1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <net/fib_notifier.h> 85 #include <trace/events/fib.h> 86 #include "fib_lookup.h" 87 88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 89 enum fib_event_type event_type, u32 dst, 90 int dst_len, struct fib_alias *fa) 91 { 92 struct fib_entry_notifier_info info = { 93 .dst = dst, 94 .dst_len = dst_len, 95 .fi = fa->fa_info, 96 .tos = fa->fa_tos, 97 .type = fa->fa_type, 98 .tb_id = fa->tb_id, 99 }; 100 return call_fib4_notifier(nb, net, event_type, &info.info); 101 } 102 103 static int call_fib_entry_notifiers(struct net *net, 104 enum fib_event_type event_type, u32 dst, 105 int dst_len, struct fib_alias *fa, 106 struct netlink_ext_ack *extack) 107 { 108 struct fib_entry_notifier_info info = { 109 .info.extack = extack, 110 .dst = dst, 111 .dst_len = dst_len, 112 .fi = fa->fa_info, 113 .tos = fa->fa_tos, 114 .type = fa->fa_type, 115 .tb_id = fa->tb_id, 116 }; 117 return call_fib4_notifiers(net, event_type, &info.info); 118 } 119 120 #define MAX_STAT_DEPTH 32 121 122 #define KEYLENGTH (8*sizeof(t_key)) 123 #define KEY_MAX ((t_key)~0) 124 125 typedef unsigned int t_key; 126 127 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 128 #define IS_TNODE(n) ((n)->bits) 129 #define IS_LEAF(n) (!(n)->bits) 130 131 struct key_vector { 132 t_key key; 133 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 134 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 135 unsigned char slen; 136 union { 137 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 138 struct hlist_head leaf; 139 /* This array is valid if (pos | bits) > 0 (TNODE) */ 140 struct key_vector __rcu *tnode[0]; 141 }; 142 }; 143 144 struct tnode { 145 struct rcu_head rcu; 146 t_key empty_children; /* KEYLENGTH bits needed */ 147 t_key full_children; /* KEYLENGTH bits needed */ 148 struct key_vector __rcu *parent; 149 struct key_vector kv[1]; 150 #define tn_bits kv[0].bits 151 }; 152 153 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 154 #define LEAF_SIZE TNODE_SIZE(1) 155 156 #ifdef CONFIG_IP_FIB_TRIE_STATS 157 struct trie_use_stats { 158 unsigned int gets; 159 unsigned int backtrack; 160 unsigned int semantic_match_passed; 161 unsigned int semantic_match_miss; 162 unsigned int null_node_hit; 163 unsigned int resize_node_skipped; 164 }; 165 #endif 166 167 struct trie_stat { 168 unsigned int totdepth; 169 unsigned int maxdepth; 170 unsigned int tnodes; 171 unsigned int leaves; 172 unsigned int nullpointers; 173 unsigned int prefixes; 174 unsigned int nodesizes[MAX_STAT_DEPTH]; 175 }; 176 177 struct trie { 178 struct key_vector kv[1]; 179 #ifdef CONFIG_IP_FIB_TRIE_STATS 180 struct trie_use_stats __percpu *stats; 181 #endif 182 }; 183 184 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 185 static size_t tnode_free_size; 186 187 /* 188 * synchronize_rcu after call_rcu for that many pages; it should be especially 189 * useful before resizing the root node with PREEMPT_NONE configs; the value was 190 * obtained experimentally, aiming to avoid visible slowdown. 191 */ 192 static const int sync_pages = 128; 193 194 static struct kmem_cache *fn_alias_kmem __read_mostly; 195 static struct kmem_cache *trie_leaf_kmem __read_mostly; 196 197 static inline struct tnode *tn_info(struct key_vector *kv) 198 { 199 return container_of(kv, struct tnode, kv[0]); 200 } 201 202 /* caller must hold RTNL */ 203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 205 206 /* caller must hold RCU read lock or RTNL */ 207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 209 210 /* wrapper for rcu_assign_pointer */ 211 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 212 { 213 if (n) 214 rcu_assign_pointer(tn_info(n)->parent, tp); 215 } 216 217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 218 219 /* This provides us with the number of children in this node, in the case of a 220 * leaf this will return 0 meaning none of the children are accessible. 221 */ 222 static inline unsigned long child_length(const struct key_vector *tn) 223 { 224 return (1ul << tn->bits) & ~(1ul); 225 } 226 227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 228 229 static inline unsigned long get_index(t_key key, struct key_vector *kv) 230 { 231 unsigned long index = key ^ kv->key; 232 233 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 234 return 0; 235 236 return index >> kv->pos; 237 } 238 239 /* To understand this stuff, an understanding of keys and all their bits is 240 * necessary. Every node in the trie has a key associated with it, but not 241 * all of the bits in that key are significant. 242 * 243 * Consider a node 'n' and its parent 'tp'. 244 * 245 * If n is a leaf, every bit in its key is significant. Its presence is 246 * necessitated by path compression, since during a tree traversal (when 247 * searching for a leaf - unless we are doing an insertion) we will completely 248 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 249 * a potentially successful search, that we have indeed been walking the 250 * correct key path. 251 * 252 * Note that we can never "miss" the correct key in the tree if present by 253 * following the wrong path. Path compression ensures that segments of the key 254 * that are the same for all keys with a given prefix are skipped, but the 255 * skipped part *is* identical for each node in the subtrie below the skipped 256 * bit! trie_insert() in this implementation takes care of that. 257 * 258 * if n is an internal node - a 'tnode' here, the various parts of its key 259 * have many different meanings. 260 * 261 * Example: 262 * _________________________________________________________________ 263 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 264 * ----------------------------------------------------------------- 265 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 266 * 267 * _________________________________________________________________ 268 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 269 * ----------------------------------------------------------------- 270 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 271 * 272 * tp->pos = 22 273 * tp->bits = 3 274 * n->pos = 13 275 * n->bits = 4 276 * 277 * First, let's just ignore the bits that come before the parent tp, that is 278 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 279 * point we do not use them for anything. 280 * 281 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 282 * index into the parent's child array. That is, they will be used to find 283 * 'n' among tp's children. 284 * 285 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 286 * for the node n. 287 * 288 * All the bits we have seen so far are significant to the node n. The rest 289 * of the bits are really not needed or indeed known in n->key. 290 * 291 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 292 * n's child array, and will of course be different for each child. 293 * 294 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 295 * at this point. 296 */ 297 298 static const int halve_threshold = 25; 299 static const int inflate_threshold = 50; 300 static const int halve_threshold_root = 15; 301 static const int inflate_threshold_root = 30; 302 303 static void __alias_free_mem(struct rcu_head *head) 304 { 305 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 306 kmem_cache_free(fn_alias_kmem, fa); 307 } 308 309 static inline void alias_free_mem_rcu(struct fib_alias *fa) 310 { 311 call_rcu(&fa->rcu, __alias_free_mem); 312 } 313 314 #define TNODE_KMALLOC_MAX \ 315 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 316 #define TNODE_VMALLOC_MAX \ 317 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 318 319 static void __node_free_rcu(struct rcu_head *head) 320 { 321 struct tnode *n = container_of(head, struct tnode, rcu); 322 323 if (!n->tn_bits) 324 kmem_cache_free(trie_leaf_kmem, n); 325 else 326 kvfree(n); 327 } 328 329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 330 331 static struct tnode *tnode_alloc(int bits) 332 { 333 size_t size; 334 335 /* verify bits is within bounds */ 336 if (bits > TNODE_VMALLOC_MAX) 337 return NULL; 338 339 /* determine size and verify it is non-zero and didn't overflow */ 340 size = TNODE_SIZE(1ul << bits); 341 342 if (size <= PAGE_SIZE) 343 return kzalloc(size, GFP_KERNEL); 344 else 345 return vzalloc(size); 346 } 347 348 static inline void empty_child_inc(struct key_vector *n) 349 { 350 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 351 } 352 353 static inline void empty_child_dec(struct key_vector *n) 354 { 355 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 356 } 357 358 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 359 { 360 struct key_vector *l; 361 struct tnode *kv; 362 363 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 364 if (!kv) 365 return NULL; 366 367 /* initialize key vector */ 368 l = kv->kv; 369 l->key = key; 370 l->pos = 0; 371 l->bits = 0; 372 l->slen = fa->fa_slen; 373 374 /* link leaf to fib alias */ 375 INIT_HLIST_HEAD(&l->leaf); 376 hlist_add_head(&fa->fa_list, &l->leaf); 377 378 return l; 379 } 380 381 static struct key_vector *tnode_new(t_key key, int pos, int bits) 382 { 383 unsigned int shift = pos + bits; 384 struct key_vector *tn; 385 struct tnode *tnode; 386 387 /* verify bits and pos their msb bits clear and values are valid */ 388 BUG_ON(!bits || (shift > KEYLENGTH)); 389 390 tnode = tnode_alloc(bits); 391 if (!tnode) 392 return NULL; 393 394 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 395 sizeof(struct key_vector *) << bits); 396 397 if (bits == KEYLENGTH) 398 tnode->full_children = 1; 399 else 400 tnode->empty_children = 1ul << bits; 401 402 tn = tnode->kv; 403 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 404 tn->pos = pos; 405 tn->bits = bits; 406 tn->slen = pos; 407 408 return tn; 409 } 410 411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 412 * and no bits are skipped. See discussion in dyntree paper p. 6 413 */ 414 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 415 { 416 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 417 } 418 419 /* Add a child at position i overwriting the old value. 420 * Update the value of full_children and empty_children. 421 */ 422 static void put_child(struct key_vector *tn, unsigned long i, 423 struct key_vector *n) 424 { 425 struct key_vector *chi = get_child(tn, i); 426 int isfull, wasfull; 427 428 BUG_ON(i >= child_length(tn)); 429 430 /* update emptyChildren, overflow into fullChildren */ 431 if (!n && chi) 432 empty_child_inc(tn); 433 if (n && !chi) 434 empty_child_dec(tn); 435 436 /* update fullChildren */ 437 wasfull = tnode_full(tn, chi); 438 isfull = tnode_full(tn, n); 439 440 if (wasfull && !isfull) 441 tn_info(tn)->full_children--; 442 else if (!wasfull && isfull) 443 tn_info(tn)->full_children++; 444 445 if (n && (tn->slen < n->slen)) 446 tn->slen = n->slen; 447 448 rcu_assign_pointer(tn->tnode[i], n); 449 } 450 451 static void update_children(struct key_vector *tn) 452 { 453 unsigned long i; 454 455 /* update all of the child parent pointers */ 456 for (i = child_length(tn); i;) { 457 struct key_vector *inode = get_child(tn, --i); 458 459 if (!inode) 460 continue; 461 462 /* Either update the children of a tnode that 463 * already belongs to us or update the child 464 * to point to ourselves. 465 */ 466 if (node_parent(inode) == tn) 467 update_children(inode); 468 else 469 node_set_parent(inode, tn); 470 } 471 } 472 473 static inline void put_child_root(struct key_vector *tp, t_key key, 474 struct key_vector *n) 475 { 476 if (IS_TRIE(tp)) 477 rcu_assign_pointer(tp->tnode[0], n); 478 else 479 put_child(tp, get_index(key, tp), n); 480 } 481 482 static inline void tnode_free_init(struct key_vector *tn) 483 { 484 tn_info(tn)->rcu.next = NULL; 485 } 486 487 static inline void tnode_free_append(struct key_vector *tn, 488 struct key_vector *n) 489 { 490 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 491 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 492 } 493 494 static void tnode_free(struct key_vector *tn) 495 { 496 struct callback_head *head = &tn_info(tn)->rcu; 497 498 while (head) { 499 head = head->next; 500 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 501 node_free(tn); 502 503 tn = container_of(head, struct tnode, rcu)->kv; 504 } 505 506 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 507 tnode_free_size = 0; 508 synchronize_rcu(); 509 } 510 } 511 512 static struct key_vector *replace(struct trie *t, 513 struct key_vector *oldtnode, 514 struct key_vector *tn) 515 { 516 struct key_vector *tp = node_parent(oldtnode); 517 unsigned long i; 518 519 /* setup the parent pointer out of and back into this node */ 520 NODE_INIT_PARENT(tn, tp); 521 put_child_root(tp, tn->key, tn); 522 523 /* update all of the child parent pointers */ 524 update_children(tn); 525 526 /* all pointers should be clean so we are done */ 527 tnode_free(oldtnode); 528 529 /* resize children now that oldtnode is freed */ 530 for (i = child_length(tn); i;) { 531 struct key_vector *inode = get_child(tn, --i); 532 533 /* resize child node */ 534 if (tnode_full(tn, inode)) 535 tn = resize(t, inode); 536 } 537 538 return tp; 539 } 540 541 static struct key_vector *inflate(struct trie *t, 542 struct key_vector *oldtnode) 543 { 544 struct key_vector *tn; 545 unsigned long i; 546 t_key m; 547 548 pr_debug("In inflate\n"); 549 550 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 551 if (!tn) 552 goto notnode; 553 554 /* prepare oldtnode to be freed */ 555 tnode_free_init(oldtnode); 556 557 /* Assemble all of the pointers in our cluster, in this case that 558 * represents all of the pointers out of our allocated nodes that 559 * point to existing tnodes and the links between our allocated 560 * nodes. 561 */ 562 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 563 struct key_vector *inode = get_child(oldtnode, --i); 564 struct key_vector *node0, *node1; 565 unsigned long j, k; 566 567 /* An empty child */ 568 if (!inode) 569 continue; 570 571 /* A leaf or an internal node with skipped bits */ 572 if (!tnode_full(oldtnode, inode)) { 573 put_child(tn, get_index(inode->key, tn), inode); 574 continue; 575 } 576 577 /* drop the node in the old tnode free list */ 578 tnode_free_append(oldtnode, inode); 579 580 /* An internal node with two children */ 581 if (inode->bits == 1) { 582 put_child(tn, 2 * i + 1, get_child(inode, 1)); 583 put_child(tn, 2 * i, get_child(inode, 0)); 584 continue; 585 } 586 587 /* We will replace this node 'inode' with two new 588 * ones, 'node0' and 'node1', each with half of the 589 * original children. The two new nodes will have 590 * a position one bit further down the key and this 591 * means that the "significant" part of their keys 592 * (see the discussion near the top of this file) 593 * will differ by one bit, which will be "0" in 594 * node0's key and "1" in node1's key. Since we are 595 * moving the key position by one step, the bit that 596 * we are moving away from - the bit at position 597 * (tn->pos) - is the one that will differ between 598 * node0 and node1. So... we synthesize that bit in the 599 * two new keys. 600 */ 601 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 602 if (!node1) 603 goto nomem; 604 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 605 606 tnode_free_append(tn, node1); 607 if (!node0) 608 goto nomem; 609 tnode_free_append(tn, node0); 610 611 /* populate child pointers in new nodes */ 612 for (k = child_length(inode), j = k / 2; j;) { 613 put_child(node1, --j, get_child(inode, --k)); 614 put_child(node0, j, get_child(inode, j)); 615 put_child(node1, --j, get_child(inode, --k)); 616 put_child(node0, j, get_child(inode, j)); 617 } 618 619 /* link new nodes to parent */ 620 NODE_INIT_PARENT(node1, tn); 621 NODE_INIT_PARENT(node0, tn); 622 623 /* link parent to nodes */ 624 put_child(tn, 2 * i + 1, node1); 625 put_child(tn, 2 * i, node0); 626 } 627 628 /* setup the parent pointers into and out of this node */ 629 return replace(t, oldtnode, tn); 630 nomem: 631 /* all pointers should be clean so we are done */ 632 tnode_free(tn); 633 notnode: 634 return NULL; 635 } 636 637 static struct key_vector *halve(struct trie *t, 638 struct key_vector *oldtnode) 639 { 640 struct key_vector *tn; 641 unsigned long i; 642 643 pr_debug("In halve\n"); 644 645 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 646 if (!tn) 647 goto notnode; 648 649 /* prepare oldtnode to be freed */ 650 tnode_free_init(oldtnode); 651 652 /* Assemble all of the pointers in our cluster, in this case that 653 * represents all of the pointers out of our allocated nodes that 654 * point to existing tnodes and the links between our allocated 655 * nodes. 656 */ 657 for (i = child_length(oldtnode); i;) { 658 struct key_vector *node1 = get_child(oldtnode, --i); 659 struct key_vector *node0 = get_child(oldtnode, --i); 660 struct key_vector *inode; 661 662 /* At least one of the children is empty */ 663 if (!node1 || !node0) { 664 put_child(tn, i / 2, node1 ? : node0); 665 continue; 666 } 667 668 /* Two nonempty children */ 669 inode = tnode_new(node0->key, oldtnode->pos, 1); 670 if (!inode) 671 goto nomem; 672 tnode_free_append(tn, inode); 673 674 /* initialize pointers out of node */ 675 put_child(inode, 1, node1); 676 put_child(inode, 0, node0); 677 NODE_INIT_PARENT(inode, tn); 678 679 /* link parent to node */ 680 put_child(tn, i / 2, inode); 681 } 682 683 /* setup the parent pointers into and out of this node */ 684 return replace(t, oldtnode, tn); 685 nomem: 686 /* all pointers should be clean so we are done */ 687 tnode_free(tn); 688 notnode: 689 return NULL; 690 } 691 692 static struct key_vector *collapse(struct trie *t, 693 struct key_vector *oldtnode) 694 { 695 struct key_vector *n, *tp; 696 unsigned long i; 697 698 /* scan the tnode looking for that one child that might still exist */ 699 for (n = NULL, i = child_length(oldtnode); !n && i;) 700 n = get_child(oldtnode, --i); 701 702 /* compress one level */ 703 tp = node_parent(oldtnode); 704 put_child_root(tp, oldtnode->key, n); 705 node_set_parent(n, tp); 706 707 /* drop dead node */ 708 node_free(oldtnode); 709 710 return tp; 711 } 712 713 static unsigned char update_suffix(struct key_vector *tn) 714 { 715 unsigned char slen = tn->pos; 716 unsigned long stride, i; 717 unsigned char slen_max; 718 719 /* only vector 0 can have a suffix length greater than or equal to 720 * tn->pos + tn->bits, the second highest node will have a suffix 721 * length at most of tn->pos + tn->bits - 1 722 */ 723 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 724 725 /* search though the list of children looking for nodes that might 726 * have a suffix greater than the one we currently have. This is 727 * why we start with a stride of 2 since a stride of 1 would 728 * represent the nodes with suffix length equal to tn->pos 729 */ 730 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 731 struct key_vector *n = get_child(tn, i); 732 733 if (!n || (n->slen <= slen)) 734 continue; 735 736 /* update stride and slen based on new value */ 737 stride <<= (n->slen - slen); 738 slen = n->slen; 739 i &= ~(stride - 1); 740 741 /* stop searching if we have hit the maximum possible value */ 742 if (slen >= slen_max) 743 break; 744 } 745 746 tn->slen = slen; 747 748 return slen; 749 } 750 751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 752 * the Helsinki University of Technology and Matti Tikkanen of Nokia 753 * Telecommunications, page 6: 754 * "A node is doubled if the ratio of non-empty children to all 755 * children in the *doubled* node is at least 'high'." 756 * 757 * 'high' in this instance is the variable 'inflate_threshold'. It 758 * is expressed as a percentage, so we multiply it with 759 * child_length() and instead of multiplying by 2 (since the 760 * child array will be doubled by inflate()) and multiplying 761 * the left-hand side by 100 (to handle the percentage thing) we 762 * multiply the left-hand side by 50. 763 * 764 * The left-hand side may look a bit weird: child_length(tn) 765 * - tn->empty_children is of course the number of non-null children 766 * in the current node. tn->full_children is the number of "full" 767 * children, that is non-null tnodes with a skip value of 0. 768 * All of those will be doubled in the resulting inflated tnode, so 769 * we just count them one extra time here. 770 * 771 * A clearer way to write this would be: 772 * 773 * to_be_doubled = tn->full_children; 774 * not_to_be_doubled = child_length(tn) - tn->empty_children - 775 * tn->full_children; 776 * 777 * new_child_length = child_length(tn) * 2; 778 * 779 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 780 * new_child_length; 781 * if (new_fill_factor >= inflate_threshold) 782 * 783 * ...and so on, tho it would mess up the while () loop. 784 * 785 * anyway, 786 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 787 * inflate_threshold 788 * 789 * avoid a division: 790 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 791 * inflate_threshold * new_child_length 792 * 793 * expand not_to_be_doubled and to_be_doubled, and shorten: 794 * 100 * (child_length(tn) - tn->empty_children + 795 * tn->full_children) >= inflate_threshold * new_child_length 796 * 797 * expand new_child_length: 798 * 100 * (child_length(tn) - tn->empty_children + 799 * tn->full_children) >= 800 * inflate_threshold * child_length(tn) * 2 801 * 802 * shorten again: 803 * 50 * (tn->full_children + child_length(tn) - 804 * tn->empty_children) >= inflate_threshold * 805 * child_length(tn) 806 * 807 */ 808 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 809 { 810 unsigned long used = child_length(tn); 811 unsigned long threshold = used; 812 813 /* Keep root node larger */ 814 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 815 used -= tn_info(tn)->empty_children; 816 used += tn_info(tn)->full_children; 817 818 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 819 820 return (used > 1) && tn->pos && ((50 * used) >= threshold); 821 } 822 823 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 824 { 825 unsigned long used = child_length(tn); 826 unsigned long threshold = used; 827 828 /* Keep root node larger */ 829 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 830 used -= tn_info(tn)->empty_children; 831 832 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 833 834 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 835 } 836 837 static inline bool should_collapse(struct key_vector *tn) 838 { 839 unsigned long used = child_length(tn); 840 841 used -= tn_info(tn)->empty_children; 842 843 /* account for bits == KEYLENGTH case */ 844 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 845 used -= KEY_MAX; 846 847 /* One child or none, time to drop us from the trie */ 848 return used < 2; 849 } 850 851 #define MAX_WORK 10 852 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 853 { 854 #ifdef CONFIG_IP_FIB_TRIE_STATS 855 struct trie_use_stats __percpu *stats = t->stats; 856 #endif 857 struct key_vector *tp = node_parent(tn); 858 unsigned long cindex = get_index(tn->key, tp); 859 int max_work = MAX_WORK; 860 861 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 862 tn, inflate_threshold, halve_threshold); 863 864 /* track the tnode via the pointer from the parent instead of 865 * doing it ourselves. This way we can let RCU fully do its 866 * thing without us interfering 867 */ 868 BUG_ON(tn != get_child(tp, cindex)); 869 870 /* Double as long as the resulting node has a number of 871 * nonempty nodes that are above the threshold. 872 */ 873 while (should_inflate(tp, tn) && max_work) { 874 tp = inflate(t, tn); 875 if (!tp) { 876 #ifdef CONFIG_IP_FIB_TRIE_STATS 877 this_cpu_inc(stats->resize_node_skipped); 878 #endif 879 break; 880 } 881 882 max_work--; 883 tn = get_child(tp, cindex); 884 } 885 886 /* update parent in case inflate failed */ 887 tp = node_parent(tn); 888 889 /* Return if at least one inflate is run */ 890 if (max_work != MAX_WORK) 891 return tp; 892 893 /* Halve as long as the number of empty children in this 894 * node is above threshold. 895 */ 896 while (should_halve(tp, tn) && max_work) { 897 tp = halve(t, tn); 898 if (!tp) { 899 #ifdef CONFIG_IP_FIB_TRIE_STATS 900 this_cpu_inc(stats->resize_node_skipped); 901 #endif 902 break; 903 } 904 905 max_work--; 906 tn = get_child(tp, cindex); 907 } 908 909 /* Only one child remains */ 910 if (should_collapse(tn)) 911 return collapse(t, tn); 912 913 /* update parent in case halve failed */ 914 return node_parent(tn); 915 } 916 917 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 918 { 919 unsigned char node_slen = tn->slen; 920 921 while ((node_slen > tn->pos) && (node_slen > slen)) { 922 slen = update_suffix(tn); 923 if (node_slen == slen) 924 break; 925 926 tn = node_parent(tn); 927 node_slen = tn->slen; 928 } 929 } 930 931 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 932 { 933 while (tn->slen < slen) { 934 tn->slen = slen; 935 tn = node_parent(tn); 936 } 937 } 938 939 /* rcu_read_lock needs to be hold by caller from readside */ 940 static struct key_vector *fib_find_node(struct trie *t, 941 struct key_vector **tp, u32 key) 942 { 943 struct key_vector *pn, *n = t->kv; 944 unsigned long index = 0; 945 946 do { 947 pn = n; 948 n = get_child_rcu(n, index); 949 950 if (!n) 951 break; 952 953 index = get_cindex(key, n); 954 955 /* This bit of code is a bit tricky but it combines multiple 956 * checks into a single check. The prefix consists of the 957 * prefix plus zeros for the bits in the cindex. The index 958 * is the difference between the key and this value. From 959 * this we can actually derive several pieces of data. 960 * if (index >= (1ul << bits)) 961 * we have a mismatch in skip bits and failed 962 * else 963 * we know the value is cindex 964 * 965 * This check is safe even if bits == KEYLENGTH due to the 966 * fact that we can only allocate a node with 32 bits if a 967 * long is greater than 32 bits. 968 */ 969 if (index >= (1ul << n->bits)) { 970 n = NULL; 971 break; 972 } 973 974 /* keep searching until we find a perfect match leaf or NULL */ 975 } while (IS_TNODE(n)); 976 977 *tp = pn; 978 979 return n; 980 } 981 982 /* Return the first fib alias matching TOS with 983 * priority less than or equal to PRIO. 984 */ 985 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 986 u8 tos, u32 prio, u32 tb_id) 987 { 988 struct fib_alias *fa; 989 990 if (!fah) 991 return NULL; 992 993 hlist_for_each_entry(fa, fah, fa_list) { 994 if (fa->fa_slen < slen) 995 continue; 996 if (fa->fa_slen != slen) 997 break; 998 if (fa->tb_id > tb_id) 999 continue; 1000 if (fa->tb_id != tb_id) 1001 break; 1002 if (fa->fa_tos > tos) 1003 continue; 1004 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1005 return fa; 1006 } 1007 1008 return NULL; 1009 } 1010 1011 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1012 { 1013 while (!IS_TRIE(tn)) 1014 tn = resize(t, tn); 1015 } 1016 1017 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1018 struct fib_alias *new, t_key key) 1019 { 1020 struct key_vector *n, *l; 1021 1022 l = leaf_new(key, new); 1023 if (!l) 1024 goto noleaf; 1025 1026 /* retrieve child from parent node */ 1027 n = get_child(tp, get_index(key, tp)); 1028 1029 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1030 * 1031 * Add a new tnode here 1032 * first tnode need some special handling 1033 * leaves us in position for handling as case 3 1034 */ 1035 if (n) { 1036 struct key_vector *tn; 1037 1038 tn = tnode_new(key, __fls(key ^ n->key), 1); 1039 if (!tn) 1040 goto notnode; 1041 1042 /* initialize routes out of node */ 1043 NODE_INIT_PARENT(tn, tp); 1044 put_child(tn, get_index(key, tn) ^ 1, n); 1045 1046 /* start adding routes into the node */ 1047 put_child_root(tp, key, tn); 1048 node_set_parent(n, tn); 1049 1050 /* parent now has a NULL spot where the leaf can go */ 1051 tp = tn; 1052 } 1053 1054 /* Case 3: n is NULL, and will just insert a new leaf */ 1055 node_push_suffix(tp, new->fa_slen); 1056 NODE_INIT_PARENT(l, tp); 1057 put_child_root(tp, key, l); 1058 trie_rebalance(t, tp); 1059 1060 return 0; 1061 notnode: 1062 node_free(l); 1063 noleaf: 1064 return -ENOMEM; 1065 } 1066 1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1068 struct key_vector *l, struct fib_alias *new, 1069 struct fib_alias *fa, t_key key) 1070 { 1071 if (!l) 1072 return fib_insert_node(t, tp, new, key); 1073 1074 if (fa) { 1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1076 } else { 1077 struct fib_alias *last; 1078 1079 hlist_for_each_entry(last, &l->leaf, fa_list) { 1080 if (new->fa_slen < last->fa_slen) 1081 break; 1082 if ((new->fa_slen == last->fa_slen) && 1083 (new->tb_id > last->tb_id)) 1084 break; 1085 fa = last; 1086 } 1087 1088 if (fa) 1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1090 else 1091 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1092 } 1093 1094 /* if we added to the tail node then we need to update slen */ 1095 if (l->slen < new->fa_slen) { 1096 l->slen = new->fa_slen; 1097 node_push_suffix(tp, new->fa_slen); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1104 { 1105 if (plen > KEYLENGTH) { 1106 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1107 return false; 1108 } 1109 1110 if ((plen < KEYLENGTH) && (key << plen)) { 1111 NL_SET_ERR_MSG(extack, 1112 "Invalid prefix for given prefix length"); 1113 return false; 1114 } 1115 1116 return true; 1117 } 1118 1119 /* Caller must hold RTNL. */ 1120 int fib_table_insert(struct net *net, struct fib_table *tb, 1121 struct fib_config *cfg, struct netlink_ext_ack *extack) 1122 { 1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1124 struct trie *t = (struct trie *)tb->tb_data; 1125 struct fib_alias *fa, *new_fa; 1126 struct key_vector *l, *tp; 1127 u16 nlflags = NLM_F_EXCL; 1128 struct fib_info *fi; 1129 u8 plen = cfg->fc_dst_len; 1130 u8 slen = KEYLENGTH - plen; 1131 u8 tos = cfg->fc_tos; 1132 u32 key; 1133 int err; 1134 1135 key = ntohl(cfg->fc_dst); 1136 1137 if (!fib_valid_key_len(key, plen, extack)) 1138 return -EINVAL; 1139 1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1141 1142 fi = fib_create_info(cfg, extack); 1143 if (IS_ERR(fi)) { 1144 err = PTR_ERR(fi); 1145 goto err; 1146 } 1147 1148 l = fib_find_node(t, &tp, key); 1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1150 tb->tb_id) : NULL; 1151 1152 /* Now fa, if non-NULL, points to the first fib alias 1153 * with the same keys [prefix,tos,priority], if such key already 1154 * exists or to the node before which we will insert new one. 1155 * 1156 * If fa is NULL, we will need to allocate a new one and 1157 * insert to the tail of the section matching the suffix length 1158 * of the new alias. 1159 */ 1160 1161 if (fa && fa->fa_tos == tos && 1162 fa->fa_info->fib_priority == fi->fib_priority) { 1163 struct fib_alias *fa_first, *fa_match; 1164 1165 err = -EEXIST; 1166 if (cfg->fc_nlflags & NLM_F_EXCL) 1167 goto out; 1168 1169 nlflags &= ~NLM_F_EXCL; 1170 1171 /* We have 2 goals: 1172 * 1. Find exact match for type, scope, fib_info to avoid 1173 * duplicate routes 1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1175 */ 1176 fa_match = NULL; 1177 fa_first = fa; 1178 hlist_for_each_entry_from(fa, fa_list) { 1179 if ((fa->fa_slen != slen) || 1180 (fa->tb_id != tb->tb_id) || 1181 (fa->fa_tos != tos)) 1182 break; 1183 if (fa->fa_info->fib_priority != fi->fib_priority) 1184 break; 1185 if (fa->fa_type == cfg->fc_type && 1186 fa->fa_info == fi) { 1187 fa_match = fa; 1188 break; 1189 } 1190 } 1191 1192 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1193 struct fib_info *fi_drop; 1194 u8 state; 1195 1196 nlflags |= NLM_F_REPLACE; 1197 fa = fa_first; 1198 if (fa_match) { 1199 if (fa == fa_match) 1200 err = 0; 1201 goto out; 1202 } 1203 err = -ENOBUFS; 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1205 if (!new_fa) 1206 goto out; 1207 1208 fi_drop = fa->fa_info; 1209 new_fa->fa_tos = fa->fa_tos; 1210 new_fa->fa_info = fi; 1211 new_fa->fa_type = cfg->fc_type; 1212 state = fa->fa_state; 1213 new_fa->fa_state = state & ~FA_S_ACCESSED; 1214 new_fa->fa_slen = fa->fa_slen; 1215 new_fa->tb_id = tb->tb_id; 1216 new_fa->fa_default = -1; 1217 1218 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1219 key, plen, new_fa, extack); 1220 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1221 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1222 1223 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1224 1225 alias_free_mem_rcu(fa); 1226 1227 fib_release_info(fi_drop); 1228 if (state & FA_S_ACCESSED) 1229 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1230 1231 goto succeeded; 1232 } 1233 /* Error if we find a perfect match which 1234 * uses the same scope, type, and nexthop 1235 * information. 1236 */ 1237 if (fa_match) 1238 goto out; 1239 1240 if (cfg->fc_nlflags & NLM_F_APPEND) { 1241 event = FIB_EVENT_ENTRY_APPEND; 1242 nlflags |= NLM_F_APPEND; 1243 } else { 1244 fa = fa_first; 1245 } 1246 } 1247 err = -ENOENT; 1248 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1249 goto out; 1250 1251 nlflags |= NLM_F_CREATE; 1252 err = -ENOBUFS; 1253 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1254 if (!new_fa) 1255 goto out; 1256 1257 new_fa->fa_info = fi; 1258 new_fa->fa_tos = tos; 1259 new_fa->fa_type = cfg->fc_type; 1260 new_fa->fa_state = 0; 1261 new_fa->fa_slen = slen; 1262 new_fa->tb_id = tb->tb_id; 1263 new_fa->fa_default = -1; 1264 1265 /* Insert new entry to the list. */ 1266 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1267 if (err) 1268 goto out_free_new_fa; 1269 1270 if (!plen) 1271 tb->tb_num_default++; 1272 1273 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1274 call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); 1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1276 &cfg->fc_nlinfo, nlflags); 1277 succeeded: 1278 return 0; 1279 1280 out_free_new_fa: 1281 kmem_cache_free(fn_alias_kmem, new_fa); 1282 out: 1283 fib_release_info(fi); 1284 err: 1285 return err; 1286 } 1287 1288 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1289 { 1290 t_key prefix = n->key; 1291 1292 return (key ^ prefix) & (prefix | -prefix); 1293 } 1294 1295 /* should be called with rcu_read_lock */ 1296 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1297 struct fib_result *res, int fib_flags) 1298 { 1299 struct trie *t = (struct trie *) tb->tb_data; 1300 #ifdef CONFIG_IP_FIB_TRIE_STATS 1301 struct trie_use_stats __percpu *stats = t->stats; 1302 #endif 1303 const t_key key = ntohl(flp->daddr); 1304 struct key_vector *n, *pn; 1305 struct fib_alias *fa; 1306 unsigned long index; 1307 t_key cindex; 1308 1309 trace_fib_table_lookup(tb->tb_id, flp); 1310 1311 pn = t->kv; 1312 cindex = 0; 1313 1314 n = get_child_rcu(pn, cindex); 1315 if (!n) 1316 return -EAGAIN; 1317 1318 #ifdef CONFIG_IP_FIB_TRIE_STATS 1319 this_cpu_inc(stats->gets); 1320 #endif 1321 1322 /* Step 1: Travel to the longest prefix match in the trie */ 1323 for (;;) { 1324 index = get_cindex(key, n); 1325 1326 /* This bit of code is a bit tricky but it combines multiple 1327 * checks into a single check. The prefix consists of the 1328 * prefix plus zeros for the "bits" in the prefix. The index 1329 * is the difference between the key and this value. From 1330 * this we can actually derive several pieces of data. 1331 * if (index >= (1ul << bits)) 1332 * we have a mismatch in skip bits and failed 1333 * else 1334 * we know the value is cindex 1335 * 1336 * This check is safe even if bits == KEYLENGTH due to the 1337 * fact that we can only allocate a node with 32 bits if a 1338 * long is greater than 32 bits. 1339 */ 1340 if (index >= (1ul << n->bits)) 1341 break; 1342 1343 /* we have found a leaf. Prefixes have already been compared */ 1344 if (IS_LEAF(n)) 1345 goto found; 1346 1347 /* only record pn and cindex if we are going to be chopping 1348 * bits later. Otherwise we are just wasting cycles. 1349 */ 1350 if (n->slen > n->pos) { 1351 pn = n; 1352 cindex = index; 1353 } 1354 1355 n = get_child_rcu(n, index); 1356 if (unlikely(!n)) 1357 goto backtrace; 1358 } 1359 1360 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1361 for (;;) { 1362 /* record the pointer where our next node pointer is stored */ 1363 struct key_vector __rcu **cptr = n->tnode; 1364 1365 /* This test verifies that none of the bits that differ 1366 * between the key and the prefix exist in the region of 1367 * the lsb and higher in the prefix. 1368 */ 1369 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1370 goto backtrace; 1371 1372 /* exit out and process leaf */ 1373 if (unlikely(IS_LEAF(n))) 1374 break; 1375 1376 /* Don't bother recording parent info. Since we are in 1377 * prefix match mode we will have to come back to wherever 1378 * we started this traversal anyway 1379 */ 1380 1381 while ((n = rcu_dereference(*cptr)) == NULL) { 1382 backtrace: 1383 #ifdef CONFIG_IP_FIB_TRIE_STATS 1384 if (!n) 1385 this_cpu_inc(stats->null_node_hit); 1386 #endif 1387 /* If we are at cindex 0 there are no more bits for 1388 * us to strip at this level so we must ascend back 1389 * up one level to see if there are any more bits to 1390 * be stripped there. 1391 */ 1392 while (!cindex) { 1393 t_key pkey = pn->key; 1394 1395 /* If we don't have a parent then there is 1396 * nothing for us to do as we do not have any 1397 * further nodes to parse. 1398 */ 1399 if (IS_TRIE(pn)) 1400 return -EAGAIN; 1401 #ifdef CONFIG_IP_FIB_TRIE_STATS 1402 this_cpu_inc(stats->backtrack); 1403 #endif 1404 /* Get Child's index */ 1405 pn = node_parent_rcu(pn); 1406 cindex = get_index(pkey, pn); 1407 } 1408 1409 /* strip the least significant bit from the cindex */ 1410 cindex &= cindex - 1; 1411 1412 /* grab pointer for next child node */ 1413 cptr = &pn->tnode[cindex]; 1414 } 1415 } 1416 1417 found: 1418 /* this line carries forward the xor from earlier in the function */ 1419 index = key ^ n->key; 1420 1421 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1422 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1423 struct fib_info *fi = fa->fa_info; 1424 int nhsel, err; 1425 1426 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1427 if (index >= (1ul << fa->fa_slen)) 1428 continue; 1429 } 1430 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1431 continue; 1432 if (fi->fib_dead) 1433 continue; 1434 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1435 continue; 1436 fib_alias_accessed(fa); 1437 err = fib_props[fa->fa_type].error; 1438 if (unlikely(err < 0)) { 1439 #ifdef CONFIG_IP_FIB_TRIE_STATS 1440 this_cpu_inc(stats->semantic_match_passed); 1441 #endif 1442 return err; 1443 } 1444 if (fi->fib_flags & RTNH_F_DEAD) 1445 continue; 1446 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1447 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1448 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1449 1450 if (nh->nh_flags & RTNH_F_DEAD) 1451 continue; 1452 if (in_dev && 1453 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1454 nh->nh_flags & RTNH_F_LINKDOWN && 1455 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1456 continue; 1457 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1458 if (flp->flowi4_oif && 1459 flp->flowi4_oif != nh->nh_oif) 1460 continue; 1461 } 1462 1463 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1464 refcount_inc(&fi->fib_clntref); 1465 1466 res->prefix = htonl(n->key); 1467 res->prefixlen = KEYLENGTH - fa->fa_slen; 1468 res->nh_sel = nhsel; 1469 res->type = fa->fa_type; 1470 res->scope = fi->fib_scope; 1471 res->fi = fi; 1472 res->table = tb; 1473 res->fa_head = &n->leaf; 1474 #ifdef CONFIG_IP_FIB_TRIE_STATS 1475 this_cpu_inc(stats->semantic_match_passed); 1476 #endif 1477 trace_fib_table_lookup_nh(nh); 1478 1479 return err; 1480 } 1481 } 1482 #ifdef CONFIG_IP_FIB_TRIE_STATS 1483 this_cpu_inc(stats->semantic_match_miss); 1484 #endif 1485 goto backtrace; 1486 } 1487 EXPORT_SYMBOL_GPL(fib_table_lookup); 1488 1489 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1490 struct key_vector *l, struct fib_alias *old) 1491 { 1492 /* record the location of the previous list_info entry */ 1493 struct hlist_node **pprev = old->fa_list.pprev; 1494 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1495 1496 /* remove the fib_alias from the list */ 1497 hlist_del_rcu(&old->fa_list); 1498 1499 /* if we emptied the list this leaf will be freed and we can sort 1500 * out parent suffix lengths as a part of trie_rebalance 1501 */ 1502 if (hlist_empty(&l->leaf)) { 1503 if (tp->slen == l->slen) 1504 node_pull_suffix(tp, tp->pos); 1505 put_child_root(tp, l->key, NULL); 1506 node_free(l); 1507 trie_rebalance(t, tp); 1508 return; 1509 } 1510 1511 /* only access fa if it is pointing at the last valid hlist_node */ 1512 if (*pprev) 1513 return; 1514 1515 /* update the trie with the latest suffix length */ 1516 l->slen = fa->fa_slen; 1517 node_pull_suffix(tp, fa->fa_slen); 1518 } 1519 1520 /* Caller must hold RTNL. */ 1521 int fib_table_delete(struct net *net, struct fib_table *tb, 1522 struct fib_config *cfg, struct netlink_ext_ack *extack) 1523 { 1524 struct trie *t = (struct trie *) tb->tb_data; 1525 struct fib_alias *fa, *fa_to_delete; 1526 struct key_vector *l, *tp; 1527 u8 plen = cfg->fc_dst_len; 1528 u8 slen = KEYLENGTH - plen; 1529 u8 tos = cfg->fc_tos; 1530 u32 key; 1531 1532 key = ntohl(cfg->fc_dst); 1533 1534 if (!fib_valid_key_len(key, plen, extack)) 1535 return -EINVAL; 1536 1537 l = fib_find_node(t, &tp, key); 1538 if (!l) 1539 return -ESRCH; 1540 1541 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1542 if (!fa) 1543 return -ESRCH; 1544 1545 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1546 1547 fa_to_delete = NULL; 1548 hlist_for_each_entry_from(fa, fa_list) { 1549 struct fib_info *fi = fa->fa_info; 1550 1551 if ((fa->fa_slen != slen) || 1552 (fa->tb_id != tb->tb_id) || 1553 (fa->fa_tos != tos)) 1554 break; 1555 1556 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1557 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1558 fa->fa_info->fib_scope == cfg->fc_scope) && 1559 (!cfg->fc_prefsrc || 1560 fi->fib_prefsrc == cfg->fc_prefsrc) && 1561 (!cfg->fc_protocol || 1562 fi->fib_protocol == cfg->fc_protocol) && 1563 fib_nh_match(cfg, fi, extack) == 0 && 1564 fib_metrics_match(cfg, fi)) { 1565 fa_to_delete = fa; 1566 break; 1567 } 1568 } 1569 1570 if (!fa_to_delete) 1571 return -ESRCH; 1572 1573 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1574 fa_to_delete, extack); 1575 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1576 &cfg->fc_nlinfo, 0); 1577 1578 if (!plen) 1579 tb->tb_num_default--; 1580 1581 fib_remove_alias(t, tp, l, fa_to_delete); 1582 1583 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1584 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1585 1586 fib_release_info(fa_to_delete->fa_info); 1587 alias_free_mem_rcu(fa_to_delete); 1588 return 0; 1589 } 1590 1591 /* Scan for the next leaf starting at the provided key value */ 1592 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1593 { 1594 struct key_vector *pn, *n = *tn; 1595 unsigned long cindex; 1596 1597 /* this loop is meant to try and find the key in the trie */ 1598 do { 1599 /* record parent and next child index */ 1600 pn = n; 1601 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1602 1603 if (cindex >> pn->bits) 1604 break; 1605 1606 /* descend into the next child */ 1607 n = get_child_rcu(pn, cindex++); 1608 if (!n) 1609 break; 1610 1611 /* guarantee forward progress on the keys */ 1612 if (IS_LEAF(n) && (n->key >= key)) 1613 goto found; 1614 } while (IS_TNODE(n)); 1615 1616 /* this loop will search for the next leaf with a greater key */ 1617 while (!IS_TRIE(pn)) { 1618 /* if we exhausted the parent node we will need to climb */ 1619 if (cindex >= (1ul << pn->bits)) { 1620 t_key pkey = pn->key; 1621 1622 pn = node_parent_rcu(pn); 1623 cindex = get_index(pkey, pn) + 1; 1624 continue; 1625 } 1626 1627 /* grab the next available node */ 1628 n = get_child_rcu(pn, cindex++); 1629 if (!n) 1630 continue; 1631 1632 /* no need to compare keys since we bumped the index */ 1633 if (IS_LEAF(n)) 1634 goto found; 1635 1636 /* Rescan start scanning in new node */ 1637 pn = n; 1638 cindex = 0; 1639 } 1640 1641 *tn = pn; 1642 return NULL; /* Root of trie */ 1643 found: 1644 /* if we are at the limit for keys just return NULL for the tnode */ 1645 *tn = pn; 1646 return n; 1647 } 1648 1649 static void fib_trie_free(struct fib_table *tb) 1650 { 1651 struct trie *t = (struct trie *)tb->tb_data; 1652 struct key_vector *pn = t->kv; 1653 unsigned long cindex = 1; 1654 struct hlist_node *tmp; 1655 struct fib_alias *fa; 1656 1657 /* walk trie in reverse order and free everything */ 1658 for (;;) { 1659 struct key_vector *n; 1660 1661 if (!(cindex--)) { 1662 t_key pkey = pn->key; 1663 1664 if (IS_TRIE(pn)) 1665 break; 1666 1667 n = pn; 1668 pn = node_parent(pn); 1669 1670 /* drop emptied tnode */ 1671 put_child_root(pn, n->key, NULL); 1672 node_free(n); 1673 1674 cindex = get_index(pkey, pn); 1675 1676 continue; 1677 } 1678 1679 /* grab the next available node */ 1680 n = get_child(pn, cindex); 1681 if (!n) 1682 continue; 1683 1684 if (IS_TNODE(n)) { 1685 /* record pn and cindex for leaf walking */ 1686 pn = n; 1687 cindex = 1ul << n->bits; 1688 1689 continue; 1690 } 1691 1692 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1693 hlist_del_rcu(&fa->fa_list); 1694 alias_free_mem_rcu(fa); 1695 } 1696 1697 put_child_root(pn, n->key, NULL); 1698 node_free(n); 1699 } 1700 1701 #ifdef CONFIG_IP_FIB_TRIE_STATS 1702 free_percpu(t->stats); 1703 #endif 1704 kfree(tb); 1705 } 1706 1707 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1708 { 1709 struct trie *ot = (struct trie *)oldtb->tb_data; 1710 struct key_vector *l, *tp = ot->kv; 1711 struct fib_table *local_tb; 1712 struct fib_alias *fa; 1713 struct trie *lt; 1714 t_key key = 0; 1715 1716 if (oldtb->tb_data == oldtb->__data) 1717 return oldtb; 1718 1719 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1720 if (!local_tb) 1721 return NULL; 1722 1723 lt = (struct trie *)local_tb->tb_data; 1724 1725 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1726 struct key_vector *local_l = NULL, *local_tp; 1727 1728 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1729 struct fib_alias *new_fa; 1730 1731 if (local_tb->tb_id != fa->tb_id) 1732 continue; 1733 1734 /* clone fa for new local table */ 1735 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1736 if (!new_fa) 1737 goto out; 1738 1739 memcpy(new_fa, fa, sizeof(*fa)); 1740 1741 /* insert clone into table */ 1742 if (!local_l) 1743 local_l = fib_find_node(lt, &local_tp, l->key); 1744 1745 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1746 NULL, l->key)) { 1747 kmem_cache_free(fn_alias_kmem, new_fa); 1748 goto out; 1749 } 1750 } 1751 1752 /* stop loop if key wrapped back to 0 */ 1753 key = l->key + 1; 1754 if (key < l->key) 1755 break; 1756 } 1757 1758 return local_tb; 1759 out: 1760 fib_trie_free(local_tb); 1761 1762 return NULL; 1763 } 1764 1765 /* Caller must hold RTNL */ 1766 void fib_table_flush_external(struct fib_table *tb) 1767 { 1768 struct trie *t = (struct trie *)tb->tb_data; 1769 struct key_vector *pn = t->kv; 1770 unsigned long cindex = 1; 1771 struct hlist_node *tmp; 1772 struct fib_alias *fa; 1773 1774 /* walk trie in reverse order */ 1775 for (;;) { 1776 unsigned char slen = 0; 1777 struct key_vector *n; 1778 1779 if (!(cindex--)) { 1780 t_key pkey = pn->key; 1781 1782 /* cannot resize the trie vector */ 1783 if (IS_TRIE(pn)) 1784 break; 1785 1786 /* update the suffix to address pulled leaves */ 1787 if (pn->slen > pn->pos) 1788 update_suffix(pn); 1789 1790 /* resize completed node */ 1791 pn = resize(t, pn); 1792 cindex = get_index(pkey, pn); 1793 1794 continue; 1795 } 1796 1797 /* grab the next available node */ 1798 n = get_child(pn, cindex); 1799 if (!n) 1800 continue; 1801 1802 if (IS_TNODE(n)) { 1803 /* record pn and cindex for leaf walking */ 1804 pn = n; 1805 cindex = 1ul << n->bits; 1806 1807 continue; 1808 } 1809 1810 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1811 /* if alias was cloned to local then we just 1812 * need to remove the local copy from main 1813 */ 1814 if (tb->tb_id != fa->tb_id) { 1815 hlist_del_rcu(&fa->fa_list); 1816 alias_free_mem_rcu(fa); 1817 continue; 1818 } 1819 1820 /* record local slen */ 1821 slen = fa->fa_slen; 1822 } 1823 1824 /* update leaf slen */ 1825 n->slen = slen; 1826 1827 if (hlist_empty(&n->leaf)) { 1828 put_child_root(pn, n->key, NULL); 1829 node_free(n); 1830 } 1831 } 1832 } 1833 1834 /* Caller must hold RTNL. */ 1835 int fib_table_flush(struct net *net, struct fib_table *tb) 1836 { 1837 struct trie *t = (struct trie *)tb->tb_data; 1838 struct key_vector *pn = t->kv; 1839 unsigned long cindex = 1; 1840 struct hlist_node *tmp; 1841 struct fib_alias *fa; 1842 int found = 0; 1843 1844 /* walk trie in reverse order */ 1845 for (;;) { 1846 unsigned char slen = 0; 1847 struct key_vector *n; 1848 1849 if (!(cindex--)) { 1850 t_key pkey = pn->key; 1851 1852 /* cannot resize the trie vector */ 1853 if (IS_TRIE(pn)) 1854 break; 1855 1856 /* update the suffix to address pulled leaves */ 1857 if (pn->slen > pn->pos) 1858 update_suffix(pn); 1859 1860 /* resize completed node */ 1861 pn = resize(t, pn); 1862 cindex = get_index(pkey, pn); 1863 1864 continue; 1865 } 1866 1867 /* grab the next available node */ 1868 n = get_child(pn, cindex); 1869 if (!n) 1870 continue; 1871 1872 if (IS_TNODE(n)) { 1873 /* record pn and cindex for leaf walking */ 1874 pn = n; 1875 cindex = 1ul << n->bits; 1876 1877 continue; 1878 } 1879 1880 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1881 struct fib_info *fi = fa->fa_info; 1882 1883 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1884 tb->tb_id != fa->tb_id) { 1885 slen = fa->fa_slen; 1886 continue; 1887 } 1888 1889 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1890 n->key, 1891 KEYLENGTH - fa->fa_slen, fa, 1892 NULL); 1893 hlist_del_rcu(&fa->fa_list); 1894 fib_release_info(fa->fa_info); 1895 alias_free_mem_rcu(fa); 1896 found++; 1897 } 1898 1899 /* update leaf slen */ 1900 n->slen = slen; 1901 1902 if (hlist_empty(&n->leaf)) { 1903 put_child_root(pn, n->key, NULL); 1904 node_free(n); 1905 } 1906 } 1907 1908 pr_debug("trie_flush found=%d\n", found); 1909 return found; 1910 } 1911 1912 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1913 struct fib_table *tb, struct notifier_block *nb) 1914 { 1915 struct fib_alias *fa; 1916 1917 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1918 struct fib_info *fi = fa->fa_info; 1919 1920 if (!fi) 1921 continue; 1922 1923 /* local and main table can share the same trie, 1924 * so don't notify twice for the same entry. 1925 */ 1926 if (tb->tb_id != fa->tb_id) 1927 continue; 1928 1929 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1930 KEYLENGTH - fa->fa_slen, fa); 1931 } 1932 } 1933 1934 static void fib_table_notify(struct net *net, struct fib_table *tb, 1935 struct notifier_block *nb) 1936 { 1937 struct trie *t = (struct trie *)tb->tb_data; 1938 struct key_vector *l, *tp = t->kv; 1939 t_key key = 0; 1940 1941 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1942 fib_leaf_notify(net, l, tb, nb); 1943 1944 key = l->key + 1; 1945 /* stop in case of wrap around */ 1946 if (key < l->key) 1947 break; 1948 } 1949 } 1950 1951 void fib_notify(struct net *net, struct notifier_block *nb) 1952 { 1953 unsigned int h; 1954 1955 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1956 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1957 struct fib_table *tb; 1958 1959 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1960 fib_table_notify(net, tb, nb); 1961 } 1962 } 1963 1964 static void __trie_free_rcu(struct rcu_head *head) 1965 { 1966 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1967 #ifdef CONFIG_IP_FIB_TRIE_STATS 1968 struct trie *t = (struct trie *)tb->tb_data; 1969 1970 if (tb->tb_data == tb->__data) 1971 free_percpu(t->stats); 1972 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1973 kfree(tb); 1974 } 1975 1976 void fib_free_table(struct fib_table *tb) 1977 { 1978 call_rcu(&tb->rcu, __trie_free_rcu); 1979 } 1980 1981 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1982 struct sk_buff *skb, struct netlink_callback *cb) 1983 { 1984 __be32 xkey = htonl(l->key); 1985 struct fib_alias *fa; 1986 int i, s_i; 1987 1988 s_i = cb->args[4]; 1989 i = 0; 1990 1991 /* rcu_read_lock is hold by caller */ 1992 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1993 int err; 1994 1995 if (i < s_i) { 1996 i++; 1997 continue; 1998 } 1999 2000 if (tb->tb_id != fa->tb_id) { 2001 i++; 2002 continue; 2003 } 2004 2005 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2006 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2007 tb->tb_id, fa->fa_type, 2008 xkey, KEYLENGTH - fa->fa_slen, 2009 fa->fa_tos, fa->fa_info, NLM_F_MULTI); 2010 if (err < 0) { 2011 cb->args[4] = i; 2012 return err; 2013 } 2014 i++; 2015 } 2016 2017 cb->args[4] = i; 2018 return skb->len; 2019 } 2020 2021 /* rcu_read_lock needs to be hold by caller from readside */ 2022 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2023 struct netlink_callback *cb) 2024 { 2025 struct trie *t = (struct trie *)tb->tb_data; 2026 struct key_vector *l, *tp = t->kv; 2027 /* Dump starting at last key. 2028 * Note: 0.0.0.0/0 (ie default) is first key. 2029 */ 2030 int count = cb->args[2]; 2031 t_key key = cb->args[3]; 2032 2033 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2034 int err; 2035 2036 err = fn_trie_dump_leaf(l, tb, skb, cb); 2037 if (err < 0) { 2038 cb->args[3] = key; 2039 cb->args[2] = count; 2040 return err; 2041 } 2042 2043 ++count; 2044 key = l->key + 1; 2045 2046 memset(&cb->args[4], 0, 2047 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2048 2049 /* stop loop if key wrapped back to 0 */ 2050 if (key < l->key) 2051 break; 2052 } 2053 2054 cb->args[3] = key; 2055 cb->args[2] = count; 2056 2057 return skb->len; 2058 } 2059 2060 void __init fib_trie_init(void) 2061 { 2062 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2063 sizeof(struct fib_alias), 2064 0, SLAB_PANIC, NULL); 2065 2066 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2067 LEAF_SIZE, 2068 0, SLAB_PANIC, NULL); 2069 } 2070 2071 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2072 { 2073 struct fib_table *tb; 2074 struct trie *t; 2075 size_t sz = sizeof(*tb); 2076 2077 if (!alias) 2078 sz += sizeof(struct trie); 2079 2080 tb = kzalloc(sz, GFP_KERNEL); 2081 if (!tb) 2082 return NULL; 2083 2084 tb->tb_id = id; 2085 tb->tb_num_default = 0; 2086 tb->tb_data = (alias ? alias->__data : tb->__data); 2087 2088 if (alias) 2089 return tb; 2090 2091 t = (struct trie *) tb->tb_data; 2092 t->kv[0].pos = KEYLENGTH; 2093 t->kv[0].slen = KEYLENGTH; 2094 #ifdef CONFIG_IP_FIB_TRIE_STATS 2095 t->stats = alloc_percpu(struct trie_use_stats); 2096 if (!t->stats) { 2097 kfree(tb); 2098 tb = NULL; 2099 } 2100 #endif 2101 2102 return tb; 2103 } 2104 2105 #ifdef CONFIG_PROC_FS 2106 /* Depth first Trie walk iterator */ 2107 struct fib_trie_iter { 2108 struct seq_net_private p; 2109 struct fib_table *tb; 2110 struct key_vector *tnode; 2111 unsigned int index; 2112 unsigned int depth; 2113 }; 2114 2115 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2116 { 2117 unsigned long cindex = iter->index; 2118 struct key_vector *pn = iter->tnode; 2119 t_key pkey; 2120 2121 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2122 iter->tnode, iter->index, iter->depth); 2123 2124 while (!IS_TRIE(pn)) { 2125 while (cindex < child_length(pn)) { 2126 struct key_vector *n = get_child_rcu(pn, cindex++); 2127 2128 if (!n) 2129 continue; 2130 2131 if (IS_LEAF(n)) { 2132 iter->tnode = pn; 2133 iter->index = cindex; 2134 } else { 2135 /* push down one level */ 2136 iter->tnode = n; 2137 iter->index = 0; 2138 ++iter->depth; 2139 } 2140 2141 return n; 2142 } 2143 2144 /* Current node exhausted, pop back up */ 2145 pkey = pn->key; 2146 pn = node_parent_rcu(pn); 2147 cindex = get_index(pkey, pn) + 1; 2148 --iter->depth; 2149 } 2150 2151 /* record root node so further searches know we are done */ 2152 iter->tnode = pn; 2153 iter->index = 0; 2154 2155 return NULL; 2156 } 2157 2158 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2159 struct trie *t) 2160 { 2161 struct key_vector *n, *pn; 2162 2163 if (!t) 2164 return NULL; 2165 2166 pn = t->kv; 2167 n = rcu_dereference(pn->tnode[0]); 2168 if (!n) 2169 return NULL; 2170 2171 if (IS_TNODE(n)) { 2172 iter->tnode = n; 2173 iter->index = 0; 2174 iter->depth = 1; 2175 } else { 2176 iter->tnode = pn; 2177 iter->index = 0; 2178 iter->depth = 0; 2179 } 2180 2181 return n; 2182 } 2183 2184 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2185 { 2186 struct key_vector *n; 2187 struct fib_trie_iter iter; 2188 2189 memset(s, 0, sizeof(*s)); 2190 2191 rcu_read_lock(); 2192 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2193 if (IS_LEAF(n)) { 2194 struct fib_alias *fa; 2195 2196 s->leaves++; 2197 s->totdepth += iter.depth; 2198 if (iter.depth > s->maxdepth) 2199 s->maxdepth = iter.depth; 2200 2201 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2202 ++s->prefixes; 2203 } else { 2204 s->tnodes++; 2205 if (n->bits < MAX_STAT_DEPTH) 2206 s->nodesizes[n->bits]++; 2207 s->nullpointers += tn_info(n)->empty_children; 2208 } 2209 } 2210 rcu_read_unlock(); 2211 } 2212 2213 /* 2214 * This outputs /proc/net/fib_triestats 2215 */ 2216 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2217 { 2218 unsigned int i, max, pointers, bytes, avdepth; 2219 2220 if (stat->leaves) 2221 avdepth = stat->totdepth*100 / stat->leaves; 2222 else 2223 avdepth = 0; 2224 2225 seq_printf(seq, "\tAver depth: %u.%02d\n", 2226 avdepth / 100, avdepth % 100); 2227 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2228 2229 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2230 bytes = LEAF_SIZE * stat->leaves; 2231 2232 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2233 bytes += sizeof(struct fib_alias) * stat->prefixes; 2234 2235 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2236 bytes += TNODE_SIZE(0) * stat->tnodes; 2237 2238 max = MAX_STAT_DEPTH; 2239 while (max > 0 && stat->nodesizes[max-1] == 0) 2240 max--; 2241 2242 pointers = 0; 2243 for (i = 1; i < max; i++) 2244 if (stat->nodesizes[i] != 0) { 2245 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2246 pointers += (1<<i) * stat->nodesizes[i]; 2247 } 2248 seq_putc(seq, '\n'); 2249 seq_printf(seq, "\tPointers: %u\n", pointers); 2250 2251 bytes += sizeof(struct key_vector *) * pointers; 2252 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2253 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2254 } 2255 2256 #ifdef CONFIG_IP_FIB_TRIE_STATS 2257 static void trie_show_usage(struct seq_file *seq, 2258 const struct trie_use_stats __percpu *stats) 2259 { 2260 struct trie_use_stats s = { 0 }; 2261 int cpu; 2262 2263 /* loop through all of the CPUs and gather up the stats */ 2264 for_each_possible_cpu(cpu) { 2265 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2266 2267 s.gets += pcpu->gets; 2268 s.backtrack += pcpu->backtrack; 2269 s.semantic_match_passed += pcpu->semantic_match_passed; 2270 s.semantic_match_miss += pcpu->semantic_match_miss; 2271 s.null_node_hit += pcpu->null_node_hit; 2272 s.resize_node_skipped += pcpu->resize_node_skipped; 2273 } 2274 2275 seq_printf(seq, "\nCounters:\n---------\n"); 2276 seq_printf(seq, "gets = %u\n", s.gets); 2277 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2278 seq_printf(seq, "semantic match passed = %u\n", 2279 s.semantic_match_passed); 2280 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2281 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2282 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2283 } 2284 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2285 2286 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2287 { 2288 if (tb->tb_id == RT_TABLE_LOCAL) 2289 seq_puts(seq, "Local:\n"); 2290 else if (tb->tb_id == RT_TABLE_MAIN) 2291 seq_puts(seq, "Main:\n"); 2292 else 2293 seq_printf(seq, "Id %d:\n", tb->tb_id); 2294 } 2295 2296 2297 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2298 { 2299 struct net *net = (struct net *)seq->private; 2300 unsigned int h; 2301 2302 seq_printf(seq, 2303 "Basic info: size of leaf:" 2304 " %zd bytes, size of tnode: %zd bytes.\n", 2305 LEAF_SIZE, TNODE_SIZE(0)); 2306 2307 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2308 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2309 struct fib_table *tb; 2310 2311 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2312 struct trie *t = (struct trie *) tb->tb_data; 2313 struct trie_stat stat; 2314 2315 if (!t) 2316 continue; 2317 2318 fib_table_print(seq, tb); 2319 2320 trie_collect_stats(t, &stat); 2321 trie_show_stats(seq, &stat); 2322 #ifdef CONFIG_IP_FIB_TRIE_STATS 2323 trie_show_usage(seq, t->stats); 2324 #endif 2325 } 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2332 { 2333 return single_open_net(inode, file, fib_triestat_seq_show); 2334 } 2335 2336 static const struct file_operations fib_triestat_fops = { 2337 .owner = THIS_MODULE, 2338 .open = fib_triestat_seq_open, 2339 .read = seq_read, 2340 .llseek = seq_lseek, 2341 .release = single_release_net, 2342 }; 2343 2344 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2345 { 2346 struct fib_trie_iter *iter = seq->private; 2347 struct net *net = seq_file_net(seq); 2348 loff_t idx = 0; 2349 unsigned int h; 2350 2351 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2352 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2353 struct fib_table *tb; 2354 2355 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2356 struct key_vector *n; 2357 2358 for (n = fib_trie_get_first(iter, 2359 (struct trie *) tb->tb_data); 2360 n; n = fib_trie_get_next(iter)) 2361 if (pos == idx++) { 2362 iter->tb = tb; 2363 return n; 2364 } 2365 } 2366 } 2367 2368 return NULL; 2369 } 2370 2371 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2372 __acquires(RCU) 2373 { 2374 rcu_read_lock(); 2375 return fib_trie_get_idx(seq, *pos); 2376 } 2377 2378 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2379 { 2380 struct fib_trie_iter *iter = seq->private; 2381 struct net *net = seq_file_net(seq); 2382 struct fib_table *tb = iter->tb; 2383 struct hlist_node *tb_node; 2384 unsigned int h; 2385 struct key_vector *n; 2386 2387 ++*pos; 2388 /* next node in same table */ 2389 n = fib_trie_get_next(iter); 2390 if (n) 2391 return n; 2392 2393 /* walk rest of this hash chain */ 2394 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2395 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2396 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2397 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2398 if (n) 2399 goto found; 2400 } 2401 2402 /* new hash chain */ 2403 while (++h < FIB_TABLE_HASHSZ) { 2404 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2405 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2406 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2407 if (n) 2408 goto found; 2409 } 2410 } 2411 return NULL; 2412 2413 found: 2414 iter->tb = tb; 2415 return n; 2416 } 2417 2418 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2419 __releases(RCU) 2420 { 2421 rcu_read_unlock(); 2422 } 2423 2424 static void seq_indent(struct seq_file *seq, int n) 2425 { 2426 while (n-- > 0) 2427 seq_puts(seq, " "); 2428 } 2429 2430 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2431 { 2432 switch (s) { 2433 case RT_SCOPE_UNIVERSE: return "universe"; 2434 case RT_SCOPE_SITE: return "site"; 2435 case RT_SCOPE_LINK: return "link"; 2436 case RT_SCOPE_HOST: return "host"; 2437 case RT_SCOPE_NOWHERE: return "nowhere"; 2438 default: 2439 snprintf(buf, len, "scope=%d", s); 2440 return buf; 2441 } 2442 } 2443 2444 static const char *const rtn_type_names[__RTN_MAX] = { 2445 [RTN_UNSPEC] = "UNSPEC", 2446 [RTN_UNICAST] = "UNICAST", 2447 [RTN_LOCAL] = "LOCAL", 2448 [RTN_BROADCAST] = "BROADCAST", 2449 [RTN_ANYCAST] = "ANYCAST", 2450 [RTN_MULTICAST] = "MULTICAST", 2451 [RTN_BLACKHOLE] = "BLACKHOLE", 2452 [RTN_UNREACHABLE] = "UNREACHABLE", 2453 [RTN_PROHIBIT] = "PROHIBIT", 2454 [RTN_THROW] = "THROW", 2455 [RTN_NAT] = "NAT", 2456 [RTN_XRESOLVE] = "XRESOLVE", 2457 }; 2458 2459 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2460 { 2461 if (t < __RTN_MAX && rtn_type_names[t]) 2462 return rtn_type_names[t]; 2463 snprintf(buf, len, "type %u", t); 2464 return buf; 2465 } 2466 2467 /* Pretty print the trie */ 2468 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2469 { 2470 const struct fib_trie_iter *iter = seq->private; 2471 struct key_vector *n = v; 2472 2473 if (IS_TRIE(node_parent_rcu(n))) 2474 fib_table_print(seq, iter->tb); 2475 2476 if (IS_TNODE(n)) { 2477 __be32 prf = htonl(n->key); 2478 2479 seq_indent(seq, iter->depth-1); 2480 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2481 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2482 tn_info(n)->full_children, 2483 tn_info(n)->empty_children); 2484 } else { 2485 __be32 val = htonl(n->key); 2486 struct fib_alias *fa; 2487 2488 seq_indent(seq, iter->depth); 2489 seq_printf(seq, " |-- %pI4\n", &val); 2490 2491 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2492 char buf1[32], buf2[32]; 2493 2494 seq_indent(seq, iter->depth + 1); 2495 seq_printf(seq, " /%zu %s %s", 2496 KEYLENGTH - fa->fa_slen, 2497 rtn_scope(buf1, sizeof(buf1), 2498 fa->fa_info->fib_scope), 2499 rtn_type(buf2, sizeof(buf2), 2500 fa->fa_type)); 2501 if (fa->fa_tos) 2502 seq_printf(seq, " tos=%d", fa->fa_tos); 2503 seq_putc(seq, '\n'); 2504 } 2505 } 2506 2507 return 0; 2508 } 2509 2510 static const struct seq_operations fib_trie_seq_ops = { 2511 .start = fib_trie_seq_start, 2512 .next = fib_trie_seq_next, 2513 .stop = fib_trie_seq_stop, 2514 .show = fib_trie_seq_show, 2515 }; 2516 2517 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2518 { 2519 return seq_open_net(inode, file, &fib_trie_seq_ops, 2520 sizeof(struct fib_trie_iter)); 2521 } 2522 2523 static const struct file_operations fib_trie_fops = { 2524 .owner = THIS_MODULE, 2525 .open = fib_trie_seq_open, 2526 .read = seq_read, 2527 .llseek = seq_lseek, 2528 .release = seq_release_net, 2529 }; 2530 2531 struct fib_route_iter { 2532 struct seq_net_private p; 2533 struct fib_table *main_tb; 2534 struct key_vector *tnode; 2535 loff_t pos; 2536 t_key key; 2537 }; 2538 2539 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2540 loff_t pos) 2541 { 2542 struct key_vector *l, **tp = &iter->tnode; 2543 t_key key; 2544 2545 /* use cached location of previously found key */ 2546 if (iter->pos > 0 && pos >= iter->pos) { 2547 key = iter->key; 2548 } else { 2549 iter->pos = 1; 2550 key = 0; 2551 } 2552 2553 pos -= iter->pos; 2554 2555 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2556 key = l->key + 1; 2557 iter->pos++; 2558 l = NULL; 2559 2560 /* handle unlikely case of a key wrap */ 2561 if (!key) 2562 break; 2563 } 2564 2565 if (l) 2566 iter->key = l->key; /* remember it */ 2567 else 2568 iter->pos = 0; /* forget it */ 2569 2570 return l; 2571 } 2572 2573 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2574 __acquires(RCU) 2575 { 2576 struct fib_route_iter *iter = seq->private; 2577 struct fib_table *tb; 2578 struct trie *t; 2579 2580 rcu_read_lock(); 2581 2582 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2583 if (!tb) 2584 return NULL; 2585 2586 iter->main_tb = tb; 2587 t = (struct trie *)tb->tb_data; 2588 iter->tnode = t->kv; 2589 2590 if (*pos != 0) 2591 return fib_route_get_idx(iter, *pos); 2592 2593 iter->pos = 0; 2594 iter->key = KEY_MAX; 2595 2596 return SEQ_START_TOKEN; 2597 } 2598 2599 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2600 { 2601 struct fib_route_iter *iter = seq->private; 2602 struct key_vector *l = NULL; 2603 t_key key = iter->key + 1; 2604 2605 ++*pos; 2606 2607 /* only allow key of 0 for start of sequence */ 2608 if ((v == SEQ_START_TOKEN) || key) 2609 l = leaf_walk_rcu(&iter->tnode, key); 2610 2611 if (l) { 2612 iter->key = l->key; 2613 iter->pos++; 2614 } else { 2615 iter->pos = 0; 2616 } 2617 2618 return l; 2619 } 2620 2621 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2622 __releases(RCU) 2623 { 2624 rcu_read_unlock(); 2625 } 2626 2627 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2628 { 2629 unsigned int flags = 0; 2630 2631 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2632 flags = RTF_REJECT; 2633 if (fi && fi->fib_nh->nh_gw) 2634 flags |= RTF_GATEWAY; 2635 if (mask == htonl(0xFFFFFFFF)) 2636 flags |= RTF_HOST; 2637 flags |= RTF_UP; 2638 return flags; 2639 } 2640 2641 /* 2642 * This outputs /proc/net/route. 2643 * The format of the file is not supposed to be changed 2644 * and needs to be same as fib_hash output to avoid breaking 2645 * legacy utilities 2646 */ 2647 static int fib_route_seq_show(struct seq_file *seq, void *v) 2648 { 2649 struct fib_route_iter *iter = seq->private; 2650 struct fib_table *tb = iter->main_tb; 2651 struct fib_alias *fa; 2652 struct key_vector *l = v; 2653 __be32 prefix; 2654 2655 if (v == SEQ_START_TOKEN) { 2656 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2657 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2658 "\tWindow\tIRTT"); 2659 return 0; 2660 } 2661 2662 prefix = htonl(l->key); 2663 2664 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2665 const struct fib_info *fi = fa->fa_info; 2666 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2667 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2668 2669 if ((fa->fa_type == RTN_BROADCAST) || 2670 (fa->fa_type == RTN_MULTICAST)) 2671 continue; 2672 2673 if (fa->tb_id != tb->tb_id) 2674 continue; 2675 2676 seq_setwidth(seq, 127); 2677 2678 if (fi) 2679 seq_printf(seq, 2680 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2681 "%d\t%08X\t%d\t%u\t%u", 2682 fi->fib_dev ? fi->fib_dev->name : "*", 2683 prefix, 2684 fi->fib_nh->nh_gw, flags, 0, 0, 2685 fi->fib_priority, 2686 mask, 2687 (fi->fib_advmss ? 2688 fi->fib_advmss + 40 : 0), 2689 fi->fib_window, 2690 fi->fib_rtt >> 3); 2691 else 2692 seq_printf(seq, 2693 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2694 "%d\t%08X\t%d\t%u\t%u", 2695 prefix, 0, flags, 0, 0, 0, 2696 mask, 0, 0, 0); 2697 2698 seq_pad(seq, '\n'); 2699 } 2700 2701 return 0; 2702 } 2703 2704 static const struct seq_operations fib_route_seq_ops = { 2705 .start = fib_route_seq_start, 2706 .next = fib_route_seq_next, 2707 .stop = fib_route_seq_stop, 2708 .show = fib_route_seq_show, 2709 }; 2710 2711 static int fib_route_seq_open(struct inode *inode, struct file *file) 2712 { 2713 return seq_open_net(inode, file, &fib_route_seq_ops, 2714 sizeof(struct fib_route_iter)); 2715 } 2716 2717 static const struct file_operations fib_route_fops = { 2718 .owner = THIS_MODULE, 2719 .open = fib_route_seq_open, 2720 .read = seq_read, 2721 .llseek = seq_lseek, 2722 .release = seq_release_net, 2723 }; 2724 2725 int __net_init fib_proc_init(struct net *net) 2726 { 2727 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2728 goto out1; 2729 2730 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2731 &fib_triestat_fops)) 2732 goto out2; 2733 2734 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2735 goto out3; 2736 2737 return 0; 2738 2739 out3: 2740 remove_proc_entry("fib_triestat", net->proc_net); 2741 out2: 2742 remove_proc_entry("fib_trie", net->proc_net); 2743 out1: 2744 return -ENOMEM; 2745 } 2746 2747 void __net_exit fib_proc_exit(struct net *net) 2748 { 2749 remove_proc_entry("fib_trie", net->proc_net); 2750 remove_proc_entry("fib_triestat", net->proc_net); 2751 remove_proc_entry("route", net->proc_net); 2752 } 2753 2754 #endif /* CONFIG_PROC_FS */ 2755