xref: /openbmc/linux/net/ipv4/fib_trie.c (revision a06c488d)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 #define MAX_STAT_DEPTH 32
88 
89 #define KEYLENGTH	(8*sizeof(t_key))
90 #define KEY_MAX		((t_key)~0)
91 
92 typedef unsigned int t_key;
93 
94 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n)	((n)->bits)
96 #define IS_LEAF(n)	(!(n)->bits)
97 
98 struct key_vector {
99 	t_key key;
100 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
101 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
102 	unsigned char slen;
103 	union {
104 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 		struct hlist_head leaf;
106 		/* This array is valid if (pos | bits) > 0 (TNODE) */
107 		struct key_vector __rcu *tnode[0];
108 	};
109 };
110 
111 struct tnode {
112 	struct rcu_head rcu;
113 	t_key empty_children;		/* KEYLENGTH bits needed */
114 	t_key full_children;		/* KEYLENGTH bits needed */
115 	struct key_vector __rcu *parent;
116 	struct key_vector kv[1];
117 #define tn_bits kv[0].bits
118 };
119 
120 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE	TNODE_SIZE(1)
122 
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125 	unsigned int gets;
126 	unsigned int backtrack;
127 	unsigned int semantic_match_passed;
128 	unsigned int semantic_match_miss;
129 	unsigned int null_node_hit;
130 	unsigned int resize_node_skipped;
131 };
132 #endif
133 
134 struct trie_stat {
135 	unsigned int totdepth;
136 	unsigned int maxdepth;
137 	unsigned int tnodes;
138 	unsigned int leaves;
139 	unsigned int nullpointers;
140 	unsigned int prefixes;
141 	unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143 
144 struct trie {
145 	struct key_vector kv[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 	struct trie_use_stats __percpu *stats;
148 #endif
149 };
150 
151 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 static size_t tnode_free_size;
153 
154 /*
155  * synchronize_rcu after call_rcu for that many pages; it should be especially
156  * useful before resizing the root node with PREEMPT_NONE configs; the value was
157  * obtained experimentally, aiming to avoid visible slowdown.
158  */
159 static const int sync_pages = 128;
160 
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163 
164 static inline struct tnode *tn_info(struct key_vector *kv)
165 {
166 	return container_of(kv, struct tnode, kv[0]);
167 }
168 
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
172 
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
176 
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179 {
180 	if (n)
181 		rcu_assign_pointer(tn_info(n)->parent, tp);
182 }
183 
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 
186 /* This provides us with the number of children in this node, in the case of a
187  * leaf this will return 0 meaning none of the children are accessible.
188  */
189 static inline unsigned long child_length(const struct key_vector *tn)
190 {
191 	return (1ul << tn->bits) & ~(1ul);
192 }
193 
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195 
196 static inline unsigned long get_index(t_key key, struct key_vector *kv)
197 {
198 	unsigned long index = key ^ kv->key;
199 
200 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
201 		return 0;
202 
203 	return index >> kv->pos;
204 }
205 
206 /* To understand this stuff, an understanding of keys and all their bits is
207  * necessary. Every node in the trie has a key associated with it, but not
208  * all of the bits in that key are significant.
209  *
210  * Consider a node 'n' and its parent 'tp'.
211  *
212  * If n is a leaf, every bit in its key is significant. Its presence is
213  * necessitated by path compression, since during a tree traversal (when
214  * searching for a leaf - unless we are doing an insertion) we will completely
215  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216  * a potentially successful search, that we have indeed been walking the
217  * correct key path.
218  *
219  * Note that we can never "miss" the correct key in the tree if present by
220  * following the wrong path. Path compression ensures that segments of the key
221  * that are the same for all keys with a given prefix are skipped, but the
222  * skipped part *is* identical for each node in the subtrie below the skipped
223  * bit! trie_insert() in this implementation takes care of that.
224  *
225  * if n is an internal node - a 'tnode' here, the various parts of its key
226  * have many different meanings.
227  *
228  * Example:
229  * _________________________________________________________________
230  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231  * -----------------------------------------------------------------
232  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
233  *
234  * _________________________________________________________________
235  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236  * -----------------------------------------------------------------
237  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
238  *
239  * tp->pos = 22
240  * tp->bits = 3
241  * n->pos = 13
242  * n->bits = 4
243  *
244  * First, let's just ignore the bits that come before the parent tp, that is
245  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246  * point we do not use them for anything.
247  *
248  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249  * index into the parent's child array. That is, they will be used to find
250  * 'n' among tp's children.
251  *
252  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
253  * for the node n.
254  *
255  * All the bits we have seen so far are significant to the node n. The rest
256  * of the bits are really not needed or indeed known in n->key.
257  *
258  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259  * n's child array, and will of course be different for each child.
260  *
261  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
262  * at this point.
263  */
264 
265 static const int halve_threshold = 25;
266 static const int inflate_threshold = 50;
267 static const int halve_threshold_root = 15;
268 static const int inflate_threshold_root = 30;
269 
270 static void __alias_free_mem(struct rcu_head *head)
271 {
272 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
273 	kmem_cache_free(fn_alias_kmem, fa);
274 }
275 
276 static inline void alias_free_mem_rcu(struct fib_alias *fa)
277 {
278 	call_rcu(&fa->rcu, __alias_free_mem);
279 }
280 
281 #define TNODE_KMALLOC_MAX \
282 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
285 
286 static void __node_free_rcu(struct rcu_head *head)
287 {
288 	struct tnode *n = container_of(head, struct tnode, rcu);
289 
290 	if (!n->tn_bits)
291 		kmem_cache_free(trie_leaf_kmem, n);
292 	else
293 		kvfree(n);
294 }
295 
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297 
298 static struct tnode *tnode_alloc(int bits)
299 {
300 	size_t size;
301 
302 	/* verify bits is within bounds */
303 	if (bits > TNODE_VMALLOC_MAX)
304 		return NULL;
305 
306 	/* determine size and verify it is non-zero and didn't overflow */
307 	size = TNODE_SIZE(1ul << bits);
308 
309 	if (size <= PAGE_SIZE)
310 		return kzalloc(size, GFP_KERNEL);
311 	else
312 		return vzalloc(size);
313 }
314 
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319 
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324 
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 	struct key_vector *l;
328 	struct tnode *kv;
329 
330 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
331 	if (!kv)
332 		return NULL;
333 
334 	/* initialize key vector */
335 	l = kv->kv;
336 	l->key = key;
337 	l->pos = 0;
338 	l->bits = 0;
339 	l->slen = fa->fa_slen;
340 
341 	/* link leaf to fib alias */
342 	INIT_HLIST_HEAD(&l->leaf);
343 	hlist_add_head(&fa->fa_list, &l->leaf);
344 
345 	return l;
346 }
347 
348 static struct key_vector *tnode_new(t_key key, int pos, int bits)
349 {
350 	unsigned int shift = pos + bits;
351 	struct key_vector *tn;
352 	struct tnode *tnode;
353 
354 	/* verify bits and pos their msb bits clear and values are valid */
355 	BUG_ON(!bits || (shift > KEYLENGTH));
356 
357 	tnode = tnode_alloc(bits);
358 	if (!tnode)
359 		return NULL;
360 
361 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
362 		 sizeof(struct key_vector *) << bits);
363 
364 	if (bits == KEYLENGTH)
365 		tnode->full_children = 1;
366 	else
367 		tnode->empty_children = 1ul << bits;
368 
369 	tn = tnode->kv;
370 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
371 	tn->pos = pos;
372 	tn->bits = bits;
373 	tn->slen = pos;
374 
375 	return tn;
376 }
377 
378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
379  * and no bits are skipped. See discussion in dyntree paper p. 6
380  */
381 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
382 {
383 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
384 }
385 
386 /* Add a child at position i overwriting the old value.
387  * Update the value of full_children and empty_children.
388  */
389 static void put_child(struct key_vector *tn, unsigned long i,
390 		      struct key_vector *n)
391 {
392 	struct key_vector *chi = get_child(tn, i);
393 	int isfull, wasfull;
394 
395 	BUG_ON(i >= child_length(tn));
396 
397 	/* update emptyChildren, overflow into fullChildren */
398 	if (!n && chi)
399 		empty_child_inc(tn);
400 	if (n && !chi)
401 		empty_child_dec(tn);
402 
403 	/* update fullChildren */
404 	wasfull = tnode_full(tn, chi);
405 	isfull = tnode_full(tn, n);
406 
407 	if (wasfull && !isfull)
408 		tn_info(tn)->full_children--;
409 	else if (!wasfull && isfull)
410 		tn_info(tn)->full_children++;
411 
412 	if (n && (tn->slen < n->slen))
413 		tn->slen = n->slen;
414 
415 	rcu_assign_pointer(tn->tnode[i], n);
416 }
417 
418 static void update_children(struct key_vector *tn)
419 {
420 	unsigned long i;
421 
422 	/* update all of the child parent pointers */
423 	for (i = child_length(tn); i;) {
424 		struct key_vector *inode = get_child(tn, --i);
425 
426 		if (!inode)
427 			continue;
428 
429 		/* Either update the children of a tnode that
430 		 * already belongs to us or update the child
431 		 * to point to ourselves.
432 		 */
433 		if (node_parent(inode) == tn)
434 			update_children(inode);
435 		else
436 			node_set_parent(inode, tn);
437 	}
438 }
439 
440 static inline void put_child_root(struct key_vector *tp, t_key key,
441 				  struct key_vector *n)
442 {
443 	if (IS_TRIE(tp))
444 		rcu_assign_pointer(tp->tnode[0], n);
445 	else
446 		put_child(tp, get_index(key, tp), n);
447 }
448 
449 static inline void tnode_free_init(struct key_vector *tn)
450 {
451 	tn_info(tn)->rcu.next = NULL;
452 }
453 
454 static inline void tnode_free_append(struct key_vector *tn,
455 				     struct key_vector *n)
456 {
457 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
458 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
459 }
460 
461 static void tnode_free(struct key_vector *tn)
462 {
463 	struct callback_head *head = &tn_info(tn)->rcu;
464 
465 	while (head) {
466 		head = head->next;
467 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
468 		node_free(tn);
469 
470 		tn = container_of(head, struct tnode, rcu)->kv;
471 	}
472 
473 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
474 		tnode_free_size = 0;
475 		synchronize_rcu();
476 	}
477 }
478 
479 static struct key_vector *replace(struct trie *t,
480 				  struct key_vector *oldtnode,
481 				  struct key_vector *tn)
482 {
483 	struct key_vector *tp = node_parent(oldtnode);
484 	unsigned long i;
485 
486 	/* setup the parent pointer out of and back into this node */
487 	NODE_INIT_PARENT(tn, tp);
488 	put_child_root(tp, tn->key, tn);
489 
490 	/* update all of the child parent pointers */
491 	update_children(tn);
492 
493 	/* all pointers should be clean so we are done */
494 	tnode_free(oldtnode);
495 
496 	/* resize children now that oldtnode is freed */
497 	for (i = child_length(tn); i;) {
498 		struct key_vector *inode = get_child(tn, --i);
499 
500 		/* resize child node */
501 		if (tnode_full(tn, inode))
502 			tn = resize(t, inode);
503 	}
504 
505 	return tp;
506 }
507 
508 static struct key_vector *inflate(struct trie *t,
509 				  struct key_vector *oldtnode)
510 {
511 	struct key_vector *tn;
512 	unsigned long i;
513 	t_key m;
514 
515 	pr_debug("In inflate\n");
516 
517 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
518 	if (!tn)
519 		goto notnode;
520 
521 	/* prepare oldtnode to be freed */
522 	tnode_free_init(oldtnode);
523 
524 	/* Assemble all of the pointers in our cluster, in this case that
525 	 * represents all of the pointers out of our allocated nodes that
526 	 * point to existing tnodes and the links between our allocated
527 	 * nodes.
528 	 */
529 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
530 		struct key_vector *inode = get_child(oldtnode, --i);
531 		struct key_vector *node0, *node1;
532 		unsigned long j, k;
533 
534 		/* An empty child */
535 		if (!inode)
536 			continue;
537 
538 		/* A leaf or an internal node with skipped bits */
539 		if (!tnode_full(oldtnode, inode)) {
540 			put_child(tn, get_index(inode->key, tn), inode);
541 			continue;
542 		}
543 
544 		/* drop the node in the old tnode free list */
545 		tnode_free_append(oldtnode, inode);
546 
547 		/* An internal node with two children */
548 		if (inode->bits == 1) {
549 			put_child(tn, 2 * i + 1, get_child(inode, 1));
550 			put_child(tn, 2 * i, get_child(inode, 0));
551 			continue;
552 		}
553 
554 		/* We will replace this node 'inode' with two new
555 		 * ones, 'node0' and 'node1', each with half of the
556 		 * original children. The two new nodes will have
557 		 * a position one bit further down the key and this
558 		 * means that the "significant" part of their keys
559 		 * (see the discussion near the top of this file)
560 		 * will differ by one bit, which will be "0" in
561 		 * node0's key and "1" in node1's key. Since we are
562 		 * moving the key position by one step, the bit that
563 		 * we are moving away from - the bit at position
564 		 * (tn->pos) - is the one that will differ between
565 		 * node0 and node1. So... we synthesize that bit in the
566 		 * two new keys.
567 		 */
568 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
569 		if (!node1)
570 			goto nomem;
571 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
572 
573 		tnode_free_append(tn, node1);
574 		if (!node0)
575 			goto nomem;
576 		tnode_free_append(tn, node0);
577 
578 		/* populate child pointers in new nodes */
579 		for (k = child_length(inode), j = k / 2; j;) {
580 			put_child(node1, --j, get_child(inode, --k));
581 			put_child(node0, j, get_child(inode, j));
582 			put_child(node1, --j, get_child(inode, --k));
583 			put_child(node0, j, get_child(inode, j));
584 		}
585 
586 		/* link new nodes to parent */
587 		NODE_INIT_PARENT(node1, tn);
588 		NODE_INIT_PARENT(node0, tn);
589 
590 		/* link parent to nodes */
591 		put_child(tn, 2 * i + 1, node1);
592 		put_child(tn, 2 * i, node0);
593 	}
594 
595 	/* setup the parent pointers into and out of this node */
596 	return replace(t, oldtnode, tn);
597 nomem:
598 	/* all pointers should be clean so we are done */
599 	tnode_free(tn);
600 notnode:
601 	return NULL;
602 }
603 
604 static struct key_vector *halve(struct trie *t,
605 				struct key_vector *oldtnode)
606 {
607 	struct key_vector *tn;
608 	unsigned long i;
609 
610 	pr_debug("In halve\n");
611 
612 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
613 	if (!tn)
614 		goto notnode;
615 
616 	/* prepare oldtnode to be freed */
617 	tnode_free_init(oldtnode);
618 
619 	/* Assemble all of the pointers in our cluster, in this case that
620 	 * represents all of the pointers out of our allocated nodes that
621 	 * point to existing tnodes and the links between our allocated
622 	 * nodes.
623 	 */
624 	for (i = child_length(oldtnode); i;) {
625 		struct key_vector *node1 = get_child(oldtnode, --i);
626 		struct key_vector *node0 = get_child(oldtnode, --i);
627 		struct key_vector *inode;
628 
629 		/* At least one of the children is empty */
630 		if (!node1 || !node0) {
631 			put_child(tn, i / 2, node1 ? : node0);
632 			continue;
633 		}
634 
635 		/* Two nonempty children */
636 		inode = tnode_new(node0->key, oldtnode->pos, 1);
637 		if (!inode)
638 			goto nomem;
639 		tnode_free_append(tn, inode);
640 
641 		/* initialize pointers out of node */
642 		put_child(inode, 1, node1);
643 		put_child(inode, 0, node0);
644 		NODE_INIT_PARENT(inode, tn);
645 
646 		/* link parent to node */
647 		put_child(tn, i / 2, inode);
648 	}
649 
650 	/* setup the parent pointers into and out of this node */
651 	return replace(t, oldtnode, tn);
652 nomem:
653 	/* all pointers should be clean so we are done */
654 	tnode_free(tn);
655 notnode:
656 	return NULL;
657 }
658 
659 static struct key_vector *collapse(struct trie *t,
660 				   struct key_vector *oldtnode)
661 {
662 	struct key_vector *n, *tp;
663 	unsigned long i;
664 
665 	/* scan the tnode looking for that one child that might still exist */
666 	for (n = NULL, i = child_length(oldtnode); !n && i;)
667 		n = get_child(oldtnode, --i);
668 
669 	/* compress one level */
670 	tp = node_parent(oldtnode);
671 	put_child_root(tp, oldtnode->key, n);
672 	node_set_parent(n, tp);
673 
674 	/* drop dead node */
675 	node_free(oldtnode);
676 
677 	return tp;
678 }
679 
680 static unsigned char update_suffix(struct key_vector *tn)
681 {
682 	unsigned char slen = tn->pos;
683 	unsigned long stride, i;
684 
685 	/* search though the list of children looking for nodes that might
686 	 * have a suffix greater than the one we currently have.  This is
687 	 * why we start with a stride of 2 since a stride of 1 would
688 	 * represent the nodes with suffix length equal to tn->pos
689 	 */
690 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
691 		struct key_vector *n = get_child(tn, i);
692 
693 		if (!n || (n->slen <= slen))
694 			continue;
695 
696 		/* update stride and slen based on new value */
697 		stride <<= (n->slen - slen);
698 		slen = n->slen;
699 		i &= ~(stride - 1);
700 
701 		/* if slen covers all but the last bit we can stop here
702 		 * there will be nothing longer than that since only node
703 		 * 0 and 1 << (bits - 1) could have that as their suffix
704 		 * length.
705 		 */
706 		if ((slen + 1) >= (tn->pos + tn->bits))
707 			break;
708 	}
709 
710 	tn->slen = slen;
711 
712 	return slen;
713 }
714 
715 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
716  * the Helsinki University of Technology and Matti Tikkanen of Nokia
717  * Telecommunications, page 6:
718  * "A node is doubled if the ratio of non-empty children to all
719  * children in the *doubled* node is at least 'high'."
720  *
721  * 'high' in this instance is the variable 'inflate_threshold'. It
722  * is expressed as a percentage, so we multiply it with
723  * child_length() and instead of multiplying by 2 (since the
724  * child array will be doubled by inflate()) and multiplying
725  * the left-hand side by 100 (to handle the percentage thing) we
726  * multiply the left-hand side by 50.
727  *
728  * The left-hand side may look a bit weird: child_length(tn)
729  * - tn->empty_children is of course the number of non-null children
730  * in the current node. tn->full_children is the number of "full"
731  * children, that is non-null tnodes with a skip value of 0.
732  * All of those will be doubled in the resulting inflated tnode, so
733  * we just count them one extra time here.
734  *
735  * A clearer way to write this would be:
736  *
737  * to_be_doubled = tn->full_children;
738  * not_to_be_doubled = child_length(tn) - tn->empty_children -
739  *     tn->full_children;
740  *
741  * new_child_length = child_length(tn) * 2;
742  *
743  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
744  *      new_child_length;
745  * if (new_fill_factor >= inflate_threshold)
746  *
747  * ...and so on, tho it would mess up the while () loop.
748  *
749  * anyway,
750  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
751  *      inflate_threshold
752  *
753  * avoid a division:
754  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
755  *      inflate_threshold * new_child_length
756  *
757  * expand not_to_be_doubled and to_be_doubled, and shorten:
758  * 100 * (child_length(tn) - tn->empty_children +
759  *    tn->full_children) >= inflate_threshold * new_child_length
760  *
761  * expand new_child_length:
762  * 100 * (child_length(tn) - tn->empty_children +
763  *    tn->full_children) >=
764  *      inflate_threshold * child_length(tn) * 2
765  *
766  * shorten again:
767  * 50 * (tn->full_children + child_length(tn) -
768  *    tn->empty_children) >= inflate_threshold *
769  *    child_length(tn)
770  *
771  */
772 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
773 {
774 	unsigned long used = child_length(tn);
775 	unsigned long threshold = used;
776 
777 	/* Keep root node larger */
778 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
779 	used -= tn_info(tn)->empty_children;
780 	used += tn_info(tn)->full_children;
781 
782 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
783 
784 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
785 }
786 
787 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
788 {
789 	unsigned long used = child_length(tn);
790 	unsigned long threshold = used;
791 
792 	/* Keep root node larger */
793 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
794 	used -= tn_info(tn)->empty_children;
795 
796 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
797 
798 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
799 }
800 
801 static inline bool should_collapse(struct key_vector *tn)
802 {
803 	unsigned long used = child_length(tn);
804 
805 	used -= tn_info(tn)->empty_children;
806 
807 	/* account for bits == KEYLENGTH case */
808 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
809 		used -= KEY_MAX;
810 
811 	/* One child or none, time to drop us from the trie */
812 	return used < 2;
813 }
814 
815 #define MAX_WORK 10
816 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
817 {
818 #ifdef CONFIG_IP_FIB_TRIE_STATS
819 	struct trie_use_stats __percpu *stats = t->stats;
820 #endif
821 	struct key_vector *tp = node_parent(tn);
822 	unsigned long cindex = get_index(tn->key, tp);
823 	int max_work = MAX_WORK;
824 
825 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
826 		 tn, inflate_threshold, halve_threshold);
827 
828 	/* track the tnode via the pointer from the parent instead of
829 	 * doing it ourselves.  This way we can let RCU fully do its
830 	 * thing without us interfering
831 	 */
832 	BUG_ON(tn != get_child(tp, cindex));
833 
834 	/* Double as long as the resulting node has a number of
835 	 * nonempty nodes that are above the threshold.
836 	 */
837 	while (should_inflate(tp, tn) && max_work) {
838 		tp = inflate(t, tn);
839 		if (!tp) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841 			this_cpu_inc(stats->resize_node_skipped);
842 #endif
843 			break;
844 		}
845 
846 		max_work--;
847 		tn = get_child(tp, cindex);
848 	}
849 
850 	/* update parent in case inflate failed */
851 	tp = node_parent(tn);
852 
853 	/* Return if at least one inflate is run */
854 	if (max_work != MAX_WORK)
855 		return tp;
856 
857 	/* Halve as long as the number of empty children in this
858 	 * node is above threshold.
859 	 */
860 	while (should_halve(tp, tn) && max_work) {
861 		tp = halve(t, tn);
862 		if (!tp) {
863 #ifdef CONFIG_IP_FIB_TRIE_STATS
864 			this_cpu_inc(stats->resize_node_skipped);
865 #endif
866 			break;
867 		}
868 
869 		max_work--;
870 		tn = get_child(tp, cindex);
871 	}
872 
873 	/* Only one child remains */
874 	if (should_collapse(tn))
875 		return collapse(t, tn);
876 
877 	/* update parent in case halve failed */
878 	tp = node_parent(tn);
879 
880 	/* Return if at least one deflate was run */
881 	if (max_work != MAX_WORK)
882 		return tp;
883 
884 	/* push the suffix length to the parent node */
885 	if (tn->slen > tn->pos) {
886 		unsigned char slen = update_suffix(tn);
887 
888 		if (slen > tp->slen)
889 			tp->slen = slen;
890 	}
891 
892 	return tp;
893 }
894 
895 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
896 {
897 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
898 		if (update_suffix(tp) > l->slen)
899 			break;
900 		tp = node_parent(tp);
901 	}
902 }
903 
904 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
905 {
906 	/* if this is a new leaf then tn will be NULL and we can sort
907 	 * out parent suffix lengths as a part of trie_rebalance
908 	 */
909 	while (tn->slen < l->slen) {
910 		tn->slen = l->slen;
911 		tn = node_parent(tn);
912 	}
913 }
914 
915 /* rcu_read_lock needs to be hold by caller from readside */
916 static struct key_vector *fib_find_node(struct trie *t,
917 					struct key_vector **tp, u32 key)
918 {
919 	struct key_vector *pn, *n = t->kv;
920 	unsigned long index = 0;
921 
922 	do {
923 		pn = n;
924 		n = get_child_rcu(n, index);
925 
926 		if (!n)
927 			break;
928 
929 		index = get_cindex(key, n);
930 
931 		/* This bit of code is a bit tricky but it combines multiple
932 		 * checks into a single check.  The prefix consists of the
933 		 * prefix plus zeros for the bits in the cindex. The index
934 		 * is the difference between the key and this value.  From
935 		 * this we can actually derive several pieces of data.
936 		 *   if (index >= (1ul << bits))
937 		 *     we have a mismatch in skip bits and failed
938 		 *   else
939 		 *     we know the value is cindex
940 		 *
941 		 * This check is safe even if bits == KEYLENGTH due to the
942 		 * fact that we can only allocate a node with 32 bits if a
943 		 * long is greater than 32 bits.
944 		 */
945 		if (index >= (1ul << n->bits)) {
946 			n = NULL;
947 			break;
948 		}
949 
950 		/* keep searching until we find a perfect match leaf or NULL */
951 	} while (IS_TNODE(n));
952 
953 	*tp = pn;
954 
955 	return n;
956 }
957 
958 /* Return the first fib alias matching TOS with
959  * priority less than or equal to PRIO.
960  */
961 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
962 					u8 tos, u32 prio, u32 tb_id)
963 {
964 	struct fib_alias *fa;
965 
966 	if (!fah)
967 		return NULL;
968 
969 	hlist_for_each_entry(fa, fah, fa_list) {
970 		if (fa->fa_slen < slen)
971 			continue;
972 		if (fa->fa_slen != slen)
973 			break;
974 		if (fa->tb_id > tb_id)
975 			continue;
976 		if (fa->tb_id != tb_id)
977 			break;
978 		if (fa->fa_tos > tos)
979 			continue;
980 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
981 			return fa;
982 	}
983 
984 	return NULL;
985 }
986 
987 static void trie_rebalance(struct trie *t, struct key_vector *tn)
988 {
989 	while (!IS_TRIE(tn))
990 		tn = resize(t, tn);
991 }
992 
993 static int fib_insert_node(struct trie *t, struct key_vector *tp,
994 			   struct fib_alias *new, t_key key)
995 {
996 	struct key_vector *n, *l;
997 
998 	l = leaf_new(key, new);
999 	if (!l)
1000 		goto noleaf;
1001 
1002 	/* retrieve child from parent node */
1003 	n = get_child(tp, get_index(key, tp));
1004 
1005 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006 	 *
1007 	 *  Add a new tnode here
1008 	 *  first tnode need some special handling
1009 	 *  leaves us in position for handling as case 3
1010 	 */
1011 	if (n) {
1012 		struct key_vector *tn;
1013 
1014 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1015 		if (!tn)
1016 			goto notnode;
1017 
1018 		/* initialize routes out of node */
1019 		NODE_INIT_PARENT(tn, tp);
1020 		put_child(tn, get_index(key, tn) ^ 1, n);
1021 
1022 		/* start adding routes into the node */
1023 		put_child_root(tp, key, tn);
1024 		node_set_parent(n, tn);
1025 
1026 		/* parent now has a NULL spot where the leaf can go */
1027 		tp = tn;
1028 	}
1029 
1030 	/* Case 3: n is NULL, and will just insert a new leaf */
1031 	NODE_INIT_PARENT(l, tp);
1032 	put_child_root(tp, key, l);
1033 	trie_rebalance(t, tp);
1034 
1035 	return 0;
1036 notnode:
1037 	node_free(l);
1038 noleaf:
1039 	return -ENOMEM;
1040 }
1041 
1042 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043 			    struct key_vector *l, struct fib_alias *new,
1044 			    struct fib_alias *fa, t_key key)
1045 {
1046 	if (!l)
1047 		return fib_insert_node(t, tp, new, key);
1048 
1049 	if (fa) {
1050 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051 	} else {
1052 		struct fib_alias *last;
1053 
1054 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1055 			if (new->fa_slen < last->fa_slen)
1056 				break;
1057 			if ((new->fa_slen == last->fa_slen) &&
1058 			    (new->tb_id > last->tb_id))
1059 				break;
1060 			fa = last;
1061 		}
1062 
1063 		if (fa)
1064 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065 		else
1066 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067 	}
1068 
1069 	/* if we added to the tail node then we need to update slen */
1070 	if (l->slen < new->fa_slen) {
1071 		l->slen = new->fa_slen;
1072 		leaf_push_suffix(tp, l);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /* Caller must hold RTNL. */
1079 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1080 {
1081 	struct trie *t = (struct trie *)tb->tb_data;
1082 	struct fib_alias *fa, *new_fa;
1083 	struct key_vector *l, *tp;
1084 	unsigned int nlflags = 0;
1085 	struct fib_info *fi;
1086 	u8 plen = cfg->fc_dst_len;
1087 	u8 slen = KEYLENGTH - plen;
1088 	u8 tos = cfg->fc_tos;
1089 	u32 key;
1090 	int err;
1091 
1092 	if (plen > KEYLENGTH)
1093 		return -EINVAL;
1094 
1095 	key = ntohl(cfg->fc_dst);
1096 
1097 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098 
1099 	if ((plen < KEYLENGTH) && (key << plen))
1100 		return -EINVAL;
1101 
1102 	fi = fib_create_info(cfg);
1103 	if (IS_ERR(fi)) {
1104 		err = PTR_ERR(fi);
1105 		goto err;
1106 	}
1107 
1108 	l = fib_find_node(t, &tp, key);
1109 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110 				tb->tb_id) : NULL;
1111 
1112 	/* Now fa, if non-NULL, points to the first fib alias
1113 	 * with the same keys [prefix,tos,priority], if such key already
1114 	 * exists or to the node before which we will insert new one.
1115 	 *
1116 	 * If fa is NULL, we will need to allocate a new one and
1117 	 * insert to the tail of the section matching the suffix length
1118 	 * of the new alias.
1119 	 */
1120 
1121 	if (fa && fa->fa_tos == tos &&
1122 	    fa->fa_info->fib_priority == fi->fib_priority) {
1123 		struct fib_alias *fa_first, *fa_match;
1124 
1125 		err = -EEXIST;
1126 		if (cfg->fc_nlflags & NLM_F_EXCL)
1127 			goto out;
1128 
1129 		/* We have 2 goals:
1130 		 * 1. Find exact match for type, scope, fib_info to avoid
1131 		 * duplicate routes
1132 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133 		 */
1134 		fa_match = NULL;
1135 		fa_first = fa;
1136 		hlist_for_each_entry_from(fa, fa_list) {
1137 			if ((fa->fa_slen != slen) ||
1138 			    (fa->tb_id != tb->tb_id) ||
1139 			    (fa->fa_tos != tos))
1140 				break;
1141 			if (fa->fa_info->fib_priority != fi->fib_priority)
1142 				break;
1143 			if (fa->fa_type == cfg->fc_type &&
1144 			    fa->fa_info == fi) {
1145 				fa_match = fa;
1146 				break;
1147 			}
1148 		}
1149 
1150 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151 			struct fib_info *fi_drop;
1152 			u8 state;
1153 
1154 			fa = fa_first;
1155 			if (fa_match) {
1156 				if (fa == fa_match)
1157 					err = 0;
1158 				goto out;
1159 			}
1160 			err = -ENOBUFS;
1161 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162 			if (!new_fa)
1163 				goto out;
1164 
1165 			fi_drop = fa->fa_info;
1166 			new_fa->fa_tos = fa->fa_tos;
1167 			new_fa->fa_info = fi;
1168 			new_fa->fa_type = cfg->fc_type;
1169 			state = fa->fa_state;
1170 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1171 			new_fa->fa_slen = fa->fa_slen;
1172 			new_fa->tb_id = tb->tb_id;
1173 			new_fa->fa_default = -1;
1174 
1175 			err = switchdev_fib_ipv4_add(key, plen, fi,
1176 						     new_fa->fa_tos,
1177 						     cfg->fc_type,
1178 						     cfg->fc_nlflags,
1179 						     tb->tb_id);
1180 			if (err) {
1181 				switchdev_fib_ipv4_abort(fi);
1182 				kmem_cache_free(fn_alias_kmem, new_fa);
1183 				goto out;
1184 			}
1185 
1186 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187 
1188 			alias_free_mem_rcu(fa);
1189 
1190 			fib_release_info(fi_drop);
1191 			if (state & FA_S_ACCESSED)
1192 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195 
1196 			goto succeeded;
1197 		}
1198 		/* Error if we find a perfect match which
1199 		 * uses the same scope, type, and nexthop
1200 		 * information.
1201 		 */
1202 		if (fa_match)
1203 			goto out;
1204 
1205 		if (cfg->fc_nlflags & NLM_F_APPEND)
1206 			nlflags = NLM_F_APPEND;
1207 		else
1208 			fa = fa_first;
1209 	}
1210 	err = -ENOENT;
1211 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 		goto out;
1213 
1214 	err = -ENOBUFS;
1215 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216 	if (!new_fa)
1217 		goto out;
1218 
1219 	new_fa->fa_info = fi;
1220 	new_fa->fa_tos = tos;
1221 	new_fa->fa_type = cfg->fc_type;
1222 	new_fa->fa_state = 0;
1223 	new_fa->fa_slen = slen;
1224 	new_fa->tb_id = tb->tb_id;
1225 	new_fa->fa_default = -1;
1226 
1227 	/* (Optionally) offload fib entry to switch hardware. */
1228 	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229 				     cfg->fc_nlflags, tb->tb_id);
1230 	if (err) {
1231 		switchdev_fib_ipv4_abort(fi);
1232 		goto out_free_new_fa;
1233 	}
1234 
1235 	/* Insert new entry to the list. */
1236 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237 	if (err)
1238 		goto out_sw_fib_del;
1239 
1240 	if (!plen)
1241 		tb->tb_num_default++;
1242 
1243 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245 		  &cfg->fc_nlinfo, nlflags);
1246 succeeded:
1247 	return 0;
1248 
1249 out_sw_fib_del:
1250 	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1251 out_free_new_fa:
1252 	kmem_cache_free(fn_alias_kmem, new_fa);
1253 out:
1254 	fib_release_info(fi);
1255 err:
1256 	return err;
1257 }
1258 
1259 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260 {
1261 	t_key prefix = n->key;
1262 
1263 	return (key ^ prefix) & (prefix | -prefix);
1264 }
1265 
1266 /* should be called with rcu_read_lock */
1267 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1268 		     struct fib_result *res, int fib_flags)
1269 {
1270 	struct trie *t = (struct trie *) tb->tb_data;
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 	struct trie_use_stats __percpu *stats = t->stats;
1273 #endif
1274 	const t_key key = ntohl(flp->daddr);
1275 	struct key_vector *n, *pn;
1276 	struct fib_alias *fa;
1277 	unsigned long index;
1278 	t_key cindex;
1279 
1280 	trace_fib_table_lookup(tb->tb_id, flp);
1281 
1282 	pn = t->kv;
1283 	cindex = 0;
1284 
1285 	n = get_child_rcu(pn, cindex);
1286 	if (!n)
1287 		return -EAGAIN;
1288 
1289 #ifdef CONFIG_IP_FIB_TRIE_STATS
1290 	this_cpu_inc(stats->gets);
1291 #endif
1292 
1293 	/* Step 1: Travel to the longest prefix match in the trie */
1294 	for (;;) {
1295 		index = get_cindex(key, n);
1296 
1297 		/* This bit of code is a bit tricky but it combines multiple
1298 		 * checks into a single check.  The prefix consists of the
1299 		 * prefix plus zeros for the "bits" in the prefix. The index
1300 		 * is the difference between the key and this value.  From
1301 		 * this we can actually derive several pieces of data.
1302 		 *   if (index >= (1ul << bits))
1303 		 *     we have a mismatch in skip bits and failed
1304 		 *   else
1305 		 *     we know the value is cindex
1306 		 *
1307 		 * This check is safe even if bits == KEYLENGTH due to the
1308 		 * fact that we can only allocate a node with 32 bits if a
1309 		 * long is greater than 32 bits.
1310 		 */
1311 		if (index >= (1ul << n->bits))
1312 			break;
1313 
1314 		/* we have found a leaf. Prefixes have already been compared */
1315 		if (IS_LEAF(n))
1316 			goto found;
1317 
1318 		/* only record pn and cindex if we are going to be chopping
1319 		 * bits later.  Otherwise we are just wasting cycles.
1320 		 */
1321 		if (n->slen > n->pos) {
1322 			pn = n;
1323 			cindex = index;
1324 		}
1325 
1326 		n = get_child_rcu(n, index);
1327 		if (unlikely(!n))
1328 			goto backtrace;
1329 	}
1330 
1331 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332 	for (;;) {
1333 		/* record the pointer where our next node pointer is stored */
1334 		struct key_vector __rcu **cptr = n->tnode;
1335 
1336 		/* This test verifies that none of the bits that differ
1337 		 * between the key and the prefix exist in the region of
1338 		 * the lsb and higher in the prefix.
1339 		 */
1340 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341 			goto backtrace;
1342 
1343 		/* exit out and process leaf */
1344 		if (unlikely(IS_LEAF(n)))
1345 			break;
1346 
1347 		/* Don't bother recording parent info.  Since we are in
1348 		 * prefix match mode we will have to come back to wherever
1349 		 * we started this traversal anyway
1350 		 */
1351 
1352 		while ((n = rcu_dereference(*cptr)) == NULL) {
1353 backtrace:
1354 #ifdef CONFIG_IP_FIB_TRIE_STATS
1355 			if (!n)
1356 				this_cpu_inc(stats->null_node_hit);
1357 #endif
1358 			/* If we are at cindex 0 there are no more bits for
1359 			 * us to strip at this level so we must ascend back
1360 			 * up one level to see if there are any more bits to
1361 			 * be stripped there.
1362 			 */
1363 			while (!cindex) {
1364 				t_key pkey = pn->key;
1365 
1366 				/* If we don't have a parent then there is
1367 				 * nothing for us to do as we do not have any
1368 				 * further nodes to parse.
1369 				 */
1370 				if (IS_TRIE(pn))
1371 					return -EAGAIN;
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 				this_cpu_inc(stats->backtrack);
1374 #endif
1375 				/* Get Child's index */
1376 				pn = node_parent_rcu(pn);
1377 				cindex = get_index(pkey, pn);
1378 			}
1379 
1380 			/* strip the least significant bit from the cindex */
1381 			cindex &= cindex - 1;
1382 
1383 			/* grab pointer for next child node */
1384 			cptr = &pn->tnode[cindex];
1385 		}
1386 	}
1387 
1388 found:
1389 	/* this line carries forward the xor from earlier in the function */
1390 	index = key ^ n->key;
1391 
1392 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1393 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394 		struct fib_info *fi = fa->fa_info;
1395 		int nhsel, err;
1396 
1397 		if ((index >= (1ul << fa->fa_slen)) &&
1398 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1399 			continue;
1400 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1401 			continue;
1402 		if (fi->fib_dead)
1403 			continue;
1404 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1405 			continue;
1406 		fib_alias_accessed(fa);
1407 		err = fib_props[fa->fa_type].error;
1408 		if (unlikely(err < 0)) {
1409 #ifdef CONFIG_IP_FIB_TRIE_STATS
1410 			this_cpu_inc(stats->semantic_match_passed);
1411 #endif
1412 			return err;
1413 		}
1414 		if (fi->fib_flags & RTNH_F_DEAD)
1415 			continue;
1416 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1417 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1418 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1419 
1420 			if (nh->nh_flags & RTNH_F_DEAD)
1421 				continue;
1422 			if (in_dev &&
1423 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1424 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1425 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1426 				continue;
1427 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1428 				if (flp->flowi4_oif &&
1429 				    flp->flowi4_oif != nh->nh_oif)
1430 					continue;
1431 			}
1432 
1433 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1434 				atomic_inc(&fi->fib_clntref);
1435 
1436 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1437 			res->nh_sel = nhsel;
1438 			res->type = fa->fa_type;
1439 			res->scope = fi->fib_scope;
1440 			res->fi = fi;
1441 			res->table = tb;
1442 			res->fa_head = &n->leaf;
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 			this_cpu_inc(stats->semantic_match_passed);
1445 #endif
1446 			trace_fib_table_lookup_nh(nh);
1447 
1448 			return err;
1449 		}
1450 	}
1451 #ifdef CONFIG_IP_FIB_TRIE_STATS
1452 	this_cpu_inc(stats->semantic_match_miss);
1453 #endif
1454 	goto backtrace;
1455 }
1456 EXPORT_SYMBOL_GPL(fib_table_lookup);
1457 
1458 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1459 			     struct key_vector *l, struct fib_alias *old)
1460 {
1461 	/* record the location of the previous list_info entry */
1462 	struct hlist_node **pprev = old->fa_list.pprev;
1463 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1464 
1465 	/* remove the fib_alias from the list */
1466 	hlist_del_rcu(&old->fa_list);
1467 
1468 	/* if we emptied the list this leaf will be freed and we can sort
1469 	 * out parent suffix lengths as a part of trie_rebalance
1470 	 */
1471 	if (hlist_empty(&l->leaf)) {
1472 		put_child_root(tp, l->key, NULL);
1473 		node_free(l);
1474 		trie_rebalance(t, tp);
1475 		return;
1476 	}
1477 
1478 	/* only access fa if it is pointing at the last valid hlist_node */
1479 	if (*pprev)
1480 		return;
1481 
1482 	/* update the trie with the latest suffix length */
1483 	l->slen = fa->fa_slen;
1484 	leaf_pull_suffix(tp, l);
1485 }
1486 
1487 /* Caller must hold RTNL. */
1488 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1489 {
1490 	struct trie *t = (struct trie *) tb->tb_data;
1491 	struct fib_alias *fa, *fa_to_delete;
1492 	struct key_vector *l, *tp;
1493 	u8 plen = cfg->fc_dst_len;
1494 	u8 slen = KEYLENGTH - plen;
1495 	u8 tos = cfg->fc_tos;
1496 	u32 key;
1497 
1498 	if (plen > KEYLENGTH)
1499 		return -EINVAL;
1500 
1501 	key = ntohl(cfg->fc_dst);
1502 
1503 	if ((plen < KEYLENGTH) && (key << plen))
1504 		return -EINVAL;
1505 
1506 	l = fib_find_node(t, &tp, key);
1507 	if (!l)
1508 		return -ESRCH;
1509 
1510 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1511 	if (!fa)
1512 		return -ESRCH;
1513 
1514 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1515 
1516 	fa_to_delete = NULL;
1517 	hlist_for_each_entry_from(fa, fa_list) {
1518 		struct fib_info *fi = fa->fa_info;
1519 
1520 		if ((fa->fa_slen != slen) ||
1521 		    (fa->tb_id != tb->tb_id) ||
1522 		    (fa->fa_tos != tos))
1523 			break;
1524 
1525 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1526 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1527 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1528 		    (!cfg->fc_prefsrc ||
1529 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1530 		    (!cfg->fc_protocol ||
1531 		     fi->fib_protocol == cfg->fc_protocol) &&
1532 		    fib_nh_match(cfg, fi) == 0) {
1533 			fa_to_delete = fa;
1534 			break;
1535 		}
1536 	}
1537 
1538 	if (!fa_to_delete)
1539 		return -ESRCH;
1540 
1541 	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1542 			       cfg->fc_type, tb->tb_id);
1543 
1544 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1545 		  &cfg->fc_nlinfo, 0);
1546 
1547 	if (!plen)
1548 		tb->tb_num_default--;
1549 
1550 	fib_remove_alias(t, tp, l, fa_to_delete);
1551 
1552 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1553 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1554 
1555 	fib_release_info(fa_to_delete->fa_info);
1556 	alias_free_mem_rcu(fa_to_delete);
1557 	return 0;
1558 }
1559 
1560 /* Scan for the next leaf starting at the provided key value */
1561 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1562 {
1563 	struct key_vector *pn, *n = *tn;
1564 	unsigned long cindex;
1565 
1566 	/* this loop is meant to try and find the key in the trie */
1567 	do {
1568 		/* record parent and next child index */
1569 		pn = n;
1570 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1571 
1572 		if (cindex >> pn->bits)
1573 			break;
1574 
1575 		/* descend into the next child */
1576 		n = get_child_rcu(pn, cindex++);
1577 		if (!n)
1578 			break;
1579 
1580 		/* guarantee forward progress on the keys */
1581 		if (IS_LEAF(n) && (n->key >= key))
1582 			goto found;
1583 	} while (IS_TNODE(n));
1584 
1585 	/* this loop will search for the next leaf with a greater key */
1586 	while (!IS_TRIE(pn)) {
1587 		/* if we exhausted the parent node we will need to climb */
1588 		if (cindex >= (1ul << pn->bits)) {
1589 			t_key pkey = pn->key;
1590 
1591 			pn = node_parent_rcu(pn);
1592 			cindex = get_index(pkey, pn) + 1;
1593 			continue;
1594 		}
1595 
1596 		/* grab the next available node */
1597 		n = get_child_rcu(pn, cindex++);
1598 		if (!n)
1599 			continue;
1600 
1601 		/* no need to compare keys since we bumped the index */
1602 		if (IS_LEAF(n))
1603 			goto found;
1604 
1605 		/* Rescan start scanning in new node */
1606 		pn = n;
1607 		cindex = 0;
1608 	}
1609 
1610 	*tn = pn;
1611 	return NULL; /* Root of trie */
1612 found:
1613 	/* if we are at the limit for keys just return NULL for the tnode */
1614 	*tn = pn;
1615 	return n;
1616 }
1617 
1618 static void fib_trie_free(struct fib_table *tb)
1619 {
1620 	struct trie *t = (struct trie *)tb->tb_data;
1621 	struct key_vector *pn = t->kv;
1622 	unsigned long cindex = 1;
1623 	struct hlist_node *tmp;
1624 	struct fib_alias *fa;
1625 
1626 	/* walk trie in reverse order and free everything */
1627 	for (;;) {
1628 		struct key_vector *n;
1629 
1630 		if (!(cindex--)) {
1631 			t_key pkey = pn->key;
1632 
1633 			if (IS_TRIE(pn))
1634 				break;
1635 
1636 			n = pn;
1637 			pn = node_parent(pn);
1638 
1639 			/* drop emptied tnode */
1640 			put_child_root(pn, n->key, NULL);
1641 			node_free(n);
1642 
1643 			cindex = get_index(pkey, pn);
1644 
1645 			continue;
1646 		}
1647 
1648 		/* grab the next available node */
1649 		n = get_child(pn, cindex);
1650 		if (!n)
1651 			continue;
1652 
1653 		if (IS_TNODE(n)) {
1654 			/* record pn and cindex for leaf walking */
1655 			pn = n;
1656 			cindex = 1ul << n->bits;
1657 
1658 			continue;
1659 		}
1660 
1661 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1662 			hlist_del_rcu(&fa->fa_list);
1663 			alias_free_mem_rcu(fa);
1664 		}
1665 
1666 		put_child_root(pn, n->key, NULL);
1667 		node_free(n);
1668 	}
1669 
1670 #ifdef CONFIG_IP_FIB_TRIE_STATS
1671 	free_percpu(t->stats);
1672 #endif
1673 	kfree(tb);
1674 }
1675 
1676 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1677 {
1678 	struct trie *ot = (struct trie *)oldtb->tb_data;
1679 	struct key_vector *l, *tp = ot->kv;
1680 	struct fib_table *local_tb;
1681 	struct fib_alias *fa;
1682 	struct trie *lt;
1683 	t_key key = 0;
1684 
1685 	if (oldtb->tb_data == oldtb->__data)
1686 		return oldtb;
1687 
1688 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1689 	if (!local_tb)
1690 		return NULL;
1691 
1692 	lt = (struct trie *)local_tb->tb_data;
1693 
1694 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1695 		struct key_vector *local_l = NULL, *local_tp;
1696 
1697 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1698 			struct fib_alias *new_fa;
1699 
1700 			if (local_tb->tb_id != fa->tb_id)
1701 				continue;
1702 
1703 			/* clone fa for new local table */
1704 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1705 			if (!new_fa)
1706 				goto out;
1707 
1708 			memcpy(new_fa, fa, sizeof(*fa));
1709 
1710 			/* insert clone into table */
1711 			if (!local_l)
1712 				local_l = fib_find_node(lt, &local_tp, l->key);
1713 
1714 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1715 					     NULL, l->key))
1716 				goto out;
1717 		}
1718 
1719 		/* stop loop if key wrapped back to 0 */
1720 		key = l->key + 1;
1721 		if (key < l->key)
1722 			break;
1723 	}
1724 
1725 	return local_tb;
1726 out:
1727 	fib_trie_free(local_tb);
1728 
1729 	return NULL;
1730 }
1731 
1732 /* Caller must hold RTNL */
1733 void fib_table_flush_external(struct fib_table *tb)
1734 {
1735 	struct trie *t = (struct trie *)tb->tb_data;
1736 	struct key_vector *pn = t->kv;
1737 	unsigned long cindex = 1;
1738 	struct hlist_node *tmp;
1739 	struct fib_alias *fa;
1740 
1741 	/* walk trie in reverse order */
1742 	for (;;) {
1743 		unsigned char slen = 0;
1744 		struct key_vector *n;
1745 
1746 		if (!(cindex--)) {
1747 			t_key pkey = pn->key;
1748 
1749 			/* cannot resize the trie vector */
1750 			if (IS_TRIE(pn))
1751 				break;
1752 
1753 			/* resize completed node */
1754 			pn = resize(t, pn);
1755 			cindex = get_index(pkey, pn);
1756 
1757 			continue;
1758 		}
1759 
1760 		/* grab the next available node */
1761 		n = get_child(pn, cindex);
1762 		if (!n)
1763 			continue;
1764 
1765 		if (IS_TNODE(n)) {
1766 			/* record pn and cindex for leaf walking */
1767 			pn = n;
1768 			cindex = 1ul << n->bits;
1769 
1770 			continue;
1771 		}
1772 
1773 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1774 			struct fib_info *fi = fa->fa_info;
1775 
1776 			/* if alias was cloned to local then we just
1777 			 * need to remove the local copy from main
1778 			 */
1779 			if (tb->tb_id != fa->tb_id) {
1780 				hlist_del_rcu(&fa->fa_list);
1781 				alias_free_mem_rcu(fa);
1782 				continue;
1783 			}
1784 
1785 			/* record local slen */
1786 			slen = fa->fa_slen;
1787 
1788 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1789 				continue;
1790 
1791 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1792 					       fi, fa->fa_tos, fa->fa_type,
1793 					       tb->tb_id);
1794 		}
1795 
1796 		/* update leaf slen */
1797 		n->slen = slen;
1798 
1799 		if (hlist_empty(&n->leaf)) {
1800 			put_child_root(pn, n->key, NULL);
1801 			node_free(n);
1802 		}
1803 	}
1804 }
1805 
1806 /* Caller must hold RTNL. */
1807 int fib_table_flush(struct fib_table *tb)
1808 {
1809 	struct trie *t = (struct trie *)tb->tb_data;
1810 	struct key_vector *pn = t->kv;
1811 	unsigned long cindex = 1;
1812 	struct hlist_node *tmp;
1813 	struct fib_alias *fa;
1814 	int found = 0;
1815 
1816 	/* walk trie in reverse order */
1817 	for (;;) {
1818 		unsigned char slen = 0;
1819 		struct key_vector *n;
1820 
1821 		if (!(cindex--)) {
1822 			t_key pkey = pn->key;
1823 
1824 			/* cannot resize the trie vector */
1825 			if (IS_TRIE(pn))
1826 				break;
1827 
1828 			/* resize completed node */
1829 			pn = resize(t, pn);
1830 			cindex = get_index(pkey, pn);
1831 
1832 			continue;
1833 		}
1834 
1835 		/* grab the next available node */
1836 		n = get_child(pn, cindex);
1837 		if (!n)
1838 			continue;
1839 
1840 		if (IS_TNODE(n)) {
1841 			/* record pn and cindex for leaf walking */
1842 			pn = n;
1843 			cindex = 1ul << n->bits;
1844 
1845 			continue;
1846 		}
1847 
1848 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1849 			struct fib_info *fi = fa->fa_info;
1850 
1851 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1852 				slen = fa->fa_slen;
1853 				continue;
1854 			}
1855 
1856 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1857 					       fi, fa->fa_tos, fa->fa_type,
1858 					       tb->tb_id);
1859 			hlist_del_rcu(&fa->fa_list);
1860 			fib_release_info(fa->fa_info);
1861 			alias_free_mem_rcu(fa);
1862 			found++;
1863 		}
1864 
1865 		/* update leaf slen */
1866 		n->slen = slen;
1867 
1868 		if (hlist_empty(&n->leaf)) {
1869 			put_child_root(pn, n->key, NULL);
1870 			node_free(n);
1871 		}
1872 	}
1873 
1874 	pr_debug("trie_flush found=%d\n", found);
1875 	return found;
1876 }
1877 
1878 static void __trie_free_rcu(struct rcu_head *head)
1879 {
1880 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1881 #ifdef CONFIG_IP_FIB_TRIE_STATS
1882 	struct trie *t = (struct trie *)tb->tb_data;
1883 
1884 	if (tb->tb_data == tb->__data)
1885 		free_percpu(t->stats);
1886 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1887 	kfree(tb);
1888 }
1889 
1890 void fib_free_table(struct fib_table *tb)
1891 {
1892 	call_rcu(&tb->rcu, __trie_free_rcu);
1893 }
1894 
1895 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1896 			     struct sk_buff *skb, struct netlink_callback *cb)
1897 {
1898 	__be32 xkey = htonl(l->key);
1899 	struct fib_alias *fa;
1900 	int i, s_i;
1901 
1902 	s_i = cb->args[4];
1903 	i = 0;
1904 
1905 	/* rcu_read_lock is hold by caller */
1906 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1907 		if (i < s_i) {
1908 			i++;
1909 			continue;
1910 		}
1911 
1912 		if (tb->tb_id != fa->tb_id) {
1913 			i++;
1914 			continue;
1915 		}
1916 
1917 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1918 				  cb->nlh->nlmsg_seq,
1919 				  RTM_NEWROUTE,
1920 				  tb->tb_id,
1921 				  fa->fa_type,
1922 				  xkey,
1923 				  KEYLENGTH - fa->fa_slen,
1924 				  fa->fa_tos,
1925 				  fa->fa_info, NLM_F_MULTI) < 0) {
1926 			cb->args[4] = i;
1927 			return -1;
1928 		}
1929 		i++;
1930 	}
1931 
1932 	cb->args[4] = i;
1933 	return skb->len;
1934 }
1935 
1936 /* rcu_read_lock needs to be hold by caller from readside */
1937 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1938 		   struct netlink_callback *cb)
1939 {
1940 	struct trie *t = (struct trie *)tb->tb_data;
1941 	struct key_vector *l, *tp = t->kv;
1942 	/* Dump starting at last key.
1943 	 * Note: 0.0.0.0/0 (ie default) is first key.
1944 	 */
1945 	int count = cb->args[2];
1946 	t_key key = cb->args[3];
1947 
1948 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1949 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1950 			cb->args[3] = key;
1951 			cb->args[2] = count;
1952 			return -1;
1953 		}
1954 
1955 		++count;
1956 		key = l->key + 1;
1957 
1958 		memset(&cb->args[4], 0,
1959 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1960 
1961 		/* stop loop if key wrapped back to 0 */
1962 		if (key < l->key)
1963 			break;
1964 	}
1965 
1966 	cb->args[3] = key;
1967 	cb->args[2] = count;
1968 
1969 	return skb->len;
1970 }
1971 
1972 void __init fib_trie_init(void)
1973 {
1974 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1975 					  sizeof(struct fib_alias),
1976 					  0, SLAB_PANIC, NULL);
1977 
1978 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1979 					   LEAF_SIZE,
1980 					   0, SLAB_PANIC, NULL);
1981 }
1982 
1983 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1984 {
1985 	struct fib_table *tb;
1986 	struct trie *t;
1987 	size_t sz = sizeof(*tb);
1988 
1989 	if (!alias)
1990 		sz += sizeof(struct trie);
1991 
1992 	tb = kzalloc(sz, GFP_KERNEL);
1993 	if (!tb)
1994 		return NULL;
1995 
1996 	tb->tb_id = id;
1997 	tb->tb_num_default = 0;
1998 	tb->tb_data = (alias ? alias->__data : tb->__data);
1999 
2000 	if (alias)
2001 		return tb;
2002 
2003 	t = (struct trie *) tb->tb_data;
2004 	t->kv[0].pos = KEYLENGTH;
2005 	t->kv[0].slen = KEYLENGTH;
2006 #ifdef CONFIG_IP_FIB_TRIE_STATS
2007 	t->stats = alloc_percpu(struct trie_use_stats);
2008 	if (!t->stats) {
2009 		kfree(tb);
2010 		tb = NULL;
2011 	}
2012 #endif
2013 
2014 	return tb;
2015 }
2016 
2017 #ifdef CONFIG_PROC_FS
2018 /* Depth first Trie walk iterator */
2019 struct fib_trie_iter {
2020 	struct seq_net_private p;
2021 	struct fib_table *tb;
2022 	struct key_vector *tnode;
2023 	unsigned int index;
2024 	unsigned int depth;
2025 };
2026 
2027 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2028 {
2029 	unsigned long cindex = iter->index;
2030 	struct key_vector *pn = iter->tnode;
2031 	t_key pkey;
2032 
2033 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2034 		 iter->tnode, iter->index, iter->depth);
2035 
2036 	while (!IS_TRIE(pn)) {
2037 		while (cindex < child_length(pn)) {
2038 			struct key_vector *n = get_child_rcu(pn, cindex++);
2039 
2040 			if (!n)
2041 				continue;
2042 
2043 			if (IS_LEAF(n)) {
2044 				iter->tnode = pn;
2045 				iter->index = cindex;
2046 			} else {
2047 				/* push down one level */
2048 				iter->tnode = n;
2049 				iter->index = 0;
2050 				++iter->depth;
2051 			}
2052 
2053 			return n;
2054 		}
2055 
2056 		/* Current node exhausted, pop back up */
2057 		pkey = pn->key;
2058 		pn = node_parent_rcu(pn);
2059 		cindex = get_index(pkey, pn) + 1;
2060 		--iter->depth;
2061 	}
2062 
2063 	/* record root node so further searches know we are done */
2064 	iter->tnode = pn;
2065 	iter->index = 0;
2066 
2067 	return NULL;
2068 }
2069 
2070 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2071 					     struct trie *t)
2072 {
2073 	struct key_vector *n, *pn;
2074 
2075 	if (!t)
2076 		return NULL;
2077 
2078 	pn = t->kv;
2079 	n = rcu_dereference(pn->tnode[0]);
2080 	if (!n)
2081 		return NULL;
2082 
2083 	if (IS_TNODE(n)) {
2084 		iter->tnode = n;
2085 		iter->index = 0;
2086 		iter->depth = 1;
2087 	} else {
2088 		iter->tnode = pn;
2089 		iter->index = 0;
2090 		iter->depth = 0;
2091 	}
2092 
2093 	return n;
2094 }
2095 
2096 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2097 {
2098 	struct key_vector *n;
2099 	struct fib_trie_iter iter;
2100 
2101 	memset(s, 0, sizeof(*s));
2102 
2103 	rcu_read_lock();
2104 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2105 		if (IS_LEAF(n)) {
2106 			struct fib_alias *fa;
2107 
2108 			s->leaves++;
2109 			s->totdepth += iter.depth;
2110 			if (iter.depth > s->maxdepth)
2111 				s->maxdepth = iter.depth;
2112 
2113 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2114 				++s->prefixes;
2115 		} else {
2116 			s->tnodes++;
2117 			if (n->bits < MAX_STAT_DEPTH)
2118 				s->nodesizes[n->bits]++;
2119 			s->nullpointers += tn_info(n)->empty_children;
2120 		}
2121 	}
2122 	rcu_read_unlock();
2123 }
2124 
2125 /*
2126  *	This outputs /proc/net/fib_triestats
2127  */
2128 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2129 {
2130 	unsigned int i, max, pointers, bytes, avdepth;
2131 
2132 	if (stat->leaves)
2133 		avdepth = stat->totdepth*100 / stat->leaves;
2134 	else
2135 		avdepth = 0;
2136 
2137 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2138 		   avdepth / 100, avdepth % 100);
2139 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2140 
2141 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2142 	bytes = LEAF_SIZE * stat->leaves;
2143 
2144 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2145 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2146 
2147 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2148 	bytes += TNODE_SIZE(0) * stat->tnodes;
2149 
2150 	max = MAX_STAT_DEPTH;
2151 	while (max > 0 && stat->nodesizes[max-1] == 0)
2152 		max--;
2153 
2154 	pointers = 0;
2155 	for (i = 1; i < max; i++)
2156 		if (stat->nodesizes[i] != 0) {
2157 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2158 			pointers += (1<<i) * stat->nodesizes[i];
2159 		}
2160 	seq_putc(seq, '\n');
2161 	seq_printf(seq, "\tPointers: %u\n", pointers);
2162 
2163 	bytes += sizeof(struct key_vector *) * pointers;
2164 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2165 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2166 }
2167 
2168 #ifdef CONFIG_IP_FIB_TRIE_STATS
2169 static void trie_show_usage(struct seq_file *seq,
2170 			    const struct trie_use_stats __percpu *stats)
2171 {
2172 	struct trie_use_stats s = { 0 };
2173 	int cpu;
2174 
2175 	/* loop through all of the CPUs and gather up the stats */
2176 	for_each_possible_cpu(cpu) {
2177 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2178 
2179 		s.gets += pcpu->gets;
2180 		s.backtrack += pcpu->backtrack;
2181 		s.semantic_match_passed += pcpu->semantic_match_passed;
2182 		s.semantic_match_miss += pcpu->semantic_match_miss;
2183 		s.null_node_hit += pcpu->null_node_hit;
2184 		s.resize_node_skipped += pcpu->resize_node_skipped;
2185 	}
2186 
2187 	seq_printf(seq, "\nCounters:\n---------\n");
2188 	seq_printf(seq, "gets = %u\n", s.gets);
2189 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2190 	seq_printf(seq, "semantic match passed = %u\n",
2191 		   s.semantic_match_passed);
2192 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2193 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2194 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2195 }
2196 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2197 
2198 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2199 {
2200 	if (tb->tb_id == RT_TABLE_LOCAL)
2201 		seq_puts(seq, "Local:\n");
2202 	else if (tb->tb_id == RT_TABLE_MAIN)
2203 		seq_puts(seq, "Main:\n");
2204 	else
2205 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2206 }
2207 
2208 
2209 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2210 {
2211 	struct net *net = (struct net *)seq->private;
2212 	unsigned int h;
2213 
2214 	seq_printf(seq,
2215 		   "Basic info: size of leaf:"
2216 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2217 		   LEAF_SIZE, TNODE_SIZE(0));
2218 
2219 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2220 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2221 		struct fib_table *tb;
2222 
2223 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2224 			struct trie *t = (struct trie *) tb->tb_data;
2225 			struct trie_stat stat;
2226 
2227 			if (!t)
2228 				continue;
2229 
2230 			fib_table_print(seq, tb);
2231 
2232 			trie_collect_stats(t, &stat);
2233 			trie_show_stats(seq, &stat);
2234 #ifdef CONFIG_IP_FIB_TRIE_STATS
2235 			trie_show_usage(seq, t->stats);
2236 #endif
2237 		}
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2244 {
2245 	return single_open_net(inode, file, fib_triestat_seq_show);
2246 }
2247 
2248 static const struct file_operations fib_triestat_fops = {
2249 	.owner	= THIS_MODULE,
2250 	.open	= fib_triestat_seq_open,
2251 	.read	= seq_read,
2252 	.llseek	= seq_lseek,
2253 	.release = single_release_net,
2254 };
2255 
2256 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2257 {
2258 	struct fib_trie_iter *iter = seq->private;
2259 	struct net *net = seq_file_net(seq);
2260 	loff_t idx = 0;
2261 	unsigned int h;
2262 
2263 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2264 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2265 		struct fib_table *tb;
2266 
2267 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2268 			struct key_vector *n;
2269 
2270 			for (n = fib_trie_get_first(iter,
2271 						    (struct trie *) tb->tb_data);
2272 			     n; n = fib_trie_get_next(iter))
2273 				if (pos == idx++) {
2274 					iter->tb = tb;
2275 					return n;
2276 				}
2277 		}
2278 	}
2279 
2280 	return NULL;
2281 }
2282 
2283 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2284 	__acquires(RCU)
2285 {
2286 	rcu_read_lock();
2287 	return fib_trie_get_idx(seq, *pos);
2288 }
2289 
2290 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2291 {
2292 	struct fib_trie_iter *iter = seq->private;
2293 	struct net *net = seq_file_net(seq);
2294 	struct fib_table *tb = iter->tb;
2295 	struct hlist_node *tb_node;
2296 	unsigned int h;
2297 	struct key_vector *n;
2298 
2299 	++*pos;
2300 	/* next node in same table */
2301 	n = fib_trie_get_next(iter);
2302 	if (n)
2303 		return n;
2304 
2305 	/* walk rest of this hash chain */
2306 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2307 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2308 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2309 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2310 		if (n)
2311 			goto found;
2312 	}
2313 
2314 	/* new hash chain */
2315 	while (++h < FIB_TABLE_HASHSZ) {
2316 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2317 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2318 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2319 			if (n)
2320 				goto found;
2321 		}
2322 	}
2323 	return NULL;
2324 
2325 found:
2326 	iter->tb = tb;
2327 	return n;
2328 }
2329 
2330 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2331 	__releases(RCU)
2332 {
2333 	rcu_read_unlock();
2334 }
2335 
2336 static void seq_indent(struct seq_file *seq, int n)
2337 {
2338 	while (n-- > 0)
2339 		seq_puts(seq, "   ");
2340 }
2341 
2342 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2343 {
2344 	switch (s) {
2345 	case RT_SCOPE_UNIVERSE: return "universe";
2346 	case RT_SCOPE_SITE:	return "site";
2347 	case RT_SCOPE_LINK:	return "link";
2348 	case RT_SCOPE_HOST:	return "host";
2349 	case RT_SCOPE_NOWHERE:	return "nowhere";
2350 	default:
2351 		snprintf(buf, len, "scope=%d", s);
2352 		return buf;
2353 	}
2354 }
2355 
2356 static const char *const rtn_type_names[__RTN_MAX] = {
2357 	[RTN_UNSPEC] = "UNSPEC",
2358 	[RTN_UNICAST] = "UNICAST",
2359 	[RTN_LOCAL] = "LOCAL",
2360 	[RTN_BROADCAST] = "BROADCAST",
2361 	[RTN_ANYCAST] = "ANYCAST",
2362 	[RTN_MULTICAST] = "MULTICAST",
2363 	[RTN_BLACKHOLE] = "BLACKHOLE",
2364 	[RTN_UNREACHABLE] = "UNREACHABLE",
2365 	[RTN_PROHIBIT] = "PROHIBIT",
2366 	[RTN_THROW] = "THROW",
2367 	[RTN_NAT] = "NAT",
2368 	[RTN_XRESOLVE] = "XRESOLVE",
2369 };
2370 
2371 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2372 {
2373 	if (t < __RTN_MAX && rtn_type_names[t])
2374 		return rtn_type_names[t];
2375 	snprintf(buf, len, "type %u", t);
2376 	return buf;
2377 }
2378 
2379 /* Pretty print the trie */
2380 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2381 {
2382 	const struct fib_trie_iter *iter = seq->private;
2383 	struct key_vector *n = v;
2384 
2385 	if (IS_TRIE(node_parent_rcu(n)))
2386 		fib_table_print(seq, iter->tb);
2387 
2388 	if (IS_TNODE(n)) {
2389 		__be32 prf = htonl(n->key);
2390 
2391 		seq_indent(seq, iter->depth-1);
2392 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2393 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2394 			   tn_info(n)->full_children,
2395 			   tn_info(n)->empty_children);
2396 	} else {
2397 		__be32 val = htonl(n->key);
2398 		struct fib_alias *fa;
2399 
2400 		seq_indent(seq, iter->depth);
2401 		seq_printf(seq, "  |-- %pI4\n", &val);
2402 
2403 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2404 			char buf1[32], buf2[32];
2405 
2406 			seq_indent(seq, iter->depth + 1);
2407 			seq_printf(seq, "  /%zu %s %s",
2408 				   KEYLENGTH - fa->fa_slen,
2409 				   rtn_scope(buf1, sizeof(buf1),
2410 					     fa->fa_info->fib_scope),
2411 				   rtn_type(buf2, sizeof(buf2),
2412 					    fa->fa_type));
2413 			if (fa->fa_tos)
2414 				seq_printf(seq, " tos=%d", fa->fa_tos);
2415 			seq_putc(seq, '\n');
2416 		}
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static const struct seq_operations fib_trie_seq_ops = {
2423 	.start  = fib_trie_seq_start,
2424 	.next   = fib_trie_seq_next,
2425 	.stop   = fib_trie_seq_stop,
2426 	.show   = fib_trie_seq_show,
2427 };
2428 
2429 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2430 {
2431 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2432 			    sizeof(struct fib_trie_iter));
2433 }
2434 
2435 static const struct file_operations fib_trie_fops = {
2436 	.owner  = THIS_MODULE,
2437 	.open   = fib_trie_seq_open,
2438 	.read   = seq_read,
2439 	.llseek = seq_lseek,
2440 	.release = seq_release_net,
2441 };
2442 
2443 struct fib_route_iter {
2444 	struct seq_net_private p;
2445 	struct fib_table *main_tb;
2446 	struct key_vector *tnode;
2447 	loff_t	pos;
2448 	t_key	key;
2449 };
2450 
2451 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2452 					    loff_t pos)
2453 {
2454 	struct fib_table *tb = iter->main_tb;
2455 	struct key_vector *l, **tp = &iter->tnode;
2456 	struct trie *t;
2457 	t_key key;
2458 
2459 	/* use cache location of next-to-find key */
2460 	if (iter->pos > 0 && pos >= iter->pos) {
2461 		pos -= iter->pos;
2462 		key = iter->key;
2463 	} else {
2464 		t = (struct trie *)tb->tb_data;
2465 		iter->tnode = t->kv;
2466 		iter->pos = 0;
2467 		key = 0;
2468 	}
2469 
2470 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2471 		key = l->key + 1;
2472 		iter->pos++;
2473 
2474 		if (--pos <= 0)
2475 			break;
2476 
2477 		l = NULL;
2478 
2479 		/* handle unlikely case of a key wrap */
2480 		if (!key)
2481 			break;
2482 	}
2483 
2484 	if (l)
2485 		iter->key = key;	/* remember it */
2486 	else
2487 		iter->pos = 0;		/* forget it */
2488 
2489 	return l;
2490 }
2491 
2492 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2493 	__acquires(RCU)
2494 {
2495 	struct fib_route_iter *iter = seq->private;
2496 	struct fib_table *tb;
2497 	struct trie *t;
2498 
2499 	rcu_read_lock();
2500 
2501 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2502 	if (!tb)
2503 		return NULL;
2504 
2505 	iter->main_tb = tb;
2506 
2507 	if (*pos != 0)
2508 		return fib_route_get_idx(iter, *pos);
2509 
2510 	t = (struct trie *)tb->tb_data;
2511 	iter->tnode = t->kv;
2512 	iter->pos = 0;
2513 	iter->key = 0;
2514 
2515 	return SEQ_START_TOKEN;
2516 }
2517 
2518 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2519 {
2520 	struct fib_route_iter *iter = seq->private;
2521 	struct key_vector *l = NULL;
2522 	t_key key = iter->key;
2523 
2524 	++*pos;
2525 
2526 	/* only allow key of 0 for start of sequence */
2527 	if ((v == SEQ_START_TOKEN) || key)
2528 		l = leaf_walk_rcu(&iter->tnode, key);
2529 
2530 	if (l) {
2531 		iter->key = l->key + 1;
2532 		iter->pos++;
2533 	} else {
2534 		iter->pos = 0;
2535 	}
2536 
2537 	return l;
2538 }
2539 
2540 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2541 	__releases(RCU)
2542 {
2543 	rcu_read_unlock();
2544 }
2545 
2546 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2547 {
2548 	unsigned int flags = 0;
2549 
2550 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2551 		flags = RTF_REJECT;
2552 	if (fi && fi->fib_nh->nh_gw)
2553 		flags |= RTF_GATEWAY;
2554 	if (mask == htonl(0xFFFFFFFF))
2555 		flags |= RTF_HOST;
2556 	flags |= RTF_UP;
2557 	return flags;
2558 }
2559 
2560 /*
2561  *	This outputs /proc/net/route.
2562  *	The format of the file is not supposed to be changed
2563  *	and needs to be same as fib_hash output to avoid breaking
2564  *	legacy utilities
2565  */
2566 static int fib_route_seq_show(struct seq_file *seq, void *v)
2567 {
2568 	struct fib_route_iter *iter = seq->private;
2569 	struct fib_table *tb = iter->main_tb;
2570 	struct fib_alias *fa;
2571 	struct key_vector *l = v;
2572 	__be32 prefix;
2573 
2574 	if (v == SEQ_START_TOKEN) {
2575 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2576 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2577 			   "\tWindow\tIRTT");
2578 		return 0;
2579 	}
2580 
2581 	prefix = htonl(l->key);
2582 
2583 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2584 		const struct fib_info *fi = fa->fa_info;
2585 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2586 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2587 
2588 		if ((fa->fa_type == RTN_BROADCAST) ||
2589 		    (fa->fa_type == RTN_MULTICAST))
2590 			continue;
2591 
2592 		if (fa->tb_id != tb->tb_id)
2593 			continue;
2594 
2595 		seq_setwidth(seq, 127);
2596 
2597 		if (fi)
2598 			seq_printf(seq,
2599 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2600 				   "%d\t%08X\t%d\t%u\t%u",
2601 				   fi->fib_dev ? fi->fib_dev->name : "*",
2602 				   prefix,
2603 				   fi->fib_nh->nh_gw, flags, 0, 0,
2604 				   fi->fib_priority,
2605 				   mask,
2606 				   (fi->fib_advmss ?
2607 				    fi->fib_advmss + 40 : 0),
2608 				   fi->fib_window,
2609 				   fi->fib_rtt >> 3);
2610 		else
2611 			seq_printf(seq,
2612 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2613 				   "%d\t%08X\t%d\t%u\t%u",
2614 				   prefix, 0, flags, 0, 0, 0,
2615 				   mask, 0, 0, 0);
2616 
2617 		seq_pad(seq, '\n');
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static const struct seq_operations fib_route_seq_ops = {
2624 	.start  = fib_route_seq_start,
2625 	.next   = fib_route_seq_next,
2626 	.stop   = fib_route_seq_stop,
2627 	.show   = fib_route_seq_show,
2628 };
2629 
2630 static int fib_route_seq_open(struct inode *inode, struct file *file)
2631 {
2632 	return seq_open_net(inode, file, &fib_route_seq_ops,
2633 			    sizeof(struct fib_route_iter));
2634 }
2635 
2636 static const struct file_operations fib_route_fops = {
2637 	.owner  = THIS_MODULE,
2638 	.open   = fib_route_seq_open,
2639 	.read   = seq_read,
2640 	.llseek = seq_lseek,
2641 	.release = seq_release_net,
2642 };
2643 
2644 int __net_init fib_proc_init(struct net *net)
2645 {
2646 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2647 		goto out1;
2648 
2649 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2650 			 &fib_triestat_fops))
2651 		goto out2;
2652 
2653 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2654 		goto out3;
2655 
2656 	return 0;
2657 
2658 out3:
2659 	remove_proc_entry("fib_triestat", net->proc_net);
2660 out2:
2661 	remove_proc_entry("fib_trie", net->proc_net);
2662 out1:
2663 	return -ENOMEM;
2664 }
2665 
2666 void __net_exit fib_proc_exit(struct net *net)
2667 {
2668 	remove_proc_entry("fib_trie", net->proc_net);
2669 	remove_proc_entry("fib_triestat", net->proc_net);
2670 	remove_proc_entry("route", net->proc_net);
2671 }
2672 
2673 #endif /* CONFIG_PROC_FS */
2674