits that will prevail
1425 		 * throughout this subtree are zero, as they have to be if we are
1426 		 * to find a matching prefix.
1427 		 */
1428 
1429 		node_prefix = MASK_PFX(cn->key, cn->pos);
1430 		key_prefix = MASK_PFX(key, cn->pos);
1431 		pref_mismatch = key_prefix^node_prefix;
1432 		mp = 0;
1433 
1434 		/* In short: If skipped bits in this node do not match the search
1435 		 * key, enter the "prefix matching" state.directly.
1436 		 */
1437 		if (pref_mismatch) {
1438 			while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1439 				mp++;
1440 				pref_mismatch = pref_mismatch <<1;
1441 			}
1442 			key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1443 
1444 			if (key_prefix != 0)
1445 				goto backtrace;
1446 
1447 			if (current_prefix_length >= cn->pos)
1448 				current_prefix_length = mp;
1449 		}
1450 #endif
1451 		pn = (struct tnode *)n; /* Descend */
1452 		chopped_off = 0;
1453 		continue;
1454 
1455 backtrace:
1456 		chopped_off++;
1457 
1458 		/* As zero don't change the child key (cindex) */
1459 		while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1460 			chopped_off++;
1461 
1462 		/* Decrease current_... with bits chopped off */
1463 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1464 			current_prefix_length = pn->pos + pn->bits - chopped_off;
1465 
1466 		/*
1467 		 * Either we do the actual chop off according or if we have
1468 		 * chopped off all bits in this tnode walk up to our parent.
1469 		 */
1470 
1471 		if (chopped_off <= pn->bits) {
1472 			cindex &= ~(1 << (chopped_off-1));
1473 		} else {
1474 			if (NODE_PARENT(pn) == NULL)
1475 				goto failed;
1476 
1477 			/* Get Child's index */
1478 			cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1479 			pn = NODE_PARENT(pn);
1480 			chopped_off = 0;
1481 
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 			t->stats.backtrack++;
1484 #endif
1485 			goto backtrace;
1486 		}
1487 	}
1488 failed:
1489 	ret = 1;
1490 found:
1491 	rcu_read_unlock();
1492 	return ret;
1493 }
1494 
1495 /* only called from updater side */
1496 static int trie_leaf_remove(struct trie *t, t_key key)
1497 {
1498 	t_key cindex;
1499 	struct tnode *tp = NULL;
1500 	struct node *n = t->trie;
1501 	struct leaf *l;
1502 
1503 	pr_debug("entering trie_leaf_remove(%p)\n", n);
1504 
1505 	/* Note that in the case skipped bits, those bits are *not* checked!
1506 	 * When we finish this, we will have NULL or a T_LEAF, and the
1507 	 * T_LEAF may or may not match our key.
1508 	 */
1509 
1510 	while (n != NULL && IS_TNODE(n)) {
1511 		struct tnode *tn = (struct tnode *) n;
1512 		check_tnode(tn);
1513 		n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1514 
1515 		BUG_ON(n && NODE_PARENT(n) != tn);
1516 	}
1517 	l = (struct leaf *) n;
1518 
1519 	if (!n || !tkey_equals(l->key, key))
1520 		return 0;
1521 
1522 	/*
1523 	 * Key found.
1524 	 * Remove the leaf and rebalance the tree
1525 	 */
1526 
1527 	t->revision++;
1528 	t->size--;
1529 
1530 	preempt_disable();
1531 	tp = NODE_PARENT(n);
1532 	tnode_free((struct tnode *) n);
1533 
1534 	if (tp) {
1535 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1536 		put_child(t, (struct tnode *)tp, cindex, NULL);
1537 		rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1538 	} else
1539 		rcu_assign_pointer(t->trie, NULL);
1540 	preempt_enable();
1541 
1542 	return 1;
1543 }
1544 
1545 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1546 {
1547 	struct trie *t = (struct trie *) tb->tb_data;
1548 	u32 key, mask;
1549 	int plen = cfg->fc_dst_len;
1550 	u8 tos = cfg->fc_tos;
1551 	struct fib_alias *fa, *fa_to_delete;
1552 	struct list_head *fa_head;
1553 	struct leaf *l;
1554 	struct leaf_info *li;
1555 
1556 	if (plen > 32)
1557 		return -EINVAL;
1558 
1559 	key = ntohl(cfg->fc_dst);
1560 	mask = ntohl(inet_make_mask(plen));
1561 
1562 	if (key & ~mask)
1563 		return -EINVAL;
1564 
1565 	key = key & mask;
1566 	l = fib_find_node(t, key);
1567 
1568 	if (!l)
1569 		return -ESRCH;
1570 
1571 	fa_head = get_fa_head(l, plen);
1572 	fa = fib_find_alias(fa_head, tos, 0);
1573 
1574 	if (!fa)
1575 		return -ESRCH;
1576 
1577 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1578 
1579 	fa_to_delete = NULL;
1580 	fa_head = fa->fa_list.prev;
1581 
1582 	list_for_each_entry(fa, fa_head, fa_list) {
1583 		struct fib_info *fi = fa->fa_info;
1584 
1585 		if (fa->fa_tos != tos)
1586 			break;
1587 
1588 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1589 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1590 		     fa->fa_scope == cfg->fc_scope) &&
1591 		    (!cfg->fc_protocol ||
1592 		     fi->fib_protocol == cfg->fc_protocol) &&
1593 		    fib_nh_match(cfg, fi) == 0) {
1594 			fa_to_delete = fa;
1595 			break;
1596 		}
1597 	}
1598 
1599 	if (!fa_to_delete)
1600 		return -ESRCH;
1601 
1602 	fa = fa_to_delete;
1603 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1604 		  &cfg->fc_nlinfo);
1605 
1606 	l = fib_find_node(t, key);
1607 	li = find_leaf_info(l, plen);
1608 
1609 	list_del_rcu(&fa->fa_list);
1610 
1611 	if (list_empty(fa_head)) {
1612 		hlist_del_rcu(&li->hlist);
1613 		free_leaf_info(li);
1614 	}
1615 
1616 	if (hlist_empty(&l->list))
1617 		trie_leaf_remove(t, key);
1618 
1619 	if (fa->fa_state & FA_S_ACCESSED)
1620 		rt_cache_flush(-1);
1621 
1622 	fib_release_info(fa->fa_info);
1623 	alias_free_mem_rcu(fa);
1624 	return 0;
1625 }
1626 
1627 static int trie_flush_list(struct trie *t, struct list_head *head)
1628 {
1629 	struct fib_alias *fa, *fa_node;
1630 	int found = 0;
1631 
1632 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1633 		struct fib_info *fi = fa->fa_info;
1634 
1635 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1636 			list_del_rcu(&fa->fa_list);
1637 			fib_release_info(fa->fa_info);
1638 			alias_free_mem_rcu(fa);
1639 			found++;
1640 		}
1641 	}
1642 	return found;
1643 }
1644 
1645 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1646 {
1647 	int found = 0;
1648 	struct hlist_head *lih = &l->list;
1649 	struct hlist_node *node, *tmp;
1650 	struct leaf_info *li = NULL;
1651 
1652 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1653 		found += trie_flush_list(t, &li->falh);
1654 
1655 		if (list_empty(&li->falh)) {
1656 			hlist_del_rcu(&li->hlist);
1657 			free_leaf_info(li);
1658 		}
1659 	}
1660 	return found;
1661 }
1662 
1663 /* rcu_read_lock needs to be hold by caller from readside */
1664 
1665 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1666 {
1667 	struct node *c = (struct node *) thisleaf;
1668 	struct tnode *p;
1669 	int idx;
1670 	struct node *trie = rcu_dereference(t->trie);
1671 
1672 	if (c == NULL) {
1673 		if (trie == NULL)
1674 			return NULL;
1675 
1676 		if (IS_LEAF(trie))          /* trie w. just a leaf */
1677 			return (struct leaf *) trie;
1678 
1679 		p = (struct tnode*) trie;  /* Start */
1680 	} else
1681 		p = (struct tnode *) NODE_PARENT(c);
1682 
1683 	while (p) {
1684 		int pos, last;
1685 
1686 		/*  Find the next child of the parent */
1687 		if (c)
1688 			pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1689 		else
1690 			pos = 0;
1691 
1692 		last = 1 << p->bits;
1693 		for (idx = pos; idx < last ; idx++) {
1694 			c = rcu_dereference(p->child[idx]);
1695 
1696 			if (!c)
1697 				continue;
1698 
1699 			/* Decend if tnode */
1700 			while (IS_TNODE(c)) {
1701 				p = (struct tnode *) c;
1702 				idx = 0;
1703 
1704 				/* Rightmost non-NULL branch */
1705 				if (p && IS_TNODE(p))
1706 					while (!(c = rcu_dereference(p->child[idx]))
1707 					       && idx < (1<<p->bits)) idx++;
1708 
1709 				/* Done with this tnode? */
1710 				if (idx >= (1 << p->bits) || !c)
1711 					goto up;
1712 			}
1713 			return (struct leaf *) c;
1714 		}
1715 up:
1716 		/* No more children go up one step  */
1717 		c = (struct node *) p;
1718 		p = (struct tnode *) NODE_PARENT(p);
1719 	}
1720 	return NULL; /* Ready. Root of trie */
1721 }
1722 
1723 static int fn_trie_flush(struct fib_table *tb)
1724 {
1725 	struct trie *t = (struct trie *) tb->tb_data;
1726 	struct leaf *ll = NULL, *l = NULL;
1727 	int found = 0, h;
1728 
1729 	t->revision++;
1730 
1731 	for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1732 		found += trie_flush_leaf(t, l);
1733 
1734 		if (ll && hlist_empty(&ll->list))
1735 			trie_leaf_remove(t, ll->key);
1736 		ll = l;
1737 	}
1738 
1739 	if (ll && hlist_empty(&ll->list))
1740 		trie_leaf_remove(t, ll->key);
1741 
1742 	pr_debug("trie_flush found=%d\n", found);
1743 	return found;
1744 }
1745 
1746 static int trie_last_dflt = -1;
1747 
1748 static void
1749 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1750 {
1751 	struct trie *t = (struct trie *) tb->tb_data;
1752 	int order, last_idx;
1753 	struct fib_info *fi = NULL;
1754 	struct fib_info *last_resort;
1755 	struct fib_alias *fa = NULL;
1756 	struct list_head *fa_head;
1757 	struct leaf *l;
1758 
1759 	last_idx = -1;
1760 	last_resort = NULL;
1761 	order = -1;
1762 
1763 	rcu_read_lock();
1764 
1765 	l = fib_find_node(t, 0);
1766 	if (!l)
1767 		goto out;
1768 
1769 	fa_head = get_fa_head(l, 0);
1770 	if (!fa_head)
1771 		goto out;
1772 
1773 	if (list_empty(fa_head))
1774 		goto out;
1775 
1776 	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1777 		struct fib_info *next_fi = fa->fa_info;
1778 
1779 		if (fa->fa_scope != res->scope ||
1780 		    fa->fa_type != RTN_UNICAST)
1781 			continue;
1782 
1783 		if (next_fi->fib_priority > res->fi->fib_priority)
1784 			break;
1785 		if (!next_fi->fib_nh[0].nh_gw ||
1786 		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1787 			continue;
1788 		fa->fa_state |= FA_S_ACCESSED;
1789 
1790 		if (fi == NULL) {
1791 			if (next_fi != res->fi)
1792 				break;
1793 		} else if (!fib_detect_death(fi, order, &last_resort,
1794 					     &last_idx, &trie_last_dflt)) {
1795 			if (res->fi)
1796 				fib_info_put(res->fi);
1797 			res->fi = fi;
1798 			atomic_inc(&fi->fib_clntref);
1799 			trie_last_dflt = order;
1800 			goto out;
1801 		}
1802 		fi = next_fi;
1803 		order++;
1804 	}
1805 	if (order <= 0 || fi == NULL) {
1806 		trie_last_dflt = -1;
1807 		goto out;
1808 	}
1809 
1810 	if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1811 		if (res->fi)
1812 			fib_info_put(res->fi);
1813 		res->fi = fi;
1814 		atomic_inc(&fi->fib_clntref);
1815 		trie_last_dflt = order;
1816 		goto out;
1817 	}
1818 	if (last_idx >= 0) {
1819 		if (res->fi)
1820 			fib_info_put(res->fi);
1821 		res->fi = last_resort;
1822 		if (last_resort)
1823 			atomic_inc(&last_resort->fib_clntref);
1824 	}
1825 	trie_last_dflt = last_idx;
1826  out:;
1827 	rcu_read_unlock();
1828 }
1829 
1830 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1831 			   struct sk_buff *skb, struct netlink_callback *cb)
1832 {
1833 	int i, s_i;
1834 	struct fib_alias *fa;
1835 
1836 	__be32 xkey = htonl(key);
1837 
1838 	s_i = cb->args[4];
1839 	i = 0;
1840 
1841 	/* rcu_read_lock is hold by caller */
1842 
1843 	list_for_each_entry_rcu(fa, fah, fa_list) {
1844 		if (i < s_i) {
1845 			i++;
1846 			continue;
1847 		}
1848 		BUG_ON(!fa->fa_info);
1849 
1850 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1851 				  cb->nlh->nlmsg_seq,
1852 				  RTM_NEWROUTE,
1853 				  tb->tb_id,
1854 				  fa->fa_type,
1855 				  fa->fa_scope,
1856 				  xkey,
1857 				  plen,
1858 				  fa->fa_tos,
1859 				  fa->fa_info, 0) < 0) {
1860 			cb->args[4] = i;
1861 			return -1;
1862 		}
1863 		i++;
1864 	}
1865 	cb->args[4] = i;
1866 	return skb->len;
1867 }
1868 
1869 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1870 			     struct netlink_callback *cb)
1871 {
1872 	int h, s_h;
1873 	struct list_head *fa_head;
1874 	struct leaf *l = NULL;
1875 
1876 	s_h = cb->args[3];
1877 
1878 	for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1879 		if (h < s_h)
1880 			continue;
1881 		if (h > s_h)
1882 			memset(&cb->args[4], 0,
1883 			       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1884 
1885 		fa_head = get_fa_head(l, plen);
1886 
1887 		if (!fa_head)
1888 			continue;
1889 
1890 		if (list_empty(fa_head))
1891 			continue;
1892 
1893 		if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1894 			cb->args[3] = h;
1895 			return -1;
1896 		}
1897 	}
1898 	cb->args[3] = h;
1899 	return skb->len;
1900 }
1901 
1902 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1903 {
1904 	int m, s_m;
1905 	struct trie *t = (struct trie *) tb->tb_data;
1906 
1907 	s_m = cb->args[2];
1908 
1909 	rcu_read_lock();
1910 	for (m = 0; m <= 32; m++) {
1911 		if (m < s_m)
1912 			continue;
1913 		if (m > s_m)
1914 			memset(&cb->args[3], 0,
1915 				sizeof(cb->args) - 3*sizeof(cb->args[0]));
1916 
1917 		if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1918 			cb->args[2] = m;
1919 			goto out;
1920 		}
1921 	}
1922 	rcu_read_unlock();
1923 	cb->args[2] = m;
1924 	return skb->len;
1925 out:
1926 	rcu_read_unlock();
1927 	return -1;
1928 }
1929 
1930 /* Fix more generic FIB names for init later */
1931 
1932 #ifdef CONFIG_IP_MULTIPLE_TABLES
1933 struct fib_table * fib_hash_init(u32 id)
1934 #else
1935 struct fib_table * __init fib_hash_init(u32 id)
1936 #endif
1937 {
1938 	struct fib_table *tb;
1939 	struct trie *t;
1940 
1941 	if (fn_alias_kmem == NULL)
1942 		fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1943 						  sizeof(struct fib_alias),
1944 						  0, SLAB_HWCACHE_ALIGN,
1945 						  NULL, NULL);
1946 
1947 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1948 		     GFP_KERNEL);
1949 	if (tb == NULL)
1950 		return NULL;
1951 
1952 	tb->tb_id = id;
1953 	tb->tb_lookup = fn_trie_lookup;
1954 	tb->tb_insert = fn_trie_insert;
1955 	tb->tb_delete = fn_trie_delete;
1956 	tb->tb_flush = fn_trie_flush;
1957 	tb->tb_select_default = fn_trie_select_default;
1958 	tb->tb_dump = fn_trie_dump;
1959 	memset(tb->tb_data, 0, sizeof(struct trie));
1960 
1961 	t = (struct trie *) tb->tb_data;
1962 
1963 	trie_init(t);
1964 
1965 	if (id == RT_TABLE_LOCAL)
1966 		trie_local = t;
1967 	else if (id == RT_TABLE_MAIN)
1968 		trie_main = t;
1969 
1970 	if (id == RT_TABLE_LOCAL)
1971 		printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1972 
1973 	return tb;
1974 }
1975 
1976 #ifdef CONFIG_PROC_FS
1977 /* Depth first Trie walk iterator */
1978 struct fib_trie_iter {
1979 	struct tnode *tnode;
1980 	struct trie *trie;
1981 	unsigned index;
1982 	unsigned depth;
1983 };
1984 
1985 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1986 {
1987 	struct tnode *tn = iter->tnode;
1988 	unsigned cindex = iter->index;
1989 	struct tnode *p;
1990 
1991 	/* A single entry routing table */
1992 	if (!tn)
1993 		return NULL;
1994 
1995 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1996 		 iter->tnode, iter->index, iter->depth);
1997 rescan:
1998 	while (cindex < (1<<tn->bits)) {
1999 		struct node *n = tnode_get_child(tn, cindex);
2000 
2001 		if (n) {
2002 			if (IS_LEAF(n)) {
2003 				iter->tnode = tn;
2004 				iter->index = cindex + 1;
2005 			} else {
2006 				/* push down one level */
2007 				iter->tnode = (struct tnode *) n;
2008 				iter->index = 0;
2009 				++iter->depth;
2010 			}
2011 			return n;
2012 		}
2013 
2014 		++cindex;
2015 	}
2016 
2017 	/* Current node exhausted, pop back up */
2018 	p = NODE_PARENT(tn);
2019 	if (p) {
2020 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2021 		tn = p;
2022 		--iter->depth;
2023 		goto rescan;
2024 	}
2025 
2026 	/* got root? */
2027 	return NULL;
2028 }
2029 
2030 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2031 				       struct trie *t)
2032 {
2033 	struct node *n ;
2034 
2035 	if(!t)
2036 		return NULL;
2037 
2038 	n = rcu_dereference(t->trie);
2039 
2040 	if(!iter)
2041 		return NULL;
2042 
2043 	if (n) {
2044 		if (IS_TNODE(n)) {
2045 			iter->tnode = (struct tnode *) n;
2046 			iter->trie = t;
2047 			iter->index = 0;
2048 			iter->depth = 1;
2049 		} else {
2050 			iter->tnode = NULL;
2051 			iter->trie  = t;
2052 			iter->index = 0;
2053 			iter->depth = 0;
2054 		}
2055 		return n;
2056 	}
2057 	return NULL;
2058 }
2059 
2060 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061 {
2062 	struct node *n;
2063 	struct fib_trie_iter iter;
2064 
2065 	memset(s, 0, sizeof(*s));
2066 
2067 	rcu_read_lock();
2068 	for (n = fib_trie_get_first(&iter, t); n;
2069 	     n = fib_trie_get_next(&iter)) {
2070 		if (IS_LEAF(n)) {
2071 			s->leaves++;
2072 			s->totdepth += iter.depth;
2073 			if (iter.depth > s->maxdepth)
2074 				s->maxdepth = iter.depth;
2075 		} else {
2076 			const struct tnode *tn = (const struct tnode *) n;
2077 			int i;
2078 
2079 			s->tnodes++;
2080 			if(tn->bits < MAX_STAT_DEPTH)
2081 				s->nodesizes[tn->bits]++;
2082 
2083 			for (i = 0; i < (1<<tn->bits); i++)
2084 				if (!tn->child[i])
2085 					s->nullpointers++;
2086 		}
2087 	}
2088 	rcu_read_unlock();
2089 }
2090 
2091 /*
2092  *	This outputs /proc/net/fib_triestats
2093  */
2094 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2095 {
2096 	unsigned i, max, pointers, bytes, avdepth;
2097 
2098 	if (stat->leaves)
2099 		avdepth = stat->totdepth*100 / stat->leaves;
2100 	else
2101 		avdepth = 0;
2102 
2103 	seq_printf(seq, "\tAver depth:     %d.%02d\n", avdepth / 100, avdepth % 100 );
2104 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2105 
2106 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2107 
2108 	bytes = sizeof(struct leaf) * stat->leaves;
2109 	seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2110 	bytes += sizeof(struct tnode) * stat->tnodes;
2111 
2112 	max = MAX_STAT_DEPTH;
2113 	while (max > 0 && stat->nodesizes[max-1] == 0)
2114 		max--;
2115 
2116 	pointers = 0;
2117 	for (i = 1; i <= max; i++)
2118 		if (stat->nodesizes[i] != 0) {
2119 			seq_printf(seq, "  %d: %d",  i, stat->nodesizes[i]);
2120 			pointers += (1<<i) * stat->nodesizes[i];
2121 		}
2122 	seq_putc(seq, '\n');
2123 	seq_printf(seq, "\tPointers: %d\n", pointers);
2124 
2125 	bytes += sizeof(struct node *) * pointers;
2126 	seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2127 	seq_printf(seq, "Total size: %d  kB\n", (bytes + 1023) / 1024);
2128 
2129 #ifdef CONFIG_IP_FIB_TRIE_STATS
2130 	seq_printf(seq, "Counters:\n---------\n");
2131 	seq_printf(seq,"gets = %d\n", t->stats.gets);
2132 	seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2133 	seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2134 	seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2135 	seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2136 	seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2137 #ifdef CLEAR_STATS
2138 	memset(&(t->stats), 0, sizeof(t->stats));
2139 #endif
2140 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2141 }
2142 
2143 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2144 {
2145 	struct trie_stat *stat;
2146 
2147 	stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2148 	if (!stat)
2149 		return -ENOMEM;
2150 
2151 	seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2152 		   sizeof(struct leaf), sizeof(struct tnode));
2153 
2154 	if (trie_local) {
2155 		seq_printf(seq, "Local:\n");
2156 		trie_collect_stats(trie_local, stat);
2157 		trie_show_stats(seq, stat);
2158 	}
2159 
2160 	if (trie_main) {
2161 		seq_printf(seq, "Main:\n");
2162 		trie_collect_stats(trie_main, stat);
2163 		trie_show_stats(seq, stat);
2164 	}
2165 	kfree(stat);
2166 
2167 	return 0;
2168 }
2169 
2170 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2171 {
2172 	return single_open(file, fib_triestat_seq_show, NULL);
2173 }
2174 
2175 static const struct file_operations fib_triestat_fops = {
2176 	.owner	= THIS_MODULE,
2177 	.open	= fib_triestat_seq_open,
2178 	.read	= seq_read,
2179 	.llseek	= seq_lseek,
2180 	.release = single_release,
2181 };
2182 
2183 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2184 				      loff_t pos)
2185 {
2186 	loff_t idx = 0;
2187 	struct node *n;
2188 
2189 	for (n = fib_trie_get_first(iter, trie_local);
2190 	     n; ++idx, n = fib_trie_get_next(iter)) {
2191 		if (pos == idx)
2192 			return n;
2193 	}
2194 
2195 	for (n = fib_trie_get_first(iter, trie_main);
2196 	     n; ++idx, n = fib_trie_get_next(iter)) {
2197 		if (pos == idx)
2198 			return n;
2199 	}
2200 	return NULL;
2201 }
2202 
2203 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2204 {
2205 	rcu_read_lock();
2206 	if (*pos == 0)
2207 		return SEQ_START_TOKEN;
2208 	return fib_trie_get_idx(seq->private, *pos - 1);
2209 }
2210 
2211 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2212 {
2213 	struct fib_trie_iter *iter = seq->private;
2214 	void *l = v;
2215 
2216 	++*pos;
2217 	if (v == SEQ_START_TOKEN)
2218 		return fib_trie_get_idx(iter, 0);
2219 
2220 	v = fib_trie_get_next(iter);
2221 	BUG_ON(v == l);
2222 	if (v)
2223 		return v;
2224 
2225 	/* continue scan in next trie */
2226 	if (iter->trie == trie_local)
2227 		return fib_trie_get_first(iter, trie_main);
2228 
2229 	return NULL;
2230 }
2231 
2232 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2233 {
2234 	rcu_read_unlock();
2235 }
2236 
2237 static void seq_indent(struct seq_file *seq, int n)
2238 {
2239 	while (n-- > 0) seq_puts(seq, "   ");
2240 }
2241 
2242 static inline const char *rtn_scope(enum rt_scope_t s)
2243 {
2244 	static char buf[32];
2245 
2246 	switch(s) {
2247 	case RT_SCOPE_UNIVERSE: return "universe";
2248 	case RT_SCOPE_SITE:	return "site";
2249 	case RT_SCOPE_LINK:	return "link";
2250 	case RT_SCOPE_HOST:	return "host";
2251 	case RT_SCOPE_NOWHERE:	return "nowhere";
2252 	default:
2253 		snprintf(buf, sizeof(buf), "scope=%d", s);
2254 		return buf;
2255 	}
2256 }
2257 
2258 static const char *rtn_type_names[__RTN_MAX] = {
2259 	[RTN_UNSPEC] = "UNSPEC",
2260 	[RTN_UNICAST] = "UNICAST",
2261 	[RTN_LOCAL] = "LOCAL",
2262 	[RTN_BROADCAST] = "BROADCAST",
2263 	[RTN_ANYCAST] = "ANYCAST",
2264 	[RTN_MULTICAST] = "MULTICAST",
2265 	[RTN_BLACKHOLE] = "BLACKHOLE",
2266 	[RTN_UNREACHABLE] = "UNREACHABLE",
2267 	[RTN_PROHIBIT] = "PROHIBIT",
2268 	[RTN_THROW] = "THROW",
2269 	[RTN_NAT] = "NAT",
2270 	[RTN_XRESOLVE] = "XRESOLVE",
2271 };
2272 
2273 static inline const char *rtn_type(unsigned t)
2274 {
2275 	static char buf[32];
2276 
2277 	if (t < __RTN_MAX && rtn_type_names[t])
2278 		return rtn_type_names[t];
2279 	snprintf(buf, sizeof(buf), "type %d", t);
2280 	return buf;
2281 }
2282 
2283 /* Pretty print the trie */
2284 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2285 {
2286 	const struct fib_trie_iter *iter = seq->private;
2287 	struct node *n = v;
2288 
2289 	if (v == SEQ_START_TOKEN)
2290 		return 0;
2291 
2292 	if (!NODE_PARENT(n)) {
2293 		if (iter->trie == trie_local)
2294 			seq_puts(seq, "<local>:\n");
2295 		else
2296 			seq_puts(seq, "<main>:\n");
2297 	}
2298 
2299 	if (IS_TNODE(n)) {
2300 		struct tnode *tn = (struct tnode *) n;
2301 		__be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
2302 
2303 		seq_indent(seq, iter->depth-1);
2304 		seq_printf(seq, "  +-- %d.%d.%d.%d/%d %d %d %d\n",
2305 			   NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2306 			   tn->empty_children);
2307 
2308 	} else {
2309 		struct leaf *l = (struct leaf *) n;
2310 		int i;
2311 		__be32 val = htonl(l->key);
2312 
2313 		seq_indent(seq, iter->depth);
2314 		seq_printf(seq, "  |-- %d.%d.%d.%d\n", NIPQUAD(val));
2315 		for (i = 32; i >= 0; i--) {
2316 			struct leaf_info *li = find_leaf_info(l, i);
2317 			if (li) {
2318 				struct fib_alias *fa;
2319 				list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2320 					seq_indent(seq, iter->depth+1);
2321 					seq_printf(seq, "  /%d %s %s", i,
2322 						   rtn_scope(fa->fa_scope),
2323 						   rtn_type(fa->fa_type));
2324 					if (fa->fa_tos)
2325 						seq_printf(seq, "tos =%d\n",
2326 							   fa->fa_tos);
2327 					seq_putc(seq, '\n');
2328 				}
2329 			}
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static struct seq_operations fib_trie_seq_ops = {
2337 	.start  = fib_trie_seq_start,
2338 	.next   = fib_trie_seq_next,
2339 	.stop   = fib_trie_seq_stop,
2340 	.show   = fib_trie_seq_show,
2341 };
2342 
2343 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2344 {
2345 	struct seq_file *seq;
2346 	int rc = -ENOMEM;
2347 	struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2348 
2349 	if (!s)
2350 		goto out;
2351 
2352 	rc = seq_open(file, &fib_trie_seq_ops);
2353 	if (rc)
2354 		goto out_kfree;
2355 
2356 	seq	     = file->private_data;
2357 	seq->private = s;
2358 	memset(s, 0, sizeof(*s));
2359 out:
2360 	return rc;
2361 out_kfree:
2362 	kfree(s);
2363 	goto out;
2364 }
2365 
2366 static const struct file_operations fib_trie_fops = {
2367 	.owner  = THIS_MODULE,
2368 	.open   = fib_trie_seq_open,
2369 	.read   = seq_read,
2370 	.llseek = seq_lseek,
2371 	.release = seq_release_private,
2372 };
2373 
2374 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2375 {
2376 	static unsigned type2flags[RTN_MAX + 1] = {
2377 		[7] = RTF_REJECT, [8] = RTF_REJECT,
2378 	};
2379 	unsigned flags = type2flags[type];
2380 
2381 	if (fi && fi->fib_nh->nh_gw)
2382 		flags |= RTF_GATEWAY;
2383 	if (mask == htonl(0xFFFFFFFF))
2384 		flags |= RTF_HOST;
2385 	flags |= RTF_UP;
2386 	return flags;
2387 }
2388 
2389 /*
2390  *	This outputs /proc/net/route.
2391  *	The format of the file is not supposed to be changed
2392  * 	and needs to be same as fib_hash output to avoid breaking
2393  *	legacy utilities
2394  */
2395 static int fib_route_seq_show(struct seq_file *seq, void *v)
2396 {
2397 	const struct fib_trie_iter *iter = seq->private;
2398 	struct leaf *l = v;
2399 	int i;
2400 	char bf[128];
2401 
2402 	if (v == SEQ_START_TOKEN) {
2403 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2404 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2405 			   "\tWindow\tIRTT");
2406 		return 0;
2407 	}
2408 
2409 	if (iter->trie == trie_local)
2410 		return 0;
2411 	if (IS_TNODE(l))
2412 		return 0;
2413 
2414 	for (i=32; i>=0; i--) {
2415 		struct leaf_info *li = find_leaf_info(l, i);
2416 		struct fib_alias *fa;
2417 		__be32 mask, prefix;
2418 
2419 		if (!li)
2420 			continue;
2421 
2422 		mask = inet_make_mask(li->plen);
2423 		prefix = htonl(l->key);
2424 
2425 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2426 			const struct fib_info *fi = fa->fa_info;
2427 			unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2428 
2429 			if (fa->fa_type == RTN_BROADCAST
2430 			    || fa->fa_type == RTN_MULTICAST)
2431 				continue;
2432 
2433 			if (fi)
2434 				snprintf(bf, sizeof(bf),
2435 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2436 					 fi->fib_dev ? fi->fib_dev->name : "*",
2437 					 prefix,
2438 					 fi->fib_nh->nh_gw, flags, 0, 0,
2439 					 fi->fib_priority,
2440 					 mask,
2441 					 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2442 					 fi->fib_window,
2443 					 fi->fib_rtt >> 3);
2444 			else
2445 				snprintf(bf, sizeof(bf),
2446 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2447 					 prefix, 0, flags, 0, 0, 0,
2448 					 mask, 0, 0, 0);
2449 
2450 			seq_printf(seq, "%-127s\n", bf);
2451 		}
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static struct seq_operations fib_route_seq_ops = {
2458 	.start  = fib_trie_seq_start,
2459 	.next   = fib_trie_seq_next,
2460 	.stop   = fib_trie_seq_stop,
2461 	.show   = fib_route_seq_show,
2462 };
2463 
2464 static int fib_route_seq_open(struct inode *inode, struct file *file)
2465 {
2466 	struct seq_file *seq;
2467 	int rc = -ENOMEM;
2468 	struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2469 
2470 	if (!s)
2471 		goto out;
2472 
2473 	rc = seq_open(file, &fib_route_seq_ops);
2474 	if (rc)
2475 		goto out_kfree;
2476 
2477 	seq	     = file->private_data;
2478 	seq->private = s;
2479 	memset(s, 0, sizeof(*s));
2480 out:
2481 	return rc;
2482 out_kfree:
2483 	kfree(s);
2484 	goto out;
2485 }
2486 
2487 static const struct file_operations fib_route_fops = {
2488 	.owner  = THIS_MODULE,
2489 	.open   = fib_route_seq_open,
2490 	.read   = seq_read,
2491 	.llseek = seq_lseek,
2492 	.release = seq_release_private,
2493 };
2494 
2495 int __init fib_proc_init(void)
2496 {
2497 	if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2498 		goto out1;
2499 
2500 	if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2501 		goto out2;
2502 
2503 	if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2504 		goto out3;
2505 
2506 	return 0;
2507 
2508 out3:
2509 	proc_net_remove("fib_triestat");
2510 out2:
2511 	proc_net_remove("fib_trie");
2512 out1:
2513 	return -ENOMEM;
2514 }
2515 
2516 void __init fib_proc_exit(void)
2517 {
2518 	proc_net_remove("fib_trie");
2519 	proc_net_remove("fib_triestat");
2520 	proc_net_remove("route");
2521 }
2522 
2523 #endif /* CONFIG_PROC_FS */
2524