1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally descibed in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.408" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <net/net_namespace.h> 75 #include <net/ip.h> 76 #include <net/protocol.h> 77 #include <net/route.h> 78 #include <net/tcp.h> 79 #include <net/sock.h> 80 #include <net/ip_fib.h> 81 #include "fib_lookup.h" 82 83 #define MAX_STAT_DEPTH 32 84 85 #define KEYLENGTH (8*sizeof(t_key)) 86 87 typedef unsigned int t_key; 88 89 #define T_TNODE 0 90 #define T_LEAF 1 91 #define NODE_TYPE_MASK 0x1UL 92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 93 94 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 95 #define IS_LEAF(n) (n->parent & T_LEAF) 96 97 struct node { 98 unsigned long parent; 99 t_key key; 100 }; 101 102 struct leaf { 103 unsigned long parent; 104 t_key key; 105 struct hlist_head list; 106 struct rcu_head rcu; 107 }; 108 109 struct leaf_info { 110 struct hlist_node hlist; 111 struct rcu_head rcu; 112 int plen; 113 struct list_head falh; 114 }; 115 116 struct tnode { 117 unsigned long parent; 118 t_key key; 119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 121 unsigned int full_children; /* KEYLENGTH bits needed */ 122 unsigned int empty_children; /* KEYLENGTH bits needed */ 123 union { 124 struct rcu_head rcu; 125 struct work_struct work; 126 }; 127 struct node *child[0]; 128 }; 129 130 #ifdef CONFIG_IP_FIB_TRIE_STATS 131 struct trie_use_stats { 132 unsigned int gets; 133 unsigned int backtrack; 134 unsigned int semantic_match_passed; 135 unsigned int semantic_match_miss; 136 unsigned int null_node_hit; 137 unsigned int resize_node_skipped; 138 }; 139 #endif 140 141 struct trie_stat { 142 unsigned int totdepth; 143 unsigned int maxdepth; 144 unsigned int tnodes; 145 unsigned int leaves; 146 unsigned int nullpointers; 147 unsigned int prefixes; 148 unsigned int nodesizes[MAX_STAT_DEPTH]; 149 }; 150 151 struct trie { 152 struct node *trie; 153 #ifdef CONFIG_IP_FIB_TRIE_STATS 154 struct trie_use_stats stats; 155 #endif 156 }; 157 158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); 159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 160 int wasfull); 161 static struct node *resize(struct trie *t, struct tnode *tn); 162 static struct tnode *inflate(struct trie *t, struct tnode *tn); 163 static struct tnode *halve(struct trie *t, struct tnode *tn); 164 165 static struct kmem_cache *fn_alias_kmem __read_mostly; 166 static struct kmem_cache *trie_leaf_kmem __read_mostly; 167 168 static inline struct tnode *node_parent(struct node *node) 169 { 170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK); 171 } 172 173 static inline struct tnode *node_parent_rcu(struct node *node) 174 { 175 struct tnode *ret = node_parent(node); 176 177 return rcu_dereference(ret); 178 } 179 180 /* Same as rcu_assign_pointer 181 * but that macro() assumes that value is a pointer. 182 */ 183 static inline void node_set_parent(struct node *node, struct tnode *ptr) 184 { 185 smp_wmb(); 186 node->parent = (unsigned long)ptr | NODE_TYPE(node); 187 } 188 189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i) 190 { 191 BUG_ON(i >= 1U << tn->bits); 192 193 return tn->child[i]; 194 } 195 196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i) 197 { 198 struct node *ret = tnode_get_child(tn, i); 199 200 return rcu_dereference(ret); 201 } 202 203 static inline int tnode_child_length(const struct tnode *tn) 204 { 205 return 1 << tn->bits; 206 } 207 208 static inline t_key mask_pfx(t_key k, unsigned short l) 209 { 210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 211 } 212 213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits) 214 { 215 if (offset < KEYLENGTH) 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 217 else 218 return 0; 219 } 220 221 static inline int tkey_equals(t_key a, t_key b) 222 { 223 return a == b; 224 } 225 226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 227 { 228 if (bits == 0 || offset >= KEYLENGTH) 229 return 1; 230 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 232 } 233 234 static inline int tkey_mismatch(t_key a, int offset, t_key b) 235 { 236 t_key diff = a ^ b; 237 int i = offset; 238 239 if (!diff) 240 return 0; 241 while ((diff << i) >> (KEYLENGTH-1) == 0) 242 i++; 243 return i; 244 } 245 246 /* 247 To understand this stuff, an understanding of keys and all their bits is 248 necessary. Every node in the trie has a key associated with it, but not 249 all of the bits in that key are significant. 250 251 Consider a node 'n' and its parent 'tp'. 252 253 If n is a leaf, every bit in its key is significant. Its presence is 254 necessitated by path compression, since during a tree traversal (when 255 searching for a leaf - unless we are doing an insertion) we will completely 256 ignore all skipped bits we encounter. Thus we need to verify, at the end of 257 a potentially successful search, that we have indeed been walking the 258 correct key path. 259 260 Note that we can never "miss" the correct key in the tree if present by 261 following the wrong path. Path compression ensures that segments of the key 262 that are the same for all keys with a given prefix are skipped, but the 263 skipped part *is* identical for each node in the subtrie below the skipped 264 bit! trie_insert() in this implementation takes care of that - note the 265 call to tkey_sub_equals() in trie_insert(). 266 267 if n is an internal node - a 'tnode' here, the various parts of its key 268 have many different meanings. 269 270 Example: 271 _________________________________________________________________ 272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 273 ----------------------------------------------------------------- 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 275 276 _________________________________________________________________ 277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 278 ----------------------------------------------------------------- 279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 280 281 tp->pos = 7 282 tp->bits = 3 283 n->pos = 15 284 n->bits = 4 285 286 First, let's just ignore the bits that come before the parent tp, that is 287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 288 not use them for anything. 289 290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 291 index into the parent's child array. That is, they will be used to find 292 'n' among tp's children. 293 294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 295 for the node n. 296 297 All the bits we have seen so far are significant to the node n. The rest 298 of the bits are really not needed or indeed known in n->key. 299 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 301 n's child array, and will of course be different for each child. 302 303 304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 305 at this point. 306 307 */ 308 309 static inline void check_tnode(const struct tnode *tn) 310 { 311 WARN_ON(tn && tn->pos+tn->bits > 32); 312 } 313 314 static const int halve_threshold = 25; 315 static const int inflate_threshold = 50; 316 static const int halve_threshold_root = 8; 317 static const int inflate_threshold_root = 15; 318 319 320 static void __alias_free_mem(struct rcu_head *head) 321 { 322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 323 kmem_cache_free(fn_alias_kmem, fa); 324 } 325 326 static inline void alias_free_mem_rcu(struct fib_alias *fa) 327 { 328 call_rcu(&fa->rcu, __alias_free_mem); 329 } 330 331 static void __leaf_free_rcu(struct rcu_head *head) 332 { 333 struct leaf *l = container_of(head, struct leaf, rcu); 334 kmem_cache_free(trie_leaf_kmem, l); 335 } 336 337 static inline void free_leaf(struct leaf *l) 338 { 339 call_rcu_bh(&l->rcu, __leaf_free_rcu); 340 } 341 342 static void __leaf_info_free_rcu(struct rcu_head *head) 343 { 344 kfree(container_of(head, struct leaf_info, rcu)); 345 } 346 347 static inline void free_leaf_info(struct leaf_info *leaf) 348 { 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu); 350 } 351 352 static struct tnode *tnode_alloc(size_t size) 353 { 354 if (size <= PAGE_SIZE) 355 return kzalloc(size, GFP_KERNEL); 356 else 357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 358 } 359 360 static void __tnode_vfree(struct work_struct *arg) 361 { 362 struct tnode *tn = container_of(arg, struct tnode, work); 363 vfree(tn); 364 } 365 366 static void __tnode_free_rcu(struct rcu_head *head) 367 { 368 struct tnode *tn = container_of(head, struct tnode, rcu); 369 size_t size = sizeof(struct tnode) + 370 (sizeof(struct node *) << tn->bits); 371 372 if (size <= PAGE_SIZE) 373 kfree(tn); 374 else { 375 INIT_WORK(&tn->work, __tnode_vfree); 376 schedule_work(&tn->work); 377 } 378 } 379 380 static inline void tnode_free(struct tnode *tn) 381 { 382 if (IS_LEAF(tn)) 383 free_leaf((struct leaf *) tn); 384 else 385 call_rcu(&tn->rcu, __tnode_free_rcu); 386 } 387 388 static struct leaf *leaf_new(void) 389 { 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 391 if (l) { 392 l->parent = T_LEAF; 393 INIT_HLIST_HEAD(&l->list); 394 } 395 return l; 396 } 397 398 static struct leaf_info *leaf_info_new(int plen) 399 { 400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 401 if (li) { 402 li->plen = plen; 403 INIT_LIST_HEAD(&li->falh); 404 } 405 return li; 406 } 407 408 static struct tnode *tnode_new(t_key key, int pos, int bits) 409 { 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits); 411 struct tnode *tn = tnode_alloc(sz); 412 413 if (tn) { 414 tn->parent = T_TNODE; 415 tn->pos = pos; 416 tn->bits = bits; 417 tn->key = key; 418 tn->full_children = 0; 419 tn->empty_children = 1<<bits; 420 } 421 422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode), 423 (unsigned long) (sizeof(struct node) << bits)); 424 return tn; 425 } 426 427 /* 428 * Check whether a tnode 'n' is "full", i.e. it is an internal node 429 * and no bits are skipped. See discussion in dyntree paper p. 6 430 */ 431 432 static inline int tnode_full(const struct tnode *tn, const struct node *n) 433 { 434 if (n == NULL || IS_LEAF(n)) 435 return 0; 436 437 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 438 } 439 440 static inline void put_child(struct trie *t, struct tnode *tn, int i, 441 struct node *n) 442 { 443 tnode_put_child_reorg(tn, i, n, -1); 444 } 445 446 /* 447 * Add a child at position i overwriting the old value. 448 * Update the value of full_children and empty_children. 449 */ 450 451 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 452 int wasfull) 453 { 454 struct node *chi = tn->child[i]; 455 int isfull; 456 457 BUG_ON(i >= 1<<tn->bits); 458 459 /* update emptyChildren */ 460 if (n == NULL && chi != NULL) 461 tn->empty_children++; 462 else if (n != NULL && chi == NULL) 463 tn->empty_children--; 464 465 /* update fullChildren */ 466 if (wasfull == -1) 467 wasfull = tnode_full(tn, chi); 468 469 isfull = tnode_full(tn, n); 470 if (wasfull && !isfull) 471 tn->full_children--; 472 else if (!wasfull && isfull) 473 tn->full_children++; 474 475 if (n) 476 node_set_parent(n, tn); 477 478 rcu_assign_pointer(tn->child[i], n); 479 } 480 481 static struct node *resize(struct trie *t, struct tnode *tn) 482 { 483 int i; 484 int err = 0; 485 struct tnode *old_tn; 486 int inflate_threshold_use; 487 int halve_threshold_use; 488 int max_resize; 489 490 if (!tn) 491 return NULL; 492 493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 494 tn, inflate_threshold, halve_threshold); 495 496 /* No children */ 497 if (tn->empty_children == tnode_child_length(tn)) { 498 tnode_free(tn); 499 return NULL; 500 } 501 /* One child */ 502 if (tn->empty_children == tnode_child_length(tn) - 1) 503 for (i = 0; i < tnode_child_length(tn); i++) { 504 struct node *n; 505 506 n = tn->child[i]; 507 if (!n) 508 continue; 509 510 /* compress one level */ 511 node_set_parent(n, NULL); 512 tnode_free(tn); 513 return n; 514 } 515 /* 516 * Double as long as the resulting node has a number of 517 * nonempty nodes that are above the threshold. 518 */ 519 520 /* 521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 522 * the Helsinki University of Technology and Matti Tikkanen of Nokia 523 * Telecommunications, page 6: 524 * "A node is doubled if the ratio of non-empty children to all 525 * children in the *doubled* node is at least 'high'." 526 * 527 * 'high' in this instance is the variable 'inflate_threshold'. It 528 * is expressed as a percentage, so we multiply it with 529 * tnode_child_length() and instead of multiplying by 2 (since the 530 * child array will be doubled by inflate()) and multiplying 531 * the left-hand side by 100 (to handle the percentage thing) we 532 * multiply the left-hand side by 50. 533 * 534 * The left-hand side may look a bit weird: tnode_child_length(tn) 535 * - tn->empty_children is of course the number of non-null children 536 * in the current node. tn->full_children is the number of "full" 537 * children, that is non-null tnodes with a skip value of 0. 538 * All of those will be doubled in the resulting inflated tnode, so 539 * we just count them one extra time here. 540 * 541 * A clearer way to write this would be: 542 * 543 * to_be_doubled = tn->full_children; 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 545 * tn->full_children; 546 * 547 * new_child_length = tnode_child_length(tn) * 2; 548 * 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 550 * new_child_length; 551 * if (new_fill_factor >= inflate_threshold) 552 * 553 * ...and so on, tho it would mess up the while () loop. 554 * 555 * anyway, 556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 557 * inflate_threshold 558 * 559 * avoid a division: 560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 561 * inflate_threshold * new_child_length 562 * 563 * expand not_to_be_doubled and to_be_doubled, and shorten: 564 * 100 * (tnode_child_length(tn) - tn->empty_children + 565 * tn->full_children) >= inflate_threshold * new_child_length 566 * 567 * expand new_child_length: 568 * 100 * (tnode_child_length(tn) - tn->empty_children + 569 * tn->full_children) >= 570 * inflate_threshold * tnode_child_length(tn) * 2 571 * 572 * shorten again: 573 * 50 * (tn->full_children + tnode_child_length(tn) - 574 * tn->empty_children) >= inflate_threshold * 575 * tnode_child_length(tn) 576 * 577 */ 578 579 check_tnode(tn); 580 581 /* Keep root node larger */ 582 583 if (!tn->parent) 584 inflate_threshold_use = inflate_threshold_root; 585 else 586 inflate_threshold_use = inflate_threshold; 587 588 err = 0; 589 max_resize = 10; 590 while ((tn->full_children > 0 && max_resize-- && 591 50 * (tn->full_children + tnode_child_length(tn) 592 - tn->empty_children) 593 >= inflate_threshold_use * tnode_child_length(tn))) { 594 595 old_tn = tn; 596 tn = inflate(t, tn); 597 598 if (IS_ERR(tn)) { 599 tn = old_tn; 600 #ifdef CONFIG_IP_FIB_TRIE_STATS 601 t->stats.resize_node_skipped++; 602 #endif 603 break; 604 } 605 } 606 607 if (max_resize < 0) { 608 if (!tn->parent) 609 pr_warning("Fix inflate_threshold_root." 610 " Now=%d size=%d bits\n", 611 inflate_threshold_root, tn->bits); 612 else 613 pr_warning("Fix inflate_threshold." 614 " Now=%d size=%d bits\n", 615 inflate_threshold, tn->bits); 616 } 617 618 check_tnode(tn); 619 620 /* 621 * Halve as long as the number of empty children in this 622 * node is above threshold. 623 */ 624 625 626 /* Keep root node larger */ 627 628 if (!tn->parent) 629 halve_threshold_use = halve_threshold_root; 630 else 631 halve_threshold_use = halve_threshold; 632 633 err = 0; 634 max_resize = 10; 635 while (tn->bits > 1 && max_resize-- && 636 100 * (tnode_child_length(tn) - tn->empty_children) < 637 halve_threshold_use * tnode_child_length(tn)) { 638 639 old_tn = tn; 640 tn = halve(t, tn); 641 if (IS_ERR(tn)) { 642 tn = old_tn; 643 #ifdef CONFIG_IP_FIB_TRIE_STATS 644 t->stats.resize_node_skipped++; 645 #endif 646 break; 647 } 648 } 649 650 if (max_resize < 0) { 651 if (!tn->parent) 652 pr_warning("Fix halve_threshold_root." 653 " Now=%d size=%d bits\n", 654 halve_threshold_root, tn->bits); 655 else 656 pr_warning("Fix halve_threshold." 657 " Now=%d size=%d bits\n", 658 halve_threshold, tn->bits); 659 } 660 661 /* Only one child remains */ 662 if (tn->empty_children == tnode_child_length(tn) - 1) 663 for (i = 0; i < tnode_child_length(tn); i++) { 664 struct node *n; 665 666 n = tn->child[i]; 667 if (!n) 668 continue; 669 670 /* compress one level */ 671 672 node_set_parent(n, NULL); 673 tnode_free(tn); 674 return n; 675 } 676 677 return (struct node *) tn; 678 } 679 680 static struct tnode *inflate(struct trie *t, struct tnode *tn) 681 { 682 struct tnode *oldtnode = tn; 683 int olen = tnode_child_length(tn); 684 int i; 685 686 pr_debug("In inflate\n"); 687 688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 689 690 if (!tn) 691 return ERR_PTR(-ENOMEM); 692 693 /* 694 * Preallocate and store tnodes before the actual work so we 695 * don't get into an inconsistent state if memory allocation 696 * fails. In case of failure we return the oldnode and inflate 697 * of tnode is ignored. 698 */ 699 700 for (i = 0; i < olen; i++) { 701 struct tnode *inode; 702 703 inode = (struct tnode *) tnode_get_child(oldtnode, i); 704 if (inode && 705 IS_TNODE(inode) && 706 inode->pos == oldtnode->pos + oldtnode->bits && 707 inode->bits > 1) { 708 struct tnode *left, *right; 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 710 711 left = tnode_new(inode->key&(~m), inode->pos + 1, 712 inode->bits - 1); 713 if (!left) 714 goto nomem; 715 716 right = tnode_new(inode->key|m, inode->pos + 1, 717 inode->bits - 1); 718 719 if (!right) { 720 tnode_free(left); 721 goto nomem; 722 } 723 724 put_child(t, tn, 2*i, (struct node *) left); 725 put_child(t, tn, 2*i+1, (struct node *) right); 726 } 727 } 728 729 for (i = 0; i < olen; i++) { 730 struct tnode *inode; 731 struct node *node = tnode_get_child(oldtnode, i); 732 struct tnode *left, *right; 733 int size, j; 734 735 /* An empty child */ 736 if (node == NULL) 737 continue; 738 739 /* A leaf or an internal node with skipped bits */ 740 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 742 tn->pos + tn->bits - 1) { 743 if (tkey_extract_bits(node->key, 744 oldtnode->pos + oldtnode->bits, 745 1) == 0) 746 put_child(t, tn, 2*i, node); 747 else 748 put_child(t, tn, 2*i+1, node); 749 continue; 750 } 751 752 /* An internal node with two children */ 753 inode = (struct tnode *) node; 754 755 if (inode->bits == 1) { 756 put_child(t, tn, 2*i, inode->child[0]); 757 put_child(t, tn, 2*i+1, inode->child[1]); 758 759 tnode_free(inode); 760 continue; 761 } 762 763 /* An internal node with more than two children */ 764 765 /* We will replace this node 'inode' with two new 766 * ones, 'left' and 'right', each with half of the 767 * original children. The two new nodes will have 768 * a position one bit further down the key and this 769 * means that the "significant" part of their keys 770 * (see the discussion near the top of this file) 771 * will differ by one bit, which will be "0" in 772 * left's key and "1" in right's key. Since we are 773 * moving the key position by one step, the bit that 774 * we are moving away from - the bit at position 775 * (inode->pos) - is the one that will differ between 776 * left and right. So... we synthesize that bit in the 777 * two new keys. 778 * The mask 'm' below will be a single "one" bit at 779 * the position (inode->pos) 780 */ 781 782 /* Use the old key, but set the new significant 783 * bit to zero. 784 */ 785 786 left = (struct tnode *) tnode_get_child(tn, 2*i); 787 put_child(t, tn, 2*i, NULL); 788 789 BUG_ON(!left); 790 791 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 792 put_child(t, tn, 2*i+1, NULL); 793 794 BUG_ON(!right); 795 796 size = tnode_child_length(left); 797 for (j = 0; j < size; j++) { 798 put_child(t, left, j, inode->child[j]); 799 put_child(t, right, j, inode->child[j + size]); 800 } 801 put_child(t, tn, 2*i, resize(t, left)); 802 put_child(t, tn, 2*i+1, resize(t, right)); 803 804 tnode_free(inode); 805 } 806 tnode_free(oldtnode); 807 return tn; 808 nomem: 809 { 810 int size = tnode_child_length(tn); 811 int j; 812 813 for (j = 0; j < size; j++) 814 if (tn->child[j]) 815 tnode_free((struct tnode *)tn->child[j]); 816 817 tnode_free(tn); 818 819 return ERR_PTR(-ENOMEM); 820 } 821 } 822 823 static struct tnode *halve(struct trie *t, struct tnode *tn) 824 { 825 struct tnode *oldtnode = tn; 826 struct node *left, *right; 827 int i; 828 int olen = tnode_child_length(tn); 829 830 pr_debug("In halve\n"); 831 832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 833 834 if (!tn) 835 return ERR_PTR(-ENOMEM); 836 837 /* 838 * Preallocate and store tnodes before the actual work so we 839 * don't get into an inconsistent state if memory allocation 840 * fails. In case of failure we return the oldnode and halve 841 * of tnode is ignored. 842 */ 843 844 for (i = 0; i < olen; i += 2) { 845 left = tnode_get_child(oldtnode, i); 846 right = tnode_get_child(oldtnode, i+1); 847 848 /* Two nonempty children */ 849 if (left && right) { 850 struct tnode *newn; 851 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 853 854 if (!newn) 855 goto nomem; 856 857 put_child(t, tn, i/2, (struct node *)newn); 858 } 859 860 } 861 862 for (i = 0; i < olen; i += 2) { 863 struct tnode *newBinNode; 864 865 left = tnode_get_child(oldtnode, i); 866 right = tnode_get_child(oldtnode, i+1); 867 868 /* At least one of the children is empty */ 869 if (left == NULL) { 870 if (right == NULL) /* Both are empty */ 871 continue; 872 put_child(t, tn, i/2, right); 873 continue; 874 } 875 876 if (right == NULL) { 877 put_child(t, tn, i/2, left); 878 continue; 879 } 880 881 /* Two nonempty children */ 882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 883 put_child(t, tn, i/2, NULL); 884 put_child(t, newBinNode, 0, left); 885 put_child(t, newBinNode, 1, right); 886 put_child(t, tn, i/2, resize(t, newBinNode)); 887 } 888 tnode_free(oldtnode); 889 return tn; 890 nomem: 891 { 892 int size = tnode_child_length(tn); 893 int j; 894 895 for (j = 0; j < size; j++) 896 if (tn->child[j]) 897 tnode_free((struct tnode *)tn->child[j]); 898 899 tnode_free(tn); 900 901 return ERR_PTR(-ENOMEM); 902 } 903 } 904 905 /* readside must use rcu_read_lock currently dump routines 906 via get_fa_head and dump */ 907 908 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 909 { 910 struct hlist_head *head = &l->list; 911 struct hlist_node *node; 912 struct leaf_info *li; 913 914 hlist_for_each_entry_rcu(li, node, head, hlist) 915 if (li->plen == plen) 916 return li; 917 918 return NULL; 919 } 920 921 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 922 { 923 struct leaf_info *li = find_leaf_info(l, plen); 924 925 if (!li) 926 return NULL; 927 928 return &li->falh; 929 } 930 931 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 932 { 933 struct leaf_info *li = NULL, *last = NULL; 934 struct hlist_node *node; 935 936 if (hlist_empty(head)) { 937 hlist_add_head_rcu(&new->hlist, head); 938 } else { 939 hlist_for_each_entry(li, node, head, hlist) { 940 if (new->plen > li->plen) 941 break; 942 943 last = li; 944 } 945 if (last) 946 hlist_add_after_rcu(&last->hlist, &new->hlist); 947 else 948 hlist_add_before_rcu(&new->hlist, &li->hlist); 949 } 950 } 951 952 /* rcu_read_lock needs to be hold by caller from readside */ 953 954 static struct leaf * 955 fib_find_node(struct trie *t, u32 key) 956 { 957 int pos; 958 struct tnode *tn; 959 struct node *n; 960 961 pos = 0; 962 n = rcu_dereference(t->trie); 963 964 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 965 tn = (struct tnode *) n; 966 967 check_tnode(tn); 968 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 970 pos = tn->pos + tn->bits; 971 n = tnode_get_child_rcu(tn, 972 tkey_extract_bits(key, 973 tn->pos, 974 tn->bits)); 975 } else 976 break; 977 } 978 /* Case we have found a leaf. Compare prefixes */ 979 980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 981 return (struct leaf *)n; 982 983 return NULL; 984 } 985 986 static struct node *trie_rebalance(struct trie *t, struct tnode *tn) 987 { 988 int wasfull; 989 t_key cindex, key = tn->key; 990 struct tnode *tp; 991 992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) { 993 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 995 tn = (struct tnode *) resize(t, (struct tnode *)tn); 996 997 tnode_put_child_reorg((struct tnode *)tp, cindex, 998 (struct node *)tn, wasfull); 999 1000 tp = node_parent((struct node *) tn); 1001 if (!tp) 1002 break; 1003 tn = tp; 1004 } 1005 1006 /* Handle last (top) tnode */ 1007 if (IS_TNODE(tn)) 1008 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1009 1010 return (struct node *)tn; 1011 } 1012 1013 /* only used from updater-side */ 1014 1015 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1016 { 1017 int pos, newpos; 1018 struct tnode *tp = NULL, *tn = NULL; 1019 struct node *n; 1020 struct leaf *l; 1021 int missbit; 1022 struct list_head *fa_head = NULL; 1023 struct leaf_info *li; 1024 t_key cindex; 1025 1026 pos = 0; 1027 n = t->trie; 1028 1029 /* If we point to NULL, stop. Either the tree is empty and we should 1030 * just put a new leaf in if, or we have reached an empty child slot, 1031 * and we should just put our new leaf in that. 1032 * If we point to a T_TNODE, check if it matches our key. Note that 1033 * a T_TNODE might be skipping any number of bits - its 'pos' need 1034 * not be the parent's 'pos'+'bits'! 1035 * 1036 * If it does match the current key, get pos/bits from it, extract 1037 * the index from our key, push the T_TNODE and walk the tree. 1038 * 1039 * If it doesn't, we have to replace it with a new T_TNODE. 1040 * 1041 * If we point to a T_LEAF, it might or might not have the same key 1042 * as we do. If it does, just change the value, update the T_LEAF's 1043 * value, and return it. 1044 * If it doesn't, we need to replace it with a T_TNODE. 1045 */ 1046 1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1048 tn = (struct tnode *) n; 1049 1050 check_tnode(tn); 1051 1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1053 tp = tn; 1054 pos = tn->pos + tn->bits; 1055 n = tnode_get_child(tn, 1056 tkey_extract_bits(key, 1057 tn->pos, 1058 tn->bits)); 1059 1060 BUG_ON(n && node_parent(n) != tn); 1061 } else 1062 break; 1063 } 1064 1065 /* 1066 * n ----> NULL, LEAF or TNODE 1067 * 1068 * tp is n's (parent) ----> NULL or TNODE 1069 */ 1070 1071 BUG_ON(tp && IS_LEAF(tp)); 1072 1073 /* Case 1: n is a leaf. Compare prefixes */ 1074 1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1076 l = (struct leaf *) n; 1077 li = leaf_info_new(plen); 1078 1079 if (!li) 1080 return NULL; 1081 1082 fa_head = &li->falh; 1083 insert_leaf_info(&l->list, li); 1084 goto done; 1085 } 1086 l = leaf_new(); 1087 1088 if (!l) 1089 return NULL; 1090 1091 l->key = key; 1092 li = leaf_info_new(plen); 1093 1094 if (!li) { 1095 free_leaf(l); 1096 return NULL; 1097 } 1098 1099 fa_head = &li->falh; 1100 insert_leaf_info(&l->list, li); 1101 1102 if (t->trie && n == NULL) { 1103 /* Case 2: n is NULL, and will just insert a new leaf */ 1104 1105 node_set_parent((struct node *)l, tp); 1106 1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l); 1109 } else { 1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1111 /* 1112 * Add a new tnode here 1113 * first tnode need some special handling 1114 */ 1115 1116 if (tp) 1117 pos = tp->pos+tp->bits; 1118 else 1119 pos = 0; 1120 1121 if (n) { 1122 newpos = tkey_mismatch(key, pos, n->key); 1123 tn = tnode_new(n->key, newpos, 1); 1124 } else { 1125 newpos = 0; 1126 tn = tnode_new(key, newpos, 1); /* First tnode */ 1127 } 1128 1129 if (!tn) { 1130 free_leaf_info(li); 1131 free_leaf(l); 1132 return NULL; 1133 } 1134 1135 node_set_parent((struct node *)tn, tp); 1136 1137 missbit = tkey_extract_bits(key, newpos, 1); 1138 put_child(t, tn, missbit, (struct node *)l); 1139 put_child(t, tn, 1-missbit, n); 1140 1141 if (tp) { 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1143 put_child(t, (struct tnode *)tp, cindex, 1144 (struct node *)tn); 1145 } else { 1146 rcu_assign_pointer(t->trie, (struct node *)tn); 1147 tp = tn; 1148 } 1149 } 1150 1151 if (tp && tp->pos + tp->bits > 32) 1152 pr_warning("fib_trie" 1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1154 tp, tp->pos, tp->bits, key, plen); 1155 1156 /* Rebalance the trie */ 1157 1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); 1159 done: 1160 return fa_head; 1161 } 1162 1163 /* 1164 * Caller must hold RTNL. 1165 */ 1166 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg) 1167 { 1168 struct trie *t = (struct trie *) tb->tb_data; 1169 struct fib_alias *fa, *new_fa; 1170 struct list_head *fa_head = NULL; 1171 struct fib_info *fi; 1172 int plen = cfg->fc_dst_len; 1173 u8 tos = cfg->fc_tos; 1174 u32 key, mask; 1175 int err; 1176 struct leaf *l; 1177 1178 if (plen > 32) 1179 return -EINVAL; 1180 1181 key = ntohl(cfg->fc_dst); 1182 1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1184 1185 mask = ntohl(inet_make_mask(plen)); 1186 1187 if (key & ~mask) 1188 return -EINVAL; 1189 1190 key = key & mask; 1191 1192 fi = fib_create_info(cfg); 1193 if (IS_ERR(fi)) { 1194 err = PTR_ERR(fi); 1195 goto err; 1196 } 1197 1198 l = fib_find_node(t, key); 1199 fa = NULL; 1200 1201 if (l) { 1202 fa_head = get_fa_head(l, plen); 1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1204 } 1205 1206 /* Now fa, if non-NULL, points to the first fib alias 1207 * with the same keys [prefix,tos,priority], if such key already 1208 * exists or to the node before which we will insert new one. 1209 * 1210 * If fa is NULL, we will need to allocate a new one and 1211 * insert to the head of f. 1212 * 1213 * If f is NULL, no fib node matched the destination key 1214 * and we need to allocate a new one of those as well. 1215 */ 1216 1217 if (fa && fa->fa_tos == tos && 1218 fa->fa_info->fib_priority == fi->fib_priority) { 1219 struct fib_alias *fa_first, *fa_match; 1220 1221 err = -EEXIST; 1222 if (cfg->fc_nlflags & NLM_F_EXCL) 1223 goto out; 1224 1225 /* We have 2 goals: 1226 * 1. Find exact match for type, scope, fib_info to avoid 1227 * duplicate routes 1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1229 */ 1230 fa_match = NULL; 1231 fa_first = fa; 1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1233 list_for_each_entry_continue(fa, fa_head, fa_list) { 1234 if (fa->fa_tos != tos) 1235 break; 1236 if (fa->fa_info->fib_priority != fi->fib_priority) 1237 break; 1238 if (fa->fa_type == cfg->fc_type && 1239 fa->fa_scope == cfg->fc_scope && 1240 fa->fa_info == fi) { 1241 fa_match = fa; 1242 break; 1243 } 1244 } 1245 1246 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1247 struct fib_info *fi_drop; 1248 u8 state; 1249 1250 fa = fa_first; 1251 if (fa_match) { 1252 if (fa == fa_match) 1253 err = 0; 1254 goto out; 1255 } 1256 err = -ENOBUFS; 1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1258 if (new_fa == NULL) 1259 goto out; 1260 1261 fi_drop = fa->fa_info; 1262 new_fa->fa_tos = fa->fa_tos; 1263 new_fa->fa_info = fi; 1264 new_fa->fa_type = cfg->fc_type; 1265 new_fa->fa_scope = cfg->fc_scope; 1266 state = fa->fa_state; 1267 new_fa->fa_state = state & ~FA_S_ACCESSED; 1268 1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1270 alias_free_mem_rcu(fa); 1271 1272 fib_release_info(fi_drop); 1273 if (state & FA_S_ACCESSED) 1274 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1277 1278 goto succeeded; 1279 } 1280 /* Error if we find a perfect match which 1281 * uses the same scope, type, and nexthop 1282 * information. 1283 */ 1284 if (fa_match) 1285 goto out; 1286 1287 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1288 fa = fa_first; 1289 } 1290 err = -ENOENT; 1291 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1292 goto out; 1293 1294 err = -ENOBUFS; 1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1296 if (new_fa == NULL) 1297 goto out; 1298 1299 new_fa->fa_info = fi; 1300 new_fa->fa_tos = tos; 1301 new_fa->fa_type = cfg->fc_type; 1302 new_fa->fa_scope = cfg->fc_scope; 1303 new_fa->fa_state = 0; 1304 /* 1305 * Insert new entry to the list. 1306 */ 1307 1308 if (!fa_head) { 1309 fa_head = fib_insert_node(t, key, plen); 1310 if (unlikely(!fa_head)) { 1311 err = -ENOMEM; 1312 goto out_free_new_fa; 1313 } 1314 } 1315 1316 list_add_tail_rcu(&new_fa->fa_list, 1317 (fa ? &fa->fa_list : fa_head)); 1318 1319 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1321 &cfg->fc_nlinfo, 0); 1322 succeeded: 1323 return 0; 1324 1325 out_free_new_fa: 1326 kmem_cache_free(fn_alias_kmem, new_fa); 1327 out: 1328 fib_release_info(fi); 1329 err: 1330 return err; 1331 } 1332 1333 /* should be called with rcu_read_lock */ 1334 static int check_leaf(struct trie *t, struct leaf *l, 1335 t_key key, const struct flowi *flp, 1336 struct fib_result *res) 1337 { 1338 struct leaf_info *li; 1339 struct hlist_head *hhead = &l->list; 1340 struct hlist_node *node; 1341 1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1343 int err; 1344 int plen = li->plen; 1345 __be32 mask = inet_make_mask(plen); 1346 1347 if (l->key != (key & ntohl(mask))) 1348 continue; 1349 1350 err = fib_semantic_match(&li->falh, flp, res, 1351 htonl(l->key), mask, plen); 1352 1353 #ifdef CONFIG_IP_FIB_TRIE_STATS 1354 if (err <= 0) 1355 t->stats.semantic_match_passed++; 1356 else 1357 t->stats.semantic_match_miss++; 1358 #endif 1359 if (err <= 0) 1360 return err; 1361 } 1362 1363 return 1; 1364 } 1365 1366 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, 1367 struct fib_result *res) 1368 { 1369 struct trie *t = (struct trie *) tb->tb_data; 1370 int ret; 1371 struct node *n; 1372 struct tnode *pn; 1373 int pos, bits; 1374 t_key key = ntohl(flp->fl4_dst); 1375 int chopped_off; 1376 t_key cindex = 0; 1377 int current_prefix_length = KEYLENGTH; 1378 struct tnode *cn; 1379 t_key node_prefix, key_prefix, pref_mismatch; 1380 int mp; 1381 1382 rcu_read_lock(); 1383 1384 n = rcu_dereference(t->trie); 1385 if (!n) 1386 goto failed; 1387 1388 #ifdef CONFIG_IP_FIB_TRIE_STATS 1389 t->stats.gets++; 1390 #endif 1391 1392 /* Just a leaf? */ 1393 if (IS_LEAF(n)) { 1394 ret = check_leaf(t, (struct leaf *)n, key, flp, res); 1395 goto found; 1396 } 1397 1398 pn = (struct tnode *) n; 1399 chopped_off = 0; 1400 1401 while (pn) { 1402 pos = pn->pos; 1403 bits = pn->bits; 1404 1405 if (!chopped_off) 1406 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1407 pos, bits); 1408 1409 n = tnode_get_child(pn, cindex); 1410 1411 if (n == NULL) { 1412 #ifdef CONFIG_IP_FIB_TRIE_STATS 1413 t->stats.null_node_hit++; 1414 #endif 1415 goto backtrace; 1416 } 1417 1418 if (IS_LEAF(n)) { 1419 ret = check_leaf(t, (struct leaf *)n, key, flp, res); 1420 if (ret > 0) 1421 goto backtrace; 1422 goto found; 1423 } 1424 1425 cn = (struct tnode *)n; 1426 1427 /* 1428 * It's a tnode, and we can do some extra checks here if we 1429 * like, to avoid descending into a dead-end branch. 1430 * This tnode is in the parent's child array at index 1431 * key[p_pos..p_pos+p_bits] but potentially with some bits 1432 * chopped off, so in reality the index may be just a 1433 * subprefix, padded with zero at the end. 1434 * We can also take a look at any skipped bits in this 1435 * tnode - everything up to p_pos is supposed to be ok, 1436 * and the non-chopped bits of the index (se previous 1437 * paragraph) are also guaranteed ok, but the rest is 1438 * considered unknown. 1439 * 1440 * The skipped bits are key[pos+bits..cn->pos]. 1441 */ 1442 1443 /* If current_prefix_length < pos+bits, we are already doing 1444 * actual prefix matching, which means everything from 1445 * pos+(bits-chopped_off) onward must be zero along some 1446 * branch of this subtree - otherwise there is *no* valid 1447 * prefix present. Here we can only check the skipped 1448 * bits. Remember, since we have already indexed into the 1449 * parent's child array, we know that the bits we chopped of 1450 * *are* zero. 1451 */ 1452 1453 /* NOTA BENE: Checking only skipped bits 1454 for the new node here */ 1455 1456 if (current_prefix_length < pos+bits) { 1457 if (tkey_extract_bits(cn->key, current_prefix_length, 1458 cn->pos - current_prefix_length) 1459 || !(cn->child[0])) 1460 goto backtrace; 1461 } 1462 1463 /* 1464 * If chopped_off=0, the index is fully validated and we 1465 * only need to look at the skipped bits for this, the new, 1466 * tnode. What we actually want to do is to find out if 1467 * these skipped bits match our key perfectly, or if we will 1468 * have to count on finding a matching prefix further down, 1469 * because if we do, we would like to have some way of 1470 * verifying the existence of such a prefix at this point. 1471 */ 1472 1473 /* The only thing we can do at this point is to verify that 1474 * any such matching prefix can indeed be a prefix to our 1475 * key, and if the bits in the node we are inspecting that 1476 * do not match our key are not ZERO, this cannot be true. 1477 * Thus, find out where there is a mismatch (before cn->pos) 1478 * and verify that all the mismatching bits are zero in the 1479 * new tnode's key. 1480 */ 1481 1482 /* 1483 * Note: We aren't very concerned about the piece of 1484 * the key that precede pn->pos+pn->bits, since these 1485 * have already been checked. The bits after cn->pos 1486 * aren't checked since these are by definition 1487 * "unknown" at this point. Thus, what we want to see 1488 * is if we are about to enter the "prefix matching" 1489 * state, and in that case verify that the skipped 1490 * bits that will prevail throughout this subtree are 1491 * zero, as they have to be if we are to find a 1492 * matching prefix. 1493 */ 1494 1495 node_prefix = mask_pfx(cn->key, cn->pos); 1496 key_prefix = mask_pfx(key, cn->pos); 1497 pref_mismatch = key_prefix^node_prefix; 1498 mp = 0; 1499 1500 /* 1501 * In short: If skipped bits in this node do not match 1502 * the search key, enter the "prefix matching" 1503 * state.directly. 1504 */ 1505 if (pref_mismatch) { 1506 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { 1507 mp++; 1508 pref_mismatch = pref_mismatch << 1; 1509 } 1510 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); 1511 1512 if (key_prefix != 0) 1513 goto backtrace; 1514 1515 if (current_prefix_length >= cn->pos) 1516 current_prefix_length = mp; 1517 } 1518 1519 pn = (struct tnode *)n; /* Descend */ 1520 chopped_off = 0; 1521 continue; 1522 1523 backtrace: 1524 chopped_off++; 1525 1526 /* As zero don't change the child key (cindex) */ 1527 while ((chopped_off <= pn->bits) 1528 && !(cindex & (1<<(chopped_off-1)))) 1529 chopped_off++; 1530 1531 /* Decrease current_... with bits chopped off */ 1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1533 current_prefix_length = pn->pos + pn->bits 1534 - chopped_off; 1535 1536 /* 1537 * Either we do the actual chop off according or if we have 1538 * chopped off all bits in this tnode walk up to our parent. 1539 */ 1540 1541 if (chopped_off <= pn->bits) { 1542 cindex &= ~(1 << (chopped_off-1)); 1543 } else { 1544 struct tnode *parent = node_parent((struct node *) pn); 1545 if (!parent) 1546 goto failed; 1547 1548 /* Get Child's index */ 1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1550 pn = parent; 1551 chopped_off = 0; 1552 1553 #ifdef CONFIG_IP_FIB_TRIE_STATS 1554 t->stats.backtrack++; 1555 #endif 1556 goto backtrace; 1557 } 1558 } 1559 failed: 1560 ret = 1; 1561 found: 1562 rcu_read_unlock(); 1563 return ret; 1564 } 1565 1566 /* 1567 * Remove the leaf and return parent. 1568 */ 1569 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1570 { 1571 struct tnode *tp = node_parent((struct node *) l); 1572 1573 pr_debug("entering trie_leaf_remove(%p)\n", l); 1574 1575 if (tp) { 1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1577 put_child(t, (struct tnode *)tp, cindex, NULL); 1578 rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); 1579 } else 1580 rcu_assign_pointer(t->trie, NULL); 1581 1582 free_leaf(l); 1583 } 1584 1585 /* 1586 * Caller must hold RTNL. 1587 */ 1588 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg) 1589 { 1590 struct trie *t = (struct trie *) tb->tb_data; 1591 u32 key, mask; 1592 int plen = cfg->fc_dst_len; 1593 u8 tos = cfg->fc_tos; 1594 struct fib_alias *fa, *fa_to_delete; 1595 struct list_head *fa_head; 1596 struct leaf *l; 1597 struct leaf_info *li; 1598 1599 if (plen > 32) 1600 return -EINVAL; 1601 1602 key = ntohl(cfg->fc_dst); 1603 mask = ntohl(inet_make_mask(plen)); 1604 1605 if (key & ~mask) 1606 return -EINVAL; 1607 1608 key = key & mask; 1609 l = fib_find_node(t, key); 1610 1611 if (!l) 1612 return -ESRCH; 1613 1614 fa_head = get_fa_head(l, plen); 1615 fa = fib_find_alias(fa_head, tos, 0); 1616 1617 if (!fa) 1618 return -ESRCH; 1619 1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1621 1622 fa_to_delete = NULL; 1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1624 list_for_each_entry_continue(fa, fa_head, fa_list) { 1625 struct fib_info *fi = fa->fa_info; 1626 1627 if (fa->fa_tos != tos) 1628 break; 1629 1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1631 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1632 fa->fa_scope == cfg->fc_scope) && 1633 (!cfg->fc_protocol || 1634 fi->fib_protocol == cfg->fc_protocol) && 1635 fib_nh_match(cfg, fi) == 0) { 1636 fa_to_delete = fa; 1637 break; 1638 } 1639 } 1640 1641 if (!fa_to_delete) 1642 return -ESRCH; 1643 1644 fa = fa_to_delete; 1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1646 &cfg->fc_nlinfo, 0); 1647 1648 l = fib_find_node(t, key); 1649 li = find_leaf_info(l, plen); 1650 1651 list_del_rcu(&fa->fa_list); 1652 1653 if (list_empty(fa_head)) { 1654 hlist_del_rcu(&li->hlist); 1655 free_leaf_info(li); 1656 } 1657 1658 if (hlist_empty(&l->list)) 1659 trie_leaf_remove(t, l); 1660 1661 if (fa->fa_state & FA_S_ACCESSED) 1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1663 1664 fib_release_info(fa->fa_info); 1665 alias_free_mem_rcu(fa); 1666 return 0; 1667 } 1668 1669 static int trie_flush_list(struct list_head *head) 1670 { 1671 struct fib_alias *fa, *fa_node; 1672 int found = 0; 1673 1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1675 struct fib_info *fi = fa->fa_info; 1676 1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1678 list_del_rcu(&fa->fa_list); 1679 fib_release_info(fa->fa_info); 1680 alias_free_mem_rcu(fa); 1681 found++; 1682 } 1683 } 1684 return found; 1685 } 1686 1687 static int trie_flush_leaf(struct leaf *l) 1688 { 1689 int found = 0; 1690 struct hlist_head *lih = &l->list; 1691 struct hlist_node *node, *tmp; 1692 struct leaf_info *li = NULL; 1693 1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1695 found += trie_flush_list(&li->falh); 1696 1697 if (list_empty(&li->falh)) { 1698 hlist_del_rcu(&li->hlist); 1699 free_leaf_info(li); 1700 } 1701 } 1702 return found; 1703 } 1704 1705 /* 1706 * Scan for the next right leaf starting at node p->child[idx] 1707 * Since we have back pointer, no recursion necessary. 1708 */ 1709 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c) 1710 { 1711 do { 1712 t_key idx; 1713 1714 if (c) 1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1716 else 1717 idx = 0; 1718 1719 while (idx < 1u << p->bits) { 1720 c = tnode_get_child_rcu(p, idx++); 1721 if (!c) 1722 continue; 1723 1724 if (IS_LEAF(c)) { 1725 prefetch(p->child[idx]); 1726 return (struct leaf *) c; 1727 } 1728 1729 /* Rescan start scanning in new node */ 1730 p = (struct tnode *) c; 1731 idx = 0; 1732 } 1733 1734 /* Node empty, walk back up to parent */ 1735 c = (struct node *) p; 1736 } while ( (p = node_parent_rcu(c)) != NULL); 1737 1738 return NULL; /* Root of trie */ 1739 } 1740 1741 static struct leaf *trie_firstleaf(struct trie *t) 1742 { 1743 struct tnode *n = (struct tnode *) rcu_dereference(t->trie); 1744 1745 if (!n) 1746 return NULL; 1747 1748 if (IS_LEAF(n)) /* trie is just a leaf */ 1749 return (struct leaf *) n; 1750 1751 return leaf_walk_rcu(n, NULL); 1752 } 1753 1754 static struct leaf *trie_nextleaf(struct leaf *l) 1755 { 1756 struct node *c = (struct node *) l; 1757 struct tnode *p = node_parent(c); 1758 1759 if (!p) 1760 return NULL; /* trie with just one leaf */ 1761 1762 return leaf_walk_rcu(p, c); 1763 } 1764 1765 static struct leaf *trie_leafindex(struct trie *t, int index) 1766 { 1767 struct leaf *l = trie_firstleaf(t); 1768 1769 while (l && index-- > 0) 1770 l = trie_nextleaf(l); 1771 1772 return l; 1773 } 1774 1775 1776 /* 1777 * Caller must hold RTNL. 1778 */ 1779 static int fn_trie_flush(struct fib_table *tb) 1780 { 1781 struct trie *t = (struct trie *) tb->tb_data; 1782 struct leaf *l, *ll = NULL; 1783 int found = 0; 1784 1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1786 found += trie_flush_leaf(l); 1787 1788 if (ll && hlist_empty(&ll->list)) 1789 trie_leaf_remove(t, ll); 1790 ll = l; 1791 } 1792 1793 if (ll && hlist_empty(&ll->list)) 1794 trie_leaf_remove(t, ll); 1795 1796 pr_debug("trie_flush found=%d\n", found); 1797 return found; 1798 } 1799 1800 static void fn_trie_select_default(struct fib_table *tb, 1801 const struct flowi *flp, 1802 struct fib_result *res) 1803 { 1804 struct trie *t = (struct trie *) tb->tb_data; 1805 int order, last_idx; 1806 struct fib_info *fi = NULL; 1807 struct fib_info *last_resort; 1808 struct fib_alias *fa = NULL; 1809 struct list_head *fa_head; 1810 struct leaf *l; 1811 1812 last_idx = -1; 1813 last_resort = NULL; 1814 order = -1; 1815 1816 rcu_read_lock(); 1817 1818 l = fib_find_node(t, 0); 1819 if (!l) 1820 goto out; 1821 1822 fa_head = get_fa_head(l, 0); 1823 if (!fa_head) 1824 goto out; 1825 1826 if (list_empty(fa_head)) 1827 goto out; 1828 1829 list_for_each_entry_rcu(fa, fa_head, fa_list) { 1830 struct fib_info *next_fi = fa->fa_info; 1831 1832 if (fa->fa_scope != res->scope || 1833 fa->fa_type != RTN_UNICAST) 1834 continue; 1835 1836 if (next_fi->fib_priority > res->fi->fib_priority) 1837 break; 1838 if (!next_fi->fib_nh[0].nh_gw || 1839 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) 1840 continue; 1841 fa->fa_state |= FA_S_ACCESSED; 1842 1843 if (fi == NULL) { 1844 if (next_fi != res->fi) 1845 break; 1846 } else if (!fib_detect_death(fi, order, &last_resort, 1847 &last_idx, tb->tb_default)) { 1848 fib_result_assign(res, fi); 1849 tb->tb_default = order; 1850 goto out; 1851 } 1852 fi = next_fi; 1853 order++; 1854 } 1855 if (order <= 0 || fi == NULL) { 1856 tb->tb_default = -1; 1857 goto out; 1858 } 1859 1860 if (!fib_detect_death(fi, order, &last_resort, &last_idx, 1861 tb->tb_default)) { 1862 fib_result_assign(res, fi); 1863 tb->tb_default = order; 1864 goto out; 1865 } 1866 if (last_idx >= 0) 1867 fib_result_assign(res, last_resort); 1868 tb->tb_default = last_idx; 1869 out: 1870 rcu_read_unlock(); 1871 } 1872 1873 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1874 struct fib_table *tb, 1875 struct sk_buff *skb, struct netlink_callback *cb) 1876 { 1877 int i, s_i; 1878 struct fib_alias *fa; 1879 __be32 xkey = htonl(key); 1880 1881 s_i = cb->args[5]; 1882 i = 0; 1883 1884 /* rcu_read_lock is hold by caller */ 1885 1886 list_for_each_entry_rcu(fa, fah, fa_list) { 1887 if (i < s_i) { 1888 i++; 1889 continue; 1890 } 1891 1892 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1893 cb->nlh->nlmsg_seq, 1894 RTM_NEWROUTE, 1895 tb->tb_id, 1896 fa->fa_type, 1897 fa->fa_scope, 1898 xkey, 1899 plen, 1900 fa->fa_tos, 1901 fa->fa_info, NLM_F_MULTI) < 0) { 1902 cb->args[5] = i; 1903 return -1; 1904 } 1905 i++; 1906 } 1907 cb->args[5] = i; 1908 return skb->len; 1909 } 1910 1911 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1912 struct sk_buff *skb, struct netlink_callback *cb) 1913 { 1914 struct leaf_info *li; 1915 struct hlist_node *node; 1916 int i, s_i; 1917 1918 s_i = cb->args[4]; 1919 i = 0; 1920 1921 /* rcu_read_lock is hold by caller */ 1922 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1923 if (i < s_i) { 1924 i++; 1925 continue; 1926 } 1927 1928 if (i > s_i) 1929 cb->args[5] = 0; 1930 1931 if (list_empty(&li->falh)) 1932 continue; 1933 1934 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1935 cb->args[4] = i; 1936 return -1; 1937 } 1938 i++; 1939 } 1940 1941 cb->args[4] = i; 1942 return skb->len; 1943 } 1944 1945 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, 1946 struct netlink_callback *cb) 1947 { 1948 struct leaf *l; 1949 struct trie *t = (struct trie *) tb->tb_data; 1950 t_key key = cb->args[2]; 1951 int count = cb->args[3]; 1952 1953 rcu_read_lock(); 1954 /* Dump starting at last key. 1955 * Note: 0.0.0.0/0 (ie default) is first key. 1956 */ 1957 if (count == 0) 1958 l = trie_firstleaf(t); 1959 else { 1960 /* Normally, continue from last key, but if that is missing 1961 * fallback to using slow rescan 1962 */ 1963 l = fib_find_node(t, key); 1964 if (!l) 1965 l = trie_leafindex(t, count); 1966 } 1967 1968 while (l) { 1969 cb->args[2] = l->key; 1970 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1971 cb->args[3] = count; 1972 rcu_read_unlock(); 1973 return -1; 1974 } 1975 1976 ++count; 1977 l = trie_nextleaf(l); 1978 memset(&cb->args[4], 0, 1979 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1980 } 1981 cb->args[3] = count; 1982 rcu_read_unlock(); 1983 1984 return skb->len; 1985 } 1986 1987 void __init fib_hash_init(void) 1988 { 1989 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1990 sizeof(struct fib_alias), 1991 0, SLAB_PANIC, NULL); 1992 1993 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1994 max(sizeof(struct leaf), 1995 sizeof(struct leaf_info)), 1996 0, SLAB_PANIC, NULL); 1997 } 1998 1999 2000 /* Fix more generic FIB names for init later */ 2001 struct fib_table *fib_hash_table(u32 id) 2002 { 2003 struct fib_table *tb; 2004 struct trie *t; 2005 2006 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 2007 GFP_KERNEL); 2008 if (tb == NULL) 2009 return NULL; 2010 2011 tb->tb_id = id; 2012 tb->tb_default = -1; 2013 tb->tb_lookup = fn_trie_lookup; 2014 tb->tb_insert = fn_trie_insert; 2015 tb->tb_delete = fn_trie_delete; 2016 tb->tb_flush = fn_trie_flush; 2017 tb->tb_select_default = fn_trie_select_default; 2018 tb->tb_dump = fn_trie_dump; 2019 2020 t = (struct trie *) tb->tb_data; 2021 memset(t, 0, sizeof(*t)); 2022 2023 if (id == RT_TABLE_LOCAL) 2024 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION); 2025 2026 return tb; 2027 } 2028 2029 #ifdef CONFIG_PROC_FS 2030 /* Depth first Trie walk iterator */ 2031 struct fib_trie_iter { 2032 struct seq_net_private p; 2033 struct fib_table *tb; 2034 struct tnode *tnode; 2035 unsigned index; 2036 unsigned depth; 2037 }; 2038 2039 static struct node *fib_trie_get_next(struct fib_trie_iter *iter) 2040 { 2041 struct tnode *tn = iter->tnode; 2042 unsigned cindex = iter->index; 2043 struct tnode *p; 2044 2045 /* A single entry routing table */ 2046 if (!tn) 2047 return NULL; 2048 2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2050 iter->tnode, iter->index, iter->depth); 2051 rescan: 2052 while (cindex < (1<<tn->bits)) { 2053 struct node *n = tnode_get_child_rcu(tn, cindex); 2054 2055 if (n) { 2056 if (IS_LEAF(n)) { 2057 iter->tnode = tn; 2058 iter->index = cindex + 1; 2059 } else { 2060 /* push down one level */ 2061 iter->tnode = (struct tnode *) n; 2062 iter->index = 0; 2063 ++iter->depth; 2064 } 2065 return n; 2066 } 2067 2068 ++cindex; 2069 } 2070 2071 /* Current node exhausted, pop back up */ 2072 p = node_parent_rcu((struct node *)tn); 2073 if (p) { 2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2075 tn = p; 2076 --iter->depth; 2077 goto rescan; 2078 } 2079 2080 /* got root? */ 2081 return NULL; 2082 } 2083 2084 static struct node *fib_trie_get_first(struct fib_trie_iter *iter, 2085 struct trie *t) 2086 { 2087 struct node *n; 2088 2089 if (!t) 2090 return NULL; 2091 2092 n = rcu_dereference(t->trie); 2093 if (!n) 2094 return NULL; 2095 2096 if (IS_TNODE(n)) { 2097 iter->tnode = (struct tnode *) n; 2098 iter->index = 0; 2099 iter->depth = 1; 2100 } else { 2101 iter->tnode = NULL; 2102 iter->index = 0; 2103 iter->depth = 0; 2104 } 2105 2106 return n; 2107 } 2108 2109 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2110 { 2111 struct node *n; 2112 struct fib_trie_iter iter; 2113 2114 memset(s, 0, sizeof(*s)); 2115 2116 rcu_read_lock(); 2117 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2118 if (IS_LEAF(n)) { 2119 struct leaf *l = (struct leaf *)n; 2120 struct leaf_info *li; 2121 struct hlist_node *tmp; 2122 2123 s->leaves++; 2124 s->totdepth += iter.depth; 2125 if (iter.depth > s->maxdepth) 2126 s->maxdepth = iter.depth; 2127 2128 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2129 ++s->prefixes; 2130 } else { 2131 const struct tnode *tn = (const struct tnode *) n; 2132 int i; 2133 2134 s->tnodes++; 2135 if (tn->bits < MAX_STAT_DEPTH) 2136 s->nodesizes[tn->bits]++; 2137 2138 for (i = 0; i < (1<<tn->bits); i++) 2139 if (!tn->child[i]) 2140 s->nullpointers++; 2141 } 2142 } 2143 rcu_read_unlock(); 2144 } 2145 2146 /* 2147 * This outputs /proc/net/fib_triestats 2148 */ 2149 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2150 { 2151 unsigned i, max, pointers, bytes, avdepth; 2152 2153 if (stat->leaves) 2154 avdepth = stat->totdepth*100 / stat->leaves; 2155 else 2156 avdepth = 0; 2157 2158 seq_printf(seq, "\tAver depth: %u.%02d\n", 2159 avdepth / 100, avdepth % 100); 2160 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2161 2162 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2163 bytes = sizeof(struct leaf) * stat->leaves; 2164 2165 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2166 bytes += sizeof(struct leaf_info) * stat->prefixes; 2167 2168 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2169 bytes += sizeof(struct tnode) * stat->tnodes; 2170 2171 max = MAX_STAT_DEPTH; 2172 while (max > 0 && stat->nodesizes[max-1] == 0) 2173 max--; 2174 2175 pointers = 0; 2176 for (i = 1; i <= max; i++) 2177 if (stat->nodesizes[i] != 0) { 2178 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2179 pointers += (1<<i) * stat->nodesizes[i]; 2180 } 2181 seq_putc(seq, '\n'); 2182 seq_printf(seq, "\tPointers: %u\n", pointers); 2183 2184 bytes += sizeof(struct node *) * pointers; 2185 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2186 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2187 } 2188 2189 #ifdef CONFIG_IP_FIB_TRIE_STATS 2190 static void trie_show_usage(struct seq_file *seq, 2191 const struct trie_use_stats *stats) 2192 { 2193 seq_printf(seq, "\nCounters:\n---------\n"); 2194 seq_printf(seq, "gets = %u\n", stats->gets); 2195 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2196 seq_printf(seq, "semantic match passed = %u\n", 2197 stats->semantic_match_passed); 2198 seq_printf(seq, "semantic match miss = %u\n", 2199 stats->semantic_match_miss); 2200 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2201 seq_printf(seq, "skipped node resize = %u\n\n", 2202 stats->resize_node_skipped); 2203 } 2204 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2205 2206 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2207 { 2208 if (tb->tb_id == RT_TABLE_LOCAL) 2209 seq_puts(seq, "Local:\n"); 2210 else if (tb->tb_id == RT_TABLE_MAIN) 2211 seq_puts(seq, "Main:\n"); 2212 else 2213 seq_printf(seq, "Id %d:\n", tb->tb_id); 2214 } 2215 2216 2217 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2218 { 2219 struct net *net = (struct net *)seq->private; 2220 unsigned int h; 2221 2222 seq_printf(seq, 2223 "Basic info: size of leaf:" 2224 " %Zd bytes, size of tnode: %Zd bytes.\n", 2225 sizeof(struct leaf), sizeof(struct tnode)); 2226 2227 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2228 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2229 struct hlist_node *node; 2230 struct fib_table *tb; 2231 2232 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2233 struct trie *t = (struct trie *) tb->tb_data; 2234 struct trie_stat stat; 2235 2236 if (!t) 2237 continue; 2238 2239 fib_table_print(seq, tb); 2240 2241 trie_collect_stats(t, &stat); 2242 trie_show_stats(seq, &stat); 2243 #ifdef CONFIG_IP_FIB_TRIE_STATS 2244 trie_show_usage(seq, &t->stats); 2245 #endif 2246 } 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2253 { 2254 return single_open_net(inode, file, fib_triestat_seq_show); 2255 } 2256 2257 static const struct file_operations fib_triestat_fops = { 2258 .owner = THIS_MODULE, 2259 .open = fib_triestat_seq_open, 2260 .read = seq_read, 2261 .llseek = seq_lseek, 2262 .release = single_release_net, 2263 }; 2264 2265 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2266 { 2267 struct fib_trie_iter *iter = seq->private; 2268 struct net *net = seq_file_net(seq); 2269 loff_t idx = 0; 2270 unsigned int h; 2271 2272 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2273 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2274 struct hlist_node *node; 2275 struct fib_table *tb; 2276 2277 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2278 struct node *n; 2279 2280 for (n = fib_trie_get_first(iter, 2281 (struct trie *) tb->tb_data); 2282 n; n = fib_trie_get_next(iter)) 2283 if (pos == idx++) { 2284 iter->tb = tb; 2285 return n; 2286 } 2287 } 2288 } 2289 2290 return NULL; 2291 } 2292 2293 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2294 __acquires(RCU) 2295 { 2296 rcu_read_lock(); 2297 return fib_trie_get_idx(seq, *pos); 2298 } 2299 2300 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2301 { 2302 struct fib_trie_iter *iter = seq->private; 2303 struct net *net = seq_file_net(seq); 2304 struct fib_table *tb = iter->tb; 2305 struct hlist_node *tb_node; 2306 unsigned int h; 2307 struct node *n; 2308 2309 ++*pos; 2310 /* next node in same table */ 2311 n = fib_trie_get_next(iter); 2312 if (n) 2313 return n; 2314 2315 /* walk rest of this hash chain */ 2316 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2317 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) { 2318 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2320 if (n) 2321 goto found; 2322 } 2323 2324 /* new hash chain */ 2325 while (++h < FIB_TABLE_HASHSZ) { 2326 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2327 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2328 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2329 if (n) 2330 goto found; 2331 } 2332 } 2333 return NULL; 2334 2335 found: 2336 iter->tb = tb; 2337 return n; 2338 } 2339 2340 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2341 __releases(RCU) 2342 { 2343 rcu_read_unlock(); 2344 } 2345 2346 static void seq_indent(struct seq_file *seq, int n) 2347 { 2348 while (n-- > 0) seq_puts(seq, " "); 2349 } 2350 2351 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2352 { 2353 switch (s) { 2354 case RT_SCOPE_UNIVERSE: return "universe"; 2355 case RT_SCOPE_SITE: return "site"; 2356 case RT_SCOPE_LINK: return "link"; 2357 case RT_SCOPE_HOST: return "host"; 2358 case RT_SCOPE_NOWHERE: return "nowhere"; 2359 default: 2360 snprintf(buf, len, "scope=%d", s); 2361 return buf; 2362 } 2363 } 2364 2365 static const char *rtn_type_names[__RTN_MAX] = { 2366 [RTN_UNSPEC] = "UNSPEC", 2367 [RTN_UNICAST] = "UNICAST", 2368 [RTN_LOCAL] = "LOCAL", 2369 [RTN_BROADCAST] = "BROADCAST", 2370 [RTN_ANYCAST] = "ANYCAST", 2371 [RTN_MULTICAST] = "MULTICAST", 2372 [RTN_BLACKHOLE] = "BLACKHOLE", 2373 [RTN_UNREACHABLE] = "UNREACHABLE", 2374 [RTN_PROHIBIT] = "PROHIBIT", 2375 [RTN_THROW] = "THROW", 2376 [RTN_NAT] = "NAT", 2377 [RTN_XRESOLVE] = "XRESOLVE", 2378 }; 2379 2380 static inline const char *rtn_type(char *buf, size_t len, unsigned t) 2381 { 2382 if (t < __RTN_MAX && rtn_type_names[t]) 2383 return rtn_type_names[t]; 2384 snprintf(buf, len, "type %u", t); 2385 return buf; 2386 } 2387 2388 /* Pretty print the trie */ 2389 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2390 { 2391 const struct fib_trie_iter *iter = seq->private; 2392 struct node *n = v; 2393 2394 if (!node_parent_rcu(n)) 2395 fib_table_print(seq, iter->tb); 2396 2397 if (IS_TNODE(n)) { 2398 struct tnode *tn = (struct tnode *) n; 2399 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2400 2401 seq_indent(seq, iter->depth-1); 2402 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2403 &prf, tn->pos, tn->bits, tn->full_children, 2404 tn->empty_children); 2405 2406 } else { 2407 struct leaf *l = (struct leaf *) n; 2408 struct leaf_info *li; 2409 struct hlist_node *node; 2410 __be32 val = htonl(l->key); 2411 2412 seq_indent(seq, iter->depth); 2413 seq_printf(seq, " |-- %pI4\n", &val); 2414 2415 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2416 struct fib_alias *fa; 2417 2418 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2419 char buf1[32], buf2[32]; 2420 2421 seq_indent(seq, iter->depth+1); 2422 seq_printf(seq, " /%d %s %s", li->plen, 2423 rtn_scope(buf1, sizeof(buf1), 2424 fa->fa_scope), 2425 rtn_type(buf2, sizeof(buf2), 2426 fa->fa_type)); 2427 if (fa->fa_tos) 2428 seq_printf(seq, " tos=%d", fa->fa_tos); 2429 seq_putc(seq, '\n'); 2430 } 2431 } 2432 } 2433 2434 return 0; 2435 } 2436 2437 static const struct seq_operations fib_trie_seq_ops = { 2438 .start = fib_trie_seq_start, 2439 .next = fib_trie_seq_next, 2440 .stop = fib_trie_seq_stop, 2441 .show = fib_trie_seq_show, 2442 }; 2443 2444 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2445 { 2446 return seq_open_net(inode, file, &fib_trie_seq_ops, 2447 sizeof(struct fib_trie_iter)); 2448 } 2449 2450 static const struct file_operations fib_trie_fops = { 2451 .owner = THIS_MODULE, 2452 .open = fib_trie_seq_open, 2453 .read = seq_read, 2454 .llseek = seq_lseek, 2455 .release = seq_release_net, 2456 }; 2457 2458 struct fib_route_iter { 2459 struct seq_net_private p; 2460 struct trie *main_trie; 2461 loff_t pos; 2462 t_key key; 2463 }; 2464 2465 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2466 { 2467 struct leaf *l = NULL; 2468 struct trie *t = iter->main_trie; 2469 2470 /* use cache location of last found key */ 2471 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2472 pos -= iter->pos; 2473 else { 2474 iter->pos = 0; 2475 l = trie_firstleaf(t); 2476 } 2477 2478 while (l && pos-- > 0) { 2479 iter->pos++; 2480 l = trie_nextleaf(l); 2481 } 2482 2483 if (l) 2484 iter->key = pos; /* remember it */ 2485 else 2486 iter->pos = 0; /* forget it */ 2487 2488 return l; 2489 } 2490 2491 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2492 __acquires(RCU) 2493 { 2494 struct fib_route_iter *iter = seq->private; 2495 struct fib_table *tb; 2496 2497 rcu_read_lock(); 2498 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2499 if (!tb) 2500 return NULL; 2501 2502 iter->main_trie = (struct trie *) tb->tb_data; 2503 if (*pos == 0) 2504 return SEQ_START_TOKEN; 2505 else 2506 return fib_route_get_idx(iter, *pos - 1); 2507 } 2508 2509 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2510 { 2511 struct fib_route_iter *iter = seq->private; 2512 struct leaf *l = v; 2513 2514 ++*pos; 2515 if (v == SEQ_START_TOKEN) { 2516 iter->pos = 0; 2517 l = trie_firstleaf(iter->main_trie); 2518 } else { 2519 iter->pos++; 2520 l = trie_nextleaf(l); 2521 } 2522 2523 if (l) 2524 iter->key = l->key; 2525 else 2526 iter->pos = 0; 2527 return l; 2528 } 2529 2530 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2531 __releases(RCU) 2532 { 2533 rcu_read_unlock(); 2534 } 2535 2536 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2537 { 2538 static unsigned type2flags[RTN_MAX + 1] = { 2539 [7] = RTF_REJECT, [8] = RTF_REJECT, 2540 }; 2541 unsigned flags = type2flags[type]; 2542 2543 if (fi && fi->fib_nh->nh_gw) 2544 flags |= RTF_GATEWAY; 2545 if (mask == htonl(0xFFFFFFFF)) 2546 flags |= RTF_HOST; 2547 flags |= RTF_UP; 2548 return flags; 2549 } 2550 2551 /* 2552 * This outputs /proc/net/route. 2553 * The format of the file is not supposed to be changed 2554 * and needs to be same as fib_hash output to avoid breaking 2555 * legacy utilities 2556 */ 2557 static int fib_route_seq_show(struct seq_file *seq, void *v) 2558 { 2559 struct leaf *l = v; 2560 struct leaf_info *li; 2561 struct hlist_node *node; 2562 2563 if (v == SEQ_START_TOKEN) { 2564 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2565 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2566 "\tWindow\tIRTT"); 2567 return 0; 2568 } 2569 2570 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2571 struct fib_alias *fa; 2572 __be32 mask, prefix; 2573 2574 mask = inet_make_mask(li->plen); 2575 prefix = htonl(l->key); 2576 2577 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2578 const struct fib_info *fi = fa->fa_info; 2579 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi); 2580 int len; 2581 2582 if (fa->fa_type == RTN_BROADCAST 2583 || fa->fa_type == RTN_MULTICAST) 2584 continue; 2585 2586 if (fi) 2587 seq_printf(seq, 2588 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2589 "%d\t%08X\t%d\t%u\t%u%n", 2590 fi->fib_dev ? fi->fib_dev->name : "*", 2591 prefix, 2592 fi->fib_nh->nh_gw, flags, 0, 0, 2593 fi->fib_priority, 2594 mask, 2595 (fi->fib_advmss ? 2596 fi->fib_advmss + 40 : 0), 2597 fi->fib_window, 2598 fi->fib_rtt >> 3, &len); 2599 else 2600 seq_printf(seq, 2601 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2602 "%d\t%08X\t%d\t%u\t%u%n", 2603 prefix, 0, flags, 0, 0, 0, 2604 mask, 0, 0, 0, &len); 2605 2606 seq_printf(seq, "%*s\n", 127 - len, ""); 2607 } 2608 } 2609 2610 return 0; 2611 } 2612 2613 static const struct seq_operations fib_route_seq_ops = { 2614 .start = fib_route_seq_start, 2615 .next = fib_route_seq_next, 2616 .stop = fib_route_seq_stop, 2617 .show = fib_route_seq_show, 2618 }; 2619 2620 static int fib_route_seq_open(struct inode *inode, struct file *file) 2621 { 2622 return seq_open_net(inode, file, &fib_route_seq_ops, 2623 sizeof(struct fib_route_iter)); 2624 } 2625 2626 static const struct file_operations fib_route_fops = { 2627 .owner = THIS_MODULE, 2628 .open = fib_route_seq_open, 2629 .read = seq_read, 2630 .llseek = seq_lseek, 2631 .release = seq_release_net, 2632 }; 2633 2634 int __net_init fib_proc_init(struct net *net) 2635 { 2636 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2637 goto out1; 2638 2639 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2640 &fib_triestat_fops)) 2641 goto out2; 2642 2643 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2644 goto out3; 2645 2646 return 0; 2647 2648 out3: 2649 proc_net_remove(net, "fib_triestat"); 2650 out2: 2651 proc_net_remove(net, "fib_trie"); 2652 out1: 2653 return -ENOMEM; 2654 } 2655 2656 void __net_exit fib_proc_exit(struct net *net) 2657 { 2658 proc_net_remove(net, "fib_trie"); 2659 proc_net_remove(net, "fib_triestat"); 2660 proc_net_remove(net, "route"); 2661 } 2662 2663 #endif /* CONFIG_PROC_FS */ 2664