1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 static unsigned int fib_seq_sum(void) 88 { 89 unsigned int fib_seq = 0; 90 struct net *net; 91 92 rtnl_lock(); 93 for_each_net(net) 94 fib_seq += net->ipv4.fib_seq; 95 rtnl_unlock(); 96 97 return fib_seq; 98 } 99 100 static ATOMIC_NOTIFIER_HEAD(fib_chain); 101 102 static int call_fib_notifier(struct notifier_block *nb, struct net *net, 103 enum fib_event_type event_type, 104 struct fib_notifier_info *info) 105 { 106 info->net = net; 107 return nb->notifier_call(nb, event_type, info); 108 } 109 110 static void fib_rules_notify(struct net *net, struct notifier_block *nb, 111 enum fib_event_type event_type) 112 { 113 #ifdef CONFIG_IP_MULTIPLE_TABLES 114 struct fib_notifier_info info; 115 116 if (net->ipv4.fib_has_custom_rules) 117 call_fib_notifier(nb, net, event_type, &info); 118 #endif 119 } 120 121 static void fib_notify(struct net *net, struct notifier_block *nb, 122 enum fib_event_type event_type); 123 124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 125 enum fib_event_type event_type, u32 dst, 126 int dst_len, struct fib_info *fi, 127 u8 tos, u8 type, u32 tb_id, u32 nlflags) 128 { 129 struct fib_entry_notifier_info info = { 130 .dst = dst, 131 .dst_len = dst_len, 132 .fi = fi, 133 .tos = tos, 134 .type = type, 135 .tb_id = tb_id, 136 .nlflags = nlflags, 137 }; 138 return call_fib_notifier(nb, net, event_type, &info.info); 139 } 140 141 static bool fib_dump_is_consistent(struct notifier_block *nb, 142 void (*cb)(struct notifier_block *nb), 143 unsigned int fib_seq) 144 { 145 atomic_notifier_chain_register(&fib_chain, nb); 146 if (fib_seq == fib_seq_sum()) 147 return true; 148 atomic_notifier_chain_unregister(&fib_chain, nb); 149 if (cb) 150 cb(nb); 151 return false; 152 } 153 154 #define FIB_DUMP_MAX_RETRIES 5 155 int register_fib_notifier(struct notifier_block *nb, 156 void (*cb)(struct notifier_block *nb)) 157 { 158 int retries = 0; 159 160 do { 161 unsigned int fib_seq = fib_seq_sum(); 162 struct net *net; 163 164 /* Mutex semantics guarantee that every change done to 165 * FIB tries before we read the change sequence counter 166 * is now visible to us. 167 */ 168 rcu_read_lock(); 169 for_each_net_rcu(net) { 170 fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD); 171 fib_notify(net, nb, FIB_EVENT_ENTRY_ADD); 172 } 173 rcu_read_unlock(); 174 175 if (fib_dump_is_consistent(nb, cb, fib_seq)) 176 return 0; 177 } while (++retries < FIB_DUMP_MAX_RETRIES); 178 179 return -EBUSY; 180 } 181 EXPORT_SYMBOL(register_fib_notifier); 182 183 int unregister_fib_notifier(struct notifier_block *nb) 184 { 185 return atomic_notifier_chain_unregister(&fib_chain, nb); 186 } 187 EXPORT_SYMBOL(unregister_fib_notifier); 188 189 int call_fib_notifiers(struct net *net, enum fib_event_type event_type, 190 struct fib_notifier_info *info) 191 { 192 net->ipv4.fib_seq++; 193 info->net = net; 194 return atomic_notifier_call_chain(&fib_chain, event_type, info); 195 } 196 197 static int call_fib_entry_notifiers(struct net *net, 198 enum fib_event_type event_type, u32 dst, 199 int dst_len, struct fib_info *fi, 200 u8 tos, u8 type, u32 tb_id, u32 nlflags) 201 { 202 struct fib_entry_notifier_info info = { 203 .dst = dst, 204 .dst_len = dst_len, 205 .fi = fi, 206 .tos = tos, 207 .type = type, 208 .tb_id = tb_id, 209 .nlflags = nlflags, 210 }; 211 return call_fib_notifiers(net, event_type, &info.info); 212 } 213 214 #define MAX_STAT_DEPTH 32 215 216 #define KEYLENGTH (8*sizeof(t_key)) 217 #define KEY_MAX ((t_key)~0) 218 219 typedef unsigned int t_key; 220 221 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 222 #define IS_TNODE(n) ((n)->bits) 223 #define IS_LEAF(n) (!(n)->bits) 224 225 struct key_vector { 226 t_key key; 227 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 228 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 229 unsigned char slen; 230 union { 231 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 232 struct hlist_head leaf; 233 /* This array is valid if (pos | bits) > 0 (TNODE) */ 234 struct key_vector __rcu *tnode[0]; 235 }; 236 }; 237 238 struct tnode { 239 struct rcu_head rcu; 240 t_key empty_children; /* KEYLENGTH bits needed */ 241 t_key full_children; /* KEYLENGTH bits needed */ 242 struct key_vector __rcu *parent; 243 struct key_vector kv[1]; 244 #define tn_bits kv[0].bits 245 }; 246 247 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 248 #define LEAF_SIZE TNODE_SIZE(1) 249 250 #ifdef CONFIG_IP_FIB_TRIE_STATS 251 struct trie_use_stats { 252 unsigned int gets; 253 unsigned int backtrack; 254 unsigned int semantic_match_passed; 255 unsigned int semantic_match_miss; 256 unsigned int null_node_hit; 257 unsigned int resize_node_skipped; 258 }; 259 #endif 260 261 struct trie_stat { 262 unsigned int totdepth; 263 unsigned int maxdepth; 264 unsigned int tnodes; 265 unsigned int leaves; 266 unsigned int nullpointers; 267 unsigned int prefixes; 268 unsigned int nodesizes[MAX_STAT_DEPTH]; 269 }; 270 271 struct trie { 272 struct key_vector kv[1]; 273 #ifdef CONFIG_IP_FIB_TRIE_STATS 274 struct trie_use_stats __percpu *stats; 275 #endif 276 }; 277 278 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 279 static size_t tnode_free_size; 280 281 /* 282 * synchronize_rcu after call_rcu for that many pages; it should be especially 283 * useful before resizing the root node with PREEMPT_NONE configs; the value was 284 * obtained experimentally, aiming to avoid visible slowdown. 285 */ 286 static const int sync_pages = 128; 287 288 static struct kmem_cache *fn_alias_kmem __read_mostly; 289 static struct kmem_cache *trie_leaf_kmem __read_mostly; 290 291 static inline struct tnode *tn_info(struct key_vector *kv) 292 { 293 return container_of(kv, struct tnode, kv[0]); 294 } 295 296 /* caller must hold RTNL */ 297 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 298 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 299 300 /* caller must hold RCU read lock or RTNL */ 301 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 302 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 303 304 /* wrapper for rcu_assign_pointer */ 305 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 306 { 307 if (n) 308 rcu_assign_pointer(tn_info(n)->parent, tp); 309 } 310 311 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 312 313 /* This provides us with the number of children in this node, in the case of a 314 * leaf this will return 0 meaning none of the children are accessible. 315 */ 316 static inline unsigned long child_length(const struct key_vector *tn) 317 { 318 return (1ul << tn->bits) & ~(1ul); 319 } 320 321 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 322 323 static inline unsigned long get_index(t_key key, struct key_vector *kv) 324 { 325 unsigned long index = key ^ kv->key; 326 327 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 328 return 0; 329 330 return index >> kv->pos; 331 } 332 333 /* To understand this stuff, an understanding of keys and all their bits is 334 * necessary. Every node in the trie has a key associated with it, but not 335 * all of the bits in that key are significant. 336 * 337 * Consider a node 'n' and its parent 'tp'. 338 * 339 * If n is a leaf, every bit in its key is significant. Its presence is 340 * necessitated by path compression, since during a tree traversal (when 341 * searching for a leaf - unless we are doing an insertion) we will completely 342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 343 * a potentially successful search, that we have indeed been walking the 344 * correct key path. 345 * 346 * Note that we can never "miss" the correct key in the tree if present by 347 * following the wrong path. Path compression ensures that segments of the key 348 * that are the same for all keys with a given prefix are skipped, but the 349 * skipped part *is* identical for each node in the subtrie below the skipped 350 * bit! trie_insert() in this implementation takes care of that. 351 * 352 * if n is an internal node - a 'tnode' here, the various parts of its key 353 * have many different meanings. 354 * 355 * Example: 356 * _________________________________________________________________ 357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 358 * ----------------------------------------------------------------- 359 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 360 * 361 * _________________________________________________________________ 362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 363 * ----------------------------------------------------------------- 364 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 365 * 366 * tp->pos = 22 367 * tp->bits = 3 368 * n->pos = 13 369 * n->bits = 4 370 * 371 * First, let's just ignore the bits that come before the parent tp, that is 372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 373 * point we do not use them for anything. 374 * 375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 376 * index into the parent's child array. That is, they will be used to find 377 * 'n' among tp's children. 378 * 379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 380 * for the node n. 381 * 382 * All the bits we have seen so far are significant to the node n. The rest 383 * of the bits are really not needed or indeed known in n->key. 384 * 385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 386 * n's child array, and will of course be different for each child. 387 * 388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 389 * at this point. 390 */ 391 392 static const int halve_threshold = 25; 393 static const int inflate_threshold = 50; 394 static const int halve_threshold_root = 15; 395 static const int inflate_threshold_root = 30; 396 397 static void __alias_free_mem(struct rcu_head *head) 398 { 399 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 400 kmem_cache_free(fn_alias_kmem, fa); 401 } 402 403 static inline void alias_free_mem_rcu(struct fib_alias *fa) 404 { 405 call_rcu(&fa->rcu, __alias_free_mem); 406 } 407 408 #define TNODE_KMALLOC_MAX \ 409 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 410 #define TNODE_VMALLOC_MAX \ 411 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 412 413 static void __node_free_rcu(struct rcu_head *head) 414 { 415 struct tnode *n = container_of(head, struct tnode, rcu); 416 417 if (!n->tn_bits) 418 kmem_cache_free(trie_leaf_kmem, n); 419 else 420 kvfree(n); 421 } 422 423 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 424 425 static struct tnode *tnode_alloc(int bits) 426 { 427 size_t size; 428 429 /* verify bits is within bounds */ 430 if (bits > TNODE_VMALLOC_MAX) 431 return NULL; 432 433 /* determine size and verify it is non-zero and didn't overflow */ 434 size = TNODE_SIZE(1ul << bits); 435 436 if (size <= PAGE_SIZE) 437 return kzalloc(size, GFP_KERNEL); 438 else 439 return vzalloc(size); 440 } 441 442 static inline void empty_child_inc(struct key_vector *n) 443 { 444 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 445 } 446 447 static inline void empty_child_dec(struct key_vector *n) 448 { 449 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 450 } 451 452 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 453 { 454 struct key_vector *l; 455 struct tnode *kv; 456 457 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 458 if (!kv) 459 return NULL; 460 461 /* initialize key vector */ 462 l = kv->kv; 463 l->key = key; 464 l->pos = 0; 465 l->bits = 0; 466 l->slen = fa->fa_slen; 467 468 /* link leaf to fib alias */ 469 INIT_HLIST_HEAD(&l->leaf); 470 hlist_add_head(&fa->fa_list, &l->leaf); 471 472 return l; 473 } 474 475 static struct key_vector *tnode_new(t_key key, int pos, int bits) 476 { 477 unsigned int shift = pos + bits; 478 struct key_vector *tn; 479 struct tnode *tnode; 480 481 /* verify bits and pos their msb bits clear and values are valid */ 482 BUG_ON(!bits || (shift > KEYLENGTH)); 483 484 tnode = tnode_alloc(bits); 485 if (!tnode) 486 return NULL; 487 488 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 489 sizeof(struct key_vector *) << bits); 490 491 if (bits == KEYLENGTH) 492 tnode->full_children = 1; 493 else 494 tnode->empty_children = 1ul << bits; 495 496 tn = tnode->kv; 497 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 498 tn->pos = pos; 499 tn->bits = bits; 500 tn->slen = pos; 501 502 return tn; 503 } 504 505 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 506 * and no bits are skipped. See discussion in dyntree paper p. 6 507 */ 508 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 509 { 510 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 511 } 512 513 /* Add a child at position i overwriting the old value. 514 * Update the value of full_children and empty_children. 515 */ 516 static void put_child(struct key_vector *tn, unsigned long i, 517 struct key_vector *n) 518 { 519 struct key_vector *chi = get_child(tn, i); 520 int isfull, wasfull; 521 522 BUG_ON(i >= child_length(tn)); 523 524 /* update emptyChildren, overflow into fullChildren */ 525 if (!n && chi) 526 empty_child_inc(tn); 527 if (n && !chi) 528 empty_child_dec(tn); 529 530 /* update fullChildren */ 531 wasfull = tnode_full(tn, chi); 532 isfull = tnode_full(tn, n); 533 534 if (wasfull && !isfull) 535 tn_info(tn)->full_children--; 536 else if (!wasfull && isfull) 537 tn_info(tn)->full_children++; 538 539 if (n && (tn->slen < n->slen)) 540 tn->slen = n->slen; 541 542 rcu_assign_pointer(tn->tnode[i], n); 543 } 544 545 static void update_children(struct key_vector *tn) 546 { 547 unsigned long i; 548 549 /* update all of the child parent pointers */ 550 for (i = child_length(tn); i;) { 551 struct key_vector *inode = get_child(tn, --i); 552 553 if (!inode) 554 continue; 555 556 /* Either update the children of a tnode that 557 * already belongs to us or update the child 558 * to point to ourselves. 559 */ 560 if (node_parent(inode) == tn) 561 update_children(inode); 562 else 563 node_set_parent(inode, tn); 564 } 565 } 566 567 static inline void put_child_root(struct key_vector *tp, t_key key, 568 struct key_vector *n) 569 { 570 if (IS_TRIE(tp)) 571 rcu_assign_pointer(tp->tnode[0], n); 572 else 573 put_child(tp, get_index(key, tp), n); 574 } 575 576 static inline void tnode_free_init(struct key_vector *tn) 577 { 578 tn_info(tn)->rcu.next = NULL; 579 } 580 581 static inline void tnode_free_append(struct key_vector *tn, 582 struct key_vector *n) 583 { 584 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 585 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 586 } 587 588 static void tnode_free(struct key_vector *tn) 589 { 590 struct callback_head *head = &tn_info(tn)->rcu; 591 592 while (head) { 593 head = head->next; 594 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 595 node_free(tn); 596 597 tn = container_of(head, struct tnode, rcu)->kv; 598 } 599 600 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 601 tnode_free_size = 0; 602 synchronize_rcu(); 603 } 604 } 605 606 static struct key_vector *replace(struct trie *t, 607 struct key_vector *oldtnode, 608 struct key_vector *tn) 609 { 610 struct key_vector *tp = node_parent(oldtnode); 611 unsigned long i; 612 613 /* setup the parent pointer out of and back into this node */ 614 NODE_INIT_PARENT(tn, tp); 615 put_child_root(tp, tn->key, tn); 616 617 /* update all of the child parent pointers */ 618 update_children(tn); 619 620 /* all pointers should be clean so we are done */ 621 tnode_free(oldtnode); 622 623 /* resize children now that oldtnode is freed */ 624 for (i = child_length(tn); i;) { 625 struct key_vector *inode = get_child(tn, --i); 626 627 /* resize child node */ 628 if (tnode_full(tn, inode)) 629 tn = resize(t, inode); 630 } 631 632 return tp; 633 } 634 635 static struct key_vector *inflate(struct trie *t, 636 struct key_vector *oldtnode) 637 { 638 struct key_vector *tn; 639 unsigned long i; 640 t_key m; 641 642 pr_debug("In inflate\n"); 643 644 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 645 if (!tn) 646 goto notnode; 647 648 /* prepare oldtnode to be freed */ 649 tnode_free_init(oldtnode); 650 651 /* Assemble all of the pointers in our cluster, in this case that 652 * represents all of the pointers out of our allocated nodes that 653 * point to existing tnodes and the links between our allocated 654 * nodes. 655 */ 656 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 657 struct key_vector *inode = get_child(oldtnode, --i); 658 struct key_vector *node0, *node1; 659 unsigned long j, k; 660 661 /* An empty child */ 662 if (!inode) 663 continue; 664 665 /* A leaf or an internal node with skipped bits */ 666 if (!tnode_full(oldtnode, inode)) { 667 put_child(tn, get_index(inode->key, tn), inode); 668 continue; 669 } 670 671 /* drop the node in the old tnode free list */ 672 tnode_free_append(oldtnode, inode); 673 674 /* An internal node with two children */ 675 if (inode->bits == 1) { 676 put_child(tn, 2 * i + 1, get_child(inode, 1)); 677 put_child(tn, 2 * i, get_child(inode, 0)); 678 continue; 679 } 680 681 /* We will replace this node 'inode' with two new 682 * ones, 'node0' and 'node1', each with half of the 683 * original children. The two new nodes will have 684 * a position one bit further down the key and this 685 * means that the "significant" part of their keys 686 * (see the discussion near the top of this file) 687 * will differ by one bit, which will be "0" in 688 * node0's key and "1" in node1's key. Since we are 689 * moving the key position by one step, the bit that 690 * we are moving away from - the bit at position 691 * (tn->pos) - is the one that will differ between 692 * node0 and node1. So... we synthesize that bit in the 693 * two new keys. 694 */ 695 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 696 if (!node1) 697 goto nomem; 698 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 699 700 tnode_free_append(tn, node1); 701 if (!node0) 702 goto nomem; 703 tnode_free_append(tn, node0); 704 705 /* populate child pointers in new nodes */ 706 for (k = child_length(inode), j = k / 2; j;) { 707 put_child(node1, --j, get_child(inode, --k)); 708 put_child(node0, j, get_child(inode, j)); 709 put_child(node1, --j, get_child(inode, --k)); 710 put_child(node0, j, get_child(inode, j)); 711 } 712 713 /* link new nodes to parent */ 714 NODE_INIT_PARENT(node1, tn); 715 NODE_INIT_PARENT(node0, tn); 716 717 /* link parent to nodes */ 718 put_child(tn, 2 * i + 1, node1); 719 put_child(tn, 2 * i, node0); 720 } 721 722 /* setup the parent pointers into and out of this node */ 723 return replace(t, oldtnode, tn); 724 nomem: 725 /* all pointers should be clean so we are done */ 726 tnode_free(tn); 727 notnode: 728 return NULL; 729 } 730 731 static struct key_vector *halve(struct trie *t, 732 struct key_vector *oldtnode) 733 { 734 struct key_vector *tn; 735 unsigned long i; 736 737 pr_debug("In halve\n"); 738 739 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 740 if (!tn) 741 goto notnode; 742 743 /* prepare oldtnode to be freed */ 744 tnode_free_init(oldtnode); 745 746 /* Assemble all of the pointers in our cluster, in this case that 747 * represents all of the pointers out of our allocated nodes that 748 * point to existing tnodes and the links between our allocated 749 * nodes. 750 */ 751 for (i = child_length(oldtnode); i;) { 752 struct key_vector *node1 = get_child(oldtnode, --i); 753 struct key_vector *node0 = get_child(oldtnode, --i); 754 struct key_vector *inode; 755 756 /* At least one of the children is empty */ 757 if (!node1 || !node0) { 758 put_child(tn, i / 2, node1 ? : node0); 759 continue; 760 } 761 762 /* Two nonempty children */ 763 inode = tnode_new(node0->key, oldtnode->pos, 1); 764 if (!inode) 765 goto nomem; 766 tnode_free_append(tn, inode); 767 768 /* initialize pointers out of node */ 769 put_child(inode, 1, node1); 770 put_child(inode, 0, node0); 771 NODE_INIT_PARENT(inode, tn); 772 773 /* link parent to node */ 774 put_child(tn, i / 2, inode); 775 } 776 777 /* setup the parent pointers into and out of this node */ 778 return replace(t, oldtnode, tn); 779 nomem: 780 /* all pointers should be clean so we are done */ 781 tnode_free(tn); 782 notnode: 783 return NULL; 784 } 785 786 static struct key_vector *collapse(struct trie *t, 787 struct key_vector *oldtnode) 788 { 789 struct key_vector *n, *tp; 790 unsigned long i; 791 792 /* scan the tnode looking for that one child that might still exist */ 793 for (n = NULL, i = child_length(oldtnode); !n && i;) 794 n = get_child(oldtnode, --i); 795 796 /* compress one level */ 797 tp = node_parent(oldtnode); 798 put_child_root(tp, oldtnode->key, n); 799 node_set_parent(n, tp); 800 801 /* drop dead node */ 802 node_free(oldtnode); 803 804 return tp; 805 } 806 807 static unsigned char update_suffix(struct key_vector *tn) 808 { 809 unsigned char slen = tn->pos; 810 unsigned long stride, i; 811 812 /* search though the list of children looking for nodes that might 813 * have a suffix greater than the one we currently have. This is 814 * why we start with a stride of 2 since a stride of 1 would 815 * represent the nodes with suffix length equal to tn->pos 816 */ 817 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 818 struct key_vector *n = get_child(tn, i); 819 820 if (!n || (n->slen <= slen)) 821 continue; 822 823 /* update stride and slen based on new value */ 824 stride <<= (n->slen - slen); 825 slen = n->slen; 826 i &= ~(stride - 1); 827 828 /* if slen covers all but the last bit we can stop here 829 * there will be nothing longer than that since only node 830 * 0 and 1 << (bits - 1) could have that as their suffix 831 * length. 832 */ 833 if ((slen + 1) >= (tn->pos + tn->bits)) 834 break; 835 } 836 837 tn->slen = slen; 838 839 return slen; 840 } 841 842 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 843 * the Helsinki University of Technology and Matti Tikkanen of Nokia 844 * Telecommunications, page 6: 845 * "A node is doubled if the ratio of non-empty children to all 846 * children in the *doubled* node is at least 'high'." 847 * 848 * 'high' in this instance is the variable 'inflate_threshold'. It 849 * is expressed as a percentage, so we multiply it with 850 * child_length() and instead of multiplying by 2 (since the 851 * child array will be doubled by inflate()) and multiplying 852 * the left-hand side by 100 (to handle the percentage thing) we 853 * multiply the left-hand side by 50. 854 * 855 * The left-hand side may look a bit weird: child_length(tn) 856 * - tn->empty_children is of course the number of non-null children 857 * in the current node. tn->full_children is the number of "full" 858 * children, that is non-null tnodes with a skip value of 0. 859 * All of those will be doubled in the resulting inflated tnode, so 860 * we just count them one extra time here. 861 * 862 * A clearer way to write this would be: 863 * 864 * to_be_doubled = tn->full_children; 865 * not_to_be_doubled = child_length(tn) - tn->empty_children - 866 * tn->full_children; 867 * 868 * new_child_length = child_length(tn) * 2; 869 * 870 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 871 * new_child_length; 872 * if (new_fill_factor >= inflate_threshold) 873 * 874 * ...and so on, tho it would mess up the while () loop. 875 * 876 * anyway, 877 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 878 * inflate_threshold 879 * 880 * avoid a division: 881 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 882 * inflate_threshold * new_child_length 883 * 884 * expand not_to_be_doubled and to_be_doubled, and shorten: 885 * 100 * (child_length(tn) - tn->empty_children + 886 * tn->full_children) >= inflate_threshold * new_child_length 887 * 888 * expand new_child_length: 889 * 100 * (child_length(tn) - tn->empty_children + 890 * tn->full_children) >= 891 * inflate_threshold * child_length(tn) * 2 892 * 893 * shorten again: 894 * 50 * (tn->full_children + child_length(tn) - 895 * tn->empty_children) >= inflate_threshold * 896 * child_length(tn) 897 * 898 */ 899 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 900 { 901 unsigned long used = child_length(tn); 902 unsigned long threshold = used; 903 904 /* Keep root node larger */ 905 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 906 used -= tn_info(tn)->empty_children; 907 used += tn_info(tn)->full_children; 908 909 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 910 911 return (used > 1) && tn->pos && ((50 * used) >= threshold); 912 } 913 914 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 915 { 916 unsigned long used = child_length(tn); 917 unsigned long threshold = used; 918 919 /* Keep root node larger */ 920 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 921 used -= tn_info(tn)->empty_children; 922 923 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 924 925 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 926 } 927 928 static inline bool should_collapse(struct key_vector *tn) 929 { 930 unsigned long used = child_length(tn); 931 932 used -= tn_info(tn)->empty_children; 933 934 /* account for bits == KEYLENGTH case */ 935 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 936 used -= KEY_MAX; 937 938 /* One child or none, time to drop us from the trie */ 939 return used < 2; 940 } 941 942 #define MAX_WORK 10 943 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 944 { 945 #ifdef CONFIG_IP_FIB_TRIE_STATS 946 struct trie_use_stats __percpu *stats = t->stats; 947 #endif 948 struct key_vector *tp = node_parent(tn); 949 unsigned long cindex = get_index(tn->key, tp); 950 int max_work = MAX_WORK; 951 952 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 953 tn, inflate_threshold, halve_threshold); 954 955 /* track the tnode via the pointer from the parent instead of 956 * doing it ourselves. This way we can let RCU fully do its 957 * thing without us interfering 958 */ 959 BUG_ON(tn != get_child(tp, cindex)); 960 961 /* Double as long as the resulting node has a number of 962 * nonempty nodes that are above the threshold. 963 */ 964 while (should_inflate(tp, tn) && max_work) { 965 tp = inflate(t, tn); 966 if (!tp) { 967 #ifdef CONFIG_IP_FIB_TRIE_STATS 968 this_cpu_inc(stats->resize_node_skipped); 969 #endif 970 break; 971 } 972 973 max_work--; 974 tn = get_child(tp, cindex); 975 } 976 977 /* update parent in case inflate failed */ 978 tp = node_parent(tn); 979 980 /* Return if at least one inflate is run */ 981 if (max_work != MAX_WORK) 982 return tp; 983 984 /* Halve as long as the number of empty children in this 985 * node is above threshold. 986 */ 987 while (should_halve(tp, tn) && max_work) { 988 tp = halve(t, tn); 989 if (!tp) { 990 #ifdef CONFIG_IP_FIB_TRIE_STATS 991 this_cpu_inc(stats->resize_node_skipped); 992 #endif 993 break; 994 } 995 996 max_work--; 997 tn = get_child(tp, cindex); 998 } 999 1000 /* Only one child remains */ 1001 if (should_collapse(tn)) 1002 return collapse(t, tn); 1003 1004 /* update parent in case halve failed */ 1005 tp = node_parent(tn); 1006 1007 /* Return if at least one deflate was run */ 1008 if (max_work != MAX_WORK) 1009 return tp; 1010 1011 /* push the suffix length to the parent node */ 1012 if (tn->slen > tn->pos) { 1013 unsigned char slen = update_suffix(tn); 1014 1015 if (slen > tp->slen) 1016 tp->slen = slen; 1017 } 1018 1019 return tp; 1020 } 1021 1022 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) 1023 { 1024 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) { 1025 if (update_suffix(tp) > l->slen) 1026 break; 1027 tp = node_parent(tp); 1028 } 1029 } 1030 1031 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) 1032 { 1033 /* if this is a new leaf then tn will be NULL and we can sort 1034 * out parent suffix lengths as a part of trie_rebalance 1035 */ 1036 while (tn->slen < l->slen) { 1037 tn->slen = l->slen; 1038 tn = node_parent(tn); 1039 } 1040 } 1041 1042 /* rcu_read_lock needs to be hold by caller from readside */ 1043 static struct key_vector *fib_find_node(struct trie *t, 1044 struct key_vector **tp, u32 key) 1045 { 1046 struct key_vector *pn, *n = t->kv; 1047 unsigned long index = 0; 1048 1049 do { 1050 pn = n; 1051 n = get_child_rcu(n, index); 1052 1053 if (!n) 1054 break; 1055 1056 index = get_cindex(key, n); 1057 1058 /* This bit of code is a bit tricky but it combines multiple 1059 * checks into a single check. The prefix consists of the 1060 * prefix plus zeros for the bits in the cindex. The index 1061 * is the difference between the key and this value. From 1062 * this we can actually derive several pieces of data. 1063 * if (index >= (1ul << bits)) 1064 * we have a mismatch in skip bits and failed 1065 * else 1066 * we know the value is cindex 1067 * 1068 * This check is safe even if bits == KEYLENGTH due to the 1069 * fact that we can only allocate a node with 32 bits if a 1070 * long is greater than 32 bits. 1071 */ 1072 if (index >= (1ul << n->bits)) { 1073 n = NULL; 1074 break; 1075 } 1076 1077 /* keep searching until we find a perfect match leaf or NULL */ 1078 } while (IS_TNODE(n)); 1079 1080 *tp = pn; 1081 1082 return n; 1083 } 1084 1085 /* Return the first fib alias matching TOS with 1086 * priority less than or equal to PRIO. 1087 */ 1088 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 1089 u8 tos, u32 prio, u32 tb_id) 1090 { 1091 struct fib_alias *fa; 1092 1093 if (!fah) 1094 return NULL; 1095 1096 hlist_for_each_entry(fa, fah, fa_list) { 1097 if (fa->fa_slen < slen) 1098 continue; 1099 if (fa->fa_slen != slen) 1100 break; 1101 if (fa->tb_id > tb_id) 1102 continue; 1103 if (fa->tb_id != tb_id) 1104 break; 1105 if (fa->fa_tos > tos) 1106 continue; 1107 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1108 return fa; 1109 } 1110 1111 return NULL; 1112 } 1113 1114 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1115 { 1116 while (!IS_TRIE(tn)) 1117 tn = resize(t, tn); 1118 } 1119 1120 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1121 struct fib_alias *new, t_key key) 1122 { 1123 struct key_vector *n, *l; 1124 1125 l = leaf_new(key, new); 1126 if (!l) 1127 goto noleaf; 1128 1129 /* retrieve child from parent node */ 1130 n = get_child(tp, get_index(key, tp)); 1131 1132 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1133 * 1134 * Add a new tnode here 1135 * first tnode need some special handling 1136 * leaves us in position for handling as case 3 1137 */ 1138 if (n) { 1139 struct key_vector *tn; 1140 1141 tn = tnode_new(key, __fls(key ^ n->key), 1); 1142 if (!tn) 1143 goto notnode; 1144 1145 /* initialize routes out of node */ 1146 NODE_INIT_PARENT(tn, tp); 1147 put_child(tn, get_index(key, tn) ^ 1, n); 1148 1149 /* start adding routes into the node */ 1150 put_child_root(tp, key, tn); 1151 node_set_parent(n, tn); 1152 1153 /* parent now has a NULL spot where the leaf can go */ 1154 tp = tn; 1155 } 1156 1157 /* Case 3: n is NULL, and will just insert a new leaf */ 1158 NODE_INIT_PARENT(l, tp); 1159 put_child_root(tp, key, l); 1160 trie_rebalance(t, tp); 1161 1162 return 0; 1163 notnode: 1164 node_free(l); 1165 noleaf: 1166 return -ENOMEM; 1167 } 1168 1169 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1170 struct key_vector *l, struct fib_alias *new, 1171 struct fib_alias *fa, t_key key) 1172 { 1173 if (!l) 1174 return fib_insert_node(t, tp, new, key); 1175 1176 if (fa) { 1177 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1178 } else { 1179 struct fib_alias *last; 1180 1181 hlist_for_each_entry(last, &l->leaf, fa_list) { 1182 if (new->fa_slen < last->fa_slen) 1183 break; 1184 if ((new->fa_slen == last->fa_slen) && 1185 (new->tb_id > last->tb_id)) 1186 break; 1187 fa = last; 1188 } 1189 1190 if (fa) 1191 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1192 else 1193 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1194 } 1195 1196 /* if we added to the tail node then we need to update slen */ 1197 if (l->slen < new->fa_slen) { 1198 l->slen = new->fa_slen; 1199 leaf_push_suffix(tp, l); 1200 } 1201 1202 return 0; 1203 } 1204 1205 /* Caller must hold RTNL. */ 1206 int fib_table_insert(struct net *net, struct fib_table *tb, 1207 struct fib_config *cfg) 1208 { 1209 struct trie *t = (struct trie *)tb->tb_data; 1210 struct fib_alias *fa, *new_fa; 1211 struct key_vector *l, *tp; 1212 u16 nlflags = NLM_F_EXCL; 1213 struct fib_info *fi; 1214 u8 plen = cfg->fc_dst_len; 1215 u8 slen = KEYLENGTH - plen; 1216 u8 tos = cfg->fc_tos; 1217 u32 key; 1218 int err; 1219 1220 if (plen > KEYLENGTH) 1221 return -EINVAL; 1222 1223 key = ntohl(cfg->fc_dst); 1224 1225 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1226 1227 if ((plen < KEYLENGTH) && (key << plen)) 1228 return -EINVAL; 1229 1230 fi = fib_create_info(cfg); 1231 if (IS_ERR(fi)) { 1232 err = PTR_ERR(fi); 1233 goto err; 1234 } 1235 1236 l = fib_find_node(t, &tp, key); 1237 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1238 tb->tb_id) : NULL; 1239 1240 /* Now fa, if non-NULL, points to the first fib alias 1241 * with the same keys [prefix,tos,priority], if such key already 1242 * exists or to the node before which we will insert new one. 1243 * 1244 * If fa is NULL, we will need to allocate a new one and 1245 * insert to the tail of the section matching the suffix length 1246 * of the new alias. 1247 */ 1248 1249 if (fa && fa->fa_tos == tos && 1250 fa->fa_info->fib_priority == fi->fib_priority) { 1251 struct fib_alias *fa_first, *fa_match; 1252 1253 err = -EEXIST; 1254 if (cfg->fc_nlflags & NLM_F_EXCL) 1255 goto out; 1256 1257 nlflags &= ~NLM_F_EXCL; 1258 1259 /* We have 2 goals: 1260 * 1. Find exact match for type, scope, fib_info to avoid 1261 * duplicate routes 1262 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1263 */ 1264 fa_match = NULL; 1265 fa_first = fa; 1266 hlist_for_each_entry_from(fa, fa_list) { 1267 if ((fa->fa_slen != slen) || 1268 (fa->tb_id != tb->tb_id) || 1269 (fa->fa_tos != tos)) 1270 break; 1271 if (fa->fa_info->fib_priority != fi->fib_priority) 1272 break; 1273 if (fa->fa_type == cfg->fc_type && 1274 fa->fa_info == fi) { 1275 fa_match = fa; 1276 break; 1277 } 1278 } 1279 1280 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1281 struct fib_info *fi_drop; 1282 u8 state; 1283 1284 nlflags |= NLM_F_REPLACE; 1285 fa = fa_first; 1286 if (fa_match) { 1287 if (fa == fa_match) 1288 err = 0; 1289 goto out; 1290 } 1291 err = -ENOBUFS; 1292 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1293 if (!new_fa) 1294 goto out; 1295 1296 fi_drop = fa->fa_info; 1297 new_fa->fa_tos = fa->fa_tos; 1298 new_fa->fa_info = fi; 1299 new_fa->fa_type = cfg->fc_type; 1300 state = fa->fa_state; 1301 new_fa->fa_state = state & ~FA_S_ACCESSED; 1302 new_fa->fa_slen = fa->fa_slen; 1303 new_fa->tb_id = tb->tb_id; 1304 new_fa->fa_default = -1; 1305 1306 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1307 1308 alias_free_mem_rcu(fa); 1309 1310 fib_release_info(fi_drop); 1311 if (state & FA_S_ACCESSED) 1312 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1313 1314 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, 1315 key, plen, fi, 1316 new_fa->fa_tos, cfg->fc_type, 1317 tb->tb_id, cfg->fc_nlflags); 1318 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1319 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1320 1321 goto succeeded; 1322 } 1323 /* Error if we find a perfect match which 1324 * uses the same scope, type, and nexthop 1325 * information. 1326 */ 1327 if (fa_match) 1328 goto out; 1329 1330 if (cfg->fc_nlflags & NLM_F_APPEND) 1331 nlflags |= NLM_F_APPEND; 1332 else 1333 fa = fa_first; 1334 } 1335 err = -ENOENT; 1336 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1337 goto out; 1338 1339 nlflags |= NLM_F_CREATE; 1340 err = -ENOBUFS; 1341 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1342 if (!new_fa) 1343 goto out; 1344 1345 new_fa->fa_info = fi; 1346 new_fa->fa_tos = tos; 1347 new_fa->fa_type = cfg->fc_type; 1348 new_fa->fa_state = 0; 1349 new_fa->fa_slen = slen; 1350 new_fa->tb_id = tb->tb_id; 1351 new_fa->fa_default = -1; 1352 1353 /* Insert new entry to the list. */ 1354 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1355 if (err) 1356 goto out_free_new_fa; 1357 1358 if (!plen) 1359 tb->tb_num_default++; 1360 1361 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1362 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos, 1363 cfg->fc_type, tb->tb_id, cfg->fc_nlflags); 1364 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1365 &cfg->fc_nlinfo, nlflags); 1366 succeeded: 1367 return 0; 1368 1369 out_free_new_fa: 1370 kmem_cache_free(fn_alias_kmem, new_fa); 1371 out: 1372 fib_release_info(fi); 1373 err: 1374 return err; 1375 } 1376 1377 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1378 { 1379 t_key prefix = n->key; 1380 1381 return (key ^ prefix) & (prefix | -prefix); 1382 } 1383 1384 /* should be called with rcu_read_lock */ 1385 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1386 struct fib_result *res, int fib_flags) 1387 { 1388 struct trie *t = (struct trie *) tb->tb_data; 1389 #ifdef CONFIG_IP_FIB_TRIE_STATS 1390 struct trie_use_stats __percpu *stats = t->stats; 1391 #endif 1392 const t_key key = ntohl(flp->daddr); 1393 struct key_vector *n, *pn; 1394 struct fib_alias *fa; 1395 unsigned long index; 1396 t_key cindex; 1397 1398 trace_fib_table_lookup(tb->tb_id, flp); 1399 1400 pn = t->kv; 1401 cindex = 0; 1402 1403 n = get_child_rcu(pn, cindex); 1404 if (!n) 1405 return -EAGAIN; 1406 1407 #ifdef CONFIG_IP_FIB_TRIE_STATS 1408 this_cpu_inc(stats->gets); 1409 #endif 1410 1411 /* Step 1: Travel to the longest prefix match in the trie */ 1412 for (;;) { 1413 index = get_cindex(key, n); 1414 1415 /* This bit of code is a bit tricky but it combines multiple 1416 * checks into a single check. The prefix consists of the 1417 * prefix plus zeros for the "bits" in the prefix. The index 1418 * is the difference between the key and this value. From 1419 * this we can actually derive several pieces of data. 1420 * if (index >= (1ul << bits)) 1421 * we have a mismatch in skip bits and failed 1422 * else 1423 * we know the value is cindex 1424 * 1425 * This check is safe even if bits == KEYLENGTH due to the 1426 * fact that we can only allocate a node with 32 bits if a 1427 * long is greater than 32 bits. 1428 */ 1429 if (index >= (1ul << n->bits)) 1430 break; 1431 1432 /* we have found a leaf. Prefixes have already been compared */ 1433 if (IS_LEAF(n)) 1434 goto found; 1435 1436 /* only record pn and cindex if we are going to be chopping 1437 * bits later. Otherwise we are just wasting cycles. 1438 */ 1439 if (n->slen > n->pos) { 1440 pn = n; 1441 cindex = index; 1442 } 1443 1444 n = get_child_rcu(n, index); 1445 if (unlikely(!n)) 1446 goto backtrace; 1447 } 1448 1449 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1450 for (;;) { 1451 /* record the pointer where our next node pointer is stored */ 1452 struct key_vector __rcu **cptr = n->tnode; 1453 1454 /* This test verifies that none of the bits that differ 1455 * between the key and the prefix exist in the region of 1456 * the lsb and higher in the prefix. 1457 */ 1458 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1459 goto backtrace; 1460 1461 /* exit out and process leaf */ 1462 if (unlikely(IS_LEAF(n))) 1463 break; 1464 1465 /* Don't bother recording parent info. Since we are in 1466 * prefix match mode we will have to come back to wherever 1467 * we started this traversal anyway 1468 */ 1469 1470 while ((n = rcu_dereference(*cptr)) == NULL) { 1471 backtrace: 1472 #ifdef CONFIG_IP_FIB_TRIE_STATS 1473 if (!n) 1474 this_cpu_inc(stats->null_node_hit); 1475 #endif 1476 /* If we are at cindex 0 there are no more bits for 1477 * us to strip at this level so we must ascend back 1478 * up one level to see if there are any more bits to 1479 * be stripped there. 1480 */ 1481 while (!cindex) { 1482 t_key pkey = pn->key; 1483 1484 /* If we don't have a parent then there is 1485 * nothing for us to do as we do not have any 1486 * further nodes to parse. 1487 */ 1488 if (IS_TRIE(pn)) 1489 return -EAGAIN; 1490 #ifdef CONFIG_IP_FIB_TRIE_STATS 1491 this_cpu_inc(stats->backtrack); 1492 #endif 1493 /* Get Child's index */ 1494 pn = node_parent_rcu(pn); 1495 cindex = get_index(pkey, pn); 1496 } 1497 1498 /* strip the least significant bit from the cindex */ 1499 cindex &= cindex - 1; 1500 1501 /* grab pointer for next child node */ 1502 cptr = &pn->tnode[cindex]; 1503 } 1504 } 1505 1506 found: 1507 /* this line carries forward the xor from earlier in the function */ 1508 index = key ^ n->key; 1509 1510 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1511 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1512 struct fib_info *fi = fa->fa_info; 1513 int nhsel, err; 1514 1515 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1516 if (index >= (1ul << fa->fa_slen)) 1517 continue; 1518 } 1519 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1520 continue; 1521 if (fi->fib_dead) 1522 continue; 1523 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1524 continue; 1525 fib_alias_accessed(fa); 1526 err = fib_props[fa->fa_type].error; 1527 if (unlikely(err < 0)) { 1528 #ifdef CONFIG_IP_FIB_TRIE_STATS 1529 this_cpu_inc(stats->semantic_match_passed); 1530 #endif 1531 return err; 1532 } 1533 if (fi->fib_flags & RTNH_F_DEAD) 1534 continue; 1535 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1536 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1537 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1538 1539 if (nh->nh_flags & RTNH_F_DEAD) 1540 continue; 1541 if (in_dev && 1542 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1543 nh->nh_flags & RTNH_F_LINKDOWN && 1544 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1545 continue; 1546 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1547 if (flp->flowi4_oif && 1548 flp->flowi4_oif != nh->nh_oif) 1549 continue; 1550 } 1551 1552 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1553 atomic_inc(&fi->fib_clntref); 1554 1555 res->prefixlen = KEYLENGTH - fa->fa_slen; 1556 res->nh_sel = nhsel; 1557 res->type = fa->fa_type; 1558 res->scope = fi->fib_scope; 1559 res->fi = fi; 1560 res->table = tb; 1561 res->fa_head = &n->leaf; 1562 #ifdef CONFIG_IP_FIB_TRIE_STATS 1563 this_cpu_inc(stats->semantic_match_passed); 1564 #endif 1565 trace_fib_table_lookup_nh(nh); 1566 1567 return err; 1568 } 1569 } 1570 #ifdef CONFIG_IP_FIB_TRIE_STATS 1571 this_cpu_inc(stats->semantic_match_miss); 1572 #endif 1573 goto backtrace; 1574 } 1575 EXPORT_SYMBOL_GPL(fib_table_lookup); 1576 1577 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1578 struct key_vector *l, struct fib_alias *old) 1579 { 1580 /* record the location of the previous list_info entry */ 1581 struct hlist_node **pprev = old->fa_list.pprev; 1582 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1583 1584 /* remove the fib_alias from the list */ 1585 hlist_del_rcu(&old->fa_list); 1586 1587 /* if we emptied the list this leaf will be freed and we can sort 1588 * out parent suffix lengths as a part of trie_rebalance 1589 */ 1590 if (hlist_empty(&l->leaf)) { 1591 put_child_root(tp, l->key, NULL); 1592 node_free(l); 1593 trie_rebalance(t, tp); 1594 return; 1595 } 1596 1597 /* only access fa if it is pointing at the last valid hlist_node */ 1598 if (*pprev) 1599 return; 1600 1601 /* update the trie with the latest suffix length */ 1602 l->slen = fa->fa_slen; 1603 leaf_pull_suffix(tp, l); 1604 } 1605 1606 /* Caller must hold RTNL. */ 1607 int fib_table_delete(struct net *net, struct fib_table *tb, 1608 struct fib_config *cfg) 1609 { 1610 struct trie *t = (struct trie *) tb->tb_data; 1611 struct fib_alias *fa, *fa_to_delete; 1612 struct key_vector *l, *tp; 1613 u8 plen = cfg->fc_dst_len; 1614 u8 slen = KEYLENGTH - plen; 1615 u8 tos = cfg->fc_tos; 1616 u32 key; 1617 1618 if (plen > KEYLENGTH) 1619 return -EINVAL; 1620 1621 key = ntohl(cfg->fc_dst); 1622 1623 if ((plen < KEYLENGTH) && (key << plen)) 1624 return -EINVAL; 1625 1626 l = fib_find_node(t, &tp, key); 1627 if (!l) 1628 return -ESRCH; 1629 1630 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1631 if (!fa) 1632 return -ESRCH; 1633 1634 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1635 1636 fa_to_delete = NULL; 1637 hlist_for_each_entry_from(fa, fa_list) { 1638 struct fib_info *fi = fa->fa_info; 1639 1640 if ((fa->fa_slen != slen) || 1641 (fa->tb_id != tb->tb_id) || 1642 (fa->fa_tos != tos)) 1643 break; 1644 1645 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1646 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1647 fa->fa_info->fib_scope == cfg->fc_scope) && 1648 (!cfg->fc_prefsrc || 1649 fi->fib_prefsrc == cfg->fc_prefsrc) && 1650 (!cfg->fc_protocol || 1651 fi->fib_protocol == cfg->fc_protocol) && 1652 fib_nh_match(cfg, fi) == 0) { 1653 fa_to_delete = fa; 1654 break; 1655 } 1656 } 1657 1658 if (!fa_to_delete) 1659 return -ESRCH; 1660 1661 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1662 fa_to_delete->fa_info, tos, cfg->fc_type, 1663 tb->tb_id, 0); 1664 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1665 &cfg->fc_nlinfo, 0); 1666 1667 if (!plen) 1668 tb->tb_num_default--; 1669 1670 fib_remove_alias(t, tp, l, fa_to_delete); 1671 1672 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1673 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1674 1675 fib_release_info(fa_to_delete->fa_info); 1676 alias_free_mem_rcu(fa_to_delete); 1677 return 0; 1678 } 1679 1680 /* Scan for the next leaf starting at the provided key value */ 1681 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1682 { 1683 struct key_vector *pn, *n = *tn; 1684 unsigned long cindex; 1685 1686 /* this loop is meant to try and find the key in the trie */ 1687 do { 1688 /* record parent and next child index */ 1689 pn = n; 1690 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1691 1692 if (cindex >> pn->bits) 1693 break; 1694 1695 /* descend into the next child */ 1696 n = get_child_rcu(pn, cindex++); 1697 if (!n) 1698 break; 1699 1700 /* guarantee forward progress on the keys */ 1701 if (IS_LEAF(n) && (n->key >= key)) 1702 goto found; 1703 } while (IS_TNODE(n)); 1704 1705 /* this loop will search for the next leaf with a greater key */ 1706 while (!IS_TRIE(pn)) { 1707 /* if we exhausted the parent node we will need to climb */ 1708 if (cindex >= (1ul << pn->bits)) { 1709 t_key pkey = pn->key; 1710 1711 pn = node_parent_rcu(pn); 1712 cindex = get_index(pkey, pn) + 1; 1713 continue; 1714 } 1715 1716 /* grab the next available node */ 1717 n = get_child_rcu(pn, cindex++); 1718 if (!n) 1719 continue; 1720 1721 /* no need to compare keys since we bumped the index */ 1722 if (IS_LEAF(n)) 1723 goto found; 1724 1725 /* Rescan start scanning in new node */ 1726 pn = n; 1727 cindex = 0; 1728 } 1729 1730 *tn = pn; 1731 return NULL; /* Root of trie */ 1732 found: 1733 /* if we are at the limit for keys just return NULL for the tnode */ 1734 *tn = pn; 1735 return n; 1736 } 1737 1738 static void fib_trie_free(struct fib_table *tb) 1739 { 1740 struct trie *t = (struct trie *)tb->tb_data; 1741 struct key_vector *pn = t->kv; 1742 unsigned long cindex = 1; 1743 struct hlist_node *tmp; 1744 struct fib_alias *fa; 1745 1746 /* walk trie in reverse order and free everything */ 1747 for (;;) { 1748 struct key_vector *n; 1749 1750 if (!(cindex--)) { 1751 t_key pkey = pn->key; 1752 1753 if (IS_TRIE(pn)) 1754 break; 1755 1756 n = pn; 1757 pn = node_parent(pn); 1758 1759 /* drop emptied tnode */ 1760 put_child_root(pn, n->key, NULL); 1761 node_free(n); 1762 1763 cindex = get_index(pkey, pn); 1764 1765 continue; 1766 } 1767 1768 /* grab the next available node */ 1769 n = get_child(pn, cindex); 1770 if (!n) 1771 continue; 1772 1773 if (IS_TNODE(n)) { 1774 /* record pn and cindex for leaf walking */ 1775 pn = n; 1776 cindex = 1ul << n->bits; 1777 1778 continue; 1779 } 1780 1781 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1782 hlist_del_rcu(&fa->fa_list); 1783 alias_free_mem_rcu(fa); 1784 } 1785 1786 put_child_root(pn, n->key, NULL); 1787 node_free(n); 1788 } 1789 1790 #ifdef CONFIG_IP_FIB_TRIE_STATS 1791 free_percpu(t->stats); 1792 #endif 1793 kfree(tb); 1794 } 1795 1796 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1797 { 1798 struct trie *ot = (struct trie *)oldtb->tb_data; 1799 struct key_vector *l, *tp = ot->kv; 1800 struct fib_table *local_tb; 1801 struct fib_alias *fa; 1802 struct trie *lt; 1803 t_key key = 0; 1804 1805 if (oldtb->tb_data == oldtb->__data) 1806 return oldtb; 1807 1808 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1809 if (!local_tb) 1810 return NULL; 1811 1812 lt = (struct trie *)local_tb->tb_data; 1813 1814 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1815 struct key_vector *local_l = NULL, *local_tp; 1816 1817 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1818 struct fib_alias *new_fa; 1819 1820 if (local_tb->tb_id != fa->tb_id) 1821 continue; 1822 1823 /* clone fa for new local table */ 1824 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1825 if (!new_fa) 1826 goto out; 1827 1828 memcpy(new_fa, fa, sizeof(*fa)); 1829 1830 /* insert clone into table */ 1831 if (!local_l) 1832 local_l = fib_find_node(lt, &local_tp, l->key); 1833 1834 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1835 NULL, l->key)) { 1836 kmem_cache_free(fn_alias_kmem, new_fa); 1837 goto out; 1838 } 1839 } 1840 1841 /* stop loop if key wrapped back to 0 */ 1842 key = l->key + 1; 1843 if (key < l->key) 1844 break; 1845 } 1846 1847 return local_tb; 1848 out: 1849 fib_trie_free(local_tb); 1850 1851 return NULL; 1852 } 1853 1854 /* Caller must hold RTNL */ 1855 void fib_table_flush_external(struct fib_table *tb) 1856 { 1857 struct trie *t = (struct trie *)tb->tb_data; 1858 struct key_vector *pn = t->kv; 1859 unsigned long cindex = 1; 1860 struct hlist_node *tmp; 1861 struct fib_alias *fa; 1862 1863 /* walk trie in reverse order */ 1864 for (;;) { 1865 unsigned char slen = 0; 1866 struct key_vector *n; 1867 1868 if (!(cindex--)) { 1869 t_key pkey = pn->key; 1870 1871 /* cannot resize the trie vector */ 1872 if (IS_TRIE(pn)) 1873 break; 1874 1875 /* resize completed node */ 1876 pn = resize(t, pn); 1877 cindex = get_index(pkey, pn); 1878 1879 continue; 1880 } 1881 1882 /* grab the next available node */ 1883 n = get_child(pn, cindex); 1884 if (!n) 1885 continue; 1886 1887 if (IS_TNODE(n)) { 1888 /* record pn and cindex for leaf walking */ 1889 pn = n; 1890 cindex = 1ul << n->bits; 1891 1892 continue; 1893 } 1894 1895 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1896 /* if alias was cloned to local then we just 1897 * need to remove the local copy from main 1898 */ 1899 if (tb->tb_id != fa->tb_id) { 1900 hlist_del_rcu(&fa->fa_list); 1901 alias_free_mem_rcu(fa); 1902 continue; 1903 } 1904 1905 /* record local slen */ 1906 slen = fa->fa_slen; 1907 } 1908 1909 /* update leaf slen */ 1910 n->slen = slen; 1911 1912 if (hlist_empty(&n->leaf)) { 1913 put_child_root(pn, n->key, NULL); 1914 node_free(n); 1915 } 1916 } 1917 } 1918 1919 /* Caller must hold RTNL. */ 1920 int fib_table_flush(struct net *net, struct fib_table *tb) 1921 { 1922 struct trie *t = (struct trie *)tb->tb_data; 1923 struct key_vector *pn = t->kv; 1924 unsigned long cindex = 1; 1925 struct hlist_node *tmp; 1926 struct fib_alias *fa; 1927 int found = 0; 1928 1929 /* walk trie in reverse order */ 1930 for (;;) { 1931 unsigned char slen = 0; 1932 struct key_vector *n; 1933 1934 if (!(cindex--)) { 1935 t_key pkey = pn->key; 1936 1937 /* cannot resize the trie vector */ 1938 if (IS_TRIE(pn)) 1939 break; 1940 1941 /* resize completed node */ 1942 pn = resize(t, pn); 1943 cindex = get_index(pkey, pn); 1944 1945 continue; 1946 } 1947 1948 /* grab the next available node */ 1949 n = get_child(pn, cindex); 1950 if (!n) 1951 continue; 1952 1953 if (IS_TNODE(n)) { 1954 /* record pn and cindex for leaf walking */ 1955 pn = n; 1956 cindex = 1ul << n->bits; 1957 1958 continue; 1959 } 1960 1961 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1962 struct fib_info *fi = fa->fa_info; 1963 1964 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1965 slen = fa->fa_slen; 1966 continue; 1967 } 1968 1969 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1970 n->key, 1971 KEYLENGTH - fa->fa_slen, 1972 fi, fa->fa_tos, fa->fa_type, 1973 tb->tb_id, 0); 1974 hlist_del_rcu(&fa->fa_list); 1975 fib_release_info(fa->fa_info); 1976 alias_free_mem_rcu(fa); 1977 found++; 1978 } 1979 1980 /* update leaf slen */ 1981 n->slen = slen; 1982 1983 if (hlist_empty(&n->leaf)) { 1984 put_child_root(pn, n->key, NULL); 1985 node_free(n); 1986 } 1987 } 1988 1989 pr_debug("trie_flush found=%d\n", found); 1990 return found; 1991 } 1992 1993 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1994 struct fib_table *tb, struct notifier_block *nb, 1995 enum fib_event_type event_type) 1996 { 1997 struct fib_alias *fa; 1998 1999 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2000 struct fib_info *fi = fa->fa_info; 2001 2002 if (!fi) 2003 continue; 2004 2005 /* local and main table can share the same trie, 2006 * so don't notify twice for the same entry. 2007 */ 2008 if (tb->tb_id != fa->tb_id) 2009 continue; 2010 2011 call_fib_entry_notifier(nb, net, event_type, l->key, 2012 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, 2013 fa->fa_type, fa->tb_id, 0); 2014 } 2015 } 2016 2017 static void fib_table_notify(struct net *net, struct fib_table *tb, 2018 struct notifier_block *nb, 2019 enum fib_event_type event_type) 2020 { 2021 struct trie *t = (struct trie *)tb->tb_data; 2022 struct key_vector *l, *tp = t->kv; 2023 t_key key = 0; 2024 2025 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2026 fib_leaf_notify(net, l, tb, nb, event_type); 2027 2028 key = l->key + 1; 2029 /* stop in case of wrap around */ 2030 if (key < l->key) 2031 break; 2032 } 2033 } 2034 2035 static void fib_notify(struct net *net, struct notifier_block *nb, 2036 enum fib_event_type event_type) 2037 { 2038 unsigned int h; 2039 2040 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2041 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2042 struct fib_table *tb; 2043 2044 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2045 fib_table_notify(net, tb, nb, event_type); 2046 } 2047 } 2048 2049 static void __trie_free_rcu(struct rcu_head *head) 2050 { 2051 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2052 #ifdef CONFIG_IP_FIB_TRIE_STATS 2053 struct trie *t = (struct trie *)tb->tb_data; 2054 2055 if (tb->tb_data == tb->__data) 2056 free_percpu(t->stats); 2057 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2058 kfree(tb); 2059 } 2060 2061 void fib_free_table(struct fib_table *tb) 2062 { 2063 call_rcu(&tb->rcu, __trie_free_rcu); 2064 } 2065 2066 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2067 struct sk_buff *skb, struct netlink_callback *cb) 2068 { 2069 __be32 xkey = htonl(l->key); 2070 struct fib_alias *fa; 2071 int i, s_i; 2072 2073 s_i = cb->args[4]; 2074 i = 0; 2075 2076 /* rcu_read_lock is hold by caller */ 2077 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2078 if (i < s_i) { 2079 i++; 2080 continue; 2081 } 2082 2083 if (tb->tb_id != fa->tb_id) { 2084 i++; 2085 continue; 2086 } 2087 2088 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2089 cb->nlh->nlmsg_seq, 2090 RTM_NEWROUTE, 2091 tb->tb_id, 2092 fa->fa_type, 2093 xkey, 2094 KEYLENGTH - fa->fa_slen, 2095 fa->fa_tos, 2096 fa->fa_info, NLM_F_MULTI) < 0) { 2097 cb->args[4] = i; 2098 return -1; 2099 } 2100 i++; 2101 } 2102 2103 cb->args[4] = i; 2104 return skb->len; 2105 } 2106 2107 /* rcu_read_lock needs to be hold by caller from readside */ 2108 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2109 struct netlink_callback *cb) 2110 { 2111 struct trie *t = (struct trie *)tb->tb_data; 2112 struct key_vector *l, *tp = t->kv; 2113 /* Dump starting at last key. 2114 * Note: 0.0.0.0/0 (ie default) is first key. 2115 */ 2116 int count = cb->args[2]; 2117 t_key key = cb->args[3]; 2118 2119 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2120 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 2121 cb->args[3] = key; 2122 cb->args[2] = count; 2123 return -1; 2124 } 2125 2126 ++count; 2127 key = l->key + 1; 2128 2129 memset(&cb->args[4], 0, 2130 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2131 2132 /* stop loop if key wrapped back to 0 */ 2133 if (key < l->key) 2134 break; 2135 } 2136 2137 cb->args[3] = key; 2138 cb->args[2] = count; 2139 2140 return skb->len; 2141 } 2142 2143 void __init fib_trie_init(void) 2144 { 2145 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2146 sizeof(struct fib_alias), 2147 0, SLAB_PANIC, NULL); 2148 2149 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2150 LEAF_SIZE, 2151 0, SLAB_PANIC, NULL); 2152 } 2153 2154 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2155 { 2156 struct fib_table *tb; 2157 struct trie *t; 2158 size_t sz = sizeof(*tb); 2159 2160 if (!alias) 2161 sz += sizeof(struct trie); 2162 2163 tb = kzalloc(sz, GFP_KERNEL); 2164 if (!tb) 2165 return NULL; 2166 2167 tb->tb_id = id; 2168 tb->tb_num_default = 0; 2169 tb->tb_data = (alias ? alias->__data : tb->__data); 2170 2171 if (alias) 2172 return tb; 2173 2174 t = (struct trie *) tb->tb_data; 2175 t->kv[0].pos = KEYLENGTH; 2176 t->kv[0].slen = KEYLENGTH; 2177 #ifdef CONFIG_IP_FIB_TRIE_STATS 2178 t->stats = alloc_percpu(struct trie_use_stats); 2179 if (!t->stats) { 2180 kfree(tb); 2181 tb = NULL; 2182 } 2183 #endif 2184 2185 return tb; 2186 } 2187 2188 #ifdef CONFIG_PROC_FS 2189 /* Depth first Trie walk iterator */ 2190 struct fib_trie_iter { 2191 struct seq_net_private p; 2192 struct fib_table *tb; 2193 struct key_vector *tnode; 2194 unsigned int index; 2195 unsigned int depth; 2196 }; 2197 2198 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2199 { 2200 unsigned long cindex = iter->index; 2201 struct key_vector *pn = iter->tnode; 2202 t_key pkey; 2203 2204 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2205 iter->tnode, iter->index, iter->depth); 2206 2207 while (!IS_TRIE(pn)) { 2208 while (cindex < child_length(pn)) { 2209 struct key_vector *n = get_child_rcu(pn, cindex++); 2210 2211 if (!n) 2212 continue; 2213 2214 if (IS_LEAF(n)) { 2215 iter->tnode = pn; 2216 iter->index = cindex; 2217 } else { 2218 /* push down one level */ 2219 iter->tnode = n; 2220 iter->index = 0; 2221 ++iter->depth; 2222 } 2223 2224 return n; 2225 } 2226 2227 /* Current node exhausted, pop back up */ 2228 pkey = pn->key; 2229 pn = node_parent_rcu(pn); 2230 cindex = get_index(pkey, pn) + 1; 2231 --iter->depth; 2232 } 2233 2234 /* record root node so further searches know we are done */ 2235 iter->tnode = pn; 2236 iter->index = 0; 2237 2238 return NULL; 2239 } 2240 2241 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2242 struct trie *t) 2243 { 2244 struct key_vector *n, *pn; 2245 2246 if (!t) 2247 return NULL; 2248 2249 pn = t->kv; 2250 n = rcu_dereference(pn->tnode[0]); 2251 if (!n) 2252 return NULL; 2253 2254 if (IS_TNODE(n)) { 2255 iter->tnode = n; 2256 iter->index = 0; 2257 iter->depth = 1; 2258 } else { 2259 iter->tnode = pn; 2260 iter->index = 0; 2261 iter->depth = 0; 2262 } 2263 2264 return n; 2265 } 2266 2267 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2268 { 2269 struct key_vector *n; 2270 struct fib_trie_iter iter; 2271 2272 memset(s, 0, sizeof(*s)); 2273 2274 rcu_read_lock(); 2275 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2276 if (IS_LEAF(n)) { 2277 struct fib_alias *fa; 2278 2279 s->leaves++; 2280 s->totdepth += iter.depth; 2281 if (iter.depth > s->maxdepth) 2282 s->maxdepth = iter.depth; 2283 2284 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2285 ++s->prefixes; 2286 } else { 2287 s->tnodes++; 2288 if (n->bits < MAX_STAT_DEPTH) 2289 s->nodesizes[n->bits]++; 2290 s->nullpointers += tn_info(n)->empty_children; 2291 } 2292 } 2293 rcu_read_unlock(); 2294 } 2295 2296 /* 2297 * This outputs /proc/net/fib_triestats 2298 */ 2299 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2300 { 2301 unsigned int i, max, pointers, bytes, avdepth; 2302 2303 if (stat->leaves) 2304 avdepth = stat->totdepth*100 / stat->leaves; 2305 else 2306 avdepth = 0; 2307 2308 seq_printf(seq, "\tAver depth: %u.%02d\n", 2309 avdepth / 100, avdepth % 100); 2310 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2311 2312 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2313 bytes = LEAF_SIZE * stat->leaves; 2314 2315 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2316 bytes += sizeof(struct fib_alias) * stat->prefixes; 2317 2318 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2319 bytes += TNODE_SIZE(0) * stat->tnodes; 2320 2321 max = MAX_STAT_DEPTH; 2322 while (max > 0 && stat->nodesizes[max-1] == 0) 2323 max--; 2324 2325 pointers = 0; 2326 for (i = 1; i < max; i++) 2327 if (stat->nodesizes[i] != 0) { 2328 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2329 pointers += (1<<i) * stat->nodesizes[i]; 2330 } 2331 seq_putc(seq, '\n'); 2332 seq_printf(seq, "\tPointers: %u\n", pointers); 2333 2334 bytes += sizeof(struct key_vector *) * pointers; 2335 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2336 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2337 } 2338 2339 #ifdef CONFIG_IP_FIB_TRIE_STATS 2340 static void trie_show_usage(struct seq_file *seq, 2341 const struct trie_use_stats __percpu *stats) 2342 { 2343 struct trie_use_stats s = { 0 }; 2344 int cpu; 2345 2346 /* loop through all of the CPUs and gather up the stats */ 2347 for_each_possible_cpu(cpu) { 2348 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2349 2350 s.gets += pcpu->gets; 2351 s.backtrack += pcpu->backtrack; 2352 s.semantic_match_passed += pcpu->semantic_match_passed; 2353 s.semantic_match_miss += pcpu->semantic_match_miss; 2354 s.null_node_hit += pcpu->null_node_hit; 2355 s.resize_node_skipped += pcpu->resize_node_skipped; 2356 } 2357 2358 seq_printf(seq, "\nCounters:\n---------\n"); 2359 seq_printf(seq, "gets = %u\n", s.gets); 2360 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2361 seq_printf(seq, "semantic match passed = %u\n", 2362 s.semantic_match_passed); 2363 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2364 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2365 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2366 } 2367 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2368 2369 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2370 { 2371 if (tb->tb_id == RT_TABLE_LOCAL) 2372 seq_puts(seq, "Local:\n"); 2373 else if (tb->tb_id == RT_TABLE_MAIN) 2374 seq_puts(seq, "Main:\n"); 2375 else 2376 seq_printf(seq, "Id %d:\n", tb->tb_id); 2377 } 2378 2379 2380 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2381 { 2382 struct net *net = (struct net *)seq->private; 2383 unsigned int h; 2384 2385 seq_printf(seq, 2386 "Basic info: size of leaf:" 2387 " %Zd bytes, size of tnode: %Zd bytes.\n", 2388 LEAF_SIZE, TNODE_SIZE(0)); 2389 2390 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2391 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2392 struct fib_table *tb; 2393 2394 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2395 struct trie *t = (struct trie *) tb->tb_data; 2396 struct trie_stat stat; 2397 2398 if (!t) 2399 continue; 2400 2401 fib_table_print(seq, tb); 2402 2403 trie_collect_stats(t, &stat); 2404 trie_show_stats(seq, &stat); 2405 #ifdef CONFIG_IP_FIB_TRIE_STATS 2406 trie_show_usage(seq, t->stats); 2407 #endif 2408 } 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2415 { 2416 return single_open_net(inode, file, fib_triestat_seq_show); 2417 } 2418 2419 static const struct file_operations fib_triestat_fops = { 2420 .owner = THIS_MODULE, 2421 .open = fib_triestat_seq_open, 2422 .read = seq_read, 2423 .llseek = seq_lseek, 2424 .release = single_release_net, 2425 }; 2426 2427 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2428 { 2429 struct fib_trie_iter *iter = seq->private; 2430 struct net *net = seq_file_net(seq); 2431 loff_t idx = 0; 2432 unsigned int h; 2433 2434 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2435 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2436 struct fib_table *tb; 2437 2438 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2439 struct key_vector *n; 2440 2441 for (n = fib_trie_get_first(iter, 2442 (struct trie *) tb->tb_data); 2443 n; n = fib_trie_get_next(iter)) 2444 if (pos == idx++) { 2445 iter->tb = tb; 2446 return n; 2447 } 2448 } 2449 } 2450 2451 return NULL; 2452 } 2453 2454 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2455 __acquires(RCU) 2456 { 2457 rcu_read_lock(); 2458 return fib_trie_get_idx(seq, *pos); 2459 } 2460 2461 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2462 { 2463 struct fib_trie_iter *iter = seq->private; 2464 struct net *net = seq_file_net(seq); 2465 struct fib_table *tb = iter->tb; 2466 struct hlist_node *tb_node; 2467 unsigned int h; 2468 struct key_vector *n; 2469 2470 ++*pos; 2471 /* next node in same table */ 2472 n = fib_trie_get_next(iter); 2473 if (n) 2474 return n; 2475 2476 /* walk rest of this hash chain */ 2477 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2478 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2479 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2480 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2481 if (n) 2482 goto found; 2483 } 2484 2485 /* new hash chain */ 2486 while (++h < FIB_TABLE_HASHSZ) { 2487 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2488 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2489 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2490 if (n) 2491 goto found; 2492 } 2493 } 2494 return NULL; 2495 2496 found: 2497 iter->tb = tb; 2498 return n; 2499 } 2500 2501 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2502 __releases(RCU) 2503 { 2504 rcu_read_unlock(); 2505 } 2506 2507 static void seq_indent(struct seq_file *seq, int n) 2508 { 2509 while (n-- > 0) 2510 seq_puts(seq, " "); 2511 } 2512 2513 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2514 { 2515 switch (s) { 2516 case RT_SCOPE_UNIVERSE: return "universe"; 2517 case RT_SCOPE_SITE: return "site"; 2518 case RT_SCOPE_LINK: return "link"; 2519 case RT_SCOPE_HOST: return "host"; 2520 case RT_SCOPE_NOWHERE: return "nowhere"; 2521 default: 2522 snprintf(buf, len, "scope=%d", s); 2523 return buf; 2524 } 2525 } 2526 2527 static const char *const rtn_type_names[__RTN_MAX] = { 2528 [RTN_UNSPEC] = "UNSPEC", 2529 [RTN_UNICAST] = "UNICAST", 2530 [RTN_LOCAL] = "LOCAL", 2531 [RTN_BROADCAST] = "BROADCAST", 2532 [RTN_ANYCAST] = "ANYCAST", 2533 [RTN_MULTICAST] = "MULTICAST", 2534 [RTN_BLACKHOLE] = "BLACKHOLE", 2535 [RTN_UNREACHABLE] = "UNREACHABLE", 2536 [RTN_PROHIBIT] = "PROHIBIT", 2537 [RTN_THROW] = "THROW", 2538 [RTN_NAT] = "NAT", 2539 [RTN_XRESOLVE] = "XRESOLVE", 2540 }; 2541 2542 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2543 { 2544 if (t < __RTN_MAX && rtn_type_names[t]) 2545 return rtn_type_names[t]; 2546 snprintf(buf, len, "type %u", t); 2547 return buf; 2548 } 2549 2550 /* Pretty print the trie */ 2551 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2552 { 2553 const struct fib_trie_iter *iter = seq->private; 2554 struct key_vector *n = v; 2555 2556 if (IS_TRIE(node_parent_rcu(n))) 2557 fib_table_print(seq, iter->tb); 2558 2559 if (IS_TNODE(n)) { 2560 __be32 prf = htonl(n->key); 2561 2562 seq_indent(seq, iter->depth-1); 2563 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2564 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2565 tn_info(n)->full_children, 2566 tn_info(n)->empty_children); 2567 } else { 2568 __be32 val = htonl(n->key); 2569 struct fib_alias *fa; 2570 2571 seq_indent(seq, iter->depth); 2572 seq_printf(seq, " |-- %pI4\n", &val); 2573 2574 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2575 char buf1[32], buf2[32]; 2576 2577 seq_indent(seq, iter->depth + 1); 2578 seq_printf(seq, " /%zu %s %s", 2579 KEYLENGTH - fa->fa_slen, 2580 rtn_scope(buf1, sizeof(buf1), 2581 fa->fa_info->fib_scope), 2582 rtn_type(buf2, sizeof(buf2), 2583 fa->fa_type)); 2584 if (fa->fa_tos) 2585 seq_printf(seq, " tos=%d", fa->fa_tos); 2586 seq_putc(seq, '\n'); 2587 } 2588 } 2589 2590 return 0; 2591 } 2592 2593 static const struct seq_operations fib_trie_seq_ops = { 2594 .start = fib_trie_seq_start, 2595 .next = fib_trie_seq_next, 2596 .stop = fib_trie_seq_stop, 2597 .show = fib_trie_seq_show, 2598 }; 2599 2600 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2601 { 2602 return seq_open_net(inode, file, &fib_trie_seq_ops, 2603 sizeof(struct fib_trie_iter)); 2604 } 2605 2606 static const struct file_operations fib_trie_fops = { 2607 .owner = THIS_MODULE, 2608 .open = fib_trie_seq_open, 2609 .read = seq_read, 2610 .llseek = seq_lseek, 2611 .release = seq_release_net, 2612 }; 2613 2614 struct fib_route_iter { 2615 struct seq_net_private p; 2616 struct fib_table *main_tb; 2617 struct key_vector *tnode; 2618 loff_t pos; 2619 t_key key; 2620 }; 2621 2622 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2623 loff_t pos) 2624 { 2625 struct key_vector *l, **tp = &iter->tnode; 2626 t_key key; 2627 2628 /* use cached location of previously found key */ 2629 if (iter->pos > 0 && pos >= iter->pos) { 2630 key = iter->key; 2631 } else { 2632 iter->pos = 1; 2633 key = 0; 2634 } 2635 2636 pos -= iter->pos; 2637 2638 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2639 key = l->key + 1; 2640 iter->pos++; 2641 l = NULL; 2642 2643 /* handle unlikely case of a key wrap */ 2644 if (!key) 2645 break; 2646 } 2647 2648 if (l) 2649 iter->key = l->key; /* remember it */ 2650 else 2651 iter->pos = 0; /* forget it */ 2652 2653 return l; 2654 } 2655 2656 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2657 __acquires(RCU) 2658 { 2659 struct fib_route_iter *iter = seq->private; 2660 struct fib_table *tb; 2661 struct trie *t; 2662 2663 rcu_read_lock(); 2664 2665 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2666 if (!tb) 2667 return NULL; 2668 2669 iter->main_tb = tb; 2670 t = (struct trie *)tb->tb_data; 2671 iter->tnode = t->kv; 2672 2673 if (*pos != 0) 2674 return fib_route_get_idx(iter, *pos); 2675 2676 iter->pos = 0; 2677 iter->key = KEY_MAX; 2678 2679 return SEQ_START_TOKEN; 2680 } 2681 2682 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2683 { 2684 struct fib_route_iter *iter = seq->private; 2685 struct key_vector *l = NULL; 2686 t_key key = iter->key + 1; 2687 2688 ++*pos; 2689 2690 /* only allow key of 0 for start of sequence */ 2691 if ((v == SEQ_START_TOKEN) || key) 2692 l = leaf_walk_rcu(&iter->tnode, key); 2693 2694 if (l) { 2695 iter->key = l->key; 2696 iter->pos++; 2697 } else { 2698 iter->pos = 0; 2699 } 2700 2701 return l; 2702 } 2703 2704 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2705 __releases(RCU) 2706 { 2707 rcu_read_unlock(); 2708 } 2709 2710 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2711 { 2712 unsigned int flags = 0; 2713 2714 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2715 flags = RTF_REJECT; 2716 if (fi && fi->fib_nh->nh_gw) 2717 flags |= RTF_GATEWAY; 2718 if (mask == htonl(0xFFFFFFFF)) 2719 flags |= RTF_HOST; 2720 flags |= RTF_UP; 2721 return flags; 2722 } 2723 2724 /* 2725 * This outputs /proc/net/route. 2726 * The format of the file is not supposed to be changed 2727 * and needs to be same as fib_hash output to avoid breaking 2728 * legacy utilities 2729 */ 2730 static int fib_route_seq_show(struct seq_file *seq, void *v) 2731 { 2732 struct fib_route_iter *iter = seq->private; 2733 struct fib_table *tb = iter->main_tb; 2734 struct fib_alias *fa; 2735 struct key_vector *l = v; 2736 __be32 prefix; 2737 2738 if (v == SEQ_START_TOKEN) { 2739 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2740 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2741 "\tWindow\tIRTT"); 2742 return 0; 2743 } 2744 2745 prefix = htonl(l->key); 2746 2747 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2748 const struct fib_info *fi = fa->fa_info; 2749 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2750 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2751 2752 if ((fa->fa_type == RTN_BROADCAST) || 2753 (fa->fa_type == RTN_MULTICAST)) 2754 continue; 2755 2756 if (fa->tb_id != tb->tb_id) 2757 continue; 2758 2759 seq_setwidth(seq, 127); 2760 2761 if (fi) 2762 seq_printf(seq, 2763 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2764 "%d\t%08X\t%d\t%u\t%u", 2765 fi->fib_dev ? fi->fib_dev->name : "*", 2766 prefix, 2767 fi->fib_nh->nh_gw, flags, 0, 0, 2768 fi->fib_priority, 2769 mask, 2770 (fi->fib_advmss ? 2771 fi->fib_advmss + 40 : 0), 2772 fi->fib_window, 2773 fi->fib_rtt >> 3); 2774 else 2775 seq_printf(seq, 2776 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2777 "%d\t%08X\t%d\t%u\t%u", 2778 prefix, 0, flags, 0, 0, 0, 2779 mask, 0, 0, 0); 2780 2781 seq_pad(seq, '\n'); 2782 } 2783 2784 return 0; 2785 } 2786 2787 static const struct seq_operations fib_route_seq_ops = { 2788 .start = fib_route_seq_start, 2789 .next = fib_route_seq_next, 2790 .stop = fib_route_seq_stop, 2791 .show = fib_route_seq_show, 2792 }; 2793 2794 static int fib_route_seq_open(struct inode *inode, struct file *file) 2795 { 2796 return seq_open_net(inode, file, &fib_route_seq_ops, 2797 sizeof(struct fib_route_iter)); 2798 } 2799 2800 static const struct file_operations fib_route_fops = { 2801 .owner = THIS_MODULE, 2802 .open = fib_route_seq_open, 2803 .read = seq_read, 2804 .llseek = seq_lseek, 2805 .release = seq_release_net, 2806 }; 2807 2808 int __net_init fib_proc_init(struct net *net) 2809 { 2810 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2811 goto out1; 2812 2813 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2814 &fib_triestat_fops)) 2815 goto out2; 2816 2817 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2818 goto out3; 2819 2820 return 0; 2821 2822 out3: 2823 remove_proc_entry("fib_triestat", net->proc_net); 2824 out2: 2825 remove_proc_entry("fib_trie", net->proc_net); 2826 out1: 2827 return -ENOMEM; 2828 } 2829 2830 void __net_exit fib_proc_exit(struct net *net) 2831 { 2832 remove_proc_entry("fib_trie", net->proc_net); 2833 remove_proc_entry("fib_triestat", net->proc_net); 2834 remove_proc_entry("route", net->proc_net); 2835 } 2836 2837 #endif /* CONFIG_PROC_FS */ 2838