xref: /openbmc/linux/net/ipv4/fib_trie.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 static unsigned int fib_seq_sum(void)
88 {
89 	unsigned int fib_seq = 0;
90 	struct net *net;
91 
92 	rtnl_lock();
93 	for_each_net(net)
94 		fib_seq += net->ipv4.fib_seq;
95 	rtnl_unlock();
96 
97 	return fib_seq;
98 }
99 
100 static ATOMIC_NOTIFIER_HEAD(fib_chain);
101 
102 static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 			     enum fib_event_type event_type,
104 			     struct fib_notifier_info *info)
105 {
106 	info->net = net;
107 	return nb->notifier_call(nb, event_type, info);
108 }
109 
110 static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 			     enum fib_event_type event_type)
112 {
113 #ifdef CONFIG_IP_MULTIPLE_TABLES
114 	struct fib_notifier_info info;
115 
116 	if (net->ipv4.fib_has_custom_rules)
117 		call_fib_notifier(nb, net, event_type, &info);
118 #endif
119 }
120 
121 static void fib_notify(struct net *net, struct notifier_block *nb,
122 		       enum fib_event_type event_type);
123 
124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 				   enum fib_event_type event_type, u32 dst,
126 				   int dst_len, struct fib_info *fi,
127 				   u8 tos, u8 type, u32 tb_id, u32 nlflags)
128 {
129 	struct fib_entry_notifier_info info = {
130 		.dst = dst,
131 		.dst_len = dst_len,
132 		.fi = fi,
133 		.tos = tos,
134 		.type = type,
135 		.tb_id = tb_id,
136 		.nlflags = nlflags,
137 	};
138 	return call_fib_notifier(nb, net, event_type, &info.info);
139 }
140 
141 static bool fib_dump_is_consistent(struct notifier_block *nb,
142 				   void (*cb)(struct notifier_block *nb),
143 				   unsigned int fib_seq)
144 {
145 	atomic_notifier_chain_register(&fib_chain, nb);
146 	if (fib_seq == fib_seq_sum())
147 		return true;
148 	atomic_notifier_chain_unregister(&fib_chain, nb);
149 	if (cb)
150 		cb(nb);
151 	return false;
152 }
153 
154 #define FIB_DUMP_MAX_RETRIES 5
155 int register_fib_notifier(struct notifier_block *nb,
156 			  void (*cb)(struct notifier_block *nb))
157 {
158 	int retries = 0;
159 
160 	do {
161 		unsigned int fib_seq = fib_seq_sum();
162 		struct net *net;
163 
164 		/* Mutex semantics guarantee that every change done to
165 		 * FIB tries before we read the change sequence counter
166 		 * is now visible to us.
167 		 */
168 		rcu_read_lock();
169 		for_each_net_rcu(net) {
170 			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
171 			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
172 		}
173 		rcu_read_unlock();
174 
175 		if (fib_dump_is_consistent(nb, cb, fib_seq))
176 			return 0;
177 	} while (++retries < FIB_DUMP_MAX_RETRIES);
178 
179 	return -EBUSY;
180 }
181 EXPORT_SYMBOL(register_fib_notifier);
182 
183 int unregister_fib_notifier(struct notifier_block *nb)
184 {
185 	return atomic_notifier_chain_unregister(&fib_chain, nb);
186 }
187 EXPORT_SYMBOL(unregister_fib_notifier);
188 
189 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
190 		       struct fib_notifier_info *info)
191 {
192 	net->ipv4.fib_seq++;
193 	info->net = net;
194 	return atomic_notifier_call_chain(&fib_chain, event_type, info);
195 }
196 
197 static int call_fib_entry_notifiers(struct net *net,
198 				    enum fib_event_type event_type, u32 dst,
199 				    int dst_len, struct fib_info *fi,
200 				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
201 {
202 	struct fib_entry_notifier_info info = {
203 		.dst = dst,
204 		.dst_len = dst_len,
205 		.fi = fi,
206 		.tos = tos,
207 		.type = type,
208 		.tb_id = tb_id,
209 		.nlflags = nlflags,
210 	};
211 	return call_fib_notifiers(net, event_type, &info.info);
212 }
213 
214 #define MAX_STAT_DEPTH 32
215 
216 #define KEYLENGTH	(8*sizeof(t_key))
217 #define KEY_MAX		((t_key)~0)
218 
219 typedef unsigned int t_key;
220 
221 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
222 #define IS_TNODE(n)	((n)->bits)
223 #define IS_LEAF(n)	(!(n)->bits)
224 
225 struct key_vector {
226 	t_key key;
227 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
228 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
229 	unsigned char slen;
230 	union {
231 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
232 		struct hlist_head leaf;
233 		/* This array is valid if (pos | bits) > 0 (TNODE) */
234 		struct key_vector __rcu *tnode[0];
235 	};
236 };
237 
238 struct tnode {
239 	struct rcu_head rcu;
240 	t_key empty_children;		/* KEYLENGTH bits needed */
241 	t_key full_children;		/* KEYLENGTH bits needed */
242 	struct key_vector __rcu *parent;
243 	struct key_vector kv[1];
244 #define tn_bits kv[0].bits
245 };
246 
247 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
248 #define LEAF_SIZE	TNODE_SIZE(1)
249 
250 #ifdef CONFIG_IP_FIB_TRIE_STATS
251 struct trie_use_stats {
252 	unsigned int gets;
253 	unsigned int backtrack;
254 	unsigned int semantic_match_passed;
255 	unsigned int semantic_match_miss;
256 	unsigned int null_node_hit;
257 	unsigned int resize_node_skipped;
258 };
259 #endif
260 
261 struct trie_stat {
262 	unsigned int totdepth;
263 	unsigned int maxdepth;
264 	unsigned int tnodes;
265 	unsigned int leaves;
266 	unsigned int nullpointers;
267 	unsigned int prefixes;
268 	unsigned int nodesizes[MAX_STAT_DEPTH];
269 };
270 
271 struct trie {
272 	struct key_vector kv[1];
273 #ifdef CONFIG_IP_FIB_TRIE_STATS
274 	struct trie_use_stats __percpu *stats;
275 #endif
276 };
277 
278 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
279 static size_t tnode_free_size;
280 
281 /*
282  * synchronize_rcu after call_rcu for that many pages; it should be especially
283  * useful before resizing the root node with PREEMPT_NONE configs; the value was
284  * obtained experimentally, aiming to avoid visible slowdown.
285  */
286 static const int sync_pages = 128;
287 
288 static struct kmem_cache *fn_alias_kmem __read_mostly;
289 static struct kmem_cache *trie_leaf_kmem __read_mostly;
290 
291 static inline struct tnode *tn_info(struct key_vector *kv)
292 {
293 	return container_of(kv, struct tnode, kv[0]);
294 }
295 
296 /* caller must hold RTNL */
297 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
299 
300 /* caller must hold RCU read lock or RTNL */
301 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
303 
304 /* wrapper for rcu_assign_pointer */
305 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
306 {
307 	if (n)
308 		rcu_assign_pointer(tn_info(n)->parent, tp);
309 }
310 
311 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
312 
313 /* This provides us with the number of children in this node, in the case of a
314  * leaf this will return 0 meaning none of the children are accessible.
315  */
316 static inline unsigned long child_length(const struct key_vector *tn)
317 {
318 	return (1ul << tn->bits) & ~(1ul);
319 }
320 
321 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
322 
323 static inline unsigned long get_index(t_key key, struct key_vector *kv)
324 {
325 	unsigned long index = key ^ kv->key;
326 
327 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
328 		return 0;
329 
330 	return index >> kv->pos;
331 }
332 
333 /* To understand this stuff, an understanding of keys and all their bits is
334  * necessary. Every node in the trie has a key associated with it, but not
335  * all of the bits in that key are significant.
336  *
337  * Consider a node 'n' and its parent 'tp'.
338  *
339  * If n is a leaf, every bit in its key is significant. Its presence is
340  * necessitated by path compression, since during a tree traversal (when
341  * searching for a leaf - unless we are doing an insertion) we will completely
342  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343  * a potentially successful search, that we have indeed been walking the
344  * correct key path.
345  *
346  * Note that we can never "miss" the correct key in the tree if present by
347  * following the wrong path. Path compression ensures that segments of the key
348  * that are the same for all keys with a given prefix are skipped, but the
349  * skipped part *is* identical for each node in the subtrie below the skipped
350  * bit! trie_insert() in this implementation takes care of that.
351  *
352  * if n is an internal node - a 'tnode' here, the various parts of its key
353  * have many different meanings.
354  *
355  * Example:
356  * _________________________________________________________________
357  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358  * -----------------------------------------------------------------
359  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
360  *
361  * _________________________________________________________________
362  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363  * -----------------------------------------------------------------
364  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
365  *
366  * tp->pos = 22
367  * tp->bits = 3
368  * n->pos = 13
369  * n->bits = 4
370  *
371  * First, let's just ignore the bits that come before the parent tp, that is
372  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373  * point we do not use them for anything.
374  *
375  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376  * index into the parent's child array. That is, they will be used to find
377  * 'n' among tp's children.
378  *
379  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
380  * for the node n.
381  *
382  * All the bits we have seen so far are significant to the node n. The rest
383  * of the bits are really not needed or indeed known in n->key.
384  *
385  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386  * n's child array, and will of course be different for each child.
387  *
388  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
389  * at this point.
390  */
391 
392 static const int halve_threshold = 25;
393 static const int inflate_threshold = 50;
394 static const int halve_threshold_root = 15;
395 static const int inflate_threshold_root = 30;
396 
397 static void __alias_free_mem(struct rcu_head *head)
398 {
399 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
400 	kmem_cache_free(fn_alias_kmem, fa);
401 }
402 
403 static inline void alias_free_mem_rcu(struct fib_alias *fa)
404 {
405 	call_rcu(&fa->rcu, __alias_free_mem);
406 }
407 
408 #define TNODE_KMALLOC_MAX \
409 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410 #define TNODE_VMALLOC_MAX \
411 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
412 
413 static void __node_free_rcu(struct rcu_head *head)
414 {
415 	struct tnode *n = container_of(head, struct tnode, rcu);
416 
417 	if (!n->tn_bits)
418 		kmem_cache_free(trie_leaf_kmem, n);
419 	else
420 		kvfree(n);
421 }
422 
423 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
424 
425 static struct tnode *tnode_alloc(int bits)
426 {
427 	size_t size;
428 
429 	/* verify bits is within bounds */
430 	if (bits > TNODE_VMALLOC_MAX)
431 		return NULL;
432 
433 	/* determine size and verify it is non-zero and didn't overflow */
434 	size = TNODE_SIZE(1ul << bits);
435 
436 	if (size <= PAGE_SIZE)
437 		return kzalloc(size, GFP_KERNEL);
438 	else
439 		return vzalloc(size);
440 }
441 
442 static inline void empty_child_inc(struct key_vector *n)
443 {
444 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
445 }
446 
447 static inline void empty_child_dec(struct key_vector *n)
448 {
449 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
450 }
451 
452 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
453 {
454 	struct key_vector *l;
455 	struct tnode *kv;
456 
457 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
458 	if (!kv)
459 		return NULL;
460 
461 	/* initialize key vector */
462 	l = kv->kv;
463 	l->key = key;
464 	l->pos = 0;
465 	l->bits = 0;
466 	l->slen = fa->fa_slen;
467 
468 	/* link leaf to fib alias */
469 	INIT_HLIST_HEAD(&l->leaf);
470 	hlist_add_head(&fa->fa_list, &l->leaf);
471 
472 	return l;
473 }
474 
475 static struct key_vector *tnode_new(t_key key, int pos, int bits)
476 {
477 	unsigned int shift = pos + bits;
478 	struct key_vector *tn;
479 	struct tnode *tnode;
480 
481 	/* verify bits and pos their msb bits clear and values are valid */
482 	BUG_ON(!bits || (shift > KEYLENGTH));
483 
484 	tnode = tnode_alloc(bits);
485 	if (!tnode)
486 		return NULL;
487 
488 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
489 		 sizeof(struct key_vector *) << bits);
490 
491 	if (bits == KEYLENGTH)
492 		tnode->full_children = 1;
493 	else
494 		tnode->empty_children = 1ul << bits;
495 
496 	tn = tnode->kv;
497 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
498 	tn->pos = pos;
499 	tn->bits = bits;
500 	tn->slen = pos;
501 
502 	return tn;
503 }
504 
505 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
506  * and no bits are skipped. See discussion in dyntree paper p. 6
507  */
508 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
509 {
510 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
511 }
512 
513 /* Add a child at position i overwriting the old value.
514  * Update the value of full_children and empty_children.
515  */
516 static void put_child(struct key_vector *tn, unsigned long i,
517 		      struct key_vector *n)
518 {
519 	struct key_vector *chi = get_child(tn, i);
520 	int isfull, wasfull;
521 
522 	BUG_ON(i >= child_length(tn));
523 
524 	/* update emptyChildren, overflow into fullChildren */
525 	if (!n && chi)
526 		empty_child_inc(tn);
527 	if (n && !chi)
528 		empty_child_dec(tn);
529 
530 	/* update fullChildren */
531 	wasfull = tnode_full(tn, chi);
532 	isfull = tnode_full(tn, n);
533 
534 	if (wasfull && !isfull)
535 		tn_info(tn)->full_children--;
536 	else if (!wasfull && isfull)
537 		tn_info(tn)->full_children++;
538 
539 	if (n && (tn->slen < n->slen))
540 		tn->slen = n->slen;
541 
542 	rcu_assign_pointer(tn->tnode[i], n);
543 }
544 
545 static void update_children(struct key_vector *tn)
546 {
547 	unsigned long i;
548 
549 	/* update all of the child parent pointers */
550 	for (i = child_length(tn); i;) {
551 		struct key_vector *inode = get_child(tn, --i);
552 
553 		if (!inode)
554 			continue;
555 
556 		/* Either update the children of a tnode that
557 		 * already belongs to us or update the child
558 		 * to point to ourselves.
559 		 */
560 		if (node_parent(inode) == tn)
561 			update_children(inode);
562 		else
563 			node_set_parent(inode, tn);
564 	}
565 }
566 
567 static inline void put_child_root(struct key_vector *tp, t_key key,
568 				  struct key_vector *n)
569 {
570 	if (IS_TRIE(tp))
571 		rcu_assign_pointer(tp->tnode[0], n);
572 	else
573 		put_child(tp, get_index(key, tp), n);
574 }
575 
576 static inline void tnode_free_init(struct key_vector *tn)
577 {
578 	tn_info(tn)->rcu.next = NULL;
579 }
580 
581 static inline void tnode_free_append(struct key_vector *tn,
582 				     struct key_vector *n)
583 {
584 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
585 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
586 }
587 
588 static void tnode_free(struct key_vector *tn)
589 {
590 	struct callback_head *head = &tn_info(tn)->rcu;
591 
592 	while (head) {
593 		head = head->next;
594 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
595 		node_free(tn);
596 
597 		tn = container_of(head, struct tnode, rcu)->kv;
598 	}
599 
600 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
601 		tnode_free_size = 0;
602 		synchronize_rcu();
603 	}
604 }
605 
606 static struct key_vector *replace(struct trie *t,
607 				  struct key_vector *oldtnode,
608 				  struct key_vector *tn)
609 {
610 	struct key_vector *tp = node_parent(oldtnode);
611 	unsigned long i;
612 
613 	/* setup the parent pointer out of and back into this node */
614 	NODE_INIT_PARENT(tn, tp);
615 	put_child_root(tp, tn->key, tn);
616 
617 	/* update all of the child parent pointers */
618 	update_children(tn);
619 
620 	/* all pointers should be clean so we are done */
621 	tnode_free(oldtnode);
622 
623 	/* resize children now that oldtnode is freed */
624 	for (i = child_length(tn); i;) {
625 		struct key_vector *inode = get_child(tn, --i);
626 
627 		/* resize child node */
628 		if (tnode_full(tn, inode))
629 			tn = resize(t, inode);
630 	}
631 
632 	return tp;
633 }
634 
635 static struct key_vector *inflate(struct trie *t,
636 				  struct key_vector *oldtnode)
637 {
638 	struct key_vector *tn;
639 	unsigned long i;
640 	t_key m;
641 
642 	pr_debug("In inflate\n");
643 
644 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
645 	if (!tn)
646 		goto notnode;
647 
648 	/* prepare oldtnode to be freed */
649 	tnode_free_init(oldtnode);
650 
651 	/* Assemble all of the pointers in our cluster, in this case that
652 	 * represents all of the pointers out of our allocated nodes that
653 	 * point to existing tnodes and the links between our allocated
654 	 * nodes.
655 	 */
656 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
657 		struct key_vector *inode = get_child(oldtnode, --i);
658 		struct key_vector *node0, *node1;
659 		unsigned long j, k;
660 
661 		/* An empty child */
662 		if (!inode)
663 			continue;
664 
665 		/* A leaf or an internal node with skipped bits */
666 		if (!tnode_full(oldtnode, inode)) {
667 			put_child(tn, get_index(inode->key, tn), inode);
668 			continue;
669 		}
670 
671 		/* drop the node in the old tnode free list */
672 		tnode_free_append(oldtnode, inode);
673 
674 		/* An internal node with two children */
675 		if (inode->bits == 1) {
676 			put_child(tn, 2 * i + 1, get_child(inode, 1));
677 			put_child(tn, 2 * i, get_child(inode, 0));
678 			continue;
679 		}
680 
681 		/* We will replace this node 'inode' with two new
682 		 * ones, 'node0' and 'node1', each with half of the
683 		 * original children. The two new nodes will have
684 		 * a position one bit further down the key and this
685 		 * means that the "significant" part of their keys
686 		 * (see the discussion near the top of this file)
687 		 * will differ by one bit, which will be "0" in
688 		 * node0's key and "1" in node1's key. Since we are
689 		 * moving the key position by one step, the bit that
690 		 * we are moving away from - the bit at position
691 		 * (tn->pos) - is the one that will differ between
692 		 * node0 and node1. So... we synthesize that bit in the
693 		 * two new keys.
694 		 */
695 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
696 		if (!node1)
697 			goto nomem;
698 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
699 
700 		tnode_free_append(tn, node1);
701 		if (!node0)
702 			goto nomem;
703 		tnode_free_append(tn, node0);
704 
705 		/* populate child pointers in new nodes */
706 		for (k = child_length(inode), j = k / 2; j;) {
707 			put_child(node1, --j, get_child(inode, --k));
708 			put_child(node0, j, get_child(inode, j));
709 			put_child(node1, --j, get_child(inode, --k));
710 			put_child(node0, j, get_child(inode, j));
711 		}
712 
713 		/* link new nodes to parent */
714 		NODE_INIT_PARENT(node1, tn);
715 		NODE_INIT_PARENT(node0, tn);
716 
717 		/* link parent to nodes */
718 		put_child(tn, 2 * i + 1, node1);
719 		put_child(tn, 2 * i, node0);
720 	}
721 
722 	/* setup the parent pointers into and out of this node */
723 	return replace(t, oldtnode, tn);
724 nomem:
725 	/* all pointers should be clean so we are done */
726 	tnode_free(tn);
727 notnode:
728 	return NULL;
729 }
730 
731 static struct key_vector *halve(struct trie *t,
732 				struct key_vector *oldtnode)
733 {
734 	struct key_vector *tn;
735 	unsigned long i;
736 
737 	pr_debug("In halve\n");
738 
739 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
740 	if (!tn)
741 		goto notnode;
742 
743 	/* prepare oldtnode to be freed */
744 	tnode_free_init(oldtnode);
745 
746 	/* Assemble all of the pointers in our cluster, in this case that
747 	 * represents all of the pointers out of our allocated nodes that
748 	 * point to existing tnodes and the links between our allocated
749 	 * nodes.
750 	 */
751 	for (i = child_length(oldtnode); i;) {
752 		struct key_vector *node1 = get_child(oldtnode, --i);
753 		struct key_vector *node0 = get_child(oldtnode, --i);
754 		struct key_vector *inode;
755 
756 		/* At least one of the children is empty */
757 		if (!node1 || !node0) {
758 			put_child(tn, i / 2, node1 ? : node0);
759 			continue;
760 		}
761 
762 		/* Two nonempty children */
763 		inode = tnode_new(node0->key, oldtnode->pos, 1);
764 		if (!inode)
765 			goto nomem;
766 		tnode_free_append(tn, inode);
767 
768 		/* initialize pointers out of node */
769 		put_child(inode, 1, node1);
770 		put_child(inode, 0, node0);
771 		NODE_INIT_PARENT(inode, tn);
772 
773 		/* link parent to node */
774 		put_child(tn, i / 2, inode);
775 	}
776 
777 	/* setup the parent pointers into and out of this node */
778 	return replace(t, oldtnode, tn);
779 nomem:
780 	/* all pointers should be clean so we are done */
781 	tnode_free(tn);
782 notnode:
783 	return NULL;
784 }
785 
786 static struct key_vector *collapse(struct trie *t,
787 				   struct key_vector *oldtnode)
788 {
789 	struct key_vector *n, *tp;
790 	unsigned long i;
791 
792 	/* scan the tnode looking for that one child that might still exist */
793 	for (n = NULL, i = child_length(oldtnode); !n && i;)
794 		n = get_child(oldtnode, --i);
795 
796 	/* compress one level */
797 	tp = node_parent(oldtnode);
798 	put_child_root(tp, oldtnode->key, n);
799 	node_set_parent(n, tp);
800 
801 	/* drop dead node */
802 	node_free(oldtnode);
803 
804 	return tp;
805 }
806 
807 static unsigned char update_suffix(struct key_vector *tn)
808 {
809 	unsigned char slen = tn->pos;
810 	unsigned long stride, i;
811 
812 	/* search though the list of children looking for nodes that might
813 	 * have a suffix greater than the one we currently have.  This is
814 	 * why we start with a stride of 2 since a stride of 1 would
815 	 * represent the nodes with suffix length equal to tn->pos
816 	 */
817 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
818 		struct key_vector *n = get_child(tn, i);
819 
820 		if (!n || (n->slen <= slen))
821 			continue;
822 
823 		/* update stride and slen based on new value */
824 		stride <<= (n->slen - slen);
825 		slen = n->slen;
826 		i &= ~(stride - 1);
827 
828 		/* if slen covers all but the last bit we can stop here
829 		 * there will be nothing longer than that since only node
830 		 * 0 and 1 << (bits - 1) could have that as their suffix
831 		 * length.
832 		 */
833 		if ((slen + 1) >= (tn->pos + tn->bits))
834 			break;
835 	}
836 
837 	tn->slen = slen;
838 
839 	return slen;
840 }
841 
842 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
843  * the Helsinki University of Technology and Matti Tikkanen of Nokia
844  * Telecommunications, page 6:
845  * "A node is doubled if the ratio of non-empty children to all
846  * children in the *doubled* node is at least 'high'."
847  *
848  * 'high' in this instance is the variable 'inflate_threshold'. It
849  * is expressed as a percentage, so we multiply it with
850  * child_length() and instead of multiplying by 2 (since the
851  * child array will be doubled by inflate()) and multiplying
852  * the left-hand side by 100 (to handle the percentage thing) we
853  * multiply the left-hand side by 50.
854  *
855  * The left-hand side may look a bit weird: child_length(tn)
856  * - tn->empty_children is of course the number of non-null children
857  * in the current node. tn->full_children is the number of "full"
858  * children, that is non-null tnodes with a skip value of 0.
859  * All of those will be doubled in the resulting inflated tnode, so
860  * we just count them one extra time here.
861  *
862  * A clearer way to write this would be:
863  *
864  * to_be_doubled = tn->full_children;
865  * not_to_be_doubled = child_length(tn) - tn->empty_children -
866  *     tn->full_children;
867  *
868  * new_child_length = child_length(tn) * 2;
869  *
870  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
871  *      new_child_length;
872  * if (new_fill_factor >= inflate_threshold)
873  *
874  * ...and so on, tho it would mess up the while () loop.
875  *
876  * anyway,
877  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
878  *      inflate_threshold
879  *
880  * avoid a division:
881  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
882  *      inflate_threshold * new_child_length
883  *
884  * expand not_to_be_doubled and to_be_doubled, and shorten:
885  * 100 * (child_length(tn) - tn->empty_children +
886  *    tn->full_children) >= inflate_threshold * new_child_length
887  *
888  * expand new_child_length:
889  * 100 * (child_length(tn) - tn->empty_children +
890  *    tn->full_children) >=
891  *      inflate_threshold * child_length(tn) * 2
892  *
893  * shorten again:
894  * 50 * (tn->full_children + child_length(tn) -
895  *    tn->empty_children) >= inflate_threshold *
896  *    child_length(tn)
897  *
898  */
899 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
900 {
901 	unsigned long used = child_length(tn);
902 	unsigned long threshold = used;
903 
904 	/* Keep root node larger */
905 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
906 	used -= tn_info(tn)->empty_children;
907 	used += tn_info(tn)->full_children;
908 
909 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
910 
911 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
912 }
913 
914 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
915 {
916 	unsigned long used = child_length(tn);
917 	unsigned long threshold = used;
918 
919 	/* Keep root node larger */
920 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
921 	used -= tn_info(tn)->empty_children;
922 
923 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
924 
925 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
926 }
927 
928 static inline bool should_collapse(struct key_vector *tn)
929 {
930 	unsigned long used = child_length(tn);
931 
932 	used -= tn_info(tn)->empty_children;
933 
934 	/* account for bits == KEYLENGTH case */
935 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
936 		used -= KEY_MAX;
937 
938 	/* One child or none, time to drop us from the trie */
939 	return used < 2;
940 }
941 
942 #define MAX_WORK 10
943 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
944 {
945 #ifdef CONFIG_IP_FIB_TRIE_STATS
946 	struct trie_use_stats __percpu *stats = t->stats;
947 #endif
948 	struct key_vector *tp = node_parent(tn);
949 	unsigned long cindex = get_index(tn->key, tp);
950 	int max_work = MAX_WORK;
951 
952 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
953 		 tn, inflate_threshold, halve_threshold);
954 
955 	/* track the tnode via the pointer from the parent instead of
956 	 * doing it ourselves.  This way we can let RCU fully do its
957 	 * thing without us interfering
958 	 */
959 	BUG_ON(tn != get_child(tp, cindex));
960 
961 	/* Double as long as the resulting node has a number of
962 	 * nonempty nodes that are above the threshold.
963 	 */
964 	while (should_inflate(tp, tn) && max_work) {
965 		tp = inflate(t, tn);
966 		if (!tp) {
967 #ifdef CONFIG_IP_FIB_TRIE_STATS
968 			this_cpu_inc(stats->resize_node_skipped);
969 #endif
970 			break;
971 		}
972 
973 		max_work--;
974 		tn = get_child(tp, cindex);
975 	}
976 
977 	/* update parent in case inflate failed */
978 	tp = node_parent(tn);
979 
980 	/* Return if at least one inflate is run */
981 	if (max_work != MAX_WORK)
982 		return tp;
983 
984 	/* Halve as long as the number of empty children in this
985 	 * node is above threshold.
986 	 */
987 	while (should_halve(tp, tn) && max_work) {
988 		tp = halve(t, tn);
989 		if (!tp) {
990 #ifdef CONFIG_IP_FIB_TRIE_STATS
991 			this_cpu_inc(stats->resize_node_skipped);
992 #endif
993 			break;
994 		}
995 
996 		max_work--;
997 		tn = get_child(tp, cindex);
998 	}
999 
1000 	/* Only one child remains */
1001 	if (should_collapse(tn))
1002 		return collapse(t, tn);
1003 
1004 	/* update parent in case halve failed */
1005 	tp = node_parent(tn);
1006 
1007 	/* Return if at least one deflate was run */
1008 	if (max_work != MAX_WORK)
1009 		return tp;
1010 
1011 	/* push the suffix length to the parent node */
1012 	if (tn->slen > tn->pos) {
1013 		unsigned char slen = update_suffix(tn);
1014 
1015 		if (slen > tp->slen)
1016 			tp->slen = slen;
1017 	}
1018 
1019 	return tp;
1020 }
1021 
1022 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
1023 {
1024 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
1025 		if (update_suffix(tp) > l->slen)
1026 			break;
1027 		tp = node_parent(tp);
1028 	}
1029 }
1030 
1031 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
1032 {
1033 	/* if this is a new leaf then tn will be NULL and we can sort
1034 	 * out parent suffix lengths as a part of trie_rebalance
1035 	 */
1036 	while (tn->slen < l->slen) {
1037 		tn->slen = l->slen;
1038 		tn = node_parent(tn);
1039 	}
1040 }
1041 
1042 /* rcu_read_lock needs to be hold by caller from readside */
1043 static struct key_vector *fib_find_node(struct trie *t,
1044 					struct key_vector **tp, u32 key)
1045 {
1046 	struct key_vector *pn, *n = t->kv;
1047 	unsigned long index = 0;
1048 
1049 	do {
1050 		pn = n;
1051 		n = get_child_rcu(n, index);
1052 
1053 		if (!n)
1054 			break;
1055 
1056 		index = get_cindex(key, n);
1057 
1058 		/* This bit of code is a bit tricky but it combines multiple
1059 		 * checks into a single check.  The prefix consists of the
1060 		 * prefix plus zeros for the bits in the cindex. The index
1061 		 * is the difference between the key and this value.  From
1062 		 * this we can actually derive several pieces of data.
1063 		 *   if (index >= (1ul << bits))
1064 		 *     we have a mismatch in skip bits and failed
1065 		 *   else
1066 		 *     we know the value is cindex
1067 		 *
1068 		 * This check is safe even if bits == KEYLENGTH due to the
1069 		 * fact that we can only allocate a node with 32 bits if a
1070 		 * long is greater than 32 bits.
1071 		 */
1072 		if (index >= (1ul << n->bits)) {
1073 			n = NULL;
1074 			break;
1075 		}
1076 
1077 		/* keep searching until we find a perfect match leaf or NULL */
1078 	} while (IS_TNODE(n));
1079 
1080 	*tp = pn;
1081 
1082 	return n;
1083 }
1084 
1085 /* Return the first fib alias matching TOS with
1086  * priority less than or equal to PRIO.
1087  */
1088 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1089 					u8 tos, u32 prio, u32 tb_id)
1090 {
1091 	struct fib_alias *fa;
1092 
1093 	if (!fah)
1094 		return NULL;
1095 
1096 	hlist_for_each_entry(fa, fah, fa_list) {
1097 		if (fa->fa_slen < slen)
1098 			continue;
1099 		if (fa->fa_slen != slen)
1100 			break;
1101 		if (fa->tb_id > tb_id)
1102 			continue;
1103 		if (fa->tb_id != tb_id)
1104 			break;
1105 		if (fa->fa_tos > tos)
1106 			continue;
1107 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1108 			return fa;
1109 	}
1110 
1111 	return NULL;
1112 }
1113 
1114 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1115 {
1116 	while (!IS_TRIE(tn))
1117 		tn = resize(t, tn);
1118 }
1119 
1120 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1121 			   struct fib_alias *new, t_key key)
1122 {
1123 	struct key_vector *n, *l;
1124 
1125 	l = leaf_new(key, new);
1126 	if (!l)
1127 		goto noleaf;
1128 
1129 	/* retrieve child from parent node */
1130 	n = get_child(tp, get_index(key, tp));
1131 
1132 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1133 	 *
1134 	 *  Add a new tnode here
1135 	 *  first tnode need some special handling
1136 	 *  leaves us in position for handling as case 3
1137 	 */
1138 	if (n) {
1139 		struct key_vector *tn;
1140 
1141 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1142 		if (!tn)
1143 			goto notnode;
1144 
1145 		/* initialize routes out of node */
1146 		NODE_INIT_PARENT(tn, tp);
1147 		put_child(tn, get_index(key, tn) ^ 1, n);
1148 
1149 		/* start adding routes into the node */
1150 		put_child_root(tp, key, tn);
1151 		node_set_parent(n, tn);
1152 
1153 		/* parent now has a NULL spot where the leaf can go */
1154 		tp = tn;
1155 	}
1156 
1157 	/* Case 3: n is NULL, and will just insert a new leaf */
1158 	NODE_INIT_PARENT(l, tp);
1159 	put_child_root(tp, key, l);
1160 	trie_rebalance(t, tp);
1161 
1162 	return 0;
1163 notnode:
1164 	node_free(l);
1165 noleaf:
1166 	return -ENOMEM;
1167 }
1168 
1169 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1170 			    struct key_vector *l, struct fib_alias *new,
1171 			    struct fib_alias *fa, t_key key)
1172 {
1173 	if (!l)
1174 		return fib_insert_node(t, tp, new, key);
1175 
1176 	if (fa) {
1177 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1178 	} else {
1179 		struct fib_alias *last;
1180 
1181 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1182 			if (new->fa_slen < last->fa_slen)
1183 				break;
1184 			if ((new->fa_slen == last->fa_slen) &&
1185 			    (new->tb_id > last->tb_id))
1186 				break;
1187 			fa = last;
1188 		}
1189 
1190 		if (fa)
1191 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1192 		else
1193 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1194 	}
1195 
1196 	/* if we added to the tail node then we need to update slen */
1197 	if (l->slen < new->fa_slen) {
1198 		l->slen = new->fa_slen;
1199 		leaf_push_suffix(tp, l);
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /* Caller must hold RTNL. */
1206 int fib_table_insert(struct net *net, struct fib_table *tb,
1207 		     struct fib_config *cfg)
1208 {
1209 	struct trie *t = (struct trie *)tb->tb_data;
1210 	struct fib_alias *fa, *new_fa;
1211 	struct key_vector *l, *tp;
1212 	u16 nlflags = NLM_F_EXCL;
1213 	struct fib_info *fi;
1214 	u8 plen = cfg->fc_dst_len;
1215 	u8 slen = KEYLENGTH - plen;
1216 	u8 tos = cfg->fc_tos;
1217 	u32 key;
1218 	int err;
1219 
1220 	if (plen > KEYLENGTH)
1221 		return -EINVAL;
1222 
1223 	key = ntohl(cfg->fc_dst);
1224 
1225 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1226 
1227 	if ((plen < KEYLENGTH) && (key << plen))
1228 		return -EINVAL;
1229 
1230 	fi = fib_create_info(cfg);
1231 	if (IS_ERR(fi)) {
1232 		err = PTR_ERR(fi);
1233 		goto err;
1234 	}
1235 
1236 	l = fib_find_node(t, &tp, key);
1237 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1238 				tb->tb_id) : NULL;
1239 
1240 	/* Now fa, if non-NULL, points to the first fib alias
1241 	 * with the same keys [prefix,tos,priority], if such key already
1242 	 * exists or to the node before which we will insert new one.
1243 	 *
1244 	 * If fa is NULL, we will need to allocate a new one and
1245 	 * insert to the tail of the section matching the suffix length
1246 	 * of the new alias.
1247 	 */
1248 
1249 	if (fa && fa->fa_tos == tos &&
1250 	    fa->fa_info->fib_priority == fi->fib_priority) {
1251 		struct fib_alias *fa_first, *fa_match;
1252 
1253 		err = -EEXIST;
1254 		if (cfg->fc_nlflags & NLM_F_EXCL)
1255 			goto out;
1256 
1257 		nlflags &= ~NLM_F_EXCL;
1258 
1259 		/* We have 2 goals:
1260 		 * 1. Find exact match for type, scope, fib_info to avoid
1261 		 * duplicate routes
1262 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1263 		 */
1264 		fa_match = NULL;
1265 		fa_first = fa;
1266 		hlist_for_each_entry_from(fa, fa_list) {
1267 			if ((fa->fa_slen != slen) ||
1268 			    (fa->tb_id != tb->tb_id) ||
1269 			    (fa->fa_tos != tos))
1270 				break;
1271 			if (fa->fa_info->fib_priority != fi->fib_priority)
1272 				break;
1273 			if (fa->fa_type == cfg->fc_type &&
1274 			    fa->fa_info == fi) {
1275 				fa_match = fa;
1276 				break;
1277 			}
1278 		}
1279 
1280 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1281 			struct fib_info *fi_drop;
1282 			u8 state;
1283 
1284 			nlflags |= NLM_F_REPLACE;
1285 			fa = fa_first;
1286 			if (fa_match) {
1287 				if (fa == fa_match)
1288 					err = 0;
1289 				goto out;
1290 			}
1291 			err = -ENOBUFS;
1292 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1293 			if (!new_fa)
1294 				goto out;
1295 
1296 			fi_drop = fa->fa_info;
1297 			new_fa->fa_tos = fa->fa_tos;
1298 			new_fa->fa_info = fi;
1299 			new_fa->fa_type = cfg->fc_type;
1300 			state = fa->fa_state;
1301 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1302 			new_fa->fa_slen = fa->fa_slen;
1303 			new_fa->tb_id = tb->tb_id;
1304 			new_fa->fa_default = -1;
1305 
1306 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1307 
1308 			alias_free_mem_rcu(fa);
1309 
1310 			fib_release_info(fi_drop);
1311 			if (state & FA_S_ACCESSED)
1312 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1313 
1314 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1315 						 key, plen, fi,
1316 						 new_fa->fa_tos, cfg->fc_type,
1317 						 tb->tb_id, cfg->fc_nlflags);
1318 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1319 				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1320 
1321 			goto succeeded;
1322 		}
1323 		/* Error if we find a perfect match which
1324 		 * uses the same scope, type, and nexthop
1325 		 * information.
1326 		 */
1327 		if (fa_match)
1328 			goto out;
1329 
1330 		if (cfg->fc_nlflags & NLM_F_APPEND)
1331 			nlflags |= NLM_F_APPEND;
1332 		else
1333 			fa = fa_first;
1334 	}
1335 	err = -ENOENT;
1336 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1337 		goto out;
1338 
1339 	nlflags |= NLM_F_CREATE;
1340 	err = -ENOBUFS;
1341 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1342 	if (!new_fa)
1343 		goto out;
1344 
1345 	new_fa->fa_info = fi;
1346 	new_fa->fa_tos = tos;
1347 	new_fa->fa_type = cfg->fc_type;
1348 	new_fa->fa_state = 0;
1349 	new_fa->fa_slen = slen;
1350 	new_fa->tb_id = tb->tb_id;
1351 	new_fa->fa_default = -1;
1352 
1353 	/* Insert new entry to the list. */
1354 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1355 	if (err)
1356 		goto out_free_new_fa;
1357 
1358 	if (!plen)
1359 		tb->tb_num_default++;
1360 
1361 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1362 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1363 				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1364 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1365 		  &cfg->fc_nlinfo, nlflags);
1366 succeeded:
1367 	return 0;
1368 
1369 out_free_new_fa:
1370 	kmem_cache_free(fn_alias_kmem, new_fa);
1371 out:
1372 	fib_release_info(fi);
1373 err:
1374 	return err;
1375 }
1376 
1377 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1378 {
1379 	t_key prefix = n->key;
1380 
1381 	return (key ^ prefix) & (prefix | -prefix);
1382 }
1383 
1384 /* should be called with rcu_read_lock */
1385 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1386 		     struct fib_result *res, int fib_flags)
1387 {
1388 	struct trie *t = (struct trie *) tb->tb_data;
1389 #ifdef CONFIG_IP_FIB_TRIE_STATS
1390 	struct trie_use_stats __percpu *stats = t->stats;
1391 #endif
1392 	const t_key key = ntohl(flp->daddr);
1393 	struct key_vector *n, *pn;
1394 	struct fib_alias *fa;
1395 	unsigned long index;
1396 	t_key cindex;
1397 
1398 	trace_fib_table_lookup(tb->tb_id, flp);
1399 
1400 	pn = t->kv;
1401 	cindex = 0;
1402 
1403 	n = get_child_rcu(pn, cindex);
1404 	if (!n)
1405 		return -EAGAIN;
1406 
1407 #ifdef CONFIG_IP_FIB_TRIE_STATS
1408 	this_cpu_inc(stats->gets);
1409 #endif
1410 
1411 	/* Step 1: Travel to the longest prefix match in the trie */
1412 	for (;;) {
1413 		index = get_cindex(key, n);
1414 
1415 		/* This bit of code is a bit tricky but it combines multiple
1416 		 * checks into a single check.  The prefix consists of the
1417 		 * prefix plus zeros for the "bits" in the prefix. The index
1418 		 * is the difference between the key and this value.  From
1419 		 * this we can actually derive several pieces of data.
1420 		 *   if (index >= (1ul << bits))
1421 		 *     we have a mismatch in skip bits and failed
1422 		 *   else
1423 		 *     we know the value is cindex
1424 		 *
1425 		 * This check is safe even if bits == KEYLENGTH due to the
1426 		 * fact that we can only allocate a node with 32 bits if a
1427 		 * long is greater than 32 bits.
1428 		 */
1429 		if (index >= (1ul << n->bits))
1430 			break;
1431 
1432 		/* we have found a leaf. Prefixes have already been compared */
1433 		if (IS_LEAF(n))
1434 			goto found;
1435 
1436 		/* only record pn and cindex if we are going to be chopping
1437 		 * bits later.  Otherwise we are just wasting cycles.
1438 		 */
1439 		if (n->slen > n->pos) {
1440 			pn = n;
1441 			cindex = index;
1442 		}
1443 
1444 		n = get_child_rcu(n, index);
1445 		if (unlikely(!n))
1446 			goto backtrace;
1447 	}
1448 
1449 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1450 	for (;;) {
1451 		/* record the pointer where our next node pointer is stored */
1452 		struct key_vector __rcu **cptr = n->tnode;
1453 
1454 		/* This test verifies that none of the bits that differ
1455 		 * between the key and the prefix exist in the region of
1456 		 * the lsb and higher in the prefix.
1457 		 */
1458 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1459 			goto backtrace;
1460 
1461 		/* exit out and process leaf */
1462 		if (unlikely(IS_LEAF(n)))
1463 			break;
1464 
1465 		/* Don't bother recording parent info.  Since we are in
1466 		 * prefix match mode we will have to come back to wherever
1467 		 * we started this traversal anyway
1468 		 */
1469 
1470 		while ((n = rcu_dereference(*cptr)) == NULL) {
1471 backtrace:
1472 #ifdef CONFIG_IP_FIB_TRIE_STATS
1473 			if (!n)
1474 				this_cpu_inc(stats->null_node_hit);
1475 #endif
1476 			/* If we are at cindex 0 there are no more bits for
1477 			 * us to strip at this level so we must ascend back
1478 			 * up one level to see if there are any more bits to
1479 			 * be stripped there.
1480 			 */
1481 			while (!cindex) {
1482 				t_key pkey = pn->key;
1483 
1484 				/* If we don't have a parent then there is
1485 				 * nothing for us to do as we do not have any
1486 				 * further nodes to parse.
1487 				 */
1488 				if (IS_TRIE(pn))
1489 					return -EAGAIN;
1490 #ifdef CONFIG_IP_FIB_TRIE_STATS
1491 				this_cpu_inc(stats->backtrack);
1492 #endif
1493 				/* Get Child's index */
1494 				pn = node_parent_rcu(pn);
1495 				cindex = get_index(pkey, pn);
1496 			}
1497 
1498 			/* strip the least significant bit from the cindex */
1499 			cindex &= cindex - 1;
1500 
1501 			/* grab pointer for next child node */
1502 			cptr = &pn->tnode[cindex];
1503 		}
1504 	}
1505 
1506 found:
1507 	/* this line carries forward the xor from earlier in the function */
1508 	index = key ^ n->key;
1509 
1510 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1511 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1512 		struct fib_info *fi = fa->fa_info;
1513 		int nhsel, err;
1514 
1515 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1516 			if (index >= (1ul << fa->fa_slen))
1517 				continue;
1518 		}
1519 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1520 			continue;
1521 		if (fi->fib_dead)
1522 			continue;
1523 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1524 			continue;
1525 		fib_alias_accessed(fa);
1526 		err = fib_props[fa->fa_type].error;
1527 		if (unlikely(err < 0)) {
1528 #ifdef CONFIG_IP_FIB_TRIE_STATS
1529 			this_cpu_inc(stats->semantic_match_passed);
1530 #endif
1531 			return err;
1532 		}
1533 		if (fi->fib_flags & RTNH_F_DEAD)
1534 			continue;
1535 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1536 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1537 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1538 
1539 			if (nh->nh_flags & RTNH_F_DEAD)
1540 				continue;
1541 			if (in_dev &&
1542 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1543 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1544 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1545 				continue;
1546 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1547 				if (flp->flowi4_oif &&
1548 				    flp->flowi4_oif != nh->nh_oif)
1549 					continue;
1550 			}
1551 
1552 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1553 				atomic_inc(&fi->fib_clntref);
1554 
1555 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1556 			res->nh_sel = nhsel;
1557 			res->type = fa->fa_type;
1558 			res->scope = fi->fib_scope;
1559 			res->fi = fi;
1560 			res->table = tb;
1561 			res->fa_head = &n->leaf;
1562 #ifdef CONFIG_IP_FIB_TRIE_STATS
1563 			this_cpu_inc(stats->semantic_match_passed);
1564 #endif
1565 			trace_fib_table_lookup_nh(nh);
1566 
1567 			return err;
1568 		}
1569 	}
1570 #ifdef CONFIG_IP_FIB_TRIE_STATS
1571 	this_cpu_inc(stats->semantic_match_miss);
1572 #endif
1573 	goto backtrace;
1574 }
1575 EXPORT_SYMBOL_GPL(fib_table_lookup);
1576 
1577 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1578 			     struct key_vector *l, struct fib_alias *old)
1579 {
1580 	/* record the location of the previous list_info entry */
1581 	struct hlist_node **pprev = old->fa_list.pprev;
1582 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1583 
1584 	/* remove the fib_alias from the list */
1585 	hlist_del_rcu(&old->fa_list);
1586 
1587 	/* if we emptied the list this leaf will be freed and we can sort
1588 	 * out parent suffix lengths as a part of trie_rebalance
1589 	 */
1590 	if (hlist_empty(&l->leaf)) {
1591 		put_child_root(tp, l->key, NULL);
1592 		node_free(l);
1593 		trie_rebalance(t, tp);
1594 		return;
1595 	}
1596 
1597 	/* only access fa if it is pointing at the last valid hlist_node */
1598 	if (*pprev)
1599 		return;
1600 
1601 	/* update the trie with the latest suffix length */
1602 	l->slen = fa->fa_slen;
1603 	leaf_pull_suffix(tp, l);
1604 }
1605 
1606 /* Caller must hold RTNL. */
1607 int fib_table_delete(struct net *net, struct fib_table *tb,
1608 		     struct fib_config *cfg)
1609 {
1610 	struct trie *t = (struct trie *) tb->tb_data;
1611 	struct fib_alias *fa, *fa_to_delete;
1612 	struct key_vector *l, *tp;
1613 	u8 plen = cfg->fc_dst_len;
1614 	u8 slen = KEYLENGTH - plen;
1615 	u8 tos = cfg->fc_tos;
1616 	u32 key;
1617 
1618 	if (plen > KEYLENGTH)
1619 		return -EINVAL;
1620 
1621 	key = ntohl(cfg->fc_dst);
1622 
1623 	if ((plen < KEYLENGTH) && (key << plen))
1624 		return -EINVAL;
1625 
1626 	l = fib_find_node(t, &tp, key);
1627 	if (!l)
1628 		return -ESRCH;
1629 
1630 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1631 	if (!fa)
1632 		return -ESRCH;
1633 
1634 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1635 
1636 	fa_to_delete = NULL;
1637 	hlist_for_each_entry_from(fa, fa_list) {
1638 		struct fib_info *fi = fa->fa_info;
1639 
1640 		if ((fa->fa_slen != slen) ||
1641 		    (fa->tb_id != tb->tb_id) ||
1642 		    (fa->fa_tos != tos))
1643 			break;
1644 
1645 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1646 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1647 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1648 		    (!cfg->fc_prefsrc ||
1649 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1650 		    (!cfg->fc_protocol ||
1651 		     fi->fib_protocol == cfg->fc_protocol) &&
1652 		    fib_nh_match(cfg, fi) == 0) {
1653 			fa_to_delete = fa;
1654 			break;
1655 		}
1656 	}
1657 
1658 	if (!fa_to_delete)
1659 		return -ESRCH;
1660 
1661 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1662 				 fa_to_delete->fa_info, tos, cfg->fc_type,
1663 				 tb->tb_id, 0);
1664 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1665 		  &cfg->fc_nlinfo, 0);
1666 
1667 	if (!plen)
1668 		tb->tb_num_default--;
1669 
1670 	fib_remove_alias(t, tp, l, fa_to_delete);
1671 
1672 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1673 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1674 
1675 	fib_release_info(fa_to_delete->fa_info);
1676 	alias_free_mem_rcu(fa_to_delete);
1677 	return 0;
1678 }
1679 
1680 /* Scan for the next leaf starting at the provided key value */
1681 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1682 {
1683 	struct key_vector *pn, *n = *tn;
1684 	unsigned long cindex;
1685 
1686 	/* this loop is meant to try and find the key in the trie */
1687 	do {
1688 		/* record parent and next child index */
1689 		pn = n;
1690 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1691 
1692 		if (cindex >> pn->bits)
1693 			break;
1694 
1695 		/* descend into the next child */
1696 		n = get_child_rcu(pn, cindex++);
1697 		if (!n)
1698 			break;
1699 
1700 		/* guarantee forward progress on the keys */
1701 		if (IS_LEAF(n) && (n->key >= key))
1702 			goto found;
1703 	} while (IS_TNODE(n));
1704 
1705 	/* this loop will search for the next leaf with a greater key */
1706 	while (!IS_TRIE(pn)) {
1707 		/* if we exhausted the parent node we will need to climb */
1708 		if (cindex >= (1ul << pn->bits)) {
1709 			t_key pkey = pn->key;
1710 
1711 			pn = node_parent_rcu(pn);
1712 			cindex = get_index(pkey, pn) + 1;
1713 			continue;
1714 		}
1715 
1716 		/* grab the next available node */
1717 		n = get_child_rcu(pn, cindex++);
1718 		if (!n)
1719 			continue;
1720 
1721 		/* no need to compare keys since we bumped the index */
1722 		if (IS_LEAF(n))
1723 			goto found;
1724 
1725 		/* Rescan start scanning in new node */
1726 		pn = n;
1727 		cindex = 0;
1728 	}
1729 
1730 	*tn = pn;
1731 	return NULL; /* Root of trie */
1732 found:
1733 	/* if we are at the limit for keys just return NULL for the tnode */
1734 	*tn = pn;
1735 	return n;
1736 }
1737 
1738 static void fib_trie_free(struct fib_table *tb)
1739 {
1740 	struct trie *t = (struct trie *)tb->tb_data;
1741 	struct key_vector *pn = t->kv;
1742 	unsigned long cindex = 1;
1743 	struct hlist_node *tmp;
1744 	struct fib_alias *fa;
1745 
1746 	/* walk trie in reverse order and free everything */
1747 	for (;;) {
1748 		struct key_vector *n;
1749 
1750 		if (!(cindex--)) {
1751 			t_key pkey = pn->key;
1752 
1753 			if (IS_TRIE(pn))
1754 				break;
1755 
1756 			n = pn;
1757 			pn = node_parent(pn);
1758 
1759 			/* drop emptied tnode */
1760 			put_child_root(pn, n->key, NULL);
1761 			node_free(n);
1762 
1763 			cindex = get_index(pkey, pn);
1764 
1765 			continue;
1766 		}
1767 
1768 		/* grab the next available node */
1769 		n = get_child(pn, cindex);
1770 		if (!n)
1771 			continue;
1772 
1773 		if (IS_TNODE(n)) {
1774 			/* record pn and cindex for leaf walking */
1775 			pn = n;
1776 			cindex = 1ul << n->bits;
1777 
1778 			continue;
1779 		}
1780 
1781 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1782 			hlist_del_rcu(&fa->fa_list);
1783 			alias_free_mem_rcu(fa);
1784 		}
1785 
1786 		put_child_root(pn, n->key, NULL);
1787 		node_free(n);
1788 	}
1789 
1790 #ifdef CONFIG_IP_FIB_TRIE_STATS
1791 	free_percpu(t->stats);
1792 #endif
1793 	kfree(tb);
1794 }
1795 
1796 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1797 {
1798 	struct trie *ot = (struct trie *)oldtb->tb_data;
1799 	struct key_vector *l, *tp = ot->kv;
1800 	struct fib_table *local_tb;
1801 	struct fib_alias *fa;
1802 	struct trie *lt;
1803 	t_key key = 0;
1804 
1805 	if (oldtb->tb_data == oldtb->__data)
1806 		return oldtb;
1807 
1808 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1809 	if (!local_tb)
1810 		return NULL;
1811 
1812 	lt = (struct trie *)local_tb->tb_data;
1813 
1814 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1815 		struct key_vector *local_l = NULL, *local_tp;
1816 
1817 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1818 			struct fib_alias *new_fa;
1819 
1820 			if (local_tb->tb_id != fa->tb_id)
1821 				continue;
1822 
1823 			/* clone fa for new local table */
1824 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1825 			if (!new_fa)
1826 				goto out;
1827 
1828 			memcpy(new_fa, fa, sizeof(*fa));
1829 
1830 			/* insert clone into table */
1831 			if (!local_l)
1832 				local_l = fib_find_node(lt, &local_tp, l->key);
1833 
1834 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1835 					     NULL, l->key)) {
1836 				kmem_cache_free(fn_alias_kmem, new_fa);
1837 				goto out;
1838 			}
1839 		}
1840 
1841 		/* stop loop if key wrapped back to 0 */
1842 		key = l->key + 1;
1843 		if (key < l->key)
1844 			break;
1845 	}
1846 
1847 	return local_tb;
1848 out:
1849 	fib_trie_free(local_tb);
1850 
1851 	return NULL;
1852 }
1853 
1854 /* Caller must hold RTNL */
1855 void fib_table_flush_external(struct fib_table *tb)
1856 {
1857 	struct trie *t = (struct trie *)tb->tb_data;
1858 	struct key_vector *pn = t->kv;
1859 	unsigned long cindex = 1;
1860 	struct hlist_node *tmp;
1861 	struct fib_alias *fa;
1862 
1863 	/* walk trie in reverse order */
1864 	for (;;) {
1865 		unsigned char slen = 0;
1866 		struct key_vector *n;
1867 
1868 		if (!(cindex--)) {
1869 			t_key pkey = pn->key;
1870 
1871 			/* cannot resize the trie vector */
1872 			if (IS_TRIE(pn))
1873 				break;
1874 
1875 			/* resize completed node */
1876 			pn = resize(t, pn);
1877 			cindex = get_index(pkey, pn);
1878 
1879 			continue;
1880 		}
1881 
1882 		/* grab the next available node */
1883 		n = get_child(pn, cindex);
1884 		if (!n)
1885 			continue;
1886 
1887 		if (IS_TNODE(n)) {
1888 			/* record pn and cindex for leaf walking */
1889 			pn = n;
1890 			cindex = 1ul << n->bits;
1891 
1892 			continue;
1893 		}
1894 
1895 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1896 			/* if alias was cloned to local then we just
1897 			 * need to remove the local copy from main
1898 			 */
1899 			if (tb->tb_id != fa->tb_id) {
1900 				hlist_del_rcu(&fa->fa_list);
1901 				alias_free_mem_rcu(fa);
1902 				continue;
1903 			}
1904 
1905 			/* record local slen */
1906 			slen = fa->fa_slen;
1907 		}
1908 
1909 		/* update leaf slen */
1910 		n->slen = slen;
1911 
1912 		if (hlist_empty(&n->leaf)) {
1913 			put_child_root(pn, n->key, NULL);
1914 			node_free(n);
1915 		}
1916 	}
1917 }
1918 
1919 /* Caller must hold RTNL. */
1920 int fib_table_flush(struct net *net, struct fib_table *tb)
1921 {
1922 	struct trie *t = (struct trie *)tb->tb_data;
1923 	struct key_vector *pn = t->kv;
1924 	unsigned long cindex = 1;
1925 	struct hlist_node *tmp;
1926 	struct fib_alias *fa;
1927 	int found = 0;
1928 
1929 	/* walk trie in reverse order */
1930 	for (;;) {
1931 		unsigned char slen = 0;
1932 		struct key_vector *n;
1933 
1934 		if (!(cindex--)) {
1935 			t_key pkey = pn->key;
1936 
1937 			/* cannot resize the trie vector */
1938 			if (IS_TRIE(pn))
1939 				break;
1940 
1941 			/* resize completed node */
1942 			pn = resize(t, pn);
1943 			cindex = get_index(pkey, pn);
1944 
1945 			continue;
1946 		}
1947 
1948 		/* grab the next available node */
1949 		n = get_child(pn, cindex);
1950 		if (!n)
1951 			continue;
1952 
1953 		if (IS_TNODE(n)) {
1954 			/* record pn and cindex for leaf walking */
1955 			pn = n;
1956 			cindex = 1ul << n->bits;
1957 
1958 			continue;
1959 		}
1960 
1961 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1962 			struct fib_info *fi = fa->fa_info;
1963 
1964 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1965 				slen = fa->fa_slen;
1966 				continue;
1967 			}
1968 
1969 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1970 						 n->key,
1971 						 KEYLENGTH - fa->fa_slen,
1972 						 fi, fa->fa_tos, fa->fa_type,
1973 						 tb->tb_id, 0);
1974 			hlist_del_rcu(&fa->fa_list);
1975 			fib_release_info(fa->fa_info);
1976 			alias_free_mem_rcu(fa);
1977 			found++;
1978 		}
1979 
1980 		/* update leaf slen */
1981 		n->slen = slen;
1982 
1983 		if (hlist_empty(&n->leaf)) {
1984 			put_child_root(pn, n->key, NULL);
1985 			node_free(n);
1986 		}
1987 	}
1988 
1989 	pr_debug("trie_flush found=%d\n", found);
1990 	return found;
1991 }
1992 
1993 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1994 			    struct fib_table *tb, struct notifier_block *nb,
1995 			    enum fib_event_type event_type)
1996 {
1997 	struct fib_alias *fa;
1998 
1999 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2000 		struct fib_info *fi = fa->fa_info;
2001 
2002 		if (!fi)
2003 			continue;
2004 
2005 		/* local and main table can share the same trie,
2006 		 * so don't notify twice for the same entry.
2007 		 */
2008 		if (tb->tb_id != fa->tb_id)
2009 			continue;
2010 
2011 		call_fib_entry_notifier(nb, net, event_type, l->key,
2012 					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2013 					fa->fa_type, fa->tb_id, 0);
2014 	}
2015 }
2016 
2017 static void fib_table_notify(struct net *net, struct fib_table *tb,
2018 			     struct notifier_block *nb,
2019 			     enum fib_event_type event_type)
2020 {
2021 	struct trie *t = (struct trie *)tb->tb_data;
2022 	struct key_vector *l, *tp = t->kv;
2023 	t_key key = 0;
2024 
2025 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2026 		fib_leaf_notify(net, l, tb, nb, event_type);
2027 
2028 		key = l->key + 1;
2029 		/* stop in case of wrap around */
2030 		if (key < l->key)
2031 			break;
2032 	}
2033 }
2034 
2035 static void fib_notify(struct net *net, struct notifier_block *nb,
2036 		       enum fib_event_type event_type)
2037 {
2038 	unsigned int h;
2039 
2040 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2041 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2042 		struct fib_table *tb;
2043 
2044 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2045 			fib_table_notify(net, tb, nb, event_type);
2046 	}
2047 }
2048 
2049 static void __trie_free_rcu(struct rcu_head *head)
2050 {
2051 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2052 #ifdef CONFIG_IP_FIB_TRIE_STATS
2053 	struct trie *t = (struct trie *)tb->tb_data;
2054 
2055 	if (tb->tb_data == tb->__data)
2056 		free_percpu(t->stats);
2057 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2058 	kfree(tb);
2059 }
2060 
2061 void fib_free_table(struct fib_table *tb)
2062 {
2063 	call_rcu(&tb->rcu, __trie_free_rcu);
2064 }
2065 
2066 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2067 			     struct sk_buff *skb, struct netlink_callback *cb)
2068 {
2069 	__be32 xkey = htonl(l->key);
2070 	struct fib_alias *fa;
2071 	int i, s_i;
2072 
2073 	s_i = cb->args[4];
2074 	i = 0;
2075 
2076 	/* rcu_read_lock is hold by caller */
2077 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2078 		if (i < s_i) {
2079 			i++;
2080 			continue;
2081 		}
2082 
2083 		if (tb->tb_id != fa->tb_id) {
2084 			i++;
2085 			continue;
2086 		}
2087 
2088 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2089 				  cb->nlh->nlmsg_seq,
2090 				  RTM_NEWROUTE,
2091 				  tb->tb_id,
2092 				  fa->fa_type,
2093 				  xkey,
2094 				  KEYLENGTH - fa->fa_slen,
2095 				  fa->fa_tos,
2096 				  fa->fa_info, NLM_F_MULTI) < 0) {
2097 			cb->args[4] = i;
2098 			return -1;
2099 		}
2100 		i++;
2101 	}
2102 
2103 	cb->args[4] = i;
2104 	return skb->len;
2105 }
2106 
2107 /* rcu_read_lock needs to be hold by caller from readside */
2108 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2109 		   struct netlink_callback *cb)
2110 {
2111 	struct trie *t = (struct trie *)tb->tb_data;
2112 	struct key_vector *l, *tp = t->kv;
2113 	/* Dump starting at last key.
2114 	 * Note: 0.0.0.0/0 (ie default) is first key.
2115 	 */
2116 	int count = cb->args[2];
2117 	t_key key = cb->args[3];
2118 
2119 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2120 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2121 			cb->args[3] = key;
2122 			cb->args[2] = count;
2123 			return -1;
2124 		}
2125 
2126 		++count;
2127 		key = l->key + 1;
2128 
2129 		memset(&cb->args[4], 0,
2130 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2131 
2132 		/* stop loop if key wrapped back to 0 */
2133 		if (key < l->key)
2134 			break;
2135 	}
2136 
2137 	cb->args[3] = key;
2138 	cb->args[2] = count;
2139 
2140 	return skb->len;
2141 }
2142 
2143 void __init fib_trie_init(void)
2144 {
2145 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2146 					  sizeof(struct fib_alias),
2147 					  0, SLAB_PANIC, NULL);
2148 
2149 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2150 					   LEAF_SIZE,
2151 					   0, SLAB_PANIC, NULL);
2152 }
2153 
2154 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2155 {
2156 	struct fib_table *tb;
2157 	struct trie *t;
2158 	size_t sz = sizeof(*tb);
2159 
2160 	if (!alias)
2161 		sz += sizeof(struct trie);
2162 
2163 	tb = kzalloc(sz, GFP_KERNEL);
2164 	if (!tb)
2165 		return NULL;
2166 
2167 	tb->tb_id = id;
2168 	tb->tb_num_default = 0;
2169 	tb->tb_data = (alias ? alias->__data : tb->__data);
2170 
2171 	if (alias)
2172 		return tb;
2173 
2174 	t = (struct trie *) tb->tb_data;
2175 	t->kv[0].pos = KEYLENGTH;
2176 	t->kv[0].slen = KEYLENGTH;
2177 #ifdef CONFIG_IP_FIB_TRIE_STATS
2178 	t->stats = alloc_percpu(struct trie_use_stats);
2179 	if (!t->stats) {
2180 		kfree(tb);
2181 		tb = NULL;
2182 	}
2183 #endif
2184 
2185 	return tb;
2186 }
2187 
2188 #ifdef CONFIG_PROC_FS
2189 /* Depth first Trie walk iterator */
2190 struct fib_trie_iter {
2191 	struct seq_net_private p;
2192 	struct fib_table *tb;
2193 	struct key_vector *tnode;
2194 	unsigned int index;
2195 	unsigned int depth;
2196 };
2197 
2198 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2199 {
2200 	unsigned long cindex = iter->index;
2201 	struct key_vector *pn = iter->tnode;
2202 	t_key pkey;
2203 
2204 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2205 		 iter->tnode, iter->index, iter->depth);
2206 
2207 	while (!IS_TRIE(pn)) {
2208 		while (cindex < child_length(pn)) {
2209 			struct key_vector *n = get_child_rcu(pn, cindex++);
2210 
2211 			if (!n)
2212 				continue;
2213 
2214 			if (IS_LEAF(n)) {
2215 				iter->tnode = pn;
2216 				iter->index = cindex;
2217 			} else {
2218 				/* push down one level */
2219 				iter->tnode = n;
2220 				iter->index = 0;
2221 				++iter->depth;
2222 			}
2223 
2224 			return n;
2225 		}
2226 
2227 		/* Current node exhausted, pop back up */
2228 		pkey = pn->key;
2229 		pn = node_parent_rcu(pn);
2230 		cindex = get_index(pkey, pn) + 1;
2231 		--iter->depth;
2232 	}
2233 
2234 	/* record root node so further searches know we are done */
2235 	iter->tnode = pn;
2236 	iter->index = 0;
2237 
2238 	return NULL;
2239 }
2240 
2241 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2242 					     struct trie *t)
2243 {
2244 	struct key_vector *n, *pn;
2245 
2246 	if (!t)
2247 		return NULL;
2248 
2249 	pn = t->kv;
2250 	n = rcu_dereference(pn->tnode[0]);
2251 	if (!n)
2252 		return NULL;
2253 
2254 	if (IS_TNODE(n)) {
2255 		iter->tnode = n;
2256 		iter->index = 0;
2257 		iter->depth = 1;
2258 	} else {
2259 		iter->tnode = pn;
2260 		iter->index = 0;
2261 		iter->depth = 0;
2262 	}
2263 
2264 	return n;
2265 }
2266 
2267 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2268 {
2269 	struct key_vector *n;
2270 	struct fib_trie_iter iter;
2271 
2272 	memset(s, 0, sizeof(*s));
2273 
2274 	rcu_read_lock();
2275 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2276 		if (IS_LEAF(n)) {
2277 			struct fib_alias *fa;
2278 
2279 			s->leaves++;
2280 			s->totdepth += iter.depth;
2281 			if (iter.depth > s->maxdepth)
2282 				s->maxdepth = iter.depth;
2283 
2284 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2285 				++s->prefixes;
2286 		} else {
2287 			s->tnodes++;
2288 			if (n->bits < MAX_STAT_DEPTH)
2289 				s->nodesizes[n->bits]++;
2290 			s->nullpointers += tn_info(n)->empty_children;
2291 		}
2292 	}
2293 	rcu_read_unlock();
2294 }
2295 
2296 /*
2297  *	This outputs /proc/net/fib_triestats
2298  */
2299 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2300 {
2301 	unsigned int i, max, pointers, bytes, avdepth;
2302 
2303 	if (stat->leaves)
2304 		avdepth = stat->totdepth*100 / stat->leaves;
2305 	else
2306 		avdepth = 0;
2307 
2308 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2309 		   avdepth / 100, avdepth % 100);
2310 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2311 
2312 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2313 	bytes = LEAF_SIZE * stat->leaves;
2314 
2315 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2316 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2317 
2318 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2319 	bytes += TNODE_SIZE(0) * stat->tnodes;
2320 
2321 	max = MAX_STAT_DEPTH;
2322 	while (max > 0 && stat->nodesizes[max-1] == 0)
2323 		max--;
2324 
2325 	pointers = 0;
2326 	for (i = 1; i < max; i++)
2327 		if (stat->nodesizes[i] != 0) {
2328 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2329 			pointers += (1<<i) * stat->nodesizes[i];
2330 		}
2331 	seq_putc(seq, '\n');
2332 	seq_printf(seq, "\tPointers: %u\n", pointers);
2333 
2334 	bytes += sizeof(struct key_vector *) * pointers;
2335 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2336 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2337 }
2338 
2339 #ifdef CONFIG_IP_FIB_TRIE_STATS
2340 static void trie_show_usage(struct seq_file *seq,
2341 			    const struct trie_use_stats __percpu *stats)
2342 {
2343 	struct trie_use_stats s = { 0 };
2344 	int cpu;
2345 
2346 	/* loop through all of the CPUs and gather up the stats */
2347 	for_each_possible_cpu(cpu) {
2348 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2349 
2350 		s.gets += pcpu->gets;
2351 		s.backtrack += pcpu->backtrack;
2352 		s.semantic_match_passed += pcpu->semantic_match_passed;
2353 		s.semantic_match_miss += pcpu->semantic_match_miss;
2354 		s.null_node_hit += pcpu->null_node_hit;
2355 		s.resize_node_skipped += pcpu->resize_node_skipped;
2356 	}
2357 
2358 	seq_printf(seq, "\nCounters:\n---------\n");
2359 	seq_printf(seq, "gets = %u\n", s.gets);
2360 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2361 	seq_printf(seq, "semantic match passed = %u\n",
2362 		   s.semantic_match_passed);
2363 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2364 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2365 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2366 }
2367 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2368 
2369 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2370 {
2371 	if (tb->tb_id == RT_TABLE_LOCAL)
2372 		seq_puts(seq, "Local:\n");
2373 	else if (tb->tb_id == RT_TABLE_MAIN)
2374 		seq_puts(seq, "Main:\n");
2375 	else
2376 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2377 }
2378 
2379 
2380 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2381 {
2382 	struct net *net = (struct net *)seq->private;
2383 	unsigned int h;
2384 
2385 	seq_printf(seq,
2386 		   "Basic info: size of leaf:"
2387 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2388 		   LEAF_SIZE, TNODE_SIZE(0));
2389 
2390 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2391 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2392 		struct fib_table *tb;
2393 
2394 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2395 			struct trie *t = (struct trie *) tb->tb_data;
2396 			struct trie_stat stat;
2397 
2398 			if (!t)
2399 				continue;
2400 
2401 			fib_table_print(seq, tb);
2402 
2403 			trie_collect_stats(t, &stat);
2404 			trie_show_stats(seq, &stat);
2405 #ifdef CONFIG_IP_FIB_TRIE_STATS
2406 			trie_show_usage(seq, t->stats);
2407 #endif
2408 		}
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2415 {
2416 	return single_open_net(inode, file, fib_triestat_seq_show);
2417 }
2418 
2419 static const struct file_operations fib_triestat_fops = {
2420 	.owner	= THIS_MODULE,
2421 	.open	= fib_triestat_seq_open,
2422 	.read	= seq_read,
2423 	.llseek	= seq_lseek,
2424 	.release = single_release_net,
2425 };
2426 
2427 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2428 {
2429 	struct fib_trie_iter *iter = seq->private;
2430 	struct net *net = seq_file_net(seq);
2431 	loff_t idx = 0;
2432 	unsigned int h;
2433 
2434 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2435 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2436 		struct fib_table *tb;
2437 
2438 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2439 			struct key_vector *n;
2440 
2441 			for (n = fib_trie_get_first(iter,
2442 						    (struct trie *) tb->tb_data);
2443 			     n; n = fib_trie_get_next(iter))
2444 				if (pos == idx++) {
2445 					iter->tb = tb;
2446 					return n;
2447 				}
2448 		}
2449 	}
2450 
2451 	return NULL;
2452 }
2453 
2454 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2455 	__acquires(RCU)
2456 {
2457 	rcu_read_lock();
2458 	return fib_trie_get_idx(seq, *pos);
2459 }
2460 
2461 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463 	struct fib_trie_iter *iter = seq->private;
2464 	struct net *net = seq_file_net(seq);
2465 	struct fib_table *tb = iter->tb;
2466 	struct hlist_node *tb_node;
2467 	unsigned int h;
2468 	struct key_vector *n;
2469 
2470 	++*pos;
2471 	/* next node in same table */
2472 	n = fib_trie_get_next(iter);
2473 	if (n)
2474 		return n;
2475 
2476 	/* walk rest of this hash chain */
2477 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2478 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2479 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2480 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2481 		if (n)
2482 			goto found;
2483 	}
2484 
2485 	/* new hash chain */
2486 	while (++h < FIB_TABLE_HASHSZ) {
2487 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2488 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2489 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2490 			if (n)
2491 				goto found;
2492 		}
2493 	}
2494 	return NULL;
2495 
2496 found:
2497 	iter->tb = tb;
2498 	return n;
2499 }
2500 
2501 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2502 	__releases(RCU)
2503 {
2504 	rcu_read_unlock();
2505 }
2506 
2507 static void seq_indent(struct seq_file *seq, int n)
2508 {
2509 	while (n-- > 0)
2510 		seq_puts(seq, "   ");
2511 }
2512 
2513 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2514 {
2515 	switch (s) {
2516 	case RT_SCOPE_UNIVERSE: return "universe";
2517 	case RT_SCOPE_SITE:	return "site";
2518 	case RT_SCOPE_LINK:	return "link";
2519 	case RT_SCOPE_HOST:	return "host";
2520 	case RT_SCOPE_NOWHERE:	return "nowhere";
2521 	default:
2522 		snprintf(buf, len, "scope=%d", s);
2523 		return buf;
2524 	}
2525 }
2526 
2527 static const char *const rtn_type_names[__RTN_MAX] = {
2528 	[RTN_UNSPEC] = "UNSPEC",
2529 	[RTN_UNICAST] = "UNICAST",
2530 	[RTN_LOCAL] = "LOCAL",
2531 	[RTN_BROADCAST] = "BROADCAST",
2532 	[RTN_ANYCAST] = "ANYCAST",
2533 	[RTN_MULTICAST] = "MULTICAST",
2534 	[RTN_BLACKHOLE] = "BLACKHOLE",
2535 	[RTN_UNREACHABLE] = "UNREACHABLE",
2536 	[RTN_PROHIBIT] = "PROHIBIT",
2537 	[RTN_THROW] = "THROW",
2538 	[RTN_NAT] = "NAT",
2539 	[RTN_XRESOLVE] = "XRESOLVE",
2540 };
2541 
2542 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2543 {
2544 	if (t < __RTN_MAX && rtn_type_names[t])
2545 		return rtn_type_names[t];
2546 	snprintf(buf, len, "type %u", t);
2547 	return buf;
2548 }
2549 
2550 /* Pretty print the trie */
2551 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2552 {
2553 	const struct fib_trie_iter *iter = seq->private;
2554 	struct key_vector *n = v;
2555 
2556 	if (IS_TRIE(node_parent_rcu(n)))
2557 		fib_table_print(seq, iter->tb);
2558 
2559 	if (IS_TNODE(n)) {
2560 		__be32 prf = htonl(n->key);
2561 
2562 		seq_indent(seq, iter->depth-1);
2563 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2564 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2565 			   tn_info(n)->full_children,
2566 			   tn_info(n)->empty_children);
2567 	} else {
2568 		__be32 val = htonl(n->key);
2569 		struct fib_alias *fa;
2570 
2571 		seq_indent(seq, iter->depth);
2572 		seq_printf(seq, "  |-- %pI4\n", &val);
2573 
2574 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2575 			char buf1[32], buf2[32];
2576 
2577 			seq_indent(seq, iter->depth + 1);
2578 			seq_printf(seq, "  /%zu %s %s",
2579 				   KEYLENGTH - fa->fa_slen,
2580 				   rtn_scope(buf1, sizeof(buf1),
2581 					     fa->fa_info->fib_scope),
2582 				   rtn_type(buf2, sizeof(buf2),
2583 					    fa->fa_type));
2584 			if (fa->fa_tos)
2585 				seq_printf(seq, " tos=%d", fa->fa_tos);
2586 			seq_putc(seq, '\n');
2587 		}
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 static const struct seq_operations fib_trie_seq_ops = {
2594 	.start  = fib_trie_seq_start,
2595 	.next   = fib_trie_seq_next,
2596 	.stop   = fib_trie_seq_stop,
2597 	.show   = fib_trie_seq_show,
2598 };
2599 
2600 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2601 {
2602 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2603 			    sizeof(struct fib_trie_iter));
2604 }
2605 
2606 static const struct file_operations fib_trie_fops = {
2607 	.owner  = THIS_MODULE,
2608 	.open   = fib_trie_seq_open,
2609 	.read   = seq_read,
2610 	.llseek = seq_lseek,
2611 	.release = seq_release_net,
2612 };
2613 
2614 struct fib_route_iter {
2615 	struct seq_net_private p;
2616 	struct fib_table *main_tb;
2617 	struct key_vector *tnode;
2618 	loff_t	pos;
2619 	t_key	key;
2620 };
2621 
2622 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2623 					    loff_t pos)
2624 {
2625 	struct key_vector *l, **tp = &iter->tnode;
2626 	t_key key;
2627 
2628 	/* use cached location of previously found key */
2629 	if (iter->pos > 0 && pos >= iter->pos) {
2630 		key = iter->key;
2631 	} else {
2632 		iter->pos = 1;
2633 		key = 0;
2634 	}
2635 
2636 	pos -= iter->pos;
2637 
2638 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2639 		key = l->key + 1;
2640 		iter->pos++;
2641 		l = NULL;
2642 
2643 		/* handle unlikely case of a key wrap */
2644 		if (!key)
2645 			break;
2646 	}
2647 
2648 	if (l)
2649 		iter->key = l->key;	/* remember it */
2650 	else
2651 		iter->pos = 0;		/* forget it */
2652 
2653 	return l;
2654 }
2655 
2656 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2657 	__acquires(RCU)
2658 {
2659 	struct fib_route_iter *iter = seq->private;
2660 	struct fib_table *tb;
2661 	struct trie *t;
2662 
2663 	rcu_read_lock();
2664 
2665 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2666 	if (!tb)
2667 		return NULL;
2668 
2669 	iter->main_tb = tb;
2670 	t = (struct trie *)tb->tb_data;
2671 	iter->tnode = t->kv;
2672 
2673 	if (*pos != 0)
2674 		return fib_route_get_idx(iter, *pos);
2675 
2676 	iter->pos = 0;
2677 	iter->key = KEY_MAX;
2678 
2679 	return SEQ_START_TOKEN;
2680 }
2681 
2682 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2683 {
2684 	struct fib_route_iter *iter = seq->private;
2685 	struct key_vector *l = NULL;
2686 	t_key key = iter->key + 1;
2687 
2688 	++*pos;
2689 
2690 	/* only allow key of 0 for start of sequence */
2691 	if ((v == SEQ_START_TOKEN) || key)
2692 		l = leaf_walk_rcu(&iter->tnode, key);
2693 
2694 	if (l) {
2695 		iter->key = l->key;
2696 		iter->pos++;
2697 	} else {
2698 		iter->pos = 0;
2699 	}
2700 
2701 	return l;
2702 }
2703 
2704 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2705 	__releases(RCU)
2706 {
2707 	rcu_read_unlock();
2708 }
2709 
2710 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2711 {
2712 	unsigned int flags = 0;
2713 
2714 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2715 		flags = RTF_REJECT;
2716 	if (fi && fi->fib_nh->nh_gw)
2717 		flags |= RTF_GATEWAY;
2718 	if (mask == htonl(0xFFFFFFFF))
2719 		flags |= RTF_HOST;
2720 	flags |= RTF_UP;
2721 	return flags;
2722 }
2723 
2724 /*
2725  *	This outputs /proc/net/route.
2726  *	The format of the file is not supposed to be changed
2727  *	and needs to be same as fib_hash output to avoid breaking
2728  *	legacy utilities
2729  */
2730 static int fib_route_seq_show(struct seq_file *seq, void *v)
2731 {
2732 	struct fib_route_iter *iter = seq->private;
2733 	struct fib_table *tb = iter->main_tb;
2734 	struct fib_alias *fa;
2735 	struct key_vector *l = v;
2736 	__be32 prefix;
2737 
2738 	if (v == SEQ_START_TOKEN) {
2739 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2740 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2741 			   "\tWindow\tIRTT");
2742 		return 0;
2743 	}
2744 
2745 	prefix = htonl(l->key);
2746 
2747 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2748 		const struct fib_info *fi = fa->fa_info;
2749 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2750 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2751 
2752 		if ((fa->fa_type == RTN_BROADCAST) ||
2753 		    (fa->fa_type == RTN_MULTICAST))
2754 			continue;
2755 
2756 		if (fa->tb_id != tb->tb_id)
2757 			continue;
2758 
2759 		seq_setwidth(seq, 127);
2760 
2761 		if (fi)
2762 			seq_printf(seq,
2763 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2764 				   "%d\t%08X\t%d\t%u\t%u",
2765 				   fi->fib_dev ? fi->fib_dev->name : "*",
2766 				   prefix,
2767 				   fi->fib_nh->nh_gw, flags, 0, 0,
2768 				   fi->fib_priority,
2769 				   mask,
2770 				   (fi->fib_advmss ?
2771 				    fi->fib_advmss + 40 : 0),
2772 				   fi->fib_window,
2773 				   fi->fib_rtt >> 3);
2774 		else
2775 			seq_printf(seq,
2776 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2777 				   "%d\t%08X\t%d\t%u\t%u",
2778 				   prefix, 0, flags, 0, 0, 0,
2779 				   mask, 0, 0, 0);
2780 
2781 		seq_pad(seq, '\n');
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static const struct seq_operations fib_route_seq_ops = {
2788 	.start  = fib_route_seq_start,
2789 	.next   = fib_route_seq_next,
2790 	.stop   = fib_route_seq_stop,
2791 	.show   = fib_route_seq_show,
2792 };
2793 
2794 static int fib_route_seq_open(struct inode *inode, struct file *file)
2795 {
2796 	return seq_open_net(inode, file, &fib_route_seq_ops,
2797 			    sizeof(struct fib_route_iter));
2798 }
2799 
2800 static const struct file_operations fib_route_fops = {
2801 	.owner  = THIS_MODULE,
2802 	.open   = fib_route_seq_open,
2803 	.read   = seq_read,
2804 	.llseek = seq_lseek,
2805 	.release = seq_release_net,
2806 };
2807 
2808 int __net_init fib_proc_init(struct net *net)
2809 {
2810 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2811 		goto out1;
2812 
2813 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2814 			 &fib_triestat_fops))
2815 		goto out2;
2816 
2817 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2818 		goto out3;
2819 
2820 	return 0;
2821 
2822 out3:
2823 	remove_proc_entry("fib_triestat", net->proc_net);
2824 out2:
2825 	remove_proc_entry("fib_trie", net->proc_net);
2826 out1:
2827 	return -ENOMEM;
2828 }
2829 
2830 void __net_exit fib_proc_exit(struct net *net)
2831 {
2832 	remove_proc_entry("fib_trie", net->proc_net);
2833 	remove_proc_entry("fib_triestat", net->proc_net);
2834 	remove_proc_entry("route", net->proc_net);
2835 }
2836 
2837 #endif /* CONFIG_PROC_FS */
2838