xref: /openbmc/linux/net/ipv4/fib_trie.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73 
74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 				   enum fib_event_type event_type, u32 dst,
76 				   int dst_len, struct fib_alias *fa,
77 				   struct netlink_ext_ack *extack)
78 {
79 	struct fib_entry_notifier_info info = {
80 		.info.extack = extack,
81 		.dst = dst,
82 		.dst_len = dst_len,
83 		.fi = fa->fa_info,
84 		.tos = fa->fa_tos,
85 		.type = fa->fa_type,
86 		.tb_id = fa->tb_id,
87 	};
88 	return call_fib4_notifier(nb, event_type, &info.info);
89 }
90 
91 static int call_fib_entry_notifiers(struct net *net,
92 				    enum fib_event_type event_type, u32 dst,
93 				    int dst_len, struct fib_alias *fa,
94 				    struct netlink_ext_ack *extack)
95 {
96 	struct fib_entry_notifier_info info = {
97 		.info.extack = extack,
98 		.dst = dst,
99 		.dst_len = dst_len,
100 		.fi = fa->fa_info,
101 		.tos = fa->fa_tos,
102 		.type = fa->fa_type,
103 		.tb_id = fa->tb_id,
104 	};
105 	return call_fib4_notifiers(net, event_type, &info.info);
106 }
107 
108 #define MAX_STAT_DEPTH 32
109 
110 #define KEYLENGTH	(8*sizeof(t_key))
111 #define KEY_MAX		((t_key)~0)
112 
113 typedef unsigned int t_key;
114 
115 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n)	((n)->bits)
117 #define IS_LEAF(n)	(!(n)->bits)
118 
119 struct key_vector {
120 	t_key key;
121 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char slen;
124 	union {
125 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 		struct hlist_head leaf;
127 		/* This array is valid if (pos | bits) > 0 (TNODE) */
128 		struct key_vector __rcu *tnode[0];
129 	};
130 };
131 
132 struct tnode {
133 	struct rcu_head rcu;
134 	t_key empty_children;		/* KEYLENGTH bits needed */
135 	t_key full_children;		/* KEYLENGTH bits needed */
136 	struct key_vector __rcu *parent;
137 	struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140 
141 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE	TNODE_SIZE(1)
143 
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 	unsigned int gets;
147 	unsigned int backtrack;
148 	unsigned int semantic_match_passed;
149 	unsigned int semantic_match_miss;
150 	unsigned int null_node_hit;
151 	unsigned int resize_node_skipped;
152 };
153 #endif
154 
155 struct trie_stat {
156 	unsigned int totdepth;
157 	unsigned int maxdepth;
158 	unsigned int tnodes;
159 	unsigned int leaves;
160 	unsigned int nullpointers;
161 	unsigned int prefixes;
162 	unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164 
165 struct trie {
166 	struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 	struct trie_use_stats __percpu *stats;
169 #endif
170 };
171 
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174 
175 /*
176  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177  * especially useful before resizing the root node with PREEMPT_NONE configs;
178  * the value was obtained experimentally, aiming to avoid visible slowdown.
179  */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183 
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186 
187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 	return container_of(kv, struct tnode, kv[0]);
190 }
191 
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195 
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199 
200 /* wrapper for rcu_assign_pointer */
201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 	if (n)
204 		rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206 
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208 
209 /* This provides us with the number of children in this node, in the case of a
210  * leaf this will return 0 meaning none of the children are accessible.
211  */
212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 	return (1ul << tn->bits) & ~(1ul);
215 }
216 
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218 
219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 	unsigned long index = key ^ kv->key;
222 
223 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 		return 0;
225 
226 	return index >> kv->pos;
227 }
228 
229 /* To understand this stuff, an understanding of keys and all their bits is
230  * necessary. Every node in the trie has a key associated with it, but not
231  * all of the bits in that key are significant.
232  *
233  * Consider a node 'n' and its parent 'tp'.
234  *
235  * If n is a leaf, every bit in its key is significant. Its presence is
236  * necessitated by path compression, since during a tree traversal (when
237  * searching for a leaf - unless we are doing an insertion) we will completely
238  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239  * a potentially successful search, that we have indeed been walking the
240  * correct key path.
241  *
242  * Note that we can never "miss" the correct key in the tree if present by
243  * following the wrong path. Path compression ensures that segments of the key
244  * that are the same for all keys with a given prefix are skipped, but the
245  * skipped part *is* identical for each node in the subtrie below the skipped
246  * bit! trie_insert() in this implementation takes care of that.
247  *
248  * if n is an internal node - a 'tnode' here, the various parts of its key
249  * have many different meanings.
250  *
251  * Example:
252  * _________________________________________________________________
253  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254  * -----------------------------------------------------------------
255  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
256  *
257  * _________________________________________________________________
258  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259  * -----------------------------------------------------------------
260  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
261  *
262  * tp->pos = 22
263  * tp->bits = 3
264  * n->pos = 13
265  * n->bits = 4
266  *
267  * First, let's just ignore the bits that come before the parent tp, that is
268  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269  * point we do not use them for anything.
270  *
271  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272  * index into the parent's child array. That is, they will be used to find
273  * 'n' among tp's children.
274  *
275  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276  * for the node n.
277  *
278  * All the bits we have seen so far are significant to the node n. The rest
279  * of the bits are really not needed or indeed known in n->key.
280  *
281  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282  * n's child array, and will of course be different for each child.
283  *
284  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285  * at this point.
286  */
287 
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292 
293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 	kmem_cache_free(fn_alias_kmem, fa);
297 }
298 
299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 	call_rcu(&fa->rcu, __alias_free_mem);
302 }
303 
304 #define TNODE_VMALLOC_MAX \
305 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306 
307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 	struct tnode *n = container_of(head, struct tnode, rcu);
310 
311 	if (!n->tn_bits)
312 		kmem_cache_free(trie_leaf_kmem, n);
313 	else
314 		kvfree(n);
315 }
316 
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318 
319 static struct tnode *tnode_alloc(int bits)
320 {
321 	size_t size;
322 
323 	/* verify bits is within bounds */
324 	if (bits > TNODE_VMALLOC_MAX)
325 		return NULL;
326 
327 	/* determine size and verify it is non-zero and didn't overflow */
328 	size = TNODE_SIZE(1ul << bits);
329 
330 	if (size <= PAGE_SIZE)
331 		return kzalloc(size, GFP_KERNEL);
332 	else
333 		return vzalloc(size);
334 }
335 
336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 	tn_info(n)->empty_children++;
339 
340 	if (!tn_info(n)->empty_children)
341 		tn_info(n)->full_children++;
342 }
343 
344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 	if (!tn_info(n)->empty_children)
347 		tn_info(n)->full_children--;
348 
349 	tn_info(n)->empty_children--;
350 }
351 
352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 	struct key_vector *l;
355 	struct tnode *kv;
356 
357 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 	if (!kv)
359 		return NULL;
360 
361 	/* initialize key vector */
362 	l = kv->kv;
363 	l->key = key;
364 	l->pos = 0;
365 	l->bits = 0;
366 	l->slen = fa->fa_slen;
367 
368 	/* link leaf to fib alias */
369 	INIT_HLIST_HEAD(&l->leaf);
370 	hlist_add_head(&fa->fa_list, &l->leaf);
371 
372 	return l;
373 }
374 
375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 	unsigned int shift = pos + bits;
378 	struct key_vector *tn;
379 	struct tnode *tnode;
380 
381 	/* verify bits and pos their msb bits clear and values are valid */
382 	BUG_ON(!bits || (shift > KEYLENGTH));
383 
384 	tnode = tnode_alloc(bits);
385 	if (!tnode)
386 		return NULL;
387 
388 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 		 sizeof(struct key_vector *) << bits);
390 
391 	if (bits == KEYLENGTH)
392 		tnode->full_children = 1;
393 	else
394 		tnode->empty_children = 1ul << bits;
395 
396 	tn = tnode->kv;
397 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 	tn->pos = pos;
399 	tn->bits = bits;
400 	tn->slen = pos;
401 
402 	return tn;
403 }
404 
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406  * and no bits are skipped. See discussion in dyntree paper p. 6
407  */
408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412 
413 /* Add a child at position i overwriting the old value.
414  * Update the value of full_children and empty_children.
415  */
416 static void put_child(struct key_vector *tn, unsigned long i,
417 		      struct key_vector *n)
418 {
419 	struct key_vector *chi = get_child(tn, i);
420 	int isfull, wasfull;
421 
422 	BUG_ON(i >= child_length(tn));
423 
424 	/* update emptyChildren, overflow into fullChildren */
425 	if (!n && chi)
426 		empty_child_inc(tn);
427 	if (n && !chi)
428 		empty_child_dec(tn);
429 
430 	/* update fullChildren */
431 	wasfull = tnode_full(tn, chi);
432 	isfull = tnode_full(tn, n);
433 
434 	if (wasfull && !isfull)
435 		tn_info(tn)->full_children--;
436 	else if (!wasfull && isfull)
437 		tn_info(tn)->full_children++;
438 
439 	if (n && (tn->slen < n->slen))
440 		tn->slen = n->slen;
441 
442 	rcu_assign_pointer(tn->tnode[i], n);
443 }
444 
445 static void update_children(struct key_vector *tn)
446 {
447 	unsigned long i;
448 
449 	/* update all of the child parent pointers */
450 	for (i = child_length(tn); i;) {
451 		struct key_vector *inode = get_child(tn, --i);
452 
453 		if (!inode)
454 			continue;
455 
456 		/* Either update the children of a tnode that
457 		 * already belongs to us or update the child
458 		 * to point to ourselves.
459 		 */
460 		if (node_parent(inode) == tn)
461 			update_children(inode);
462 		else
463 			node_set_parent(inode, tn);
464 	}
465 }
466 
467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 				  struct key_vector *n)
469 {
470 	if (IS_TRIE(tp))
471 		rcu_assign_pointer(tp->tnode[0], n);
472 	else
473 		put_child(tp, get_index(key, tp), n);
474 }
475 
476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 	tn_info(tn)->rcu.next = NULL;
479 }
480 
481 static inline void tnode_free_append(struct key_vector *tn,
482 				     struct key_vector *n)
483 {
484 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487 
488 static void tnode_free(struct key_vector *tn)
489 {
490 	struct callback_head *head = &tn_info(tn)->rcu;
491 
492 	while (head) {
493 		head = head->next;
494 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 		node_free(tn);
496 
497 		tn = container_of(head, struct tnode, rcu)->kv;
498 	}
499 
500 	if (tnode_free_size >= sysctl_fib_sync_mem) {
501 		tnode_free_size = 0;
502 		synchronize_rcu();
503 	}
504 }
505 
506 static struct key_vector *replace(struct trie *t,
507 				  struct key_vector *oldtnode,
508 				  struct key_vector *tn)
509 {
510 	struct key_vector *tp = node_parent(oldtnode);
511 	unsigned long i;
512 
513 	/* setup the parent pointer out of and back into this node */
514 	NODE_INIT_PARENT(tn, tp);
515 	put_child_root(tp, tn->key, tn);
516 
517 	/* update all of the child parent pointers */
518 	update_children(tn);
519 
520 	/* all pointers should be clean so we are done */
521 	tnode_free(oldtnode);
522 
523 	/* resize children now that oldtnode is freed */
524 	for (i = child_length(tn); i;) {
525 		struct key_vector *inode = get_child(tn, --i);
526 
527 		/* resize child node */
528 		if (tnode_full(tn, inode))
529 			tn = resize(t, inode);
530 	}
531 
532 	return tp;
533 }
534 
535 static struct key_vector *inflate(struct trie *t,
536 				  struct key_vector *oldtnode)
537 {
538 	struct key_vector *tn;
539 	unsigned long i;
540 	t_key m;
541 
542 	pr_debug("In inflate\n");
543 
544 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 	if (!tn)
546 		goto notnode;
547 
548 	/* prepare oldtnode to be freed */
549 	tnode_free_init(oldtnode);
550 
551 	/* Assemble all of the pointers in our cluster, in this case that
552 	 * represents all of the pointers out of our allocated nodes that
553 	 * point to existing tnodes and the links between our allocated
554 	 * nodes.
555 	 */
556 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 		struct key_vector *inode = get_child(oldtnode, --i);
558 		struct key_vector *node0, *node1;
559 		unsigned long j, k;
560 
561 		/* An empty child */
562 		if (!inode)
563 			continue;
564 
565 		/* A leaf or an internal node with skipped bits */
566 		if (!tnode_full(oldtnode, inode)) {
567 			put_child(tn, get_index(inode->key, tn), inode);
568 			continue;
569 		}
570 
571 		/* drop the node in the old tnode free list */
572 		tnode_free_append(oldtnode, inode);
573 
574 		/* An internal node with two children */
575 		if (inode->bits == 1) {
576 			put_child(tn, 2 * i + 1, get_child(inode, 1));
577 			put_child(tn, 2 * i, get_child(inode, 0));
578 			continue;
579 		}
580 
581 		/* We will replace this node 'inode' with two new
582 		 * ones, 'node0' and 'node1', each with half of the
583 		 * original children. The two new nodes will have
584 		 * a position one bit further down the key and this
585 		 * means that the "significant" part of their keys
586 		 * (see the discussion near the top of this file)
587 		 * will differ by one bit, which will be "0" in
588 		 * node0's key and "1" in node1's key. Since we are
589 		 * moving the key position by one step, the bit that
590 		 * we are moving away from - the bit at position
591 		 * (tn->pos) - is the one that will differ between
592 		 * node0 and node1. So... we synthesize that bit in the
593 		 * two new keys.
594 		 */
595 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 		if (!node1)
597 			goto nomem;
598 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599 
600 		tnode_free_append(tn, node1);
601 		if (!node0)
602 			goto nomem;
603 		tnode_free_append(tn, node0);
604 
605 		/* populate child pointers in new nodes */
606 		for (k = child_length(inode), j = k / 2; j;) {
607 			put_child(node1, --j, get_child(inode, --k));
608 			put_child(node0, j, get_child(inode, j));
609 			put_child(node1, --j, get_child(inode, --k));
610 			put_child(node0, j, get_child(inode, j));
611 		}
612 
613 		/* link new nodes to parent */
614 		NODE_INIT_PARENT(node1, tn);
615 		NODE_INIT_PARENT(node0, tn);
616 
617 		/* link parent to nodes */
618 		put_child(tn, 2 * i + 1, node1);
619 		put_child(tn, 2 * i, node0);
620 	}
621 
622 	/* setup the parent pointers into and out of this node */
623 	return replace(t, oldtnode, tn);
624 nomem:
625 	/* all pointers should be clean so we are done */
626 	tnode_free(tn);
627 notnode:
628 	return NULL;
629 }
630 
631 static struct key_vector *halve(struct trie *t,
632 				struct key_vector *oldtnode)
633 {
634 	struct key_vector *tn;
635 	unsigned long i;
636 
637 	pr_debug("In halve\n");
638 
639 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 	if (!tn)
641 		goto notnode;
642 
643 	/* prepare oldtnode to be freed */
644 	tnode_free_init(oldtnode);
645 
646 	/* Assemble all of the pointers in our cluster, in this case that
647 	 * represents all of the pointers out of our allocated nodes that
648 	 * point to existing tnodes and the links between our allocated
649 	 * nodes.
650 	 */
651 	for (i = child_length(oldtnode); i;) {
652 		struct key_vector *node1 = get_child(oldtnode, --i);
653 		struct key_vector *node0 = get_child(oldtnode, --i);
654 		struct key_vector *inode;
655 
656 		/* At least one of the children is empty */
657 		if (!node1 || !node0) {
658 			put_child(tn, i / 2, node1 ? : node0);
659 			continue;
660 		}
661 
662 		/* Two nonempty children */
663 		inode = tnode_new(node0->key, oldtnode->pos, 1);
664 		if (!inode)
665 			goto nomem;
666 		tnode_free_append(tn, inode);
667 
668 		/* initialize pointers out of node */
669 		put_child(inode, 1, node1);
670 		put_child(inode, 0, node0);
671 		NODE_INIT_PARENT(inode, tn);
672 
673 		/* link parent to node */
674 		put_child(tn, i / 2, inode);
675 	}
676 
677 	/* setup the parent pointers into and out of this node */
678 	return replace(t, oldtnode, tn);
679 nomem:
680 	/* all pointers should be clean so we are done */
681 	tnode_free(tn);
682 notnode:
683 	return NULL;
684 }
685 
686 static struct key_vector *collapse(struct trie *t,
687 				   struct key_vector *oldtnode)
688 {
689 	struct key_vector *n, *tp;
690 	unsigned long i;
691 
692 	/* scan the tnode looking for that one child that might still exist */
693 	for (n = NULL, i = child_length(oldtnode); !n && i;)
694 		n = get_child(oldtnode, --i);
695 
696 	/* compress one level */
697 	tp = node_parent(oldtnode);
698 	put_child_root(tp, oldtnode->key, n);
699 	node_set_parent(n, tp);
700 
701 	/* drop dead node */
702 	node_free(oldtnode);
703 
704 	return tp;
705 }
706 
707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 	unsigned char slen = tn->pos;
710 	unsigned long stride, i;
711 	unsigned char slen_max;
712 
713 	/* only vector 0 can have a suffix length greater than or equal to
714 	 * tn->pos + tn->bits, the second highest node will have a suffix
715 	 * length at most of tn->pos + tn->bits - 1
716 	 */
717 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718 
719 	/* search though the list of children looking for nodes that might
720 	 * have a suffix greater than the one we currently have.  This is
721 	 * why we start with a stride of 2 since a stride of 1 would
722 	 * represent the nodes with suffix length equal to tn->pos
723 	 */
724 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 		struct key_vector *n = get_child(tn, i);
726 
727 		if (!n || (n->slen <= slen))
728 			continue;
729 
730 		/* update stride and slen based on new value */
731 		stride <<= (n->slen - slen);
732 		slen = n->slen;
733 		i &= ~(stride - 1);
734 
735 		/* stop searching if we have hit the maximum possible value */
736 		if (slen >= slen_max)
737 			break;
738 	}
739 
740 	tn->slen = slen;
741 
742 	return slen;
743 }
744 
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746  * the Helsinki University of Technology and Matti Tikkanen of Nokia
747  * Telecommunications, page 6:
748  * "A node is doubled if the ratio of non-empty children to all
749  * children in the *doubled* node is at least 'high'."
750  *
751  * 'high' in this instance is the variable 'inflate_threshold'. It
752  * is expressed as a percentage, so we multiply it with
753  * child_length() and instead of multiplying by 2 (since the
754  * child array will be doubled by inflate()) and multiplying
755  * the left-hand side by 100 (to handle the percentage thing) we
756  * multiply the left-hand side by 50.
757  *
758  * The left-hand side may look a bit weird: child_length(tn)
759  * - tn->empty_children is of course the number of non-null children
760  * in the current node. tn->full_children is the number of "full"
761  * children, that is non-null tnodes with a skip value of 0.
762  * All of those will be doubled in the resulting inflated tnode, so
763  * we just count them one extra time here.
764  *
765  * A clearer way to write this would be:
766  *
767  * to_be_doubled = tn->full_children;
768  * not_to_be_doubled = child_length(tn) - tn->empty_children -
769  *     tn->full_children;
770  *
771  * new_child_length = child_length(tn) * 2;
772  *
773  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774  *      new_child_length;
775  * if (new_fill_factor >= inflate_threshold)
776  *
777  * ...and so on, tho it would mess up the while () loop.
778  *
779  * anyway,
780  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781  *      inflate_threshold
782  *
783  * avoid a division:
784  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785  *      inflate_threshold * new_child_length
786  *
787  * expand not_to_be_doubled and to_be_doubled, and shorten:
788  * 100 * (child_length(tn) - tn->empty_children +
789  *    tn->full_children) >= inflate_threshold * new_child_length
790  *
791  * expand new_child_length:
792  * 100 * (child_length(tn) - tn->empty_children +
793  *    tn->full_children) >=
794  *      inflate_threshold * child_length(tn) * 2
795  *
796  * shorten again:
797  * 50 * (tn->full_children + child_length(tn) -
798  *    tn->empty_children) >= inflate_threshold *
799  *    child_length(tn)
800  *
801  */
802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 	unsigned long used = child_length(tn);
805 	unsigned long threshold = used;
806 
807 	/* Keep root node larger */
808 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 	used -= tn_info(tn)->empty_children;
810 	used += tn_info(tn)->full_children;
811 
812 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
813 
814 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816 
817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 	unsigned long used = child_length(tn);
820 	unsigned long threshold = used;
821 
822 	/* Keep root node larger */
823 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 	used -= tn_info(tn)->empty_children;
825 
826 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827 
828 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830 
831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 	unsigned long used = child_length(tn);
834 
835 	used -= tn_info(tn)->empty_children;
836 
837 	/* account for bits == KEYLENGTH case */
838 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 		used -= KEY_MAX;
840 
841 	/* One child or none, time to drop us from the trie */
842 	return used < 2;
843 }
844 
845 #define MAX_WORK 10
846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 	struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 	struct key_vector *tp = node_parent(tn);
852 	unsigned long cindex = get_index(tn->key, tp);
853 	int max_work = MAX_WORK;
854 
855 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 		 tn, inflate_threshold, halve_threshold);
857 
858 	/* track the tnode via the pointer from the parent instead of
859 	 * doing it ourselves.  This way we can let RCU fully do its
860 	 * thing without us interfering
861 	 */
862 	BUG_ON(tn != get_child(tp, cindex));
863 
864 	/* Double as long as the resulting node has a number of
865 	 * nonempty nodes that are above the threshold.
866 	 */
867 	while (should_inflate(tp, tn) && max_work) {
868 		tp = inflate(t, tn);
869 		if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 			this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 			break;
874 		}
875 
876 		max_work--;
877 		tn = get_child(tp, cindex);
878 	}
879 
880 	/* update parent in case inflate failed */
881 	tp = node_parent(tn);
882 
883 	/* Return if at least one inflate is run */
884 	if (max_work != MAX_WORK)
885 		return tp;
886 
887 	/* Halve as long as the number of empty children in this
888 	 * node is above threshold.
889 	 */
890 	while (should_halve(tp, tn) && max_work) {
891 		tp = halve(t, tn);
892 		if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 			this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 			break;
897 		}
898 
899 		max_work--;
900 		tn = get_child(tp, cindex);
901 	}
902 
903 	/* Only one child remains */
904 	if (should_collapse(tn))
905 		return collapse(t, tn);
906 
907 	/* update parent in case halve failed */
908 	return node_parent(tn);
909 }
910 
911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 	unsigned char node_slen = tn->slen;
914 
915 	while ((node_slen > tn->pos) && (node_slen > slen)) {
916 		slen = update_suffix(tn);
917 		if (node_slen == slen)
918 			break;
919 
920 		tn = node_parent(tn);
921 		node_slen = tn->slen;
922 	}
923 }
924 
925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 	while (tn->slen < slen) {
928 		tn->slen = slen;
929 		tn = node_parent(tn);
930 	}
931 }
932 
933 /* rcu_read_lock needs to be hold by caller from readside */
934 static struct key_vector *fib_find_node(struct trie *t,
935 					struct key_vector **tp, u32 key)
936 {
937 	struct key_vector *pn, *n = t->kv;
938 	unsigned long index = 0;
939 
940 	do {
941 		pn = n;
942 		n = get_child_rcu(n, index);
943 
944 		if (!n)
945 			break;
946 
947 		index = get_cindex(key, n);
948 
949 		/* This bit of code is a bit tricky but it combines multiple
950 		 * checks into a single check.  The prefix consists of the
951 		 * prefix plus zeros for the bits in the cindex. The index
952 		 * is the difference between the key and this value.  From
953 		 * this we can actually derive several pieces of data.
954 		 *   if (index >= (1ul << bits))
955 		 *     we have a mismatch in skip bits and failed
956 		 *   else
957 		 *     we know the value is cindex
958 		 *
959 		 * This check is safe even if bits == KEYLENGTH due to the
960 		 * fact that we can only allocate a node with 32 bits if a
961 		 * long is greater than 32 bits.
962 		 */
963 		if (index >= (1ul << n->bits)) {
964 			n = NULL;
965 			break;
966 		}
967 
968 		/* keep searching until we find a perfect match leaf or NULL */
969 	} while (IS_TNODE(n));
970 
971 	*tp = pn;
972 
973 	return n;
974 }
975 
976 /* Return the first fib alias matching TOS with
977  * priority less than or equal to PRIO.
978  * If 'find_first' is set, return the first matching
979  * fib alias, regardless of TOS and priority.
980  */
981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 					u8 tos, u32 prio, u32 tb_id,
983 					bool find_first)
984 {
985 	struct fib_alias *fa;
986 
987 	if (!fah)
988 		return NULL;
989 
990 	hlist_for_each_entry(fa, fah, fa_list) {
991 		if (fa->fa_slen < slen)
992 			continue;
993 		if (fa->fa_slen != slen)
994 			break;
995 		if (fa->tb_id > tb_id)
996 			continue;
997 		if (fa->tb_id != tb_id)
998 			break;
999 		if (find_first)
1000 			return fa;
1001 		if (fa->fa_tos > tos)
1002 			continue;
1003 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 			return fa;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static struct fib_alias *
1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 	u8 slen = KEYLENGTH - fri->dst_len;
1014 	struct key_vector *l, *tp;
1015 	struct fib_table *tb;
1016 	struct fib_alias *fa;
1017 	struct trie *t;
1018 
1019 	tb = fib_get_table(net, fri->tb_id);
1020 	if (!tb)
1021 		return NULL;
1022 
1023 	t = (struct trie *)tb->tb_data;
1024 	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 	if (!l)
1026 		return NULL;
1027 
1028 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 		    fa->fa_type == fri->type)
1032 			return fa;
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 	struct fib_alias *fa_match;
1041 	struct sk_buff *skb;
1042 	int err;
1043 
1044 	rcu_read_lock();
1045 
1046 	fa_match = fib_find_matching_alias(net, fri);
1047 	if (!fa_match)
1048 		goto out;
1049 
1050 	if (fa_match->offload == fri->offload && fa_match->trap == fri->trap &&
1051 	    fa_match->offload_failed == fri->offload_failed)
1052 		goto out;
1053 
1054 	fa_match->offload = fri->offload;
1055 	fa_match->trap = fri->trap;
1056 
1057 	/* 2 means send notifications only if offload_failed was changed. */
1058 	if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
1059 	    fa_match->offload_failed == fri->offload_failed)
1060 		goto out;
1061 
1062 	fa_match->offload_failed = fri->offload_failed;
1063 
1064 	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1065 		goto out;
1066 
1067 	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1068 	if (!skb) {
1069 		err = -ENOBUFS;
1070 		goto errout;
1071 	}
1072 
1073 	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1074 	if (err < 0) {
1075 		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1076 		WARN_ON(err == -EMSGSIZE);
1077 		kfree_skb(skb);
1078 		goto errout;
1079 	}
1080 
1081 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1082 	goto out;
1083 
1084 errout:
1085 	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1086 out:
1087 	rcu_read_unlock();
1088 }
1089 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1090 
1091 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1092 {
1093 	while (!IS_TRIE(tn))
1094 		tn = resize(t, tn);
1095 }
1096 
1097 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1098 			   struct fib_alias *new, t_key key)
1099 {
1100 	struct key_vector *n, *l;
1101 
1102 	l = leaf_new(key, new);
1103 	if (!l)
1104 		goto noleaf;
1105 
1106 	/* retrieve child from parent node */
1107 	n = get_child(tp, get_index(key, tp));
1108 
1109 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1110 	 *
1111 	 *  Add a new tnode here
1112 	 *  first tnode need some special handling
1113 	 *  leaves us in position for handling as case 3
1114 	 */
1115 	if (n) {
1116 		struct key_vector *tn;
1117 
1118 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1119 		if (!tn)
1120 			goto notnode;
1121 
1122 		/* initialize routes out of node */
1123 		NODE_INIT_PARENT(tn, tp);
1124 		put_child(tn, get_index(key, tn) ^ 1, n);
1125 
1126 		/* start adding routes into the node */
1127 		put_child_root(tp, key, tn);
1128 		node_set_parent(n, tn);
1129 
1130 		/* parent now has a NULL spot where the leaf can go */
1131 		tp = tn;
1132 	}
1133 
1134 	/* Case 3: n is NULL, and will just insert a new leaf */
1135 	node_push_suffix(tp, new->fa_slen);
1136 	NODE_INIT_PARENT(l, tp);
1137 	put_child_root(tp, key, l);
1138 	trie_rebalance(t, tp);
1139 
1140 	return 0;
1141 notnode:
1142 	node_free(l);
1143 noleaf:
1144 	return -ENOMEM;
1145 }
1146 
1147 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1148 			    struct key_vector *l, struct fib_alias *new,
1149 			    struct fib_alias *fa, t_key key)
1150 {
1151 	if (!l)
1152 		return fib_insert_node(t, tp, new, key);
1153 
1154 	if (fa) {
1155 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1156 	} else {
1157 		struct fib_alias *last;
1158 
1159 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1160 			if (new->fa_slen < last->fa_slen)
1161 				break;
1162 			if ((new->fa_slen == last->fa_slen) &&
1163 			    (new->tb_id > last->tb_id))
1164 				break;
1165 			fa = last;
1166 		}
1167 
1168 		if (fa)
1169 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1170 		else
1171 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1172 	}
1173 
1174 	/* if we added to the tail node then we need to update slen */
1175 	if (l->slen < new->fa_slen) {
1176 		l->slen = new->fa_slen;
1177 		node_push_suffix(tp, new->fa_slen);
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1184 {
1185 	if (plen > KEYLENGTH) {
1186 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1187 		return false;
1188 	}
1189 
1190 	if ((plen < KEYLENGTH) && (key << plen)) {
1191 		NL_SET_ERR_MSG(extack,
1192 			       "Invalid prefix for given prefix length");
1193 		return false;
1194 	}
1195 
1196 	return true;
1197 }
1198 
1199 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1200 			     struct key_vector *l, struct fib_alias *old);
1201 
1202 /* Caller must hold RTNL. */
1203 int fib_table_insert(struct net *net, struct fib_table *tb,
1204 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1205 {
1206 	struct trie *t = (struct trie *)tb->tb_data;
1207 	struct fib_alias *fa, *new_fa;
1208 	struct key_vector *l, *tp;
1209 	u16 nlflags = NLM_F_EXCL;
1210 	struct fib_info *fi;
1211 	u8 plen = cfg->fc_dst_len;
1212 	u8 slen = KEYLENGTH - plen;
1213 	u8 tos = cfg->fc_tos;
1214 	u32 key;
1215 	int err;
1216 
1217 	key = ntohl(cfg->fc_dst);
1218 
1219 	if (!fib_valid_key_len(key, plen, extack))
1220 		return -EINVAL;
1221 
1222 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1223 
1224 	fi = fib_create_info(cfg, extack);
1225 	if (IS_ERR(fi)) {
1226 		err = PTR_ERR(fi);
1227 		goto err;
1228 	}
1229 
1230 	l = fib_find_node(t, &tp, key);
1231 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1232 				tb->tb_id, false) : NULL;
1233 
1234 	/* Now fa, if non-NULL, points to the first fib alias
1235 	 * with the same keys [prefix,tos,priority], if such key already
1236 	 * exists or to the node before which we will insert new one.
1237 	 *
1238 	 * If fa is NULL, we will need to allocate a new one and
1239 	 * insert to the tail of the section matching the suffix length
1240 	 * of the new alias.
1241 	 */
1242 
1243 	if (fa && fa->fa_tos == tos &&
1244 	    fa->fa_info->fib_priority == fi->fib_priority) {
1245 		struct fib_alias *fa_first, *fa_match;
1246 
1247 		err = -EEXIST;
1248 		if (cfg->fc_nlflags & NLM_F_EXCL)
1249 			goto out;
1250 
1251 		nlflags &= ~NLM_F_EXCL;
1252 
1253 		/* We have 2 goals:
1254 		 * 1. Find exact match for type, scope, fib_info to avoid
1255 		 * duplicate routes
1256 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1257 		 */
1258 		fa_match = NULL;
1259 		fa_first = fa;
1260 		hlist_for_each_entry_from(fa, fa_list) {
1261 			if ((fa->fa_slen != slen) ||
1262 			    (fa->tb_id != tb->tb_id) ||
1263 			    (fa->fa_tos != tos))
1264 				break;
1265 			if (fa->fa_info->fib_priority != fi->fib_priority)
1266 				break;
1267 			if (fa->fa_type == cfg->fc_type &&
1268 			    fa->fa_info == fi) {
1269 				fa_match = fa;
1270 				break;
1271 			}
1272 		}
1273 
1274 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1275 			struct fib_info *fi_drop;
1276 			u8 state;
1277 
1278 			nlflags |= NLM_F_REPLACE;
1279 			fa = fa_first;
1280 			if (fa_match) {
1281 				if (fa == fa_match)
1282 					err = 0;
1283 				goto out;
1284 			}
1285 			err = -ENOBUFS;
1286 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1287 			if (!new_fa)
1288 				goto out;
1289 
1290 			fi_drop = fa->fa_info;
1291 			new_fa->fa_tos = fa->fa_tos;
1292 			new_fa->fa_info = fi;
1293 			new_fa->fa_type = cfg->fc_type;
1294 			state = fa->fa_state;
1295 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1296 			new_fa->fa_slen = fa->fa_slen;
1297 			new_fa->tb_id = tb->tb_id;
1298 			new_fa->fa_default = -1;
1299 			new_fa->offload = 0;
1300 			new_fa->trap = 0;
1301 			new_fa->offload_failed = 0;
1302 
1303 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1304 
1305 			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1306 					   tb->tb_id, true) == new_fa) {
1307 				enum fib_event_type fib_event;
1308 
1309 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1310 				err = call_fib_entry_notifiers(net, fib_event,
1311 							       key, plen,
1312 							       new_fa, extack);
1313 				if (err) {
1314 					hlist_replace_rcu(&new_fa->fa_list,
1315 							  &fa->fa_list);
1316 					goto out_free_new_fa;
1317 				}
1318 			}
1319 
1320 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1321 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1322 
1323 			alias_free_mem_rcu(fa);
1324 
1325 			fib_release_info(fi_drop);
1326 			if (state & FA_S_ACCESSED)
1327 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1328 
1329 			goto succeeded;
1330 		}
1331 		/* Error if we find a perfect match which
1332 		 * uses the same scope, type, and nexthop
1333 		 * information.
1334 		 */
1335 		if (fa_match)
1336 			goto out;
1337 
1338 		if (cfg->fc_nlflags & NLM_F_APPEND)
1339 			nlflags |= NLM_F_APPEND;
1340 		else
1341 			fa = fa_first;
1342 	}
1343 	err = -ENOENT;
1344 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1345 		goto out;
1346 
1347 	nlflags |= NLM_F_CREATE;
1348 	err = -ENOBUFS;
1349 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1350 	if (!new_fa)
1351 		goto out;
1352 
1353 	new_fa->fa_info = fi;
1354 	new_fa->fa_tos = tos;
1355 	new_fa->fa_type = cfg->fc_type;
1356 	new_fa->fa_state = 0;
1357 	new_fa->fa_slen = slen;
1358 	new_fa->tb_id = tb->tb_id;
1359 	new_fa->fa_default = -1;
1360 	new_fa->offload = 0;
1361 	new_fa->trap = 0;
1362 	new_fa->offload_failed = 0;
1363 
1364 	/* Insert new entry to the list. */
1365 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1366 	if (err)
1367 		goto out_free_new_fa;
1368 
1369 	/* The alias was already inserted, so the node must exist. */
1370 	l = l ? l : fib_find_node(t, &tp, key);
1371 	if (WARN_ON_ONCE(!l))
1372 		goto out_free_new_fa;
1373 
1374 	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1375 	    new_fa) {
1376 		enum fib_event_type fib_event;
1377 
1378 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1379 		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1380 					       new_fa, extack);
1381 		if (err)
1382 			goto out_remove_new_fa;
1383 	}
1384 
1385 	if (!plen)
1386 		tb->tb_num_default++;
1387 
1388 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1389 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1390 		  &cfg->fc_nlinfo, nlflags);
1391 succeeded:
1392 	return 0;
1393 
1394 out_remove_new_fa:
1395 	fib_remove_alias(t, tp, l, new_fa);
1396 out_free_new_fa:
1397 	kmem_cache_free(fn_alias_kmem, new_fa);
1398 out:
1399 	fib_release_info(fi);
1400 err:
1401 	return err;
1402 }
1403 
1404 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1405 {
1406 	t_key prefix = n->key;
1407 
1408 	return (key ^ prefix) & (prefix | -prefix);
1409 }
1410 
1411 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1412 			 const struct flowi4 *flp)
1413 {
1414 	if (nhc->nhc_flags & RTNH_F_DEAD)
1415 		return false;
1416 
1417 	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1418 	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1419 	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1420 		return false;
1421 
1422 	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1423 		if (flp->flowi4_oif &&
1424 		    flp->flowi4_oif != nhc->nhc_oif)
1425 			return false;
1426 	}
1427 
1428 	return true;
1429 }
1430 
1431 /* should be called with rcu_read_lock */
1432 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1433 		     struct fib_result *res, int fib_flags)
1434 {
1435 	struct trie *t = (struct trie *) tb->tb_data;
1436 #ifdef CONFIG_IP_FIB_TRIE_STATS
1437 	struct trie_use_stats __percpu *stats = t->stats;
1438 #endif
1439 	const t_key key = ntohl(flp->daddr);
1440 	struct key_vector *n, *pn;
1441 	struct fib_alias *fa;
1442 	unsigned long index;
1443 	t_key cindex;
1444 
1445 	pn = t->kv;
1446 	cindex = 0;
1447 
1448 	n = get_child_rcu(pn, cindex);
1449 	if (!n) {
1450 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1451 		return -EAGAIN;
1452 	}
1453 
1454 #ifdef CONFIG_IP_FIB_TRIE_STATS
1455 	this_cpu_inc(stats->gets);
1456 #endif
1457 
1458 	/* Step 1: Travel to the longest prefix match in the trie */
1459 	for (;;) {
1460 		index = get_cindex(key, n);
1461 
1462 		/* This bit of code is a bit tricky but it combines multiple
1463 		 * checks into a single check.  The prefix consists of the
1464 		 * prefix plus zeros for the "bits" in the prefix. The index
1465 		 * is the difference between the key and this value.  From
1466 		 * this we can actually derive several pieces of data.
1467 		 *   if (index >= (1ul << bits))
1468 		 *     we have a mismatch in skip bits and failed
1469 		 *   else
1470 		 *     we know the value is cindex
1471 		 *
1472 		 * This check is safe even if bits == KEYLENGTH due to the
1473 		 * fact that we can only allocate a node with 32 bits if a
1474 		 * long is greater than 32 bits.
1475 		 */
1476 		if (index >= (1ul << n->bits))
1477 			break;
1478 
1479 		/* we have found a leaf. Prefixes have already been compared */
1480 		if (IS_LEAF(n))
1481 			goto found;
1482 
1483 		/* only record pn and cindex if we are going to be chopping
1484 		 * bits later.  Otherwise we are just wasting cycles.
1485 		 */
1486 		if (n->slen > n->pos) {
1487 			pn = n;
1488 			cindex = index;
1489 		}
1490 
1491 		n = get_child_rcu(n, index);
1492 		if (unlikely(!n))
1493 			goto backtrace;
1494 	}
1495 
1496 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1497 	for (;;) {
1498 		/* record the pointer where our next node pointer is stored */
1499 		struct key_vector __rcu **cptr = n->tnode;
1500 
1501 		/* This test verifies that none of the bits that differ
1502 		 * between the key and the prefix exist in the region of
1503 		 * the lsb and higher in the prefix.
1504 		 */
1505 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1506 			goto backtrace;
1507 
1508 		/* exit out and process leaf */
1509 		if (unlikely(IS_LEAF(n)))
1510 			break;
1511 
1512 		/* Don't bother recording parent info.  Since we are in
1513 		 * prefix match mode we will have to come back to wherever
1514 		 * we started this traversal anyway
1515 		 */
1516 
1517 		while ((n = rcu_dereference(*cptr)) == NULL) {
1518 backtrace:
1519 #ifdef CONFIG_IP_FIB_TRIE_STATS
1520 			if (!n)
1521 				this_cpu_inc(stats->null_node_hit);
1522 #endif
1523 			/* If we are at cindex 0 there are no more bits for
1524 			 * us to strip at this level so we must ascend back
1525 			 * up one level to see if there are any more bits to
1526 			 * be stripped there.
1527 			 */
1528 			while (!cindex) {
1529 				t_key pkey = pn->key;
1530 
1531 				/* If we don't have a parent then there is
1532 				 * nothing for us to do as we do not have any
1533 				 * further nodes to parse.
1534 				 */
1535 				if (IS_TRIE(pn)) {
1536 					trace_fib_table_lookup(tb->tb_id, flp,
1537 							       NULL, -EAGAIN);
1538 					return -EAGAIN;
1539 				}
1540 #ifdef CONFIG_IP_FIB_TRIE_STATS
1541 				this_cpu_inc(stats->backtrack);
1542 #endif
1543 				/* Get Child's index */
1544 				pn = node_parent_rcu(pn);
1545 				cindex = get_index(pkey, pn);
1546 			}
1547 
1548 			/* strip the least significant bit from the cindex */
1549 			cindex &= cindex - 1;
1550 
1551 			/* grab pointer for next child node */
1552 			cptr = &pn->tnode[cindex];
1553 		}
1554 	}
1555 
1556 found:
1557 	/* this line carries forward the xor from earlier in the function */
1558 	index = key ^ n->key;
1559 
1560 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1561 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1562 		struct fib_info *fi = fa->fa_info;
1563 		struct fib_nh_common *nhc;
1564 		int nhsel, err;
1565 
1566 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1567 			if (index >= (1ul << fa->fa_slen))
1568 				continue;
1569 		}
1570 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1571 			continue;
1572 		if (fi->fib_dead)
1573 			continue;
1574 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1575 			continue;
1576 		fib_alias_accessed(fa);
1577 		err = fib_props[fa->fa_type].error;
1578 		if (unlikely(err < 0)) {
1579 out_reject:
1580 #ifdef CONFIG_IP_FIB_TRIE_STATS
1581 			this_cpu_inc(stats->semantic_match_passed);
1582 #endif
1583 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1584 			return err;
1585 		}
1586 		if (fi->fib_flags & RTNH_F_DEAD)
1587 			continue;
1588 
1589 		if (unlikely(fi->nh)) {
1590 			if (nexthop_is_blackhole(fi->nh)) {
1591 				err = fib_props[RTN_BLACKHOLE].error;
1592 				goto out_reject;
1593 			}
1594 
1595 			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1596 						     &nhsel);
1597 			if (nhc)
1598 				goto set_result;
1599 			goto miss;
1600 		}
1601 
1602 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1603 			nhc = fib_info_nhc(fi, nhsel);
1604 
1605 			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1606 				continue;
1607 set_result:
1608 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1609 				refcount_inc(&fi->fib_clntref);
1610 
1611 			res->prefix = htonl(n->key);
1612 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1613 			res->nh_sel = nhsel;
1614 			res->nhc = nhc;
1615 			res->type = fa->fa_type;
1616 			res->scope = fi->fib_scope;
1617 			res->fi = fi;
1618 			res->table = tb;
1619 			res->fa_head = &n->leaf;
1620 #ifdef CONFIG_IP_FIB_TRIE_STATS
1621 			this_cpu_inc(stats->semantic_match_passed);
1622 #endif
1623 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1624 
1625 			return err;
1626 		}
1627 	}
1628 miss:
1629 #ifdef CONFIG_IP_FIB_TRIE_STATS
1630 	this_cpu_inc(stats->semantic_match_miss);
1631 #endif
1632 	goto backtrace;
1633 }
1634 EXPORT_SYMBOL_GPL(fib_table_lookup);
1635 
1636 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1637 			     struct key_vector *l, struct fib_alias *old)
1638 {
1639 	/* record the location of the previous list_info entry */
1640 	struct hlist_node **pprev = old->fa_list.pprev;
1641 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1642 
1643 	/* remove the fib_alias from the list */
1644 	hlist_del_rcu(&old->fa_list);
1645 
1646 	/* if we emptied the list this leaf will be freed and we can sort
1647 	 * out parent suffix lengths as a part of trie_rebalance
1648 	 */
1649 	if (hlist_empty(&l->leaf)) {
1650 		if (tp->slen == l->slen)
1651 			node_pull_suffix(tp, tp->pos);
1652 		put_child_root(tp, l->key, NULL);
1653 		node_free(l);
1654 		trie_rebalance(t, tp);
1655 		return;
1656 	}
1657 
1658 	/* only access fa if it is pointing at the last valid hlist_node */
1659 	if (*pprev)
1660 		return;
1661 
1662 	/* update the trie with the latest suffix length */
1663 	l->slen = fa->fa_slen;
1664 	node_pull_suffix(tp, fa->fa_slen);
1665 }
1666 
1667 static void fib_notify_alias_delete(struct net *net, u32 key,
1668 				    struct hlist_head *fah,
1669 				    struct fib_alias *fa_to_delete,
1670 				    struct netlink_ext_ack *extack)
1671 {
1672 	struct fib_alias *fa_next, *fa_to_notify;
1673 	u32 tb_id = fa_to_delete->tb_id;
1674 	u8 slen = fa_to_delete->fa_slen;
1675 	enum fib_event_type fib_event;
1676 
1677 	/* Do not notify if we do not care about the route. */
1678 	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1679 		return;
1680 
1681 	/* Determine if the route should be replaced by the next route in the
1682 	 * list.
1683 	 */
1684 	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1685 				   struct fib_alias, fa_list);
1686 	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1687 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1688 		fa_to_notify = fa_next;
1689 	} else {
1690 		fib_event = FIB_EVENT_ENTRY_DEL;
1691 		fa_to_notify = fa_to_delete;
1692 	}
1693 	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1694 				 fa_to_notify, extack);
1695 }
1696 
1697 /* Caller must hold RTNL. */
1698 int fib_table_delete(struct net *net, struct fib_table *tb,
1699 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1700 {
1701 	struct trie *t = (struct trie *) tb->tb_data;
1702 	struct fib_alias *fa, *fa_to_delete;
1703 	struct key_vector *l, *tp;
1704 	u8 plen = cfg->fc_dst_len;
1705 	u8 slen = KEYLENGTH - plen;
1706 	u8 tos = cfg->fc_tos;
1707 	u32 key;
1708 
1709 	key = ntohl(cfg->fc_dst);
1710 
1711 	if (!fib_valid_key_len(key, plen, extack))
1712 		return -EINVAL;
1713 
1714 	l = fib_find_node(t, &tp, key);
1715 	if (!l)
1716 		return -ESRCH;
1717 
1718 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1719 	if (!fa)
1720 		return -ESRCH;
1721 
1722 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1723 
1724 	fa_to_delete = NULL;
1725 	hlist_for_each_entry_from(fa, fa_list) {
1726 		struct fib_info *fi = fa->fa_info;
1727 
1728 		if ((fa->fa_slen != slen) ||
1729 		    (fa->tb_id != tb->tb_id) ||
1730 		    (fa->fa_tos != tos))
1731 			break;
1732 
1733 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1734 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1735 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1736 		    (!cfg->fc_prefsrc ||
1737 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1738 		    (!cfg->fc_protocol ||
1739 		     fi->fib_protocol == cfg->fc_protocol) &&
1740 		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1741 		    fib_metrics_match(cfg, fi)) {
1742 			fa_to_delete = fa;
1743 			break;
1744 		}
1745 	}
1746 
1747 	if (!fa_to_delete)
1748 		return -ESRCH;
1749 
1750 	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1751 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1752 		  &cfg->fc_nlinfo, 0);
1753 
1754 	if (!plen)
1755 		tb->tb_num_default--;
1756 
1757 	fib_remove_alias(t, tp, l, fa_to_delete);
1758 
1759 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1760 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1761 
1762 	fib_release_info(fa_to_delete->fa_info);
1763 	alias_free_mem_rcu(fa_to_delete);
1764 	return 0;
1765 }
1766 
1767 /* Scan for the next leaf starting at the provided key value */
1768 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1769 {
1770 	struct key_vector *pn, *n = *tn;
1771 	unsigned long cindex;
1772 
1773 	/* this loop is meant to try and find the key in the trie */
1774 	do {
1775 		/* record parent and next child index */
1776 		pn = n;
1777 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1778 
1779 		if (cindex >> pn->bits)
1780 			break;
1781 
1782 		/* descend into the next child */
1783 		n = get_child_rcu(pn, cindex++);
1784 		if (!n)
1785 			break;
1786 
1787 		/* guarantee forward progress on the keys */
1788 		if (IS_LEAF(n) && (n->key >= key))
1789 			goto found;
1790 	} while (IS_TNODE(n));
1791 
1792 	/* this loop will search for the next leaf with a greater key */
1793 	while (!IS_TRIE(pn)) {
1794 		/* if we exhausted the parent node we will need to climb */
1795 		if (cindex >= (1ul << pn->bits)) {
1796 			t_key pkey = pn->key;
1797 
1798 			pn = node_parent_rcu(pn);
1799 			cindex = get_index(pkey, pn) + 1;
1800 			continue;
1801 		}
1802 
1803 		/* grab the next available node */
1804 		n = get_child_rcu(pn, cindex++);
1805 		if (!n)
1806 			continue;
1807 
1808 		/* no need to compare keys since we bumped the index */
1809 		if (IS_LEAF(n))
1810 			goto found;
1811 
1812 		/* Rescan start scanning in new node */
1813 		pn = n;
1814 		cindex = 0;
1815 	}
1816 
1817 	*tn = pn;
1818 	return NULL; /* Root of trie */
1819 found:
1820 	/* if we are at the limit for keys just return NULL for the tnode */
1821 	*tn = pn;
1822 	return n;
1823 }
1824 
1825 static void fib_trie_free(struct fib_table *tb)
1826 {
1827 	struct trie *t = (struct trie *)tb->tb_data;
1828 	struct key_vector *pn = t->kv;
1829 	unsigned long cindex = 1;
1830 	struct hlist_node *tmp;
1831 	struct fib_alias *fa;
1832 
1833 	/* walk trie in reverse order and free everything */
1834 	for (;;) {
1835 		struct key_vector *n;
1836 
1837 		if (!(cindex--)) {
1838 			t_key pkey = pn->key;
1839 
1840 			if (IS_TRIE(pn))
1841 				break;
1842 
1843 			n = pn;
1844 			pn = node_parent(pn);
1845 
1846 			/* drop emptied tnode */
1847 			put_child_root(pn, n->key, NULL);
1848 			node_free(n);
1849 
1850 			cindex = get_index(pkey, pn);
1851 
1852 			continue;
1853 		}
1854 
1855 		/* grab the next available node */
1856 		n = get_child(pn, cindex);
1857 		if (!n)
1858 			continue;
1859 
1860 		if (IS_TNODE(n)) {
1861 			/* record pn and cindex for leaf walking */
1862 			pn = n;
1863 			cindex = 1ul << n->bits;
1864 
1865 			continue;
1866 		}
1867 
1868 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1869 			hlist_del_rcu(&fa->fa_list);
1870 			alias_free_mem_rcu(fa);
1871 		}
1872 
1873 		put_child_root(pn, n->key, NULL);
1874 		node_free(n);
1875 	}
1876 
1877 #ifdef CONFIG_IP_FIB_TRIE_STATS
1878 	free_percpu(t->stats);
1879 #endif
1880 	kfree(tb);
1881 }
1882 
1883 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1884 {
1885 	struct trie *ot = (struct trie *)oldtb->tb_data;
1886 	struct key_vector *l, *tp = ot->kv;
1887 	struct fib_table *local_tb;
1888 	struct fib_alias *fa;
1889 	struct trie *lt;
1890 	t_key key = 0;
1891 
1892 	if (oldtb->tb_data == oldtb->__data)
1893 		return oldtb;
1894 
1895 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1896 	if (!local_tb)
1897 		return NULL;
1898 
1899 	lt = (struct trie *)local_tb->tb_data;
1900 
1901 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1902 		struct key_vector *local_l = NULL, *local_tp;
1903 
1904 		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1905 			struct fib_alias *new_fa;
1906 
1907 			if (local_tb->tb_id != fa->tb_id)
1908 				continue;
1909 
1910 			/* clone fa for new local table */
1911 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1912 			if (!new_fa)
1913 				goto out;
1914 
1915 			memcpy(new_fa, fa, sizeof(*fa));
1916 
1917 			/* insert clone into table */
1918 			if (!local_l)
1919 				local_l = fib_find_node(lt, &local_tp, l->key);
1920 
1921 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1922 					     NULL, l->key)) {
1923 				kmem_cache_free(fn_alias_kmem, new_fa);
1924 				goto out;
1925 			}
1926 		}
1927 
1928 		/* stop loop if key wrapped back to 0 */
1929 		key = l->key + 1;
1930 		if (key < l->key)
1931 			break;
1932 	}
1933 
1934 	return local_tb;
1935 out:
1936 	fib_trie_free(local_tb);
1937 
1938 	return NULL;
1939 }
1940 
1941 /* Caller must hold RTNL */
1942 void fib_table_flush_external(struct fib_table *tb)
1943 {
1944 	struct trie *t = (struct trie *)tb->tb_data;
1945 	struct key_vector *pn = t->kv;
1946 	unsigned long cindex = 1;
1947 	struct hlist_node *tmp;
1948 	struct fib_alias *fa;
1949 
1950 	/* walk trie in reverse order */
1951 	for (;;) {
1952 		unsigned char slen = 0;
1953 		struct key_vector *n;
1954 
1955 		if (!(cindex--)) {
1956 			t_key pkey = pn->key;
1957 
1958 			/* cannot resize the trie vector */
1959 			if (IS_TRIE(pn))
1960 				break;
1961 
1962 			/* update the suffix to address pulled leaves */
1963 			if (pn->slen > pn->pos)
1964 				update_suffix(pn);
1965 
1966 			/* resize completed node */
1967 			pn = resize(t, pn);
1968 			cindex = get_index(pkey, pn);
1969 
1970 			continue;
1971 		}
1972 
1973 		/* grab the next available node */
1974 		n = get_child(pn, cindex);
1975 		if (!n)
1976 			continue;
1977 
1978 		if (IS_TNODE(n)) {
1979 			/* record pn and cindex for leaf walking */
1980 			pn = n;
1981 			cindex = 1ul << n->bits;
1982 
1983 			continue;
1984 		}
1985 
1986 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1987 			/* if alias was cloned to local then we just
1988 			 * need to remove the local copy from main
1989 			 */
1990 			if (tb->tb_id != fa->tb_id) {
1991 				hlist_del_rcu(&fa->fa_list);
1992 				alias_free_mem_rcu(fa);
1993 				continue;
1994 			}
1995 
1996 			/* record local slen */
1997 			slen = fa->fa_slen;
1998 		}
1999 
2000 		/* update leaf slen */
2001 		n->slen = slen;
2002 
2003 		if (hlist_empty(&n->leaf)) {
2004 			put_child_root(pn, n->key, NULL);
2005 			node_free(n);
2006 		}
2007 	}
2008 }
2009 
2010 /* Caller must hold RTNL. */
2011 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2012 {
2013 	struct trie *t = (struct trie *)tb->tb_data;
2014 	struct key_vector *pn = t->kv;
2015 	unsigned long cindex = 1;
2016 	struct hlist_node *tmp;
2017 	struct fib_alias *fa;
2018 	int found = 0;
2019 
2020 	/* walk trie in reverse order */
2021 	for (;;) {
2022 		unsigned char slen = 0;
2023 		struct key_vector *n;
2024 
2025 		if (!(cindex--)) {
2026 			t_key pkey = pn->key;
2027 
2028 			/* cannot resize the trie vector */
2029 			if (IS_TRIE(pn))
2030 				break;
2031 
2032 			/* update the suffix to address pulled leaves */
2033 			if (pn->slen > pn->pos)
2034 				update_suffix(pn);
2035 
2036 			/* resize completed node */
2037 			pn = resize(t, pn);
2038 			cindex = get_index(pkey, pn);
2039 
2040 			continue;
2041 		}
2042 
2043 		/* grab the next available node */
2044 		n = get_child(pn, cindex);
2045 		if (!n)
2046 			continue;
2047 
2048 		if (IS_TNODE(n)) {
2049 			/* record pn and cindex for leaf walking */
2050 			pn = n;
2051 			cindex = 1ul << n->bits;
2052 
2053 			continue;
2054 		}
2055 
2056 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2057 			struct fib_info *fi = fa->fa_info;
2058 
2059 			if (!fi || tb->tb_id != fa->tb_id ||
2060 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2061 			     !fib_props[fa->fa_type].error)) {
2062 				slen = fa->fa_slen;
2063 				continue;
2064 			}
2065 
2066 			/* Do not flush error routes if network namespace is
2067 			 * not being dismantled
2068 			 */
2069 			if (!flush_all && fib_props[fa->fa_type].error) {
2070 				slen = fa->fa_slen;
2071 				continue;
2072 			}
2073 
2074 			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2075 						NULL);
2076 			hlist_del_rcu(&fa->fa_list);
2077 			fib_release_info(fa->fa_info);
2078 			alias_free_mem_rcu(fa);
2079 			found++;
2080 		}
2081 
2082 		/* update leaf slen */
2083 		n->slen = slen;
2084 
2085 		if (hlist_empty(&n->leaf)) {
2086 			put_child_root(pn, n->key, NULL);
2087 			node_free(n);
2088 		}
2089 	}
2090 
2091 	pr_debug("trie_flush found=%d\n", found);
2092 	return found;
2093 }
2094 
2095 /* derived from fib_trie_free */
2096 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2097 				     struct nl_info *info)
2098 {
2099 	struct trie *t = (struct trie *)tb->tb_data;
2100 	struct key_vector *pn = t->kv;
2101 	unsigned long cindex = 1;
2102 	struct fib_alias *fa;
2103 
2104 	for (;;) {
2105 		struct key_vector *n;
2106 
2107 		if (!(cindex--)) {
2108 			t_key pkey = pn->key;
2109 
2110 			if (IS_TRIE(pn))
2111 				break;
2112 
2113 			pn = node_parent(pn);
2114 			cindex = get_index(pkey, pn);
2115 			continue;
2116 		}
2117 
2118 		/* grab the next available node */
2119 		n = get_child(pn, cindex);
2120 		if (!n)
2121 			continue;
2122 
2123 		if (IS_TNODE(n)) {
2124 			/* record pn and cindex for leaf walking */
2125 			pn = n;
2126 			cindex = 1ul << n->bits;
2127 
2128 			continue;
2129 		}
2130 
2131 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2132 			struct fib_info *fi = fa->fa_info;
2133 
2134 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2135 				continue;
2136 
2137 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2138 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2139 				  info, NLM_F_REPLACE);
2140 		}
2141 	}
2142 }
2143 
2144 void fib_info_notify_update(struct net *net, struct nl_info *info)
2145 {
2146 	unsigned int h;
2147 
2148 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2149 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2150 		struct fib_table *tb;
2151 
2152 		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2153 					 lockdep_rtnl_is_held())
2154 			__fib_info_notify_update(net, tb, info);
2155 	}
2156 }
2157 
2158 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2159 			   struct notifier_block *nb,
2160 			   struct netlink_ext_ack *extack)
2161 {
2162 	struct fib_alias *fa;
2163 	int last_slen = -1;
2164 	int err;
2165 
2166 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2167 		struct fib_info *fi = fa->fa_info;
2168 
2169 		if (!fi)
2170 			continue;
2171 
2172 		/* local and main table can share the same trie,
2173 		 * so don't notify twice for the same entry.
2174 		 */
2175 		if (tb->tb_id != fa->tb_id)
2176 			continue;
2177 
2178 		if (fa->fa_slen == last_slen)
2179 			continue;
2180 
2181 		last_slen = fa->fa_slen;
2182 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2183 					      l->key, KEYLENGTH - fa->fa_slen,
2184 					      fa, extack);
2185 		if (err)
2186 			return err;
2187 	}
2188 	return 0;
2189 }
2190 
2191 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2192 			    struct netlink_ext_ack *extack)
2193 {
2194 	struct trie *t = (struct trie *)tb->tb_data;
2195 	struct key_vector *l, *tp = t->kv;
2196 	t_key key = 0;
2197 	int err;
2198 
2199 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2200 		err = fib_leaf_notify(l, tb, nb, extack);
2201 		if (err)
2202 			return err;
2203 
2204 		key = l->key + 1;
2205 		/* stop in case of wrap around */
2206 		if (key < l->key)
2207 			break;
2208 	}
2209 	return 0;
2210 }
2211 
2212 int fib_notify(struct net *net, struct notifier_block *nb,
2213 	       struct netlink_ext_ack *extack)
2214 {
2215 	unsigned int h;
2216 	int err;
2217 
2218 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2219 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2220 		struct fib_table *tb;
2221 
2222 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2223 			err = fib_table_notify(tb, nb, extack);
2224 			if (err)
2225 				return err;
2226 		}
2227 	}
2228 	return 0;
2229 }
2230 
2231 static void __trie_free_rcu(struct rcu_head *head)
2232 {
2233 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2234 #ifdef CONFIG_IP_FIB_TRIE_STATS
2235 	struct trie *t = (struct trie *)tb->tb_data;
2236 
2237 	if (tb->tb_data == tb->__data)
2238 		free_percpu(t->stats);
2239 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2240 	kfree(tb);
2241 }
2242 
2243 void fib_free_table(struct fib_table *tb)
2244 {
2245 	call_rcu(&tb->rcu, __trie_free_rcu);
2246 }
2247 
2248 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2249 			     struct sk_buff *skb, struct netlink_callback *cb,
2250 			     struct fib_dump_filter *filter)
2251 {
2252 	unsigned int flags = NLM_F_MULTI;
2253 	__be32 xkey = htonl(l->key);
2254 	int i, s_i, i_fa, s_fa, err;
2255 	struct fib_alias *fa;
2256 
2257 	if (filter->filter_set ||
2258 	    !filter->dump_exceptions || !filter->dump_routes)
2259 		flags |= NLM_F_DUMP_FILTERED;
2260 
2261 	s_i = cb->args[4];
2262 	s_fa = cb->args[5];
2263 	i = 0;
2264 
2265 	/* rcu_read_lock is hold by caller */
2266 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2267 		struct fib_info *fi = fa->fa_info;
2268 
2269 		if (i < s_i)
2270 			goto next;
2271 
2272 		i_fa = 0;
2273 
2274 		if (tb->tb_id != fa->tb_id)
2275 			goto next;
2276 
2277 		if (filter->filter_set) {
2278 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2279 				goto next;
2280 
2281 			if ((filter->protocol &&
2282 			     fi->fib_protocol != filter->protocol))
2283 				goto next;
2284 
2285 			if (filter->dev &&
2286 			    !fib_info_nh_uses_dev(fi, filter->dev))
2287 				goto next;
2288 		}
2289 
2290 		if (filter->dump_routes) {
2291 			if (!s_fa) {
2292 				struct fib_rt_info fri;
2293 
2294 				fri.fi = fi;
2295 				fri.tb_id = tb->tb_id;
2296 				fri.dst = xkey;
2297 				fri.dst_len = KEYLENGTH - fa->fa_slen;
2298 				fri.tos = fa->fa_tos;
2299 				fri.type = fa->fa_type;
2300 				fri.offload = fa->offload;
2301 				fri.trap = fa->trap;
2302 				fri.offload_failed = fa->offload_failed;
2303 				err = fib_dump_info(skb,
2304 						    NETLINK_CB(cb->skb).portid,
2305 						    cb->nlh->nlmsg_seq,
2306 						    RTM_NEWROUTE, &fri, flags);
2307 				if (err < 0)
2308 					goto stop;
2309 			}
2310 
2311 			i_fa++;
2312 		}
2313 
2314 		if (filter->dump_exceptions) {
2315 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2316 						 &i_fa, s_fa, flags);
2317 			if (err < 0)
2318 				goto stop;
2319 		}
2320 
2321 next:
2322 		i++;
2323 	}
2324 
2325 	cb->args[4] = i;
2326 	return skb->len;
2327 
2328 stop:
2329 	cb->args[4] = i;
2330 	cb->args[5] = i_fa;
2331 	return err;
2332 }
2333 
2334 /* rcu_read_lock needs to be hold by caller from readside */
2335 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2336 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2337 {
2338 	struct trie *t = (struct trie *)tb->tb_data;
2339 	struct key_vector *l, *tp = t->kv;
2340 	/* Dump starting at last key.
2341 	 * Note: 0.0.0.0/0 (ie default) is first key.
2342 	 */
2343 	int count = cb->args[2];
2344 	t_key key = cb->args[3];
2345 
2346 	/* First time here, count and key are both always 0. Count > 0
2347 	 * and key == 0 means the dump has wrapped around and we are done.
2348 	 */
2349 	if (count && !key)
2350 		return skb->len;
2351 
2352 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2353 		int err;
2354 
2355 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2356 		if (err < 0) {
2357 			cb->args[3] = key;
2358 			cb->args[2] = count;
2359 			return err;
2360 		}
2361 
2362 		++count;
2363 		key = l->key + 1;
2364 
2365 		memset(&cb->args[4], 0,
2366 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2367 
2368 		/* stop loop if key wrapped back to 0 */
2369 		if (key < l->key)
2370 			break;
2371 	}
2372 
2373 	cb->args[3] = key;
2374 	cb->args[2] = count;
2375 
2376 	return skb->len;
2377 }
2378 
2379 void __init fib_trie_init(void)
2380 {
2381 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2382 					  sizeof(struct fib_alias),
2383 					  0, SLAB_PANIC, NULL);
2384 
2385 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2386 					   LEAF_SIZE,
2387 					   0, SLAB_PANIC, NULL);
2388 }
2389 
2390 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2391 {
2392 	struct fib_table *tb;
2393 	struct trie *t;
2394 	size_t sz = sizeof(*tb);
2395 
2396 	if (!alias)
2397 		sz += sizeof(struct trie);
2398 
2399 	tb = kzalloc(sz, GFP_KERNEL);
2400 	if (!tb)
2401 		return NULL;
2402 
2403 	tb->tb_id = id;
2404 	tb->tb_num_default = 0;
2405 	tb->tb_data = (alias ? alias->__data : tb->__data);
2406 
2407 	if (alias)
2408 		return tb;
2409 
2410 	t = (struct trie *) tb->tb_data;
2411 	t->kv[0].pos = KEYLENGTH;
2412 	t->kv[0].slen = KEYLENGTH;
2413 #ifdef CONFIG_IP_FIB_TRIE_STATS
2414 	t->stats = alloc_percpu(struct trie_use_stats);
2415 	if (!t->stats) {
2416 		kfree(tb);
2417 		tb = NULL;
2418 	}
2419 #endif
2420 
2421 	return tb;
2422 }
2423 
2424 #ifdef CONFIG_PROC_FS
2425 /* Depth first Trie walk iterator */
2426 struct fib_trie_iter {
2427 	struct seq_net_private p;
2428 	struct fib_table *tb;
2429 	struct key_vector *tnode;
2430 	unsigned int index;
2431 	unsigned int depth;
2432 };
2433 
2434 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2435 {
2436 	unsigned long cindex = iter->index;
2437 	struct key_vector *pn = iter->tnode;
2438 	t_key pkey;
2439 
2440 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2441 		 iter->tnode, iter->index, iter->depth);
2442 
2443 	while (!IS_TRIE(pn)) {
2444 		while (cindex < child_length(pn)) {
2445 			struct key_vector *n = get_child_rcu(pn, cindex++);
2446 
2447 			if (!n)
2448 				continue;
2449 
2450 			if (IS_LEAF(n)) {
2451 				iter->tnode = pn;
2452 				iter->index = cindex;
2453 			} else {
2454 				/* push down one level */
2455 				iter->tnode = n;
2456 				iter->index = 0;
2457 				++iter->depth;
2458 			}
2459 
2460 			return n;
2461 		}
2462 
2463 		/* Current node exhausted, pop back up */
2464 		pkey = pn->key;
2465 		pn = node_parent_rcu(pn);
2466 		cindex = get_index(pkey, pn) + 1;
2467 		--iter->depth;
2468 	}
2469 
2470 	/* record root node so further searches know we are done */
2471 	iter->tnode = pn;
2472 	iter->index = 0;
2473 
2474 	return NULL;
2475 }
2476 
2477 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2478 					     struct trie *t)
2479 {
2480 	struct key_vector *n, *pn;
2481 
2482 	if (!t)
2483 		return NULL;
2484 
2485 	pn = t->kv;
2486 	n = rcu_dereference(pn->tnode[0]);
2487 	if (!n)
2488 		return NULL;
2489 
2490 	if (IS_TNODE(n)) {
2491 		iter->tnode = n;
2492 		iter->index = 0;
2493 		iter->depth = 1;
2494 	} else {
2495 		iter->tnode = pn;
2496 		iter->index = 0;
2497 		iter->depth = 0;
2498 	}
2499 
2500 	return n;
2501 }
2502 
2503 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2504 {
2505 	struct key_vector *n;
2506 	struct fib_trie_iter iter;
2507 
2508 	memset(s, 0, sizeof(*s));
2509 
2510 	rcu_read_lock();
2511 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2512 		if (IS_LEAF(n)) {
2513 			struct fib_alias *fa;
2514 
2515 			s->leaves++;
2516 			s->totdepth += iter.depth;
2517 			if (iter.depth > s->maxdepth)
2518 				s->maxdepth = iter.depth;
2519 
2520 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2521 				++s->prefixes;
2522 		} else {
2523 			s->tnodes++;
2524 			if (n->bits < MAX_STAT_DEPTH)
2525 				s->nodesizes[n->bits]++;
2526 			s->nullpointers += tn_info(n)->empty_children;
2527 		}
2528 	}
2529 	rcu_read_unlock();
2530 }
2531 
2532 /*
2533  *	This outputs /proc/net/fib_triestats
2534  */
2535 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2536 {
2537 	unsigned int i, max, pointers, bytes, avdepth;
2538 
2539 	if (stat->leaves)
2540 		avdepth = stat->totdepth*100 / stat->leaves;
2541 	else
2542 		avdepth = 0;
2543 
2544 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2545 		   avdepth / 100, avdepth % 100);
2546 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2547 
2548 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2549 	bytes = LEAF_SIZE * stat->leaves;
2550 
2551 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2552 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2553 
2554 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2555 	bytes += TNODE_SIZE(0) * stat->tnodes;
2556 
2557 	max = MAX_STAT_DEPTH;
2558 	while (max > 0 && stat->nodesizes[max-1] == 0)
2559 		max--;
2560 
2561 	pointers = 0;
2562 	for (i = 1; i < max; i++)
2563 		if (stat->nodesizes[i] != 0) {
2564 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2565 			pointers += (1<<i) * stat->nodesizes[i];
2566 		}
2567 	seq_putc(seq, '\n');
2568 	seq_printf(seq, "\tPointers: %u\n", pointers);
2569 
2570 	bytes += sizeof(struct key_vector *) * pointers;
2571 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2572 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2573 }
2574 
2575 #ifdef CONFIG_IP_FIB_TRIE_STATS
2576 static void trie_show_usage(struct seq_file *seq,
2577 			    const struct trie_use_stats __percpu *stats)
2578 {
2579 	struct trie_use_stats s = { 0 };
2580 	int cpu;
2581 
2582 	/* loop through all of the CPUs and gather up the stats */
2583 	for_each_possible_cpu(cpu) {
2584 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2585 
2586 		s.gets += pcpu->gets;
2587 		s.backtrack += pcpu->backtrack;
2588 		s.semantic_match_passed += pcpu->semantic_match_passed;
2589 		s.semantic_match_miss += pcpu->semantic_match_miss;
2590 		s.null_node_hit += pcpu->null_node_hit;
2591 		s.resize_node_skipped += pcpu->resize_node_skipped;
2592 	}
2593 
2594 	seq_printf(seq, "\nCounters:\n---------\n");
2595 	seq_printf(seq, "gets = %u\n", s.gets);
2596 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2597 	seq_printf(seq, "semantic match passed = %u\n",
2598 		   s.semantic_match_passed);
2599 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2600 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2601 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2602 }
2603 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2604 
2605 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2606 {
2607 	if (tb->tb_id == RT_TABLE_LOCAL)
2608 		seq_puts(seq, "Local:\n");
2609 	else if (tb->tb_id == RT_TABLE_MAIN)
2610 		seq_puts(seq, "Main:\n");
2611 	else
2612 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2613 }
2614 
2615 
2616 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2617 {
2618 	struct net *net = (struct net *)seq->private;
2619 	unsigned int h;
2620 
2621 	seq_printf(seq,
2622 		   "Basic info: size of leaf:"
2623 		   " %zd bytes, size of tnode: %zd bytes.\n",
2624 		   LEAF_SIZE, TNODE_SIZE(0));
2625 
2626 	rcu_read_lock();
2627 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2628 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2629 		struct fib_table *tb;
2630 
2631 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2632 			struct trie *t = (struct trie *) tb->tb_data;
2633 			struct trie_stat stat;
2634 
2635 			if (!t)
2636 				continue;
2637 
2638 			fib_table_print(seq, tb);
2639 
2640 			trie_collect_stats(t, &stat);
2641 			trie_show_stats(seq, &stat);
2642 #ifdef CONFIG_IP_FIB_TRIE_STATS
2643 			trie_show_usage(seq, t->stats);
2644 #endif
2645 		}
2646 		cond_resched_rcu();
2647 	}
2648 	rcu_read_unlock();
2649 
2650 	return 0;
2651 }
2652 
2653 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2654 {
2655 	struct fib_trie_iter *iter = seq->private;
2656 	struct net *net = seq_file_net(seq);
2657 	loff_t idx = 0;
2658 	unsigned int h;
2659 
2660 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2661 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2662 		struct fib_table *tb;
2663 
2664 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2665 			struct key_vector *n;
2666 
2667 			for (n = fib_trie_get_first(iter,
2668 						    (struct trie *) tb->tb_data);
2669 			     n; n = fib_trie_get_next(iter))
2670 				if (pos == idx++) {
2671 					iter->tb = tb;
2672 					return n;
2673 				}
2674 		}
2675 	}
2676 
2677 	return NULL;
2678 }
2679 
2680 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2681 	__acquires(RCU)
2682 {
2683 	rcu_read_lock();
2684 	return fib_trie_get_idx(seq, *pos);
2685 }
2686 
2687 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688 {
2689 	struct fib_trie_iter *iter = seq->private;
2690 	struct net *net = seq_file_net(seq);
2691 	struct fib_table *tb = iter->tb;
2692 	struct hlist_node *tb_node;
2693 	unsigned int h;
2694 	struct key_vector *n;
2695 
2696 	++*pos;
2697 	/* next node in same table */
2698 	n = fib_trie_get_next(iter);
2699 	if (n)
2700 		return n;
2701 
2702 	/* walk rest of this hash chain */
2703 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2704 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2705 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2706 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2707 		if (n)
2708 			goto found;
2709 	}
2710 
2711 	/* new hash chain */
2712 	while (++h < FIB_TABLE_HASHSZ) {
2713 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2714 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2715 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2716 			if (n)
2717 				goto found;
2718 		}
2719 	}
2720 	return NULL;
2721 
2722 found:
2723 	iter->tb = tb;
2724 	return n;
2725 }
2726 
2727 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2728 	__releases(RCU)
2729 {
2730 	rcu_read_unlock();
2731 }
2732 
2733 static void seq_indent(struct seq_file *seq, int n)
2734 {
2735 	while (n-- > 0)
2736 		seq_puts(seq, "   ");
2737 }
2738 
2739 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2740 {
2741 	switch (s) {
2742 	case RT_SCOPE_UNIVERSE: return "universe";
2743 	case RT_SCOPE_SITE:	return "site";
2744 	case RT_SCOPE_LINK:	return "link";
2745 	case RT_SCOPE_HOST:	return "host";
2746 	case RT_SCOPE_NOWHERE:	return "nowhere";
2747 	default:
2748 		snprintf(buf, len, "scope=%d", s);
2749 		return buf;
2750 	}
2751 }
2752 
2753 static const char *const rtn_type_names[__RTN_MAX] = {
2754 	[RTN_UNSPEC] = "UNSPEC",
2755 	[RTN_UNICAST] = "UNICAST",
2756 	[RTN_LOCAL] = "LOCAL",
2757 	[RTN_BROADCAST] = "BROADCAST",
2758 	[RTN_ANYCAST] = "ANYCAST",
2759 	[RTN_MULTICAST] = "MULTICAST",
2760 	[RTN_BLACKHOLE] = "BLACKHOLE",
2761 	[RTN_UNREACHABLE] = "UNREACHABLE",
2762 	[RTN_PROHIBIT] = "PROHIBIT",
2763 	[RTN_THROW] = "THROW",
2764 	[RTN_NAT] = "NAT",
2765 	[RTN_XRESOLVE] = "XRESOLVE",
2766 };
2767 
2768 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2769 {
2770 	if (t < __RTN_MAX && rtn_type_names[t])
2771 		return rtn_type_names[t];
2772 	snprintf(buf, len, "type %u", t);
2773 	return buf;
2774 }
2775 
2776 /* Pretty print the trie */
2777 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2778 {
2779 	const struct fib_trie_iter *iter = seq->private;
2780 	struct key_vector *n = v;
2781 
2782 	if (IS_TRIE(node_parent_rcu(n)))
2783 		fib_table_print(seq, iter->tb);
2784 
2785 	if (IS_TNODE(n)) {
2786 		__be32 prf = htonl(n->key);
2787 
2788 		seq_indent(seq, iter->depth-1);
2789 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2790 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2791 			   tn_info(n)->full_children,
2792 			   tn_info(n)->empty_children);
2793 	} else {
2794 		__be32 val = htonl(n->key);
2795 		struct fib_alias *fa;
2796 
2797 		seq_indent(seq, iter->depth);
2798 		seq_printf(seq, "  |-- %pI4\n", &val);
2799 
2800 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2801 			char buf1[32], buf2[32];
2802 
2803 			seq_indent(seq, iter->depth + 1);
2804 			seq_printf(seq, "  /%zu %s %s",
2805 				   KEYLENGTH - fa->fa_slen,
2806 				   rtn_scope(buf1, sizeof(buf1),
2807 					     fa->fa_info->fib_scope),
2808 				   rtn_type(buf2, sizeof(buf2),
2809 					    fa->fa_type));
2810 			if (fa->fa_tos)
2811 				seq_printf(seq, " tos=%d", fa->fa_tos);
2812 			seq_putc(seq, '\n');
2813 		}
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static const struct seq_operations fib_trie_seq_ops = {
2820 	.start  = fib_trie_seq_start,
2821 	.next   = fib_trie_seq_next,
2822 	.stop   = fib_trie_seq_stop,
2823 	.show   = fib_trie_seq_show,
2824 };
2825 
2826 struct fib_route_iter {
2827 	struct seq_net_private p;
2828 	struct fib_table *main_tb;
2829 	struct key_vector *tnode;
2830 	loff_t	pos;
2831 	t_key	key;
2832 };
2833 
2834 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835 					    loff_t pos)
2836 {
2837 	struct key_vector *l, **tp = &iter->tnode;
2838 	t_key key;
2839 
2840 	/* use cached location of previously found key */
2841 	if (iter->pos > 0 && pos >= iter->pos) {
2842 		key = iter->key;
2843 	} else {
2844 		iter->pos = 1;
2845 		key = 0;
2846 	}
2847 
2848 	pos -= iter->pos;
2849 
2850 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851 		key = l->key + 1;
2852 		iter->pos++;
2853 		l = NULL;
2854 
2855 		/* handle unlikely case of a key wrap */
2856 		if (!key)
2857 			break;
2858 	}
2859 
2860 	if (l)
2861 		iter->key = l->key;	/* remember it */
2862 	else
2863 		iter->pos = 0;		/* forget it */
2864 
2865 	return l;
2866 }
2867 
2868 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869 	__acquires(RCU)
2870 {
2871 	struct fib_route_iter *iter = seq->private;
2872 	struct fib_table *tb;
2873 	struct trie *t;
2874 
2875 	rcu_read_lock();
2876 
2877 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878 	if (!tb)
2879 		return NULL;
2880 
2881 	iter->main_tb = tb;
2882 	t = (struct trie *)tb->tb_data;
2883 	iter->tnode = t->kv;
2884 
2885 	if (*pos != 0)
2886 		return fib_route_get_idx(iter, *pos);
2887 
2888 	iter->pos = 0;
2889 	iter->key = KEY_MAX;
2890 
2891 	return SEQ_START_TOKEN;
2892 }
2893 
2894 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895 {
2896 	struct fib_route_iter *iter = seq->private;
2897 	struct key_vector *l = NULL;
2898 	t_key key = iter->key + 1;
2899 
2900 	++*pos;
2901 
2902 	/* only allow key of 0 for start of sequence */
2903 	if ((v == SEQ_START_TOKEN) || key)
2904 		l = leaf_walk_rcu(&iter->tnode, key);
2905 
2906 	if (l) {
2907 		iter->key = l->key;
2908 		iter->pos++;
2909 	} else {
2910 		iter->pos = 0;
2911 	}
2912 
2913 	return l;
2914 }
2915 
2916 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917 	__releases(RCU)
2918 {
2919 	rcu_read_unlock();
2920 }
2921 
2922 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923 {
2924 	unsigned int flags = 0;
2925 
2926 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927 		flags = RTF_REJECT;
2928 	if (fi) {
2929 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930 
2931 		if (nhc->nhc_gw.ipv4)
2932 			flags |= RTF_GATEWAY;
2933 	}
2934 	if (mask == htonl(0xFFFFFFFF))
2935 		flags |= RTF_HOST;
2936 	flags |= RTF_UP;
2937 	return flags;
2938 }
2939 
2940 /*
2941  *	This outputs /proc/net/route.
2942  *	The format of the file is not supposed to be changed
2943  *	and needs to be same as fib_hash output to avoid breaking
2944  *	legacy utilities
2945  */
2946 static int fib_route_seq_show(struct seq_file *seq, void *v)
2947 {
2948 	struct fib_route_iter *iter = seq->private;
2949 	struct fib_table *tb = iter->main_tb;
2950 	struct fib_alias *fa;
2951 	struct key_vector *l = v;
2952 	__be32 prefix;
2953 
2954 	if (v == SEQ_START_TOKEN) {
2955 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957 			   "\tWindow\tIRTT");
2958 		return 0;
2959 	}
2960 
2961 	prefix = htonl(l->key);
2962 
2963 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964 		struct fib_info *fi = fa->fa_info;
2965 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967 
2968 		if ((fa->fa_type == RTN_BROADCAST) ||
2969 		    (fa->fa_type == RTN_MULTICAST))
2970 			continue;
2971 
2972 		if (fa->tb_id != tb->tb_id)
2973 			continue;
2974 
2975 		seq_setwidth(seq, 127);
2976 
2977 		if (fi) {
2978 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979 			__be32 gw = 0;
2980 
2981 			if (nhc->nhc_gw_family == AF_INET)
2982 				gw = nhc->nhc_gw.ipv4;
2983 
2984 			seq_printf(seq,
2985 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986 				   "%d\t%08X\t%d\t%u\t%u",
2987 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988 				   prefix, gw, flags, 0, 0,
2989 				   fi->fib_priority,
2990 				   mask,
2991 				   (fi->fib_advmss ?
2992 				    fi->fib_advmss + 40 : 0),
2993 				   fi->fib_window,
2994 				   fi->fib_rtt >> 3);
2995 		} else {
2996 			seq_printf(seq,
2997 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998 				   "%d\t%08X\t%d\t%u\t%u",
2999 				   prefix, 0, flags, 0, 0, 0,
3000 				   mask, 0, 0, 0);
3001 		}
3002 		seq_pad(seq, '\n');
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 static const struct seq_operations fib_route_seq_ops = {
3009 	.start  = fib_route_seq_start,
3010 	.next   = fib_route_seq_next,
3011 	.stop   = fib_route_seq_stop,
3012 	.show   = fib_route_seq_show,
3013 };
3014 
3015 int __net_init fib_proc_init(struct net *net)
3016 {
3017 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018 			sizeof(struct fib_trie_iter)))
3019 		goto out1;
3020 
3021 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022 			fib_triestat_seq_show, NULL))
3023 		goto out2;
3024 
3025 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026 			sizeof(struct fib_route_iter)))
3027 		goto out3;
3028 
3029 	return 0;
3030 
3031 out3:
3032 	remove_proc_entry("fib_triestat", net->proc_net);
3033 out2:
3034 	remove_proc_entry("fib_trie", net->proc_net);
3035 out1:
3036 	return -ENOMEM;
3037 }
3038 
3039 void __net_exit fib_proc_exit(struct net *net)
3040 {
3041 	remove_proc_entry("fib_trie", net->proc_net);
3042 	remove_proc_entry("fib_triestat", net->proc_net);
3043 	remove_proc_entry("route", net->proc_net);
3044 }
3045 
3046 #endif /* CONFIG_PROC_FS */
3047