xref: /openbmc/linux/net/ipv4/fib_trie.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH	(8*sizeof(t_key))
88 #define KEY_MAX		((t_key)~0)
89 
90 typedef unsigned int t_key;
91 
92 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n)	((n)->bits)
94 #define IS_LEAF(n)	(!(n)->bits)
95 
96 struct key_vector {
97 	t_key key;
98 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100 	unsigned char slen;
101 	union {
102 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 		struct hlist_head leaf;
104 		/* This array is valid if (pos | bits) > 0 (TNODE) */
105 		struct key_vector __rcu *tnode[0];
106 	};
107 };
108 
109 struct tnode {
110 	struct rcu_head rcu;
111 	t_key empty_children;		/* KEYLENGTH bits needed */
112 	t_key full_children;		/* KEYLENGTH bits needed */
113 	struct key_vector __rcu *parent;
114 	struct key_vector kv[1];
115 #define tn_bits kv[0].bits
116 };
117 
118 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE	TNODE_SIZE(1)
120 
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 	unsigned int gets;
124 	unsigned int backtrack;
125 	unsigned int semantic_match_passed;
126 	unsigned int semantic_match_miss;
127 	unsigned int null_node_hit;
128 	unsigned int resize_node_skipped;
129 };
130 #endif
131 
132 struct trie_stat {
133 	unsigned int totdepth;
134 	unsigned int maxdepth;
135 	unsigned int tnodes;
136 	unsigned int leaves;
137 	unsigned int nullpointers;
138 	unsigned int prefixes;
139 	unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141 
142 struct trie {
143 	struct key_vector kv[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 	struct trie_use_stats __percpu *stats;
146 #endif
147 };
148 
149 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
151 
152 /*
153  * synchronize_rcu after call_rcu for that many pages; it should be especially
154  * useful before resizing the root node with PREEMPT_NONE configs; the value was
155  * obtained experimentally, aiming to avoid visible slowdown.
156  */
157 static const int sync_pages = 128;
158 
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161 
162 static inline struct tnode *tn_info(struct key_vector *kv)
163 {
164 	return container_of(kv, struct tnode, kv[0]);
165 }
166 
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
170 
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
174 
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177 {
178 	if (n)
179 		rcu_assign_pointer(tn_info(n)->parent, tp);
180 }
181 
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 
184 /* This provides us with the number of children in this node, in the case of a
185  * leaf this will return 0 meaning none of the children are accessible.
186  */
187 static inline unsigned long child_length(const struct key_vector *tn)
188 {
189 	return (1ul << tn->bits) & ~(1ul);
190 }
191 
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193 
194 static inline unsigned long get_index(t_key key, struct key_vector *kv)
195 {
196 	unsigned long index = key ^ kv->key;
197 
198 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 		return 0;
200 
201 	return index >> kv->pos;
202 }
203 
204 /* To understand this stuff, an understanding of keys and all their bits is
205  * necessary. Every node in the trie has a key associated with it, but not
206  * all of the bits in that key are significant.
207  *
208  * Consider a node 'n' and its parent 'tp'.
209  *
210  * If n is a leaf, every bit in its key is significant. Its presence is
211  * necessitated by path compression, since during a tree traversal (when
212  * searching for a leaf - unless we are doing an insertion) we will completely
213  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214  * a potentially successful search, that we have indeed been walking the
215  * correct key path.
216  *
217  * Note that we can never "miss" the correct key in the tree if present by
218  * following the wrong path. Path compression ensures that segments of the key
219  * that are the same for all keys with a given prefix are skipped, but the
220  * skipped part *is* identical for each node in the subtrie below the skipped
221  * bit! trie_insert() in this implementation takes care of that.
222  *
223  * if n is an internal node - a 'tnode' here, the various parts of its key
224  * have many different meanings.
225  *
226  * Example:
227  * _________________________________________________________________
228  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229  * -----------------------------------------------------------------
230  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
231  *
232  * _________________________________________________________________
233  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234  * -----------------------------------------------------------------
235  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
236  *
237  * tp->pos = 22
238  * tp->bits = 3
239  * n->pos = 13
240  * n->bits = 4
241  *
242  * First, let's just ignore the bits that come before the parent tp, that is
243  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244  * point we do not use them for anything.
245  *
246  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247  * index into the parent's child array. That is, they will be used to find
248  * 'n' among tp's children.
249  *
250  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251  * for the node n.
252  *
253  * All the bits we have seen so far are significant to the node n. The rest
254  * of the bits are really not needed or indeed known in n->key.
255  *
256  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257  * n's child array, and will of course be different for each child.
258  *
259  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260  * at this point.
261  */
262 
263 static const int halve_threshold = 25;
264 static const int inflate_threshold = 50;
265 static const int halve_threshold_root = 15;
266 static const int inflate_threshold_root = 30;
267 
268 static void __alias_free_mem(struct rcu_head *head)
269 {
270 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 	kmem_cache_free(fn_alias_kmem, fa);
272 }
273 
274 static inline void alias_free_mem_rcu(struct fib_alias *fa)
275 {
276 	call_rcu(&fa->rcu, __alias_free_mem);
277 }
278 
279 #define TNODE_KMALLOC_MAX \
280 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 
284 static void __node_free_rcu(struct rcu_head *head)
285 {
286 	struct tnode *n = container_of(head, struct tnode, rcu);
287 
288 	if (!n->tn_bits)
289 		kmem_cache_free(trie_leaf_kmem, n);
290 	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 		kfree(n);
292 	else
293 		vfree(n);
294 }
295 
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297 
298 static struct tnode *tnode_alloc(int bits)
299 {
300 	size_t size;
301 
302 	/* verify bits is within bounds */
303 	if (bits > TNODE_VMALLOC_MAX)
304 		return NULL;
305 
306 	/* determine size and verify it is non-zero and didn't overflow */
307 	size = TNODE_SIZE(1ul << bits);
308 
309 	if (size <= PAGE_SIZE)
310 		return kzalloc(size, GFP_KERNEL);
311 	else
312 		return vzalloc(size);
313 }
314 
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319 
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324 
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 	struct key_vector *l = kv->kv;
329 
330 	if (!kv)
331 		return NULL;
332 
333 	/* initialize key vector */
334 	l->key = key;
335 	l->pos = 0;
336 	l->bits = 0;
337 	l->slen = fa->fa_slen;
338 
339 	/* link leaf to fib alias */
340 	INIT_HLIST_HEAD(&l->leaf);
341 	hlist_add_head(&fa->fa_list, &l->leaf);
342 
343 	return l;
344 }
345 
346 static struct key_vector *tnode_new(t_key key, int pos, int bits)
347 {
348 	struct tnode *tnode = tnode_alloc(bits);
349 	unsigned int shift = pos + bits;
350 	struct key_vector *tn = tnode->kv;
351 
352 	/* verify bits and pos their msb bits clear and values are valid */
353 	BUG_ON(!bits || (shift > KEYLENGTH));
354 
355 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356 		 sizeof(struct key_vector *) << bits);
357 
358 	if (!tnode)
359 		return NULL;
360 
361 	if (bits == KEYLENGTH)
362 		tnode->full_children = 1;
363 	else
364 		tnode->empty_children = 1ul << bits;
365 
366 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 	tn->pos = pos;
368 	tn->bits = bits;
369 	tn->slen = pos;
370 
371 	return tn;
372 }
373 
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375  * and no bits are skipped. See discussion in dyntree paper p. 6
376  */
377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378 {
379 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 }
381 
382 /* Add a child at position i overwriting the old value.
383  * Update the value of full_children and empty_children.
384  */
385 static void put_child(struct key_vector *tn, unsigned long i,
386 		      struct key_vector *n)
387 {
388 	struct key_vector *chi = get_child(tn, i);
389 	int isfull, wasfull;
390 
391 	BUG_ON(i >= child_length(tn));
392 
393 	/* update emptyChildren, overflow into fullChildren */
394 	if (n == NULL && chi != NULL)
395 		empty_child_inc(tn);
396 	if (n != NULL && chi == NULL)
397 		empty_child_dec(tn);
398 
399 	/* update fullChildren */
400 	wasfull = tnode_full(tn, chi);
401 	isfull = tnode_full(tn, n);
402 
403 	if (wasfull && !isfull)
404 		tn_info(tn)->full_children--;
405 	else if (!wasfull && isfull)
406 		tn_info(tn)->full_children++;
407 
408 	if (n && (tn->slen < n->slen))
409 		tn->slen = n->slen;
410 
411 	rcu_assign_pointer(tn->tnode[i], n);
412 }
413 
414 static void update_children(struct key_vector *tn)
415 {
416 	unsigned long i;
417 
418 	/* update all of the child parent pointers */
419 	for (i = child_length(tn); i;) {
420 		struct key_vector *inode = get_child(tn, --i);
421 
422 		if (!inode)
423 			continue;
424 
425 		/* Either update the children of a tnode that
426 		 * already belongs to us or update the child
427 		 * to point to ourselves.
428 		 */
429 		if (node_parent(inode) == tn)
430 			update_children(inode);
431 		else
432 			node_set_parent(inode, tn);
433 	}
434 }
435 
436 static inline void put_child_root(struct key_vector *tp, t_key key,
437 				  struct key_vector *n)
438 {
439 	if (IS_TRIE(tp))
440 		rcu_assign_pointer(tp->tnode[0], n);
441 	else
442 		put_child(tp, get_index(key, tp), n);
443 }
444 
445 static inline void tnode_free_init(struct key_vector *tn)
446 {
447 	tn_info(tn)->rcu.next = NULL;
448 }
449 
450 static inline void tnode_free_append(struct key_vector *tn,
451 				     struct key_vector *n)
452 {
453 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455 }
456 
457 static void tnode_free(struct key_vector *tn)
458 {
459 	struct callback_head *head = &tn_info(tn)->rcu;
460 
461 	while (head) {
462 		head = head->next;
463 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 		node_free(tn);
465 
466 		tn = container_of(head, struct tnode, rcu)->kv;
467 	}
468 
469 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 		tnode_free_size = 0;
471 		synchronize_rcu();
472 	}
473 }
474 
475 static struct key_vector *replace(struct trie *t,
476 				  struct key_vector *oldtnode,
477 				  struct key_vector *tn)
478 {
479 	struct key_vector *tp = node_parent(oldtnode);
480 	unsigned long i;
481 
482 	/* setup the parent pointer out of and back into this node */
483 	NODE_INIT_PARENT(tn, tp);
484 	put_child_root(tp, tn->key, tn);
485 
486 	/* update all of the child parent pointers */
487 	update_children(tn);
488 
489 	/* all pointers should be clean so we are done */
490 	tnode_free(oldtnode);
491 
492 	/* resize children now that oldtnode is freed */
493 	for (i = child_length(tn); i;) {
494 		struct key_vector *inode = get_child(tn, --i);
495 
496 		/* resize child node */
497 		if (tnode_full(tn, inode))
498 			tn = resize(t, inode);
499 	}
500 
501 	return tp;
502 }
503 
504 static struct key_vector *inflate(struct trie *t,
505 				  struct key_vector *oldtnode)
506 {
507 	struct key_vector *tn;
508 	unsigned long i;
509 	t_key m;
510 
511 	pr_debug("In inflate\n");
512 
513 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
514 	if (!tn)
515 		goto notnode;
516 
517 	/* prepare oldtnode to be freed */
518 	tnode_free_init(oldtnode);
519 
520 	/* Assemble all of the pointers in our cluster, in this case that
521 	 * represents all of the pointers out of our allocated nodes that
522 	 * point to existing tnodes and the links between our allocated
523 	 * nodes.
524 	 */
525 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526 		struct key_vector *inode = get_child(oldtnode, --i);
527 		struct key_vector *node0, *node1;
528 		unsigned long j, k;
529 
530 		/* An empty child */
531 		if (inode == NULL)
532 			continue;
533 
534 		/* A leaf or an internal node with skipped bits */
535 		if (!tnode_full(oldtnode, inode)) {
536 			put_child(tn, get_index(inode->key, tn), inode);
537 			continue;
538 		}
539 
540 		/* drop the node in the old tnode free list */
541 		tnode_free_append(oldtnode, inode);
542 
543 		/* An internal node with two children */
544 		if (inode->bits == 1) {
545 			put_child(tn, 2 * i + 1, get_child(inode, 1));
546 			put_child(tn, 2 * i, get_child(inode, 0));
547 			continue;
548 		}
549 
550 		/* We will replace this node 'inode' with two new
551 		 * ones, 'node0' and 'node1', each with half of the
552 		 * original children. The two new nodes will have
553 		 * a position one bit further down the key and this
554 		 * means that the "significant" part of their keys
555 		 * (see the discussion near the top of this file)
556 		 * will differ by one bit, which will be "0" in
557 		 * node0's key and "1" in node1's key. Since we are
558 		 * moving the key position by one step, the bit that
559 		 * we are moving away from - the bit at position
560 		 * (tn->pos) - is the one that will differ between
561 		 * node0 and node1. So... we synthesize that bit in the
562 		 * two new keys.
563 		 */
564 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 		if (!node1)
566 			goto nomem;
567 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568 
569 		tnode_free_append(tn, node1);
570 		if (!node0)
571 			goto nomem;
572 		tnode_free_append(tn, node0);
573 
574 		/* populate child pointers in new nodes */
575 		for (k = child_length(inode), j = k / 2; j;) {
576 			put_child(node1, --j, get_child(inode, --k));
577 			put_child(node0, j, get_child(inode, j));
578 			put_child(node1, --j, get_child(inode, --k));
579 			put_child(node0, j, get_child(inode, j));
580 		}
581 
582 		/* link new nodes to parent */
583 		NODE_INIT_PARENT(node1, tn);
584 		NODE_INIT_PARENT(node0, tn);
585 
586 		/* link parent to nodes */
587 		put_child(tn, 2 * i + 1, node1);
588 		put_child(tn, 2 * i, node0);
589 	}
590 
591 	/* setup the parent pointers into and out of this node */
592 	return replace(t, oldtnode, tn);
593 nomem:
594 	/* all pointers should be clean so we are done */
595 	tnode_free(tn);
596 notnode:
597 	return NULL;
598 }
599 
600 static struct key_vector *halve(struct trie *t,
601 				struct key_vector *oldtnode)
602 {
603 	struct key_vector *tn;
604 	unsigned long i;
605 
606 	pr_debug("In halve\n");
607 
608 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609 	if (!tn)
610 		goto notnode;
611 
612 	/* prepare oldtnode to be freed */
613 	tnode_free_init(oldtnode);
614 
615 	/* Assemble all of the pointers in our cluster, in this case that
616 	 * represents all of the pointers out of our allocated nodes that
617 	 * point to existing tnodes and the links between our allocated
618 	 * nodes.
619 	 */
620 	for (i = child_length(oldtnode); i;) {
621 		struct key_vector *node1 = get_child(oldtnode, --i);
622 		struct key_vector *node0 = get_child(oldtnode, --i);
623 		struct key_vector *inode;
624 
625 		/* At least one of the children is empty */
626 		if (!node1 || !node0) {
627 			put_child(tn, i / 2, node1 ? : node0);
628 			continue;
629 		}
630 
631 		/* Two nonempty children */
632 		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 		if (!inode)
634 			goto nomem;
635 		tnode_free_append(tn, inode);
636 
637 		/* initialize pointers out of node */
638 		put_child(inode, 1, node1);
639 		put_child(inode, 0, node0);
640 		NODE_INIT_PARENT(inode, tn);
641 
642 		/* link parent to node */
643 		put_child(tn, i / 2, inode);
644 	}
645 
646 	/* setup the parent pointers into and out of this node */
647 	return replace(t, oldtnode, tn);
648 nomem:
649 	/* all pointers should be clean so we are done */
650 	tnode_free(tn);
651 notnode:
652 	return NULL;
653 }
654 
655 static struct key_vector *collapse(struct trie *t,
656 				   struct key_vector *oldtnode)
657 {
658 	struct key_vector *n, *tp;
659 	unsigned long i;
660 
661 	/* scan the tnode looking for that one child that might still exist */
662 	for (n = NULL, i = child_length(oldtnode); !n && i;)
663 		n = get_child(oldtnode, --i);
664 
665 	/* compress one level */
666 	tp = node_parent(oldtnode);
667 	put_child_root(tp, oldtnode->key, n);
668 	node_set_parent(n, tp);
669 
670 	/* drop dead node */
671 	node_free(oldtnode);
672 
673 	return tp;
674 }
675 
676 static unsigned char update_suffix(struct key_vector *tn)
677 {
678 	unsigned char slen = tn->pos;
679 	unsigned long stride, i;
680 
681 	/* search though the list of children looking for nodes that might
682 	 * have a suffix greater than the one we currently have.  This is
683 	 * why we start with a stride of 2 since a stride of 1 would
684 	 * represent the nodes with suffix length equal to tn->pos
685 	 */
686 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687 		struct key_vector *n = get_child(tn, i);
688 
689 		if (!n || (n->slen <= slen))
690 			continue;
691 
692 		/* update stride and slen based on new value */
693 		stride <<= (n->slen - slen);
694 		slen = n->slen;
695 		i &= ~(stride - 1);
696 
697 		/* if slen covers all but the last bit we can stop here
698 		 * there will be nothing longer than that since only node
699 		 * 0 and 1 << (bits - 1) could have that as their suffix
700 		 * length.
701 		 */
702 		if ((slen + 1) >= (tn->pos + tn->bits))
703 			break;
704 	}
705 
706 	tn->slen = slen;
707 
708 	return slen;
709 }
710 
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712  * the Helsinki University of Technology and Matti Tikkanen of Nokia
713  * Telecommunications, page 6:
714  * "A node is doubled if the ratio of non-empty children to all
715  * children in the *doubled* node is at least 'high'."
716  *
717  * 'high' in this instance is the variable 'inflate_threshold'. It
718  * is expressed as a percentage, so we multiply it with
719  * child_length() and instead of multiplying by 2 (since the
720  * child array will be doubled by inflate()) and multiplying
721  * the left-hand side by 100 (to handle the percentage thing) we
722  * multiply the left-hand side by 50.
723  *
724  * The left-hand side may look a bit weird: child_length(tn)
725  * - tn->empty_children is of course the number of non-null children
726  * in the current node. tn->full_children is the number of "full"
727  * children, that is non-null tnodes with a skip value of 0.
728  * All of those will be doubled in the resulting inflated tnode, so
729  * we just count them one extra time here.
730  *
731  * A clearer way to write this would be:
732  *
733  * to_be_doubled = tn->full_children;
734  * not_to_be_doubled = child_length(tn) - tn->empty_children -
735  *     tn->full_children;
736  *
737  * new_child_length = child_length(tn) * 2;
738  *
739  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740  *      new_child_length;
741  * if (new_fill_factor >= inflate_threshold)
742  *
743  * ...and so on, tho it would mess up the while () loop.
744  *
745  * anyway,
746  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747  *      inflate_threshold
748  *
749  * avoid a division:
750  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751  *      inflate_threshold * new_child_length
752  *
753  * expand not_to_be_doubled and to_be_doubled, and shorten:
754  * 100 * (child_length(tn) - tn->empty_children +
755  *    tn->full_children) >= inflate_threshold * new_child_length
756  *
757  * expand new_child_length:
758  * 100 * (child_length(tn) - tn->empty_children +
759  *    tn->full_children) >=
760  *      inflate_threshold * child_length(tn) * 2
761  *
762  * shorten again:
763  * 50 * (tn->full_children + child_length(tn) -
764  *    tn->empty_children) >= inflate_threshold *
765  *    child_length(tn)
766  *
767  */
768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769 {
770 	unsigned long used = child_length(tn);
771 	unsigned long threshold = used;
772 
773 	/* Keep root node larger */
774 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 	used -= tn_info(tn)->empty_children;
776 	used += tn_info(tn)->full_children;
777 
778 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
779 
780 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 }
782 
783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784 {
785 	unsigned long used = child_length(tn);
786 	unsigned long threshold = used;
787 
788 	/* Keep root node larger */
789 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790 	used -= tn_info(tn)->empty_children;
791 
792 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793 
794 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795 }
796 
797 static inline bool should_collapse(struct key_vector *tn)
798 {
799 	unsigned long used = child_length(tn);
800 
801 	used -= tn_info(tn)->empty_children;
802 
803 	/* account for bits == KEYLENGTH case */
804 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 		used -= KEY_MAX;
806 
807 	/* One child or none, time to drop us from the trie */
808 	return used < 2;
809 }
810 
811 #define MAX_WORK 10
812 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813 {
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 	struct trie_use_stats __percpu *stats = t->stats;
816 #endif
817 	struct key_vector *tp = node_parent(tn);
818 	unsigned long cindex = get_index(tn->key, tp);
819 	int max_work = MAX_WORK;
820 
821 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 		 tn, inflate_threshold, halve_threshold);
823 
824 	/* track the tnode via the pointer from the parent instead of
825 	 * doing it ourselves.  This way we can let RCU fully do its
826 	 * thing without us interfering
827 	 */
828 	BUG_ON(tn != get_child(tp, cindex));
829 
830 	/* Double as long as the resulting node has a number of
831 	 * nonempty nodes that are above the threshold.
832 	 */
833 	while (should_inflate(tp, tn) && max_work) {
834 		tp = inflate(t, tn);
835 		if (!tp) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 			this_cpu_inc(stats->resize_node_skipped);
838 #endif
839 			break;
840 		}
841 
842 		max_work--;
843 		tn = get_child(tp, cindex);
844 	}
845 
846 	/* Return if at least one inflate is run */
847 	if (max_work != MAX_WORK)
848 		return node_parent(tn);
849 
850 	/* Halve as long as the number of empty children in this
851 	 * node is above threshold.
852 	 */
853 	while (should_halve(tp, tn) && max_work) {
854 		tp = halve(t, tn);
855 		if (!tp) {
856 #ifdef CONFIG_IP_FIB_TRIE_STATS
857 			this_cpu_inc(stats->resize_node_skipped);
858 #endif
859 			break;
860 		}
861 
862 		max_work--;
863 		tn = get_child(tp, cindex);
864 	}
865 
866 	/* Only one child remains */
867 	if (should_collapse(tn))
868 		return collapse(t, tn);
869 
870 	/* update parent in case inflate or halve failed */
871 	tp = node_parent(tn);
872 
873 	/* Return if at least one deflate was run */
874 	if (max_work != MAX_WORK)
875 		return tp;
876 
877 	/* push the suffix length to the parent node */
878 	if (tn->slen > tn->pos) {
879 		unsigned char slen = update_suffix(tn);
880 
881 		if (slen > tp->slen)
882 			tp->slen = slen;
883 	}
884 
885 	return tp;
886 }
887 
888 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
889 {
890 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
891 		if (update_suffix(tp) > l->slen)
892 			break;
893 		tp = node_parent(tp);
894 	}
895 }
896 
897 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
898 {
899 	/* if this is a new leaf then tn will be NULL and we can sort
900 	 * out parent suffix lengths as a part of trie_rebalance
901 	 */
902 	while (tn->slen < l->slen) {
903 		tn->slen = l->slen;
904 		tn = node_parent(tn);
905 	}
906 }
907 
908 /* rcu_read_lock needs to be hold by caller from readside */
909 static struct key_vector *fib_find_node(struct trie *t,
910 					struct key_vector **tp, u32 key)
911 {
912 	struct key_vector *pn, *n = t->kv;
913 	unsigned long index = 0;
914 
915 	do {
916 		pn = n;
917 		n = get_child_rcu(n, index);
918 
919 		if (!n)
920 			break;
921 
922 		index = get_cindex(key, n);
923 
924 		/* This bit of code is a bit tricky but it combines multiple
925 		 * checks into a single check.  The prefix consists of the
926 		 * prefix plus zeros for the bits in the cindex. The index
927 		 * is the difference between the key and this value.  From
928 		 * this we can actually derive several pieces of data.
929 		 *   if (index >= (1ul << bits))
930 		 *     we have a mismatch in skip bits and failed
931 		 *   else
932 		 *     we know the value is cindex
933 		 *
934 		 * This check is safe even if bits == KEYLENGTH due to the
935 		 * fact that we can only allocate a node with 32 bits if a
936 		 * long is greater than 32 bits.
937 		 */
938 		if (index >= (1ul << n->bits)) {
939 			n = NULL;
940 			break;
941 		}
942 
943 		/* keep searching until we find a perfect match leaf or NULL */
944 	} while (IS_TNODE(n));
945 
946 	*tp = pn;
947 
948 	return n;
949 }
950 
951 /* Return the first fib alias matching TOS with
952  * priority less than or equal to PRIO.
953  */
954 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
955 					u8 tos, u32 prio)
956 {
957 	struct fib_alias *fa;
958 
959 	if (!fah)
960 		return NULL;
961 
962 	hlist_for_each_entry(fa, fah, fa_list) {
963 		if (fa->fa_slen < slen)
964 			continue;
965 		if (fa->fa_slen != slen)
966 			break;
967 		if (fa->fa_tos > tos)
968 			continue;
969 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
970 			return fa;
971 	}
972 
973 	return NULL;
974 }
975 
976 static void trie_rebalance(struct trie *t, struct key_vector *tn)
977 {
978 	while (!IS_TRIE(tn))
979 		tn = resize(t, tn);
980 }
981 
982 static int fib_insert_node(struct trie *t, struct key_vector *tp,
983 			   struct fib_alias *new, t_key key)
984 {
985 	struct key_vector *n, *l;
986 
987 	l = leaf_new(key, new);
988 	if (!l)
989 		goto noleaf;
990 
991 	/* retrieve child from parent node */
992 	n = get_child(tp, get_index(key, tp));
993 
994 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
995 	 *
996 	 *  Add a new tnode here
997 	 *  first tnode need some special handling
998 	 *  leaves us in position for handling as case 3
999 	 */
1000 	if (n) {
1001 		struct key_vector *tn;
1002 
1003 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1004 		if (!tn)
1005 			goto notnode;
1006 
1007 		/* initialize routes out of node */
1008 		NODE_INIT_PARENT(tn, tp);
1009 		put_child(tn, get_index(key, tn) ^ 1, n);
1010 
1011 		/* start adding routes into the node */
1012 		put_child_root(tp, key, tn);
1013 		node_set_parent(n, tn);
1014 
1015 		/* parent now has a NULL spot where the leaf can go */
1016 		tp = tn;
1017 	}
1018 
1019 	/* Case 3: n is NULL, and will just insert a new leaf */
1020 	NODE_INIT_PARENT(l, tp);
1021 	put_child_root(tp, key, l);
1022 	trie_rebalance(t, tp);
1023 
1024 	return 0;
1025 notnode:
1026 	node_free(l);
1027 noleaf:
1028 	return -ENOMEM;
1029 }
1030 
1031 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1032 			    struct key_vector *l, struct fib_alias *new,
1033 			    struct fib_alias *fa, t_key key)
1034 {
1035 	if (!l)
1036 		return fib_insert_node(t, tp, new, key);
1037 
1038 	if (fa) {
1039 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1040 	} else {
1041 		struct fib_alias *last;
1042 
1043 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1044 			if (new->fa_slen < last->fa_slen)
1045 				break;
1046 			fa = last;
1047 		}
1048 
1049 		if (fa)
1050 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1051 		else
1052 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1053 	}
1054 
1055 	/* if we added to the tail node then we need to update slen */
1056 	if (l->slen < new->fa_slen) {
1057 		l->slen = new->fa_slen;
1058 		leaf_push_suffix(tp, l);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 /* Caller must hold RTNL. */
1065 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1066 {
1067 	struct trie *t = (struct trie *)tb->tb_data;
1068 	struct fib_alias *fa, *new_fa;
1069 	struct key_vector *l, *tp;
1070 	struct fib_info *fi;
1071 	u8 plen = cfg->fc_dst_len;
1072 	u8 slen = KEYLENGTH - plen;
1073 	u8 tos = cfg->fc_tos;
1074 	u32 key;
1075 	int err;
1076 
1077 	if (plen > KEYLENGTH)
1078 		return -EINVAL;
1079 
1080 	key = ntohl(cfg->fc_dst);
1081 
1082 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1083 
1084 	if ((plen < KEYLENGTH) && (key << plen))
1085 		return -EINVAL;
1086 
1087 	fi = fib_create_info(cfg);
1088 	if (IS_ERR(fi)) {
1089 		err = PTR_ERR(fi);
1090 		goto err;
1091 	}
1092 
1093 	l = fib_find_node(t, &tp, key);
1094 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1095 
1096 	/* Now fa, if non-NULL, points to the first fib alias
1097 	 * with the same keys [prefix,tos,priority], if such key already
1098 	 * exists or to the node before which we will insert new one.
1099 	 *
1100 	 * If fa is NULL, we will need to allocate a new one and
1101 	 * insert to the tail of the section matching the suffix length
1102 	 * of the new alias.
1103 	 */
1104 
1105 	if (fa && fa->fa_tos == tos &&
1106 	    fa->fa_info->fib_priority == fi->fib_priority) {
1107 		struct fib_alias *fa_first, *fa_match;
1108 
1109 		err = -EEXIST;
1110 		if (cfg->fc_nlflags & NLM_F_EXCL)
1111 			goto out;
1112 
1113 		/* We have 2 goals:
1114 		 * 1. Find exact match for type, scope, fib_info to avoid
1115 		 * duplicate routes
1116 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1117 		 */
1118 		fa_match = NULL;
1119 		fa_first = fa;
1120 		hlist_for_each_entry_from(fa, fa_list) {
1121 			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1122 				break;
1123 			if (fa->fa_info->fib_priority != fi->fib_priority)
1124 				break;
1125 			if (fa->fa_type == cfg->fc_type &&
1126 			    fa->fa_info == fi) {
1127 				fa_match = fa;
1128 				break;
1129 			}
1130 		}
1131 
1132 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1133 			struct fib_info *fi_drop;
1134 			u8 state;
1135 
1136 			fa = fa_first;
1137 			if (fa_match) {
1138 				if (fa == fa_match)
1139 					err = 0;
1140 				goto out;
1141 			}
1142 			err = -ENOBUFS;
1143 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1144 			if (new_fa == NULL)
1145 				goto out;
1146 
1147 			fi_drop = fa->fa_info;
1148 			new_fa->fa_tos = fa->fa_tos;
1149 			new_fa->fa_info = fi;
1150 			new_fa->fa_type = cfg->fc_type;
1151 			state = fa->fa_state;
1152 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1153 			new_fa->fa_slen = fa->fa_slen;
1154 
1155 			err = netdev_switch_fib_ipv4_add(key, plen, fi,
1156 							 new_fa->fa_tos,
1157 							 cfg->fc_type,
1158 							 tb->tb_id);
1159 			if (err) {
1160 				netdev_switch_fib_ipv4_abort(fi);
1161 				kmem_cache_free(fn_alias_kmem, new_fa);
1162 				goto out;
1163 			}
1164 
1165 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1166 
1167 			alias_free_mem_rcu(fa);
1168 
1169 			fib_release_info(fi_drop);
1170 			if (state & FA_S_ACCESSED)
1171 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1172 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1173 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1174 
1175 			goto succeeded;
1176 		}
1177 		/* Error if we find a perfect match which
1178 		 * uses the same scope, type, and nexthop
1179 		 * information.
1180 		 */
1181 		if (fa_match)
1182 			goto out;
1183 
1184 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1185 			fa = fa_first;
1186 	}
1187 	err = -ENOENT;
1188 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1189 		goto out;
1190 
1191 	err = -ENOBUFS;
1192 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1193 	if (new_fa == NULL)
1194 		goto out;
1195 
1196 	new_fa->fa_info = fi;
1197 	new_fa->fa_tos = tos;
1198 	new_fa->fa_type = cfg->fc_type;
1199 	new_fa->fa_state = 0;
1200 	new_fa->fa_slen = slen;
1201 
1202 	/* (Optionally) offload fib entry to switch hardware. */
1203 	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1204 					 cfg->fc_type, tb->tb_id);
1205 	if (err) {
1206 		netdev_switch_fib_ipv4_abort(fi);
1207 		goto out_free_new_fa;
1208 	}
1209 
1210 	/* Insert new entry to the list. */
1211 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1212 	if (err)
1213 		goto out_sw_fib_del;
1214 
1215 	if (!plen)
1216 		tb->tb_num_default++;
1217 
1218 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1219 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1220 		  &cfg->fc_nlinfo, 0);
1221 succeeded:
1222 	return 0;
1223 
1224 out_sw_fib_del:
1225 	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1226 out_free_new_fa:
1227 	kmem_cache_free(fn_alias_kmem, new_fa);
1228 out:
1229 	fib_release_info(fi);
1230 err:
1231 	return err;
1232 }
1233 
1234 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1235 {
1236 	t_key prefix = n->key;
1237 
1238 	return (key ^ prefix) & (prefix | -prefix);
1239 }
1240 
1241 /* should be called with rcu_read_lock */
1242 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1243 		     struct fib_result *res, int fib_flags)
1244 {
1245 	struct trie *t = (struct trie *)tb->tb_data;
1246 #ifdef CONFIG_IP_FIB_TRIE_STATS
1247 	struct trie_use_stats __percpu *stats = t->stats;
1248 #endif
1249 	const t_key key = ntohl(flp->daddr);
1250 	struct key_vector *n, *pn;
1251 	struct fib_alias *fa;
1252 	unsigned long index;
1253 	t_key cindex;
1254 
1255 	pn = t->kv;
1256 	cindex = 0;
1257 
1258 	n = get_child_rcu(pn, cindex);
1259 	if (!n)
1260 		return -EAGAIN;
1261 
1262 #ifdef CONFIG_IP_FIB_TRIE_STATS
1263 	this_cpu_inc(stats->gets);
1264 #endif
1265 
1266 	/* Step 1: Travel to the longest prefix match in the trie */
1267 	for (;;) {
1268 		index = get_cindex(key, n);
1269 
1270 		/* This bit of code is a bit tricky but it combines multiple
1271 		 * checks into a single check.  The prefix consists of the
1272 		 * prefix plus zeros for the "bits" in the prefix. The index
1273 		 * is the difference between the key and this value.  From
1274 		 * this we can actually derive several pieces of data.
1275 		 *   if (index >= (1ul << bits))
1276 		 *     we have a mismatch in skip bits and failed
1277 		 *   else
1278 		 *     we know the value is cindex
1279 		 *
1280 		 * This check is safe even if bits == KEYLENGTH due to the
1281 		 * fact that we can only allocate a node with 32 bits if a
1282 		 * long is greater than 32 bits.
1283 		 */
1284 		if (index >= (1ul << n->bits))
1285 			break;
1286 
1287 		/* we have found a leaf. Prefixes have already been compared */
1288 		if (IS_LEAF(n))
1289 			goto found;
1290 
1291 		/* only record pn and cindex if we are going to be chopping
1292 		 * bits later.  Otherwise we are just wasting cycles.
1293 		 */
1294 		if (n->slen > n->pos) {
1295 			pn = n;
1296 			cindex = index;
1297 		}
1298 
1299 		n = get_child_rcu(n, index);
1300 		if (unlikely(!n))
1301 			goto backtrace;
1302 	}
1303 
1304 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1305 	for (;;) {
1306 		/* record the pointer where our next node pointer is stored */
1307 		struct key_vector __rcu **cptr = n->tnode;
1308 
1309 		/* This test verifies that none of the bits that differ
1310 		 * between the key and the prefix exist in the region of
1311 		 * the lsb and higher in the prefix.
1312 		 */
1313 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1314 			goto backtrace;
1315 
1316 		/* exit out and process leaf */
1317 		if (unlikely(IS_LEAF(n)))
1318 			break;
1319 
1320 		/* Don't bother recording parent info.  Since we are in
1321 		 * prefix match mode we will have to come back to wherever
1322 		 * we started this traversal anyway
1323 		 */
1324 
1325 		while ((n = rcu_dereference(*cptr)) == NULL) {
1326 backtrace:
1327 #ifdef CONFIG_IP_FIB_TRIE_STATS
1328 			if (!n)
1329 				this_cpu_inc(stats->null_node_hit);
1330 #endif
1331 			/* If we are at cindex 0 there are no more bits for
1332 			 * us to strip at this level so we must ascend back
1333 			 * up one level to see if there are any more bits to
1334 			 * be stripped there.
1335 			 */
1336 			while (!cindex) {
1337 				t_key pkey = pn->key;
1338 
1339 				/* If we don't have a parent then there is
1340 				 * nothing for us to do as we do not have any
1341 				 * further nodes to parse.
1342 				 */
1343 				if (IS_TRIE(pn))
1344 					return -EAGAIN;
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1346 				this_cpu_inc(stats->backtrack);
1347 #endif
1348 				/* Get Child's index */
1349 				pn = node_parent_rcu(pn);
1350 				cindex = get_index(pkey, pn);
1351 			}
1352 
1353 			/* strip the least significant bit from the cindex */
1354 			cindex &= cindex - 1;
1355 
1356 			/* grab pointer for next child node */
1357 			cptr = &pn->tnode[cindex];
1358 		}
1359 	}
1360 
1361 found:
1362 	/* this line carries forward the xor from earlier in the function */
1363 	index = key ^ n->key;
1364 
1365 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1366 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1367 		struct fib_info *fi = fa->fa_info;
1368 		int nhsel, err;
1369 
1370 		if ((index >= (1ul << fa->fa_slen)) &&
1371 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1372 			continue;
1373 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1374 			continue;
1375 		if (fi->fib_dead)
1376 			continue;
1377 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1378 			continue;
1379 		fib_alias_accessed(fa);
1380 		err = fib_props[fa->fa_type].error;
1381 		if (unlikely(err < 0)) {
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 			this_cpu_inc(stats->semantic_match_passed);
1384 #endif
1385 			return err;
1386 		}
1387 		if (fi->fib_flags & RTNH_F_DEAD)
1388 			continue;
1389 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1390 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1391 
1392 			if (nh->nh_flags & RTNH_F_DEAD)
1393 				continue;
1394 			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1395 				continue;
1396 
1397 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1398 				atomic_inc(&fi->fib_clntref);
1399 
1400 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1401 			res->nh_sel = nhsel;
1402 			res->type = fa->fa_type;
1403 			res->scope = fi->fib_scope;
1404 			res->fi = fi;
1405 			res->table = tb;
1406 			res->fa_head = &n->leaf;
1407 #ifdef CONFIG_IP_FIB_TRIE_STATS
1408 			this_cpu_inc(stats->semantic_match_passed);
1409 #endif
1410 			return err;
1411 		}
1412 	}
1413 #ifdef CONFIG_IP_FIB_TRIE_STATS
1414 	this_cpu_inc(stats->semantic_match_miss);
1415 #endif
1416 	goto backtrace;
1417 }
1418 EXPORT_SYMBOL_GPL(fib_table_lookup);
1419 
1420 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1421 			     struct key_vector *l, struct fib_alias *old)
1422 {
1423 	/* record the location of the previous list_info entry */
1424 	struct hlist_node **pprev = old->fa_list.pprev;
1425 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1426 
1427 	/* remove the fib_alias from the list */
1428 	hlist_del_rcu(&old->fa_list);
1429 
1430 	/* if we emptied the list this leaf will be freed and we can sort
1431 	 * out parent suffix lengths as a part of trie_rebalance
1432 	 */
1433 	if (hlist_empty(&l->leaf)) {
1434 		put_child_root(tp, l->key, NULL);
1435 		node_free(l);
1436 		trie_rebalance(t, tp);
1437 		return;
1438 	}
1439 
1440 	/* only access fa if it is pointing at the last valid hlist_node */
1441 	if (*pprev)
1442 		return;
1443 
1444 	/* update the trie with the latest suffix length */
1445 	l->slen = fa->fa_slen;
1446 	leaf_pull_suffix(tp, l);
1447 }
1448 
1449 /* Caller must hold RTNL. */
1450 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1451 {
1452 	struct trie *t = (struct trie *) tb->tb_data;
1453 	struct fib_alias *fa, *fa_to_delete;
1454 	struct key_vector *l, *tp;
1455 	u8 plen = cfg->fc_dst_len;
1456 	u8 slen = KEYLENGTH - plen;
1457 	u8 tos = cfg->fc_tos;
1458 	u32 key;
1459 
1460 	if (plen > KEYLENGTH)
1461 		return -EINVAL;
1462 
1463 	key = ntohl(cfg->fc_dst);
1464 
1465 	if ((plen < KEYLENGTH) && (key << plen))
1466 		return -EINVAL;
1467 
1468 	l = fib_find_node(t, &tp, key);
1469 	if (!l)
1470 		return -ESRCH;
1471 
1472 	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1473 	if (!fa)
1474 		return -ESRCH;
1475 
1476 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1477 
1478 	fa_to_delete = NULL;
1479 	hlist_for_each_entry_from(fa, fa_list) {
1480 		struct fib_info *fi = fa->fa_info;
1481 
1482 		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1483 			break;
1484 
1485 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1486 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1487 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1488 		    (!cfg->fc_prefsrc ||
1489 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1490 		    (!cfg->fc_protocol ||
1491 		     fi->fib_protocol == cfg->fc_protocol) &&
1492 		    fib_nh_match(cfg, fi) == 0) {
1493 			fa_to_delete = fa;
1494 			break;
1495 		}
1496 	}
1497 
1498 	if (!fa_to_delete)
1499 		return -ESRCH;
1500 
1501 	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1502 				   cfg->fc_type, tb->tb_id);
1503 
1504 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1505 		  &cfg->fc_nlinfo, 0);
1506 
1507 	if (!plen)
1508 		tb->tb_num_default--;
1509 
1510 	fib_remove_alias(t, tp, l, fa_to_delete);
1511 
1512 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1513 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1514 
1515 	fib_release_info(fa_to_delete->fa_info);
1516 	alias_free_mem_rcu(fa_to_delete);
1517 	return 0;
1518 }
1519 
1520 /* Scan for the next leaf starting at the provided key value */
1521 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1522 {
1523 	struct key_vector *pn, *n = *tn;
1524 	unsigned long cindex;
1525 
1526 	/* this loop is meant to try and find the key in the trie */
1527 	do {
1528 		/* record parent and next child index */
1529 		pn = n;
1530 		cindex = get_index(key, pn);
1531 
1532 		if (cindex >> pn->bits)
1533 			break;
1534 
1535 		/* descend into the next child */
1536 		n = get_child_rcu(pn, cindex++);
1537 		if (!n)
1538 			break;
1539 
1540 		/* guarantee forward progress on the keys */
1541 		if (IS_LEAF(n) && (n->key >= key))
1542 			goto found;
1543 	} while (IS_TNODE(n));
1544 
1545 	/* this loop will search for the next leaf with a greater key */
1546 	while (!IS_TRIE(pn)) {
1547 		/* if we exhausted the parent node we will need to climb */
1548 		if (cindex >= (1ul << pn->bits)) {
1549 			t_key pkey = pn->key;
1550 
1551 			pn = node_parent_rcu(pn);
1552 			cindex = get_index(pkey, pn) + 1;
1553 			continue;
1554 		}
1555 
1556 		/* grab the next available node */
1557 		n = get_child_rcu(pn, cindex++);
1558 		if (!n)
1559 			continue;
1560 
1561 		/* no need to compare keys since we bumped the index */
1562 		if (IS_LEAF(n))
1563 			goto found;
1564 
1565 		/* Rescan start scanning in new node */
1566 		pn = n;
1567 		cindex = 0;
1568 	}
1569 
1570 	*tn = pn;
1571 	return NULL; /* Root of trie */
1572 found:
1573 	/* if we are at the limit for keys just return NULL for the tnode */
1574 	*tn = pn;
1575 	return n;
1576 }
1577 
1578 /* Caller must hold RTNL */
1579 void fib_table_flush_external(struct fib_table *tb)
1580 {
1581 	struct trie *t = (struct trie *)tb->tb_data;
1582 	struct key_vector *pn = t->kv;
1583 	unsigned long cindex = 1;
1584 	struct hlist_node *tmp;
1585 	struct fib_alias *fa;
1586 
1587 	/* walk trie in reverse order */
1588 	for (;;) {
1589 		struct key_vector *n;
1590 
1591 		if (!(cindex--)) {
1592 			t_key pkey = pn->key;
1593 
1594 			/* cannot resize the trie vector */
1595 			if (IS_TRIE(pn))
1596 				break;
1597 
1598 			/* no need to resize like in flush below */
1599 			pn = node_parent(pn);
1600 			cindex = get_index(pkey, pn);
1601 
1602 			continue;
1603 		}
1604 
1605 		/* grab the next available node */
1606 		n = get_child(pn, cindex);
1607 		if (!n)
1608 			continue;
1609 
1610 		if (IS_TNODE(n)) {
1611 			/* record pn and cindex for leaf walking */
1612 			pn = n;
1613 			cindex = 1ul << n->bits;
1614 
1615 			continue;
1616 		}
1617 
1618 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1619 			struct fib_info *fi = fa->fa_info;
1620 
1621 			if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1622 				continue;
1623 
1624 			netdev_switch_fib_ipv4_del(n->key,
1625 						   KEYLENGTH - fa->fa_slen,
1626 						   fi, fa->fa_tos,
1627 						   fa->fa_type, tb->tb_id);
1628 		}
1629 	}
1630 }
1631 
1632 /* Caller must hold RTNL. */
1633 int fib_table_flush(struct fib_table *tb)
1634 {
1635 	struct trie *t = (struct trie *)tb->tb_data;
1636 	struct key_vector *pn = t->kv;
1637 	unsigned long cindex = 1;
1638 	struct hlist_node *tmp;
1639 	struct fib_alias *fa;
1640 	int found = 0;
1641 
1642 	/* walk trie in reverse order */
1643 	for (;;) {
1644 		unsigned char slen = 0;
1645 		struct key_vector *n;
1646 
1647 		if (!(cindex--)) {
1648 			t_key pkey = pn->key;
1649 
1650 			/* cannot resize the trie vector */
1651 			if (IS_TRIE(pn))
1652 				break;
1653 
1654 			/* resize completed node */
1655 			pn = resize(t, pn);
1656 			cindex = get_index(pkey, pn);
1657 
1658 			continue;
1659 		}
1660 
1661 		/* grab the next available node */
1662 		n = get_child(pn, cindex);
1663 		if (!n)
1664 			continue;
1665 
1666 		if (IS_TNODE(n)) {
1667 			/* record pn and cindex for leaf walking */
1668 			pn = n;
1669 			cindex = 1ul << n->bits;
1670 
1671 			continue;
1672 		}
1673 
1674 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1675 			struct fib_info *fi = fa->fa_info;
1676 
1677 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1678 				slen = fa->fa_slen;
1679 				continue;
1680 			}
1681 
1682 			netdev_switch_fib_ipv4_del(n->key,
1683 						   KEYLENGTH - fa->fa_slen,
1684 						   fi, fa->fa_tos,
1685 						   fa->fa_type, tb->tb_id);
1686 			hlist_del_rcu(&fa->fa_list);
1687 			fib_release_info(fa->fa_info);
1688 			alias_free_mem_rcu(fa);
1689 			found++;
1690 		}
1691 
1692 		/* update leaf slen */
1693 		n->slen = slen;
1694 
1695 		if (hlist_empty(&n->leaf)) {
1696 			put_child_root(pn, n->key, NULL);
1697 			node_free(n);
1698 		} else {
1699 			leaf_pull_suffix(pn, n);
1700 		}
1701 	}
1702 
1703 	pr_debug("trie_flush found=%d\n", found);
1704 	return found;
1705 }
1706 
1707 static void __trie_free_rcu(struct rcu_head *head)
1708 {
1709 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1710 #ifdef CONFIG_IP_FIB_TRIE_STATS
1711 	struct trie *t = (struct trie *)tb->tb_data;
1712 
1713 	free_percpu(t->stats);
1714 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1715 	kfree(tb);
1716 }
1717 
1718 void fib_free_table(struct fib_table *tb)
1719 {
1720 	call_rcu(&tb->rcu, __trie_free_rcu);
1721 }
1722 
1723 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1724 			     struct sk_buff *skb, struct netlink_callback *cb)
1725 {
1726 	__be32 xkey = htonl(l->key);
1727 	struct fib_alias *fa;
1728 	int i, s_i;
1729 
1730 	s_i = cb->args[4];
1731 	i = 0;
1732 
1733 	/* rcu_read_lock is hold by caller */
1734 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1735 		if (i < s_i) {
1736 			i++;
1737 			continue;
1738 		}
1739 
1740 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1741 				  cb->nlh->nlmsg_seq,
1742 				  RTM_NEWROUTE,
1743 				  tb->tb_id,
1744 				  fa->fa_type,
1745 				  xkey,
1746 				  KEYLENGTH - fa->fa_slen,
1747 				  fa->fa_tos,
1748 				  fa->fa_info, NLM_F_MULTI) < 0) {
1749 			cb->args[4] = i;
1750 			return -1;
1751 		}
1752 		i++;
1753 	}
1754 
1755 	cb->args[4] = i;
1756 	return skb->len;
1757 }
1758 
1759 /* rcu_read_lock needs to be hold by caller from readside */
1760 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1761 		   struct netlink_callback *cb)
1762 {
1763 	struct trie *t = (struct trie *)tb->tb_data;
1764 	struct key_vector *l, *tp = t->kv;
1765 	/* Dump starting at last key.
1766 	 * Note: 0.0.0.0/0 (ie default) is first key.
1767 	 */
1768 	int count = cb->args[2];
1769 	t_key key = cb->args[3];
1770 
1771 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1772 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1773 			cb->args[3] = key;
1774 			cb->args[2] = count;
1775 			return -1;
1776 		}
1777 
1778 		++count;
1779 		key = l->key + 1;
1780 
1781 		memset(&cb->args[4], 0,
1782 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1783 
1784 		/* stop loop if key wrapped back to 0 */
1785 		if (key < l->key)
1786 			break;
1787 	}
1788 
1789 	cb->args[3] = key;
1790 	cb->args[2] = count;
1791 
1792 	return skb->len;
1793 }
1794 
1795 void __init fib_trie_init(void)
1796 {
1797 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1798 					  sizeof(struct fib_alias),
1799 					  0, SLAB_PANIC, NULL);
1800 
1801 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1802 					   LEAF_SIZE,
1803 					   0, SLAB_PANIC, NULL);
1804 }
1805 
1806 struct fib_table *fib_trie_table(u32 id)
1807 {
1808 	struct fib_table *tb;
1809 	struct trie *t;
1810 
1811 	tb = kzalloc(sizeof(*tb) + sizeof(struct trie), GFP_KERNEL);
1812 	if (tb == NULL)
1813 		return NULL;
1814 
1815 	tb->tb_id = id;
1816 	tb->tb_default = -1;
1817 	tb->tb_num_default = 0;
1818 
1819 	t = (struct trie *) tb->tb_data;
1820 	t->kv[0].pos = KEYLENGTH;
1821 	t->kv[0].slen = KEYLENGTH;
1822 #ifdef CONFIG_IP_FIB_TRIE_STATS
1823 	t->stats = alloc_percpu(struct trie_use_stats);
1824 	if (!t->stats) {
1825 		kfree(tb);
1826 		tb = NULL;
1827 	}
1828 #endif
1829 
1830 	return tb;
1831 }
1832 
1833 #ifdef CONFIG_PROC_FS
1834 /* Depth first Trie walk iterator */
1835 struct fib_trie_iter {
1836 	struct seq_net_private p;
1837 	struct fib_table *tb;
1838 	struct key_vector *tnode;
1839 	unsigned int index;
1840 	unsigned int depth;
1841 };
1842 
1843 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1844 {
1845 	unsigned long cindex = iter->index;
1846 	struct key_vector *pn = iter->tnode;
1847 	t_key pkey;
1848 
1849 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1850 		 iter->tnode, iter->index, iter->depth);
1851 
1852 	while (!IS_TRIE(pn)) {
1853 		while (cindex < child_length(pn)) {
1854 			struct key_vector *n = get_child_rcu(pn, cindex++);
1855 
1856 			if (!n)
1857 				continue;
1858 
1859 			if (IS_LEAF(n)) {
1860 				iter->tnode = pn;
1861 				iter->index = cindex;
1862 			} else {
1863 				/* push down one level */
1864 				iter->tnode = n;
1865 				iter->index = 0;
1866 				++iter->depth;
1867 			}
1868 
1869 			return n;
1870 		}
1871 
1872 		/* Current node exhausted, pop back up */
1873 		pkey = pn->key;
1874 		pn = node_parent_rcu(pn);
1875 		cindex = get_index(pkey, pn) + 1;
1876 		--iter->depth;
1877 	}
1878 
1879 	/* record root node so further searches know we are done */
1880 	iter->tnode = pn;
1881 	iter->index = 0;
1882 
1883 	return NULL;
1884 }
1885 
1886 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1887 					     struct trie *t)
1888 {
1889 	struct key_vector *n, *pn = t->kv;
1890 
1891 	if (!t)
1892 		return NULL;
1893 
1894 	n = rcu_dereference(pn->tnode[0]);
1895 	if (!n)
1896 		return NULL;
1897 
1898 	if (IS_TNODE(n)) {
1899 		iter->tnode = n;
1900 		iter->index = 0;
1901 		iter->depth = 1;
1902 	} else {
1903 		iter->tnode = pn;
1904 		iter->index = 0;
1905 		iter->depth = 0;
1906 	}
1907 
1908 	return n;
1909 }
1910 
1911 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1912 {
1913 	struct key_vector *n;
1914 	struct fib_trie_iter iter;
1915 
1916 	memset(s, 0, sizeof(*s));
1917 
1918 	rcu_read_lock();
1919 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1920 		if (IS_LEAF(n)) {
1921 			struct fib_alias *fa;
1922 
1923 			s->leaves++;
1924 			s->totdepth += iter.depth;
1925 			if (iter.depth > s->maxdepth)
1926 				s->maxdepth = iter.depth;
1927 
1928 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1929 				++s->prefixes;
1930 		} else {
1931 			s->tnodes++;
1932 			if (n->bits < MAX_STAT_DEPTH)
1933 				s->nodesizes[n->bits]++;
1934 			s->nullpointers += tn_info(n)->empty_children;
1935 		}
1936 	}
1937 	rcu_read_unlock();
1938 }
1939 
1940 /*
1941  *	This outputs /proc/net/fib_triestats
1942  */
1943 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1944 {
1945 	unsigned int i, max, pointers, bytes, avdepth;
1946 
1947 	if (stat->leaves)
1948 		avdepth = stat->totdepth*100 / stat->leaves;
1949 	else
1950 		avdepth = 0;
1951 
1952 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
1953 		   avdepth / 100, avdepth % 100);
1954 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
1955 
1956 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1957 	bytes = LEAF_SIZE * stat->leaves;
1958 
1959 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
1960 	bytes += sizeof(struct fib_alias) * stat->prefixes;
1961 
1962 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1963 	bytes += TNODE_SIZE(0) * stat->tnodes;
1964 
1965 	max = MAX_STAT_DEPTH;
1966 	while (max > 0 && stat->nodesizes[max-1] == 0)
1967 		max--;
1968 
1969 	pointers = 0;
1970 	for (i = 1; i < max; i++)
1971 		if (stat->nodesizes[i] != 0) {
1972 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1973 			pointers += (1<<i) * stat->nodesizes[i];
1974 		}
1975 	seq_putc(seq, '\n');
1976 	seq_printf(seq, "\tPointers: %u\n", pointers);
1977 
1978 	bytes += sizeof(struct key_vector *) * pointers;
1979 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1980 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1981 }
1982 
1983 #ifdef CONFIG_IP_FIB_TRIE_STATS
1984 static void trie_show_usage(struct seq_file *seq,
1985 			    const struct trie_use_stats __percpu *stats)
1986 {
1987 	struct trie_use_stats s = { 0 };
1988 	int cpu;
1989 
1990 	/* loop through all of the CPUs and gather up the stats */
1991 	for_each_possible_cpu(cpu) {
1992 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1993 
1994 		s.gets += pcpu->gets;
1995 		s.backtrack += pcpu->backtrack;
1996 		s.semantic_match_passed += pcpu->semantic_match_passed;
1997 		s.semantic_match_miss += pcpu->semantic_match_miss;
1998 		s.null_node_hit += pcpu->null_node_hit;
1999 		s.resize_node_skipped += pcpu->resize_node_skipped;
2000 	}
2001 
2002 	seq_printf(seq, "\nCounters:\n---------\n");
2003 	seq_printf(seq, "gets = %u\n", s.gets);
2004 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2005 	seq_printf(seq, "semantic match passed = %u\n",
2006 		   s.semantic_match_passed);
2007 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2008 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2009 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2010 }
2011 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2012 
2013 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2014 {
2015 	if (tb->tb_id == RT_TABLE_LOCAL)
2016 		seq_puts(seq, "Local:\n");
2017 	else if (tb->tb_id == RT_TABLE_MAIN)
2018 		seq_puts(seq, "Main:\n");
2019 	else
2020 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2021 }
2022 
2023 
2024 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2025 {
2026 	struct net *net = (struct net *)seq->private;
2027 	unsigned int h;
2028 
2029 	seq_printf(seq,
2030 		   "Basic info: size of leaf:"
2031 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2032 		   LEAF_SIZE, TNODE_SIZE(0));
2033 
2034 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2035 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2036 		struct fib_table *tb;
2037 
2038 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2039 			struct trie *t = (struct trie *) tb->tb_data;
2040 			struct trie_stat stat;
2041 
2042 			if (!t)
2043 				continue;
2044 
2045 			fib_table_print(seq, tb);
2046 
2047 			trie_collect_stats(t, &stat);
2048 			trie_show_stats(seq, &stat);
2049 #ifdef CONFIG_IP_FIB_TRIE_STATS
2050 			trie_show_usage(seq, t->stats);
2051 #endif
2052 		}
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2059 {
2060 	return single_open_net(inode, file, fib_triestat_seq_show);
2061 }
2062 
2063 static const struct file_operations fib_triestat_fops = {
2064 	.owner	= THIS_MODULE,
2065 	.open	= fib_triestat_seq_open,
2066 	.read	= seq_read,
2067 	.llseek	= seq_lseek,
2068 	.release = single_release_net,
2069 };
2070 
2071 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2072 {
2073 	struct fib_trie_iter *iter = seq->private;
2074 	struct net *net = seq_file_net(seq);
2075 	loff_t idx = 0;
2076 	unsigned int h;
2077 
2078 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2079 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2080 		struct fib_table *tb;
2081 
2082 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2083 			struct key_vector *n;
2084 
2085 			for (n = fib_trie_get_first(iter,
2086 						    (struct trie *) tb->tb_data);
2087 			     n; n = fib_trie_get_next(iter))
2088 				if (pos == idx++) {
2089 					iter->tb = tb;
2090 					return n;
2091 				}
2092 		}
2093 	}
2094 
2095 	return NULL;
2096 }
2097 
2098 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2099 	__acquires(RCU)
2100 {
2101 	rcu_read_lock();
2102 	return fib_trie_get_idx(seq, *pos);
2103 }
2104 
2105 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2106 {
2107 	struct fib_trie_iter *iter = seq->private;
2108 	struct net *net = seq_file_net(seq);
2109 	struct fib_table *tb = iter->tb;
2110 	struct hlist_node *tb_node;
2111 	unsigned int h;
2112 	struct key_vector *n;
2113 
2114 	++*pos;
2115 	/* next node in same table */
2116 	n = fib_trie_get_next(iter);
2117 	if (n)
2118 		return n;
2119 
2120 	/* walk rest of this hash chain */
2121 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2122 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2123 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2124 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2125 		if (n)
2126 			goto found;
2127 	}
2128 
2129 	/* new hash chain */
2130 	while (++h < FIB_TABLE_HASHSZ) {
2131 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2132 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2133 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2134 			if (n)
2135 				goto found;
2136 		}
2137 	}
2138 	return NULL;
2139 
2140 found:
2141 	iter->tb = tb;
2142 	return n;
2143 }
2144 
2145 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2146 	__releases(RCU)
2147 {
2148 	rcu_read_unlock();
2149 }
2150 
2151 static void seq_indent(struct seq_file *seq, int n)
2152 {
2153 	while (n-- > 0)
2154 		seq_puts(seq, "   ");
2155 }
2156 
2157 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2158 {
2159 	switch (s) {
2160 	case RT_SCOPE_UNIVERSE: return "universe";
2161 	case RT_SCOPE_SITE:	return "site";
2162 	case RT_SCOPE_LINK:	return "link";
2163 	case RT_SCOPE_HOST:	return "host";
2164 	case RT_SCOPE_NOWHERE:	return "nowhere";
2165 	default:
2166 		snprintf(buf, len, "scope=%d", s);
2167 		return buf;
2168 	}
2169 }
2170 
2171 static const char *const rtn_type_names[__RTN_MAX] = {
2172 	[RTN_UNSPEC] = "UNSPEC",
2173 	[RTN_UNICAST] = "UNICAST",
2174 	[RTN_LOCAL] = "LOCAL",
2175 	[RTN_BROADCAST] = "BROADCAST",
2176 	[RTN_ANYCAST] = "ANYCAST",
2177 	[RTN_MULTICAST] = "MULTICAST",
2178 	[RTN_BLACKHOLE] = "BLACKHOLE",
2179 	[RTN_UNREACHABLE] = "UNREACHABLE",
2180 	[RTN_PROHIBIT] = "PROHIBIT",
2181 	[RTN_THROW] = "THROW",
2182 	[RTN_NAT] = "NAT",
2183 	[RTN_XRESOLVE] = "XRESOLVE",
2184 };
2185 
2186 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2187 {
2188 	if (t < __RTN_MAX && rtn_type_names[t])
2189 		return rtn_type_names[t];
2190 	snprintf(buf, len, "type %u", t);
2191 	return buf;
2192 }
2193 
2194 /* Pretty print the trie */
2195 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2196 {
2197 	const struct fib_trie_iter *iter = seq->private;
2198 	struct key_vector *n = v;
2199 
2200 	if (IS_TRIE(node_parent_rcu(n)))
2201 		fib_table_print(seq, iter->tb);
2202 
2203 	if (IS_TNODE(n)) {
2204 		__be32 prf = htonl(n->key);
2205 
2206 		seq_indent(seq, iter->depth-1);
2207 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2208 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2209 			   tn_info(n)->full_children,
2210 			   tn_info(n)->empty_children);
2211 	} else {
2212 		__be32 val = htonl(n->key);
2213 		struct fib_alias *fa;
2214 
2215 		seq_indent(seq, iter->depth);
2216 		seq_printf(seq, "  |-- %pI4\n", &val);
2217 
2218 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2219 			char buf1[32], buf2[32];
2220 
2221 			seq_indent(seq, iter->depth + 1);
2222 			seq_printf(seq, "  /%zu %s %s",
2223 				   KEYLENGTH - fa->fa_slen,
2224 				   rtn_scope(buf1, sizeof(buf1),
2225 					     fa->fa_info->fib_scope),
2226 				   rtn_type(buf2, sizeof(buf2),
2227 					    fa->fa_type));
2228 			if (fa->fa_tos)
2229 				seq_printf(seq, " tos=%d", fa->fa_tos);
2230 			seq_putc(seq, '\n');
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static const struct seq_operations fib_trie_seq_ops = {
2238 	.start  = fib_trie_seq_start,
2239 	.next   = fib_trie_seq_next,
2240 	.stop   = fib_trie_seq_stop,
2241 	.show   = fib_trie_seq_show,
2242 };
2243 
2244 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2245 {
2246 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2247 			    sizeof(struct fib_trie_iter));
2248 }
2249 
2250 static const struct file_operations fib_trie_fops = {
2251 	.owner  = THIS_MODULE,
2252 	.open   = fib_trie_seq_open,
2253 	.read   = seq_read,
2254 	.llseek = seq_lseek,
2255 	.release = seq_release_net,
2256 };
2257 
2258 struct fib_route_iter {
2259 	struct seq_net_private p;
2260 	struct fib_table *main_tb;
2261 	struct key_vector *tnode;
2262 	loff_t	pos;
2263 	t_key	key;
2264 };
2265 
2266 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2267 					    loff_t pos)
2268 {
2269 	struct fib_table *tb = iter->main_tb;
2270 	struct key_vector *l, **tp = &iter->tnode;
2271 	struct trie *t;
2272 	t_key key;
2273 
2274 	/* use cache location of next-to-find key */
2275 	if (iter->pos > 0 && pos >= iter->pos) {
2276 		pos -= iter->pos;
2277 		key = iter->key;
2278 	} else {
2279 		t = (struct trie *)tb->tb_data;
2280 		iter->tnode = t->kv;
2281 		iter->pos = 0;
2282 		key = 0;
2283 	}
2284 
2285 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2286 		key = l->key + 1;
2287 		iter->pos++;
2288 
2289 		if (pos-- <= 0)
2290 			break;
2291 
2292 		l = NULL;
2293 
2294 		/* handle unlikely case of a key wrap */
2295 		if (!key)
2296 			break;
2297 	}
2298 
2299 	if (l)
2300 		iter->key = key;	/* remember it */
2301 	else
2302 		iter->pos = 0;		/* forget it */
2303 
2304 	return l;
2305 }
2306 
2307 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2308 	__acquires(RCU)
2309 {
2310 	struct fib_route_iter *iter = seq->private;
2311 	struct fib_table *tb;
2312 	struct trie *t;
2313 
2314 	rcu_read_lock();
2315 
2316 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2317 	if (!tb)
2318 		return NULL;
2319 
2320 	iter->main_tb = tb;
2321 
2322 	if (*pos != 0)
2323 		return fib_route_get_idx(iter, *pos);
2324 
2325 	t = (struct trie *)tb->tb_data;
2326 	iter->tnode = t->kv;
2327 	iter->pos = 0;
2328 	iter->key = 0;
2329 
2330 	return SEQ_START_TOKEN;
2331 }
2332 
2333 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2334 {
2335 	struct fib_route_iter *iter = seq->private;
2336 	struct key_vector *l = NULL;
2337 	t_key key = iter->key;
2338 
2339 	++*pos;
2340 
2341 	/* only allow key of 0 for start of sequence */
2342 	if ((v == SEQ_START_TOKEN) || key)
2343 		l = leaf_walk_rcu(&iter->tnode, key);
2344 
2345 	if (l) {
2346 		iter->key = l->key + 1;
2347 		iter->pos++;
2348 	} else {
2349 		iter->pos = 0;
2350 	}
2351 
2352 	return l;
2353 }
2354 
2355 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2356 	__releases(RCU)
2357 {
2358 	rcu_read_unlock();
2359 }
2360 
2361 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2362 {
2363 	unsigned int flags = 0;
2364 
2365 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2366 		flags = RTF_REJECT;
2367 	if (fi && fi->fib_nh->nh_gw)
2368 		flags |= RTF_GATEWAY;
2369 	if (mask == htonl(0xFFFFFFFF))
2370 		flags |= RTF_HOST;
2371 	flags |= RTF_UP;
2372 	return flags;
2373 }
2374 
2375 /*
2376  *	This outputs /proc/net/route.
2377  *	The format of the file is not supposed to be changed
2378  *	and needs to be same as fib_hash output to avoid breaking
2379  *	legacy utilities
2380  */
2381 static int fib_route_seq_show(struct seq_file *seq, void *v)
2382 {
2383 	struct fib_alias *fa;
2384 	struct key_vector *l = v;
2385 	__be32 prefix;
2386 
2387 	if (v == SEQ_START_TOKEN) {
2388 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2389 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2390 			   "\tWindow\tIRTT");
2391 		return 0;
2392 	}
2393 
2394 	prefix = htonl(l->key);
2395 
2396 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2397 		const struct fib_info *fi = fa->fa_info;
2398 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2399 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2400 
2401 		if ((fa->fa_type == RTN_BROADCAST) ||
2402 		    (fa->fa_type == RTN_MULTICAST))
2403 			continue;
2404 
2405 		seq_setwidth(seq, 127);
2406 
2407 		if (fi)
2408 			seq_printf(seq,
2409 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2410 				   "%d\t%08X\t%d\t%u\t%u",
2411 				   fi->fib_dev ? fi->fib_dev->name : "*",
2412 				   prefix,
2413 				   fi->fib_nh->nh_gw, flags, 0, 0,
2414 				   fi->fib_priority,
2415 				   mask,
2416 				   (fi->fib_advmss ?
2417 				    fi->fib_advmss + 40 : 0),
2418 				   fi->fib_window,
2419 				   fi->fib_rtt >> 3);
2420 		else
2421 			seq_printf(seq,
2422 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2423 				   "%d\t%08X\t%d\t%u\t%u",
2424 				   prefix, 0, flags, 0, 0, 0,
2425 				   mask, 0, 0, 0);
2426 
2427 		seq_pad(seq, '\n');
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 static const struct seq_operations fib_route_seq_ops = {
2434 	.start  = fib_route_seq_start,
2435 	.next   = fib_route_seq_next,
2436 	.stop   = fib_route_seq_stop,
2437 	.show   = fib_route_seq_show,
2438 };
2439 
2440 static int fib_route_seq_open(struct inode *inode, struct file *file)
2441 {
2442 	return seq_open_net(inode, file, &fib_route_seq_ops,
2443 			    sizeof(struct fib_route_iter));
2444 }
2445 
2446 static const struct file_operations fib_route_fops = {
2447 	.owner  = THIS_MODULE,
2448 	.open   = fib_route_seq_open,
2449 	.read   = seq_read,
2450 	.llseek = seq_lseek,
2451 	.release = seq_release_net,
2452 };
2453 
2454 int __net_init fib_proc_init(struct net *net)
2455 {
2456 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2457 		goto out1;
2458 
2459 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2460 			 &fib_triestat_fops))
2461 		goto out2;
2462 
2463 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2464 		goto out3;
2465 
2466 	return 0;
2467 
2468 out3:
2469 	remove_proc_entry("fib_triestat", net->proc_net);
2470 out2:
2471 	remove_proc_entry("fib_trie", net->proc_net);
2472 out1:
2473 	return -ENOMEM;
2474 }
2475 
2476 void __net_exit fib_proc_exit(struct net *net)
2477 {
2478 	remove_proc_entry("fib_trie", net->proc_net);
2479 	remove_proc_entry("fib_triestat", net->proc_net);
2480 	remove_proc_entry("route", net->proc_net);
2481 }
2482 
2483 #endif /* CONFIG_PROC_FS */
2484