1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <net/net_namespace.h> 76 #include <net/ip.h> 77 #include <net/protocol.h> 78 #include <net/route.h> 79 #include <net/tcp.h> 80 #include <net/sock.h> 81 #include <net/ip_fib.h> 82 #include <net/switchdev.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 #define KEY_MAX ((t_key)~0) 89 90 typedef unsigned int t_key; 91 92 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 93 #define IS_TNODE(n) ((n)->bits) 94 #define IS_LEAF(n) (!(n)->bits) 95 96 struct key_vector { 97 t_key key; 98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 100 unsigned char slen; 101 union { 102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 103 struct hlist_head leaf; 104 /* This array is valid if (pos | bits) > 0 (TNODE) */ 105 struct key_vector __rcu *tnode[0]; 106 }; 107 }; 108 109 struct tnode { 110 struct rcu_head rcu; 111 t_key empty_children; /* KEYLENGTH bits needed */ 112 t_key full_children; /* KEYLENGTH bits needed */ 113 struct key_vector __rcu *parent; 114 struct key_vector kv[1]; 115 #define tn_bits kv[0].bits 116 }; 117 118 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 119 #define LEAF_SIZE TNODE_SIZE(1) 120 121 #ifdef CONFIG_IP_FIB_TRIE_STATS 122 struct trie_use_stats { 123 unsigned int gets; 124 unsigned int backtrack; 125 unsigned int semantic_match_passed; 126 unsigned int semantic_match_miss; 127 unsigned int null_node_hit; 128 unsigned int resize_node_skipped; 129 }; 130 #endif 131 132 struct trie_stat { 133 unsigned int totdepth; 134 unsigned int maxdepth; 135 unsigned int tnodes; 136 unsigned int leaves; 137 unsigned int nullpointers; 138 unsigned int prefixes; 139 unsigned int nodesizes[MAX_STAT_DEPTH]; 140 }; 141 142 struct trie { 143 struct key_vector kv[1]; 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats __percpu *stats; 146 #endif 147 }; 148 149 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 150 static size_t tnode_free_size; 151 152 /* 153 * synchronize_rcu after call_rcu for that many pages; it should be especially 154 * useful before resizing the root node with PREEMPT_NONE configs; the value was 155 * obtained experimentally, aiming to avoid visible slowdown. 156 */ 157 static const int sync_pages = 128; 158 159 static struct kmem_cache *fn_alias_kmem __read_mostly; 160 static struct kmem_cache *trie_leaf_kmem __read_mostly; 161 162 static inline struct tnode *tn_info(struct key_vector *kv) 163 { 164 return container_of(kv, struct tnode, kv[0]); 165 } 166 167 /* caller must hold RTNL */ 168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 170 171 /* caller must hold RCU read lock or RTNL */ 172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 174 175 /* wrapper for rcu_assign_pointer */ 176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 177 { 178 if (n) 179 rcu_assign_pointer(tn_info(n)->parent, tp); 180 } 181 182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 183 184 /* This provides us with the number of children in this node, in the case of a 185 * leaf this will return 0 meaning none of the children are accessible. 186 */ 187 static inline unsigned long child_length(const struct key_vector *tn) 188 { 189 return (1ul << tn->bits) & ~(1ul); 190 } 191 192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 193 194 static inline unsigned long get_index(t_key key, struct key_vector *kv) 195 { 196 unsigned long index = key ^ kv->key; 197 198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 199 return 0; 200 201 return index >> kv->pos; 202 } 203 204 /* To understand this stuff, an understanding of keys and all their bits is 205 * necessary. Every node in the trie has a key associated with it, but not 206 * all of the bits in that key are significant. 207 * 208 * Consider a node 'n' and its parent 'tp'. 209 * 210 * If n is a leaf, every bit in its key is significant. Its presence is 211 * necessitated by path compression, since during a tree traversal (when 212 * searching for a leaf - unless we are doing an insertion) we will completely 213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 214 * a potentially successful search, that we have indeed been walking the 215 * correct key path. 216 * 217 * Note that we can never "miss" the correct key in the tree if present by 218 * following the wrong path. Path compression ensures that segments of the key 219 * that are the same for all keys with a given prefix are skipped, but the 220 * skipped part *is* identical for each node in the subtrie below the skipped 221 * bit! trie_insert() in this implementation takes care of that. 222 * 223 * if n is an internal node - a 'tnode' here, the various parts of its key 224 * have many different meanings. 225 * 226 * Example: 227 * _________________________________________________________________ 228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 229 * ----------------------------------------------------------------- 230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 231 * 232 * _________________________________________________________________ 233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 234 * ----------------------------------------------------------------- 235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 236 * 237 * tp->pos = 22 238 * tp->bits = 3 239 * n->pos = 13 240 * n->bits = 4 241 * 242 * First, let's just ignore the bits that come before the parent tp, that is 243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 244 * point we do not use them for anything. 245 * 246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 247 * index into the parent's child array. That is, they will be used to find 248 * 'n' among tp's children. 249 * 250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits 251 * for the node n. 252 * 253 * All the bits we have seen so far are significant to the node n. The rest 254 * of the bits are really not needed or indeed known in n->key. 255 * 256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 257 * n's child array, and will of course be different for each child. 258 * 259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown 260 * at this point. 261 */ 262 263 static const int halve_threshold = 25; 264 static const int inflate_threshold = 50; 265 static const int halve_threshold_root = 15; 266 static const int inflate_threshold_root = 30; 267 268 static void __alias_free_mem(struct rcu_head *head) 269 { 270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 271 kmem_cache_free(fn_alias_kmem, fa); 272 } 273 274 static inline void alias_free_mem_rcu(struct fib_alias *fa) 275 { 276 call_rcu(&fa->rcu, __alias_free_mem); 277 } 278 279 #define TNODE_KMALLOC_MAX \ 280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 281 #define TNODE_VMALLOC_MAX \ 282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 283 284 static void __node_free_rcu(struct rcu_head *head) 285 { 286 struct tnode *n = container_of(head, struct tnode, rcu); 287 288 if (!n->tn_bits) 289 kmem_cache_free(trie_leaf_kmem, n); 290 else if (n->tn_bits <= TNODE_KMALLOC_MAX) 291 kfree(n); 292 else 293 vfree(n); 294 } 295 296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 297 298 static struct tnode *tnode_alloc(int bits) 299 { 300 size_t size; 301 302 /* verify bits is within bounds */ 303 if (bits > TNODE_VMALLOC_MAX) 304 return NULL; 305 306 /* determine size and verify it is non-zero and didn't overflow */ 307 size = TNODE_SIZE(1ul << bits); 308 309 if (size <= PAGE_SIZE) 310 return kzalloc(size, GFP_KERNEL); 311 else 312 return vzalloc(size); 313 } 314 315 static inline void empty_child_inc(struct key_vector *n) 316 { 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 318 } 319 320 static inline void empty_child_dec(struct key_vector *n) 321 { 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 323 } 324 325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 326 { 327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 328 struct key_vector *l = kv->kv; 329 330 if (!kv) 331 return NULL; 332 333 /* initialize key vector */ 334 l->key = key; 335 l->pos = 0; 336 l->bits = 0; 337 l->slen = fa->fa_slen; 338 339 /* link leaf to fib alias */ 340 INIT_HLIST_HEAD(&l->leaf); 341 hlist_add_head(&fa->fa_list, &l->leaf); 342 343 return l; 344 } 345 346 static struct key_vector *tnode_new(t_key key, int pos, int bits) 347 { 348 struct tnode *tnode = tnode_alloc(bits); 349 unsigned int shift = pos + bits; 350 struct key_vector *tn = tnode->kv; 351 352 /* verify bits and pos their msb bits clear and values are valid */ 353 BUG_ON(!bits || (shift > KEYLENGTH)); 354 355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 356 sizeof(struct key_vector *) << bits); 357 358 if (!tnode) 359 return NULL; 360 361 if (bits == KEYLENGTH) 362 tnode->full_children = 1; 363 else 364 tnode->empty_children = 1ul << bits; 365 366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 367 tn->pos = pos; 368 tn->bits = bits; 369 tn->slen = pos; 370 371 return tn; 372 } 373 374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 375 * and no bits are skipped. See discussion in dyntree paper p. 6 376 */ 377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 378 { 379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 380 } 381 382 /* Add a child at position i overwriting the old value. 383 * Update the value of full_children and empty_children. 384 */ 385 static void put_child(struct key_vector *tn, unsigned long i, 386 struct key_vector *n) 387 { 388 struct key_vector *chi = get_child(tn, i); 389 int isfull, wasfull; 390 391 BUG_ON(i >= child_length(tn)); 392 393 /* update emptyChildren, overflow into fullChildren */ 394 if (n == NULL && chi != NULL) 395 empty_child_inc(tn); 396 if (n != NULL && chi == NULL) 397 empty_child_dec(tn); 398 399 /* update fullChildren */ 400 wasfull = tnode_full(tn, chi); 401 isfull = tnode_full(tn, n); 402 403 if (wasfull && !isfull) 404 tn_info(tn)->full_children--; 405 else if (!wasfull && isfull) 406 tn_info(tn)->full_children++; 407 408 if (n && (tn->slen < n->slen)) 409 tn->slen = n->slen; 410 411 rcu_assign_pointer(tn->tnode[i], n); 412 } 413 414 static void update_children(struct key_vector *tn) 415 { 416 unsigned long i; 417 418 /* update all of the child parent pointers */ 419 for (i = child_length(tn); i;) { 420 struct key_vector *inode = get_child(tn, --i); 421 422 if (!inode) 423 continue; 424 425 /* Either update the children of a tnode that 426 * already belongs to us or update the child 427 * to point to ourselves. 428 */ 429 if (node_parent(inode) == tn) 430 update_children(inode); 431 else 432 node_set_parent(inode, tn); 433 } 434 } 435 436 static inline void put_child_root(struct key_vector *tp, t_key key, 437 struct key_vector *n) 438 { 439 if (IS_TRIE(tp)) 440 rcu_assign_pointer(tp->tnode[0], n); 441 else 442 put_child(tp, get_index(key, tp), n); 443 } 444 445 static inline void tnode_free_init(struct key_vector *tn) 446 { 447 tn_info(tn)->rcu.next = NULL; 448 } 449 450 static inline void tnode_free_append(struct key_vector *tn, 451 struct key_vector *n) 452 { 453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 454 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 455 } 456 457 static void tnode_free(struct key_vector *tn) 458 { 459 struct callback_head *head = &tn_info(tn)->rcu; 460 461 while (head) { 462 head = head->next; 463 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 464 node_free(tn); 465 466 tn = container_of(head, struct tnode, rcu)->kv; 467 } 468 469 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 470 tnode_free_size = 0; 471 synchronize_rcu(); 472 } 473 } 474 475 static struct key_vector *replace(struct trie *t, 476 struct key_vector *oldtnode, 477 struct key_vector *tn) 478 { 479 struct key_vector *tp = node_parent(oldtnode); 480 unsigned long i; 481 482 /* setup the parent pointer out of and back into this node */ 483 NODE_INIT_PARENT(tn, tp); 484 put_child_root(tp, tn->key, tn); 485 486 /* update all of the child parent pointers */ 487 update_children(tn); 488 489 /* all pointers should be clean so we are done */ 490 tnode_free(oldtnode); 491 492 /* resize children now that oldtnode is freed */ 493 for (i = child_length(tn); i;) { 494 struct key_vector *inode = get_child(tn, --i); 495 496 /* resize child node */ 497 if (tnode_full(tn, inode)) 498 tn = resize(t, inode); 499 } 500 501 return tp; 502 } 503 504 static struct key_vector *inflate(struct trie *t, 505 struct key_vector *oldtnode) 506 { 507 struct key_vector *tn; 508 unsigned long i; 509 t_key m; 510 511 pr_debug("In inflate\n"); 512 513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 514 if (!tn) 515 goto notnode; 516 517 /* prepare oldtnode to be freed */ 518 tnode_free_init(oldtnode); 519 520 /* Assemble all of the pointers in our cluster, in this case that 521 * represents all of the pointers out of our allocated nodes that 522 * point to existing tnodes and the links between our allocated 523 * nodes. 524 */ 525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 526 struct key_vector *inode = get_child(oldtnode, --i); 527 struct key_vector *node0, *node1; 528 unsigned long j, k; 529 530 /* An empty child */ 531 if (inode == NULL) 532 continue; 533 534 /* A leaf or an internal node with skipped bits */ 535 if (!tnode_full(oldtnode, inode)) { 536 put_child(tn, get_index(inode->key, tn), inode); 537 continue; 538 } 539 540 /* drop the node in the old tnode free list */ 541 tnode_free_append(oldtnode, inode); 542 543 /* An internal node with two children */ 544 if (inode->bits == 1) { 545 put_child(tn, 2 * i + 1, get_child(inode, 1)); 546 put_child(tn, 2 * i, get_child(inode, 0)); 547 continue; 548 } 549 550 /* We will replace this node 'inode' with two new 551 * ones, 'node0' and 'node1', each with half of the 552 * original children. The two new nodes will have 553 * a position one bit further down the key and this 554 * means that the "significant" part of their keys 555 * (see the discussion near the top of this file) 556 * will differ by one bit, which will be "0" in 557 * node0's key and "1" in node1's key. Since we are 558 * moving the key position by one step, the bit that 559 * we are moving away from - the bit at position 560 * (tn->pos) - is the one that will differ between 561 * node0 and node1. So... we synthesize that bit in the 562 * two new keys. 563 */ 564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 565 if (!node1) 566 goto nomem; 567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 568 569 tnode_free_append(tn, node1); 570 if (!node0) 571 goto nomem; 572 tnode_free_append(tn, node0); 573 574 /* populate child pointers in new nodes */ 575 for (k = child_length(inode), j = k / 2; j;) { 576 put_child(node1, --j, get_child(inode, --k)); 577 put_child(node0, j, get_child(inode, j)); 578 put_child(node1, --j, get_child(inode, --k)); 579 put_child(node0, j, get_child(inode, j)); 580 } 581 582 /* link new nodes to parent */ 583 NODE_INIT_PARENT(node1, tn); 584 NODE_INIT_PARENT(node0, tn); 585 586 /* link parent to nodes */ 587 put_child(tn, 2 * i + 1, node1); 588 put_child(tn, 2 * i, node0); 589 } 590 591 /* setup the parent pointers into and out of this node */ 592 return replace(t, oldtnode, tn); 593 nomem: 594 /* all pointers should be clean so we are done */ 595 tnode_free(tn); 596 notnode: 597 return NULL; 598 } 599 600 static struct key_vector *halve(struct trie *t, 601 struct key_vector *oldtnode) 602 { 603 struct key_vector *tn; 604 unsigned long i; 605 606 pr_debug("In halve\n"); 607 608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 609 if (!tn) 610 goto notnode; 611 612 /* prepare oldtnode to be freed */ 613 tnode_free_init(oldtnode); 614 615 /* Assemble all of the pointers in our cluster, in this case that 616 * represents all of the pointers out of our allocated nodes that 617 * point to existing tnodes and the links between our allocated 618 * nodes. 619 */ 620 for (i = child_length(oldtnode); i;) { 621 struct key_vector *node1 = get_child(oldtnode, --i); 622 struct key_vector *node0 = get_child(oldtnode, --i); 623 struct key_vector *inode; 624 625 /* At least one of the children is empty */ 626 if (!node1 || !node0) { 627 put_child(tn, i / 2, node1 ? : node0); 628 continue; 629 } 630 631 /* Two nonempty children */ 632 inode = tnode_new(node0->key, oldtnode->pos, 1); 633 if (!inode) 634 goto nomem; 635 tnode_free_append(tn, inode); 636 637 /* initialize pointers out of node */ 638 put_child(inode, 1, node1); 639 put_child(inode, 0, node0); 640 NODE_INIT_PARENT(inode, tn); 641 642 /* link parent to node */ 643 put_child(tn, i / 2, inode); 644 } 645 646 /* setup the parent pointers into and out of this node */ 647 return replace(t, oldtnode, tn); 648 nomem: 649 /* all pointers should be clean so we are done */ 650 tnode_free(tn); 651 notnode: 652 return NULL; 653 } 654 655 static struct key_vector *collapse(struct trie *t, 656 struct key_vector *oldtnode) 657 { 658 struct key_vector *n, *tp; 659 unsigned long i; 660 661 /* scan the tnode looking for that one child that might still exist */ 662 for (n = NULL, i = child_length(oldtnode); !n && i;) 663 n = get_child(oldtnode, --i); 664 665 /* compress one level */ 666 tp = node_parent(oldtnode); 667 put_child_root(tp, oldtnode->key, n); 668 node_set_parent(n, tp); 669 670 /* drop dead node */ 671 node_free(oldtnode); 672 673 return tp; 674 } 675 676 static unsigned char update_suffix(struct key_vector *tn) 677 { 678 unsigned char slen = tn->pos; 679 unsigned long stride, i; 680 681 /* search though the list of children looking for nodes that might 682 * have a suffix greater than the one we currently have. This is 683 * why we start with a stride of 2 since a stride of 1 would 684 * represent the nodes with suffix length equal to tn->pos 685 */ 686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 687 struct key_vector *n = get_child(tn, i); 688 689 if (!n || (n->slen <= slen)) 690 continue; 691 692 /* update stride and slen based on new value */ 693 stride <<= (n->slen - slen); 694 slen = n->slen; 695 i &= ~(stride - 1); 696 697 /* if slen covers all but the last bit we can stop here 698 * there will be nothing longer than that since only node 699 * 0 and 1 << (bits - 1) could have that as their suffix 700 * length. 701 */ 702 if ((slen + 1) >= (tn->pos + tn->bits)) 703 break; 704 } 705 706 tn->slen = slen; 707 708 return slen; 709 } 710 711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 712 * the Helsinki University of Technology and Matti Tikkanen of Nokia 713 * Telecommunications, page 6: 714 * "A node is doubled if the ratio of non-empty children to all 715 * children in the *doubled* node is at least 'high'." 716 * 717 * 'high' in this instance is the variable 'inflate_threshold'. It 718 * is expressed as a percentage, so we multiply it with 719 * child_length() and instead of multiplying by 2 (since the 720 * child array will be doubled by inflate()) and multiplying 721 * the left-hand side by 100 (to handle the percentage thing) we 722 * multiply the left-hand side by 50. 723 * 724 * The left-hand side may look a bit weird: child_length(tn) 725 * - tn->empty_children is of course the number of non-null children 726 * in the current node. tn->full_children is the number of "full" 727 * children, that is non-null tnodes with a skip value of 0. 728 * All of those will be doubled in the resulting inflated tnode, so 729 * we just count them one extra time here. 730 * 731 * A clearer way to write this would be: 732 * 733 * to_be_doubled = tn->full_children; 734 * not_to_be_doubled = child_length(tn) - tn->empty_children - 735 * tn->full_children; 736 * 737 * new_child_length = child_length(tn) * 2; 738 * 739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 740 * new_child_length; 741 * if (new_fill_factor >= inflate_threshold) 742 * 743 * ...and so on, tho it would mess up the while () loop. 744 * 745 * anyway, 746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 747 * inflate_threshold 748 * 749 * avoid a division: 750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 751 * inflate_threshold * new_child_length 752 * 753 * expand not_to_be_doubled and to_be_doubled, and shorten: 754 * 100 * (child_length(tn) - tn->empty_children + 755 * tn->full_children) >= inflate_threshold * new_child_length 756 * 757 * expand new_child_length: 758 * 100 * (child_length(tn) - tn->empty_children + 759 * tn->full_children) >= 760 * inflate_threshold * child_length(tn) * 2 761 * 762 * shorten again: 763 * 50 * (tn->full_children + child_length(tn) - 764 * tn->empty_children) >= inflate_threshold * 765 * child_length(tn) 766 * 767 */ 768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 769 { 770 unsigned long used = child_length(tn); 771 unsigned long threshold = used; 772 773 /* Keep root node larger */ 774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 775 used -= tn_info(tn)->empty_children; 776 used += tn_info(tn)->full_children; 777 778 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 779 780 return (used > 1) && tn->pos && ((50 * used) >= threshold); 781 } 782 783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 784 { 785 unsigned long used = child_length(tn); 786 unsigned long threshold = used; 787 788 /* Keep root node larger */ 789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 790 used -= tn_info(tn)->empty_children; 791 792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 793 794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 795 } 796 797 static inline bool should_collapse(struct key_vector *tn) 798 { 799 unsigned long used = child_length(tn); 800 801 used -= tn_info(tn)->empty_children; 802 803 /* account for bits == KEYLENGTH case */ 804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 805 used -= KEY_MAX; 806 807 /* One child or none, time to drop us from the trie */ 808 return used < 2; 809 } 810 811 #define MAX_WORK 10 812 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 813 { 814 #ifdef CONFIG_IP_FIB_TRIE_STATS 815 struct trie_use_stats __percpu *stats = t->stats; 816 #endif 817 struct key_vector *tp = node_parent(tn); 818 unsigned long cindex = get_index(tn->key, tp); 819 int max_work = MAX_WORK; 820 821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 822 tn, inflate_threshold, halve_threshold); 823 824 /* track the tnode via the pointer from the parent instead of 825 * doing it ourselves. This way we can let RCU fully do its 826 * thing without us interfering 827 */ 828 BUG_ON(tn != get_child(tp, cindex)); 829 830 /* Double as long as the resulting node has a number of 831 * nonempty nodes that are above the threshold. 832 */ 833 while (should_inflate(tp, tn) && max_work) { 834 tp = inflate(t, tn); 835 if (!tp) { 836 #ifdef CONFIG_IP_FIB_TRIE_STATS 837 this_cpu_inc(stats->resize_node_skipped); 838 #endif 839 break; 840 } 841 842 max_work--; 843 tn = get_child(tp, cindex); 844 } 845 846 /* Return if at least one inflate is run */ 847 if (max_work != MAX_WORK) 848 return node_parent(tn); 849 850 /* Halve as long as the number of empty children in this 851 * node is above threshold. 852 */ 853 while (should_halve(tp, tn) && max_work) { 854 tp = halve(t, tn); 855 if (!tp) { 856 #ifdef CONFIG_IP_FIB_TRIE_STATS 857 this_cpu_inc(stats->resize_node_skipped); 858 #endif 859 break; 860 } 861 862 max_work--; 863 tn = get_child(tp, cindex); 864 } 865 866 /* Only one child remains */ 867 if (should_collapse(tn)) 868 return collapse(t, tn); 869 870 /* update parent in case inflate or halve failed */ 871 tp = node_parent(tn); 872 873 /* Return if at least one deflate was run */ 874 if (max_work != MAX_WORK) 875 return tp; 876 877 /* push the suffix length to the parent node */ 878 if (tn->slen > tn->pos) { 879 unsigned char slen = update_suffix(tn); 880 881 if (slen > tp->slen) 882 tp->slen = slen; 883 } 884 885 return tp; 886 } 887 888 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) 889 { 890 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) { 891 if (update_suffix(tp) > l->slen) 892 break; 893 tp = node_parent(tp); 894 } 895 } 896 897 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) 898 { 899 /* if this is a new leaf then tn will be NULL and we can sort 900 * out parent suffix lengths as a part of trie_rebalance 901 */ 902 while (tn->slen < l->slen) { 903 tn->slen = l->slen; 904 tn = node_parent(tn); 905 } 906 } 907 908 /* rcu_read_lock needs to be hold by caller from readside */ 909 static struct key_vector *fib_find_node(struct trie *t, 910 struct key_vector **tp, u32 key) 911 { 912 struct key_vector *pn, *n = t->kv; 913 unsigned long index = 0; 914 915 do { 916 pn = n; 917 n = get_child_rcu(n, index); 918 919 if (!n) 920 break; 921 922 index = get_cindex(key, n); 923 924 /* This bit of code is a bit tricky but it combines multiple 925 * checks into a single check. The prefix consists of the 926 * prefix plus zeros for the bits in the cindex. The index 927 * is the difference between the key and this value. From 928 * this we can actually derive several pieces of data. 929 * if (index >= (1ul << bits)) 930 * we have a mismatch in skip bits and failed 931 * else 932 * we know the value is cindex 933 * 934 * This check is safe even if bits == KEYLENGTH due to the 935 * fact that we can only allocate a node with 32 bits if a 936 * long is greater than 32 bits. 937 */ 938 if (index >= (1ul << n->bits)) { 939 n = NULL; 940 break; 941 } 942 943 /* keep searching until we find a perfect match leaf or NULL */ 944 } while (IS_TNODE(n)); 945 946 *tp = pn; 947 948 return n; 949 } 950 951 /* Return the first fib alias matching TOS with 952 * priority less than or equal to PRIO. 953 */ 954 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 955 u8 tos, u32 prio) 956 { 957 struct fib_alias *fa; 958 959 if (!fah) 960 return NULL; 961 962 hlist_for_each_entry(fa, fah, fa_list) { 963 if (fa->fa_slen < slen) 964 continue; 965 if (fa->fa_slen != slen) 966 break; 967 if (fa->fa_tos > tos) 968 continue; 969 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 970 return fa; 971 } 972 973 return NULL; 974 } 975 976 static void trie_rebalance(struct trie *t, struct key_vector *tn) 977 { 978 while (!IS_TRIE(tn)) 979 tn = resize(t, tn); 980 } 981 982 static int fib_insert_node(struct trie *t, struct key_vector *tp, 983 struct fib_alias *new, t_key key) 984 { 985 struct key_vector *n, *l; 986 987 l = leaf_new(key, new); 988 if (!l) 989 goto noleaf; 990 991 /* retrieve child from parent node */ 992 n = get_child(tp, get_index(key, tp)); 993 994 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 995 * 996 * Add a new tnode here 997 * first tnode need some special handling 998 * leaves us in position for handling as case 3 999 */ 1000 if (n) { 1001 struct key_vector *tn; 1002 1003 tn = tnode_new(key, __fls(key ^ n->key), 1); 1004 if (!tn) 1005 goto notnode; 1006 1007 /* initialize routes out of node */ 1008 NODE_INIT_PARENT(tn, tp); 1009 put_child(tn, get_index(key, tn) ^ 1, n); 1010 1011 /* start adding routes into the node */ 1012 put_child_root(tp, key, tn); 1013 node_set_parent(n, tn); 1014 1015 /* parent now has a NULL spot where the leaf can go */ 1016 tp = tn; 1017 } 1018 1019 /* Case 3: n is NULL, and will just insert a new leaf */ 1020 NODE_INIT_PARENT(l, tp); 1021 put_child_root(tp, key, l); 1022 trie_rebalance(t, tp); 1023 1024 return 0; 1025 notnode: 1026 node_free(l); 1027 noleaf: 1028 return -ENOMEM; 1029 } 1030 1031 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1032 struct key_vector *l, struct fib_alias *new, 1033 struct fib_alias *fa, t_key key) 1034 { 1035 if (!l) 1036 return fib_insert_node(t, tp, new, key); 1037 1038 if (fa) { 1039 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1040 } else { 1041 struct fib_alias *last; 1042 1043 hlist_for_each_entry(last, &l->leaf, fa_list) { 1044 if (new->fa_slen < last->fa_slen) 1045 break; 1046 fa = last; 1047 } 1048 1049 if (fa) 1050 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1051 else 1052 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1053 } 1054 1055 /* if we added to the tail node then we need to update slen */ 1056 if (l->slen < new->fa_slen) { 1057 l->slen = new->fa_slen; 1058 leaf_push_suffix(tp, l); 1059 } 1060 1061 return 0; 1062 } 1063 1064 /* Caller must hold RTNL. */ 1065 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1066 { 1067 struct trie *t = (struct trie *)tb->tb_data; 1068 struct fib_alias *fa, *new_fa; 1069 struct key_vector *l, *tp; 1070 struct fib_info *fi; 1071 u8 plen = cfg->fc_dst_len; 1072 u8 slen = KEYLENGTH - plen; 1073 u8 tos = cfg->fc_tos; 1074 u32 key; 1075 int err; 1076 1077 if (plen > KEYLENGTH) 1078 return -EINVAL; 1079 1080 key = ntohl(cfg->fc_dst); 1081 1082 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1083 1084 if ((plen < KEYLENGTH) && (key << plen)) 1085 return -EINVAL; 1086 1087 fi = fib_create_info(cfg); 1088 if (IS_ERR(fi)) { 1089 err = PTR_ERR(fi); 1090 goto err; 1091 } 1092 1093 l = fib_find_node(t, &tp, key); 1094 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL; 1095 1096 /* Now fa, if non-NULL, points to the first fib alias 1097 * with the same keys [prefix,tos,priority], if such key already 1098 * exists or to the node before which we will insert new one. 1099 * 1100 * If fa is NULL, we will need to allocate a new one and 1101 * insert to the tail of the section matching the suffix length 1102 * of the new alias. 1103 */ 1104 1105 if (fa && fa->fa_tos == tos && 1106 fa->fa_info->fib_priority == fi->fib_priority) { 1107 struct fib_alias *fa_first, *fa_match; 1108 1109 err = -EEXIST; 1110 if (cfg->fc_nlflags & NLM_F_EXCL) 1111 goto out; 1112 1113 /* We have 2 goals: 1114 * 1. Find exact match for type, scope, fib_info to avoid 1115 * duplicate routes 1116 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1117 */ 1118 fa_match = NULL; 1119 fa_first = fa; 1120 hlist_for_each_entry_from(fa, fa_list) { 1121 if ((fa->fa_slen != slen) || (fa->fa_tos != tos)) 1122 break; 1123 if (fa->fa_info->fib_priority != fi->fib_priority) 1124 break; 1125 if (fa->fa_type == cfg->fc_type && 1126 fa->fa_info == fi) { 1127 fa_match = fa; 1128 break; 1129 } 1130 } 1131 1132 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1133 struct fib_info *fi_drop; 1134 u8 state; 1135 1136 fa = fa_first; 1137 if (fa_match) { 1138 if (fa == fa_match) 1139 err = 0; 1140 goto out; 1141 } 1142 err = -ENOBUFS; 1143 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1144 if (new_fa == NULL) 1145 goto out; 1146 1147 fi_drop = fa->fa_info; 1148 new_fa->fa_tos = fa->fa_tos; 1149 new_fa->fa_info = fi; 1150 new_fa->fa_type = cfg->fc_type; 1151 state = fa->fa_state; 1152 new_fa->fa_state = state & ~FA_S_ACCESSED; 1153 new_fa->fa_slen = fa->fa_slen; 1154 1155 err = netdev_switch_fib_ipv4_add(key, plen, fi, 1156 new_fa->fa_tos, 1157 cfg->fc_type, 1158 tb->tb_id); 1159 if (err) { 1160 netdev_switch_fib_ipv4_abort(fi); 1161 kmem_cache_free(fn_alias_kmem, new_fa); 1162 goto out; 1163 } 1164 1165 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1166 1167 alias_free_mem_rcu(fa); 1168 1169 fib_release_info(fi_drop); 1170 if (state & FA_S_ACCESSED) 1171 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1172 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1173 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1174 1175 goto succeeded; 1176 } 1177 /* Error if we find a perfect match which 1178 * uses the same scope, type, and nexthop 1179 * information. 1180 */ 1181 if (fa_match) 1182 goto out; 1183 1184 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1185 fa = fa_first; 1186 } 1187 err = -ENOENT; 1188 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1189 goto out; 1190 1191 err = -ENOBUFS; 1192 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1193 if (new_fa == NULL) 1194 goto out; 1195 1196 new_fa->fa_info = fi; 1197 new_fa->fa_tos = tos; 1198 new_fa->fa_type = cfg->fc_type; 1199 new_fa->fa_state = 0; 1200 new_fa->fa_slen = slen; 1201 1202 /* (Optionally) offload fib entry to switch hardware. */ 1203 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos, 1204 cfg->fc_type, tb->tb_id); 1205 if (err) { 1206 netdev_switch_fib_ipv4_abort(fi); 1207 goto out_free_new_fa; 1208 } 1209 1210 /* Insert new entry to the list. */ 1211 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1212 if (err) 1213 goto out_sw_fib_del; 1214 1215 if (!plen) 1216 tb->tb_num_default++; 1217 1218 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1219 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1220 &cfg->fc_nlinfo, 0); 1221 succeeded: 1222 return 0; 1223 1224 out_sw_fib_del: 1225 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); 1226 out_free_new_fa: 1227 kmem_cache_free(fn_alias_kmem, new_fa); 1228 out: 1229 fib_release_info(fi); 1230 err: 1231 return err; 1232 } 1233 1234 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1235 { 1236 t_key prefix = n->key; 1237 1238 return (key ^ prefix) & (prefix | -prefix); 1239 } 1240 1241 /* should be called with rcu_read_lock */ 1242 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1243 struct fib_result *res, int fib_flags) 1244 { 1245 struct trie *t = (struct trie *)tb->tb_data; 1246 #ifdef CONFIG_IP_FIB_TRIE_STATS 1247 struct trie_use_stats __percpu *stats = t->stats; 1248 #endif 1249 const t_key key = ntohl(flp->daddr); 1250 struct key_vector *n, *pn; 1251 struct fib_alias *fa; 1252 unsigned long index; 1253 t_key cindex; 1254 1255 pn = t->kv; 1256 cindex = 0; 1257 1258 n = get_child_rcu(pn, cindex); 1259 if (!n) 1260 return -EAGAIN; 1261 1262 #ifdef CONFIG_IP_FIB_TRIE_STATS 1263 this_cpu_inc(stats->gets); 1264 #endif 1265 1266 /* Step 1: Travel to the longest prefix match in the trie */ 1267 for (;;) { 1268 index = get_cindex(key, n); 1269 1270 /* This bit of code is a bit tricky but it combines multiple 1271 * checks into a single check. The prefix consists of the 1272 * prefix plus zeros for the "bits" in the prefix. The index 1273 * is the difference between the key and this value. From 1274 * this we can actually derive several pieces of data. 1275 * if (index >= (1ul << bits)) 1276 * we have a mismatch in skip bits and failed 1277 * else 1278 * we know the value is cindex 1279 * 1280 * This check is safe even if bits == KEYLENGTH due to the 1281 * fact that we can only allocate a node with 32 bits if a 1282 * long is greater than 32 bits. 1283 */ 1284 if (index >= (1ul << n->bits)) 1285 break; 1286 1287 /* we have found a leaf. Prefixes have already been compared */ 1288 if (IS_LEAF(n)) 1289 goto found; 1290 1291 /* only record pn and cindex if we are going to be chopping 1292 * bits later. Otherwise we are just wasting cycles. 1293 */ 1294 if (n->slen > n->pos) { 1295 pn = n; 1296 cindex = index; 1297 } 1298 1299 n = get_child_rcu(n, index); 1300 if (unlikely(!n)) 1301 goto backtrace; 1302 } 1303 1304 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1305 for (;;) { 1306 /* record the pointer where our next node pointer is stored */ 1307 struct key_vector __rcu **cptr = n->tnode; 1308 1309 /* This test verifies that none of the bits that differ 1310 * between the key and the prefix exist in the region of 1311 * the lsb and higher in the prefix. 1312 */ 1313 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1314 goto backtrace; 1315 1316 /* exit out and process leaf */ 1317 if (unlikely(IS_LEAF(n))) 1318 break; 1319 1320 /* Don't bother recording parent info. Since we are in 1321 * prefix match mode we will have to come back to wherever 1322 * we started this traversal anyway 1323 */ 1324 1325 while ((n = rcu_dereference(*cptr)) == NULL) { 1326 backtrace: 1327 #ifdef CONFIG_IP_FIB_TRIE_STATS 1328 if (!n) 1329 this_cpu_inc(stats->null_node_hit); 1330 #endif 1331 /* If we are at cindex 0 there are no more bits for 1332 * us to strip at this level so we must ascend back 1333 * up one level to see if there are any more bits to 1334 * be stripped there. 1335 */ 1336 while (!cindex) { 1337 t_key pkey = pn->key; 1338 1339 /* If we don't have a parent then there is 1340 * nothing for us to do as we do not have any 1341 * further nodes to parse. 1342 */ 1343 if (IS_TRIE(pn)) 1344 return -EAGAIN; 1345 #ifdef CONFIG_IP_FIB_TRIE_STATS 1346 this_cpu_inc(stats->backtrack); 1347 #endif 1348 /* Get Child's index */ 1349 pn = node_parent_rcu(pn); 1350 cindex = get_index(pkey, pn); 1351 } 1352 1353 /* strip the least significant bit from the cindex */ 1354 cindex &= cindex - 1; 1355 1356 /* grab pointer for next child node */ 1357 cptr = &pn->tnode[cindex]; 1358 } 1359 } 1360 1361 found: 1362 /* this line carries forward the xor from earlier in the function */ 1363 index = key ^ n->key; 1364 1365 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1366 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1367 struct fib_info *fi = fa->fa_info; 1368 int nhsel, err; 1369 1370 if ((index >= (1ul << fa->fa_slen)) && 1371 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH))) 1372 continue; 1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1374 continue; 1375 if (fi->fib_dead) 1376 continue; 1377 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1378 continue; 1379 fib_alias_accessed(fa); 1380 err = fib_props[fa->fa_type].error; 1381 if (unlikely(err < 0)) { 1382 #ifdef CONFIG_IP_FIB_TRIE_STATS 1383 this_cpu_inc(stats->semantic_match_passed); 1384 #endif 1385 return err; 1386 } 1387 if (fi->fib_flags & RTNH_F_DEAD) 1388 continue; 1389 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1390 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1391 1392 if (nh->nh_flags & RTNH_F_DEAD) 1393 continue; 1394 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1395 continue; 1396 1397 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1398 atomic_inc(&fi->fib_clntref); 1399 1400 res->prefixlen = KEYLENGTH - fa->fa_slen; 1401 res->nh_sel = nhsel; 1402 res->type = fa->fa_type; 1403 res->scope = fi->fib_scope; 1404 res->fi = fi; 1405 res->table = tb; 1406 res->fa_head = &n->leaf; 1407 #ifdef CONFIG_IP_FIB_TRIE_STATS 1408 this_cpu_inc(stats->semantic_match_passed); 1409 #endif 1410 return err; 1411 } 1412 } 1413 #ifdef CONFIG_IP_FIB_TRIE_STATS 1414 this_cpu_inc(stats->semantic_match_miss); 1415 #endif 1416 goto backtrace; 1417 } 1418 EXPORT_SYMBOL_GPL(fib_table_lookup); 1419 1420 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1421 struct key_vector *l, struct fib_alias *old) 1422 { 1423 /* record the location of the previous list_info entry */ 1424 struct hlist_node **pprev = old->fa_list.pprev; 1425 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1426 1427 /* remove the fib_alias from the list */ 1428 hlist_del_rcu(&old->fa_list); 1429 1430 /* if we emptied the list this leaf will be freed and we can sort 1431 * out parent suffix lengths as a part of trie_rebalance 1432 */ 1433 if (hlist_empty(&l->leaf)) { 1434 put_child_root(tp, l->key, NULL); 1435 node_free(l); 1436 trie_rebalance(t, tp); 1437 return; 1438 } 1439 1440 /* only access fa if it is pointing at the last valid hlist_node */ 1441 if (*pprev) 1442 return; 1443 1444 /* update the trie with the latest suffix length */ 1445 l->slen = fa->fa_slen; 1446 leaf_pull_suffix(tp, l); 1447 } 1448 1449 /* Caller must hold RTNL. */ 1450 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1451 { 1452 struct trie *t = (struct trie *) tb->tb_data; 1453 struct fib_alias *fa, *fa_to_delete; 1454 struct key_vector *l, *tp; 1455 u8 plen = cfg->fc_dst_len; 1456 u8 slen = KEYLENGTH - plen; 1457 u8 tos = cfg->fc_tos; 1458 u32 key; 1459 1460 if (plen > KEYLENGTH) 1461 return -EINVAL; 1462 1463 key = ntohl(cfg->fc_dst); 1464 1465 if ((plen < KEYLENGTH) && (key << plen)) 1466 return -EINVAL; 1467 1468 l = fib_find_node(t, &tp, key); 1469 if (!l) 1470 return -ESRCH; 1471 1472 fa = fib_find_alias(&l->leaf, slen, tos, 0); 1473 if (!fa) 1474 return -ESRCH; 1475 1476 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1477 1478 fa_to_delete = NULL; 1479 hlist_for_each_entry_from(fa, fa_list) { 1480 struct fib_info *fi = fa->fa_info; 1481 1482 if ((fa->fa_slen != slen) || (fa->fa_tos != tos)) 1483 break; 1484 1485 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1486 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1487 fa->fa_info->fib_scope == cfg->fc_scope) && 1488 (!cfg->fc_prefsrc || 1489 fi->fib_prefsrc == cfg->fc_prefsrc) && 1490 (!cfg->fc_protocol || 1491 fi->fib_protocol == cfg->fc_protocol) && 1492 fib_nh_match(cfg, fi) == 0) { 1493 fa_to_delete = fa; 1494 break; 1495 } 1496 } 1497 1498 if (!fa_to_delete) 1499 return -ESRCH; 1500 1501 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, 1502 cfg->fc_type, tb->tb_id); 1503 1504 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1505 &cfg->fc_nlinfo, 0); 1506 1507 if (!plen) 1508 tb->tb_num_default--; 1509 1510 fib_remove_alias(t, tp, l, fa_to_delete); 1511 1512 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1513 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1514 1515 fib_release_info(fa_to_delete->fa_info); 1516 alias_free_mem_rcu(fa_to_delete); 1517 return 0; 1518 } 1519 1520 /* Scan for the next leaf starting at the provided key value */ 1521 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1522 { 1523 struct key_vector *pn, *n = *tn; 1524 unsigned long cindex; 1525 1526 /* this loop is meant to try and find the key in the trie */ 1527 do { 1528 /* record parent and next child index */ 1529 pn = n; 1530 cindex = get_index(key, pn); 1531 1532 if (cindex >> pn->bits) 1533 break; 1534 1535 /* descend into the next child */ 1536 n = get_child_rcu(pn, cindex++); 1537 if (!n) 1538 break; 1539 1540 /* guarantee forward progress on the keys */ 1541 if (IS_LEAF(n) && (n->key >= key)) 1542 goto found; 1543 } while (IS_TNODE(n)); 1544 1545 /* this loop will search for the next leaf with a greater key */ 1546 while (!IS_TRIE(pn)) { 1547 /* if we exhausted the parent node we will need to climb */ 1548 if (cindex >= (1ul << pn->bits)) { 1549 t_key pkey = pn->key; 1550 1551 pn = node_parent_rcu(pn); 1552 cindex = get_index(pkey, pn) + 1; 1553 continue; 1554 } 1555 1556 /* grab the next available node */ 1557 n = get_child_rcu(pn, cindex++); 1558 if (!n) 1559 continue; 1560 1561 /* no need to compare keys since we bumped the index */ 1562 if (IS_LEAF(n)) 1563 goto found; 1564 1565 /* Rescan start scanning in new node */ 1566 pn = n; 1567 cindex = 0; 1568 } 1569 1570 *tn = pn; 1571 return NULL; /* Root of trie */ 1572 found: 1573 /* if we are at the limit for keys just return NULL for the tnode */ 1574 *tn = pn; 1575 return n; 1576 } 1577 1578 /* Caller must hold RTNL */ 1579 void fib_table_flush_external(struct fib_table *tb) 1580 { 1581 struct trie *t = (struct trie *)tb->tb_data; 1582 struct key_vector *pn = t->kv; 1583 unsigned long cindex = 1; 1584 struct hlist_node *tmp; 1585 struct fib_alias *fa; 1586 1587 /* walk trie in reverse order */ 1588 for (;;) { 1589 struct key_vector *n; 1590 1591 if (!(cindex--)) { 1592 t_key pkey = pn->key; 1593 1594 /* cannot resize the trie vector */ 1595 if (IS_TRIE(pn)) 1596 break; 1597 1598 /* no need to resize like in flush below */ 1599 pn = node_parent(pn); 1600 cindex = get_index(pkey, pn); 1601 1602 continue; 1603 } 1604 1605 /* grab the next available node */ 1606 n = get_child(pn, cindex); 1607 if (!n) 1608 continue; 1609 1610 if (IS_TNODE(n)) { 1611 /* record pn and cindex for leaf walking */ 1612 pn = n; 1613 cindex = 1ul << n->bits; 1614 1615 continue; 1616 } 1617 1618 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1619 struct fib_info *fi = fa->fa_info; 1620 1621 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL)) 1622 continue; 1623 1624 netdev_switch_fib_ipv4_del(n->key, 1625 KEYLENGTH - fa->fa_slen, 1626 fi, fa->fa_tos, 1627 fa->fa_type, tb->tb_id); 1628 } 1629 } 1630 } 1631 1632 /* Caller must hold RTNL. */ 1633 int fib_table_flush(struct fib_table *tb) 1634 { 1635 struct trie *t = (struct trie *)tb->tb_data; 1636 struct key_vector *pn = t->kv; 1637 unsigned long cindex = 1; 1638 struct hlist_node *tmp; 1639 struct fib_alias *fa; 1640 int found = 0; 1641 1642 /* walk trie in reverse order */ 1643 for (;;) { 1644 unsigned char slen = 0; 1645 struct key_vector *n; 1646 1647 if (!(cindex--)) { 1648 t_key pkey = pn->key; 1649 1650 /* cannot resize the trie vector */ 1651 if (IS_TRIE(pn)) 1652 break; 1653 1654 /* resize completed node */ 1655 pn = resize(t, pn); 1656 cindex = get_index(pkey, pn); 1657 1658 continue; 1659 } 1660 1661 /* grab the next available node */ 1662 n = get_child(pn, cindex); 1663 if (!n) 1664 continue; 1665 1666 if (IS_TNODE(n)) { 1667 /* record pn and cindex for leaf walking */ 1668 pn = n; 1669 cindex = 1ul << n->bits; 1670 1671 continue; 1672 } 1673 1674 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1675 struct fib_info *fi = fa->fa_info; 1676 1677 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1678 slen = fa->fa_slen; 1679 continue; 1680 } 1681 1682 netdev_switch_fib_ipv4_del(n->key, 1683 KEYLENGTH - fa->fa_slen, 1684 fi, fa->fa_tos, 1685 fa->fa_type, tb->tb_id); 1686 hlist_del_rcu(&fa->fa_list); 1687 fib_release_info(fa->fa_info); 1688 alias_free_mem_rcu(fa); 1689 found++; 1690 } 1691 1692 /* update leaf slen */ 1693 n->slen = slen; 1694 1695 if (hlist_empty(&n->leaf)) { 1696 put_child_root(pn, n->key, NULL); 1697 node_free(n); 1698 } else { 1699 leaf_pull_suffix(pn, n); 1700 } 1701 } 1702 1703 pr_debug("trie_flush found=%d\n", found); 1704 return found; 1705 } 1706 1707 static void __trie_free_rcu(struct rcu_head *head) 1708 { 1709 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1710 #ifdef CONFIG_IP_FIB_TRIE_STATS 1711 struct trie *t = (struct trie *)tb->tb_data; 1712 1713 free_percpu(t->stats); 1714 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1715 kfree(tb); 1716 } 1717 1718 void fib_free_table(struct fib_table *tb) 1719 { 1720 call_rcu(&tb->rcu, __trie_free_rcu); 1721 } 1722 1723 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1724 struct sk_buff *skb, struct netlink_callback *cb) 1725 { 1726 __be32 xkey = htonl(l->key); 1727 struct fib_alias *fa; 1728 int i, s_i; 1729 1730 s_i = cb->args[4]; 1731 i = 0; 1732 1733 /* rcu_read_lock is hold by caller */ 1734 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1735 if (i < s_i) { 1736 i++; 1737 continue; 1738 } 1739 1740 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1741 cb->nlh->nlmsg_seq, 1742 RTM_NEWROUTE, 1743 tb->tb_id, 1744 fa->fa_type, 1745 xkey, 1746 KEYLENGTH - fa->fa_slen, 1747 fa->fa_tos, 1748 fa->fa_info, NLM_F_MULTI) < 0) { 1749 cb->args[4] = i; 1750 return -1; 1751 } 1752 i++; 1753 } 1754 1755 cb->args[4] = i; 1756 return skb->len; 1757 } 1758 1759 /* rcu_read_lock needs to be hold by caller from readside */ 1760 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1761 struct netlink_callback *cb) 1762 { 1763 struct trie *t = (struct trie *)tb->tb_data; 1764 struct key_vector *l, *tp = t->kv; 1765 /* Dump starting at last key. 1766 * Note: 0.0.0.0/0 (ie default) is first key. 1767 */ 1768 int count = cb->args[2]; 1769 t_key key = cb->args[3]; 1770 1771 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1772 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1773 cb->args[3] = key; 1774 cb->args[2] = count; 1775 return -1; 1776 } 1777 1778 ++count; 1779 key = l->key + 1; 1780 1781 memset(&cb->args[4], 0, 1782 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1783 1784 /* stop loop if key wrapped back to 0 */ 1785 if (key < l->key) 1786 break; 1787 } 1788 1789 cb->args[3] = key; 1790 cb->args[2] = count; 1791 1792 return skb->len; 1793 } 1794 1795 void __init fib_trie_init(void) 1796 { 1797 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1798 sizeof(struct fib_alias), 1799 0, SLAB_PANIC, NULL); 1800 1801 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1802 LEAF_SIZE, 1803 0, SLAB_PANIC, NULL); 1804 } 1805 1806 struct fib_table *fib_trie_table(u32 id) 1807 { 1808 struct fib_table *tb; 1809 struct trie *t; 1810 1811 tb = kzalloc(sizeof(*tb) + sizeof(struct trie), GFP_KERNEL); 1812 if (tb == NULL) 1813 return NULL; 1814 1815 tb->tb_id = id; 1816 tb->tb_default = -1; 1817 tb->tb_num_default = 0; 1818 1819 t = (struct trie *) tb->tb_data; 1820 t->kv[0].pos = KEYLENGTH; 1821 t->kv[0].slen = KEYLENGTH; 1822 #ifdef CONFIG_IP_FIB_TRIE_STATS 1823 t->stats = alloc_percpu(struct trie_use_stats); 1824 if (!t->stats) { 1825 kfree(tb); 1826 tb = NULL; 1827 } 1828 #endif 1829 1830 return tb; 1831 } 1832 1833 #ifdef CONFIG_PROC_FS 1834 /* Depth first Trie walk iterator */ 1835 struct fib_trie_iter { 1836 struct seq_net_private p; 1837 struct fib_table *tb; 1838 struct key_vector *tnode; 1839 unsigned int index; 1840 unsigned int depth; 1841 }; 1842 1843 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 1844 { 1845 unsigned long cindex = iter->index; 1846 struct key_vector *pn = iter->tnode; 1847 t_key pkey; 1848 1849 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 1850 iter->tnode, iter->index, iter->depth); 1851 1852 while (!IS_TRIE(pn)) { 1853 while (cindex < child_length(pn)) { 1854 struct key_vector *n = get_child_rcu(pn, cindex++); 1855 1856 if (!n) 1857 continue; 1858 1859 if (IS_LEAF(n)) { 1860 iter->tnode = pn; 1861 iter->index = cindex; 1862 } else { 1863 /* push down one level */ 1864 iter->tnode = n; 1865 iter->index = 0; 1866 ++iter->depth; 1867 } 1868 1869 return n; 1870 } 1871 1872 /* Current node exhausted, pop back up */ 1873 pkey = pn->key; 1874 pn = node_parent_rcu(pn); 1875 cindex = get_index(pkey, pn) + 1; 1876 --iter->depth; 1877 } 1878 1879 /* record root node so further searches know we are done */ 1880 iter->tnode = pn; 1881 iter->index = 0; 1882 1883 return NULL; 1884 } 1885 1886 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 1887 struct trie *t) 1888 { 1889 struct key_vector *n, *pn = t->kv; 1890 1891 if (!t) 1892 return NULL; 1893 1894 n = rcu_dereference(pn->tnode[0]); 1895 if (!n) 1896 return NULL; 1897 1898 if (IS_TNODE(n)) { 1899 iter->tnode = n; 1900 iter->index = 0; 1901 iter->depth = 1; 1902 } else { 1903 iter->tnode = pn; 1904 iter->index = 0; 1905 iter->depth = 0; 1906 } 1907 1908 return n; 1909 } 1910 1911 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 1912 { 1913 struct key_vector *n; 1914 struct fib_trie_iter iter; 1915 1916 memset(s, 0, sizeof(*s)); 1917 1918 rcu_read_lock(); 1919 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 1920 if (IS_LEAF(n)) { 1921 struct fib_alias *fa; 1922 1923 s->leaves++; 1924 s->totdepth += iter.depth; 1925 if (iter.depth > s->maxdepth) 1926 s->maxdepth = iter.depth; 1927 1928 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 1929 ++s->prefixes; 1930 } else { 1931 s->tnodes++; 1932 if (n->bits < MAX_STAT_DEPTH) 1933 s->nodesizes[n->bits]++; 1934 s->nullpointers += tn_info(n)->empty_children; 1935 } 1936 } 1937 rcu_read_unlock(); 1938 } 1939 1940 /* 1941 * This outputs /proc/net/fib_triestats 1942 */ 1943 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 1944 { 1945 unsigned int i, max, pointers, bytes, avdepth; 1946 1947 if (stat->leaves) 1948 avdepth = stat->totdepth*100 / stat->leaves; 1949 else 1950 avdepth = 0; 1951 1952 seq_printf(seq, "\tAver depth: %u.%02d\n", 1953 avdepth / 100, avdepth % 100); 1954 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 1955 1956 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 1957 bytes = LEAF_SIZE * stat->leaves; 1958 1959 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 1960 bytes += sizeof(struct fib_alias) * stat->prefixes; 1961 1962 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 1963 bytes += TNODE_SIZE(0) * stat->tnodes; 1964 1965 max = MAX_STAT_DEPTH; 1966 while (max > 0 && stat->nodesizes[max-1] == 0) 1967 max--; 1968 1969 pointers = 0; 1970 for (i = 1; i < max; i++) 1971 if (stat->nodesizes[i] != 0) { 1972 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 1973 pointers += (1<<i) * stat->nodesizes[i]; 1974 } 1975 seq_putc(seq, '\n'); 1976 seq_printf(seq, "\tPointers: %u\n", pointers); 1977 1978 bytes += sizeof(struct key_vector *) * pointers; 1979 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 1980 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 1981 } 1982 1983 #ifdef CONFIG_IP_FIB_TRIE_STATS 1984 static void trie_show_usage(struct seq_file *seq, 1985 const struct trie_use_stats __percpu *stats) 1986 { 1987 struct trie_use_stats s = { 0 }; 1988 int cpu; 1989 1990 /* loop through all of the CPUs and gather up the stats */ 1991 for_each_possible_cpu(cpu) { 1992 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 1993 1994 s.gets += pcpu->gets; 1995 s.backtrack += pcpu->backtrack; 1996 s.semantic_match_passed += pcpu->semantic_match_passed; 1997 s.semantic_match_miss += pcpu->semantic_match_miss; 1998 s.null_node_hit += pcpu->null_node_hit; 1999 s.resize_node_skipped += pcpu->resize_node_skipped; 2000 } 2001 2002 seq_printf(seq, "\nCounters:\n---------\n"); 2003 seq_printf(seq, "gets = %u\n", s.gets); 2004 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2005 seq_printf(seq, "semantic match passed = %u\n", 2006 s.semantic_match_passed); 2007 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2008 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2009 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2010 } 2011 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2012 2013 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2014 { 2015 if (tb->tb_id == RT_TABLE_LOCAL) 2016 seq_puts(seq, "Local:\n"); 2017 else if (tb->tb_id == RT_TABLE_MAIN) 2018 seq_puts(seq, "Main:\n"); 2019 else 2020 seq_printf(seq, "Id %d:\n", tb->tb_id); 2021 } 2022 2023 2024 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2025 { 2026 struct net *net = (struct net *)seq->private; 2027 unsigned int h; 2028 2029 seq_printf(seq, 2030 "Basic info: size of leaf:" 2031 " %Zd bytes, size of tnode: %Zd bytes.\n", 2032 LEAF_SIZE, TNODE_SIZE(0)); 2033 2034 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2035 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2036 struct fib_table *tb; 2037 2038 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2039 struct trie *t = (struct trie *) tb->tb_data; 2040 struct trie_stat stat; 2041 2042 if (!t) 2043 continue; 2044 2045 fib_table_print(seq, tb); 2046 2047 trie_collect_stats(t, &stat); 2048 trie_show_stats(seq, &stat); 2049 #ifdef CONFIG_IP_FIB_TRIE_STATS 2050 trie_show_usage(seq, t->stats); 2051 #endif 2052 } 2053 } 2054 2055 return 0; 2056 } 2057 2058 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2059 { 2060 return single_open_net(inode, file, fib_triestat_seq_show); 2061 } 2062 2063 static const struct file_operations fib_triestat_fops = { 2064 .owner = THIS_MODULE, 2065 .open = fib_triestat_seq_open, 2066 .read = seq_read, 2067 .llseek = seq_lseek, 2068 .release = single_release_net, 2069 }; 2070 2071 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2072 { 2073 struct fib_trie_iter *iter = seq->private; 2074 struct net *net = seq_file_net(seq); 2075 loff_t idx = 0; 2076 unsigned int h; 2077 2078 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2079 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2080 struct fib_table *tb; 2081 2082 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2083 struct key_vector *n; 2084 2085 for (n = fib_trie_get_first(iter, 2086 (struct trie *) tb->tb_data); 2087 n; n = fib_trie_get_next(iter)) 2088 if (pos == idx++) { 2089 iter->tb = tb; 2090 return n; 2091 } 2092 } 2093 } 2094 2095 return NULL; 2096 } 2097 2098 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2099 __acquires(RCU) 2100 { 2101 rcu_read_lock(); 2102 return fib_trie_get_idx(seq, *pos); 2103 } 2104 2105 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2106 { 2107 struct fib_trie_iter *iter = seq->private; 2108 struct net *net = seq_file_net(seq); 2109 struct fib_table *tb = iter->tb; 2110 struct hlist_node *tb_node; 2111 unsigned int h; 2112 struct key_vector *n; 2113 2114 ++*pos; 2115 /* next node in same table */ 2116 n = fib_trie_get_next(iter); 2117 if (n) 2118 return n; 2119 2120 /* walk rest of this hash chain */ 2121 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2122 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2123 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2124 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2125 if (n) 2126 goto found; 2127 } 2128 2129 /* new hash chain */ 2130 while (++h < FIB_TABLE_HASHSZ) { 2131 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2132 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2133 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2134 if (n) 2135 goto found; 2136 } 2137 } 2138 return NULL; 2139 2140 found: 2141 iter->tb = tb; 2142 return n; 2143 } 2144 2145 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2146 __releases(RCU) 2147 { 2148 rcu_read_unlock(); 2149 } 2150 2151 static void seq_indent(struct seq_file *seq, int n) 2152 { 2153 while (n-- > 0) 2154 seq_puts(seq, " "); 2155 } 2156 2157 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2158 { 2159 switch (s) { 2160 case RT_SCOPE_UNIVERSE: return "universe"; 2161 case RT_SCOPE_SITE: return "site"; 2162 case RT_SCOPE_LINK: return "link"; 2163 case RT_SCOPE_HOST: return "host"; 2164 case RT_SCOPE_NOWHERE: return "nowhere"; 2165 default: 2166 snprintf(buf, len, "scope=%d", s); 2167 return buf; 2168 } 2169 } 2170 2171 static const char *const rtn_type_names[__RTN_MAX] = { 2172 [RTN_UNSPEC] = "UNSPEC", 2173 [RTN_UNICAST] = "UNICAST", 2174 [RTN_LOCAL] = "LOCAL", 2175 [RTN_BROADCAST] = "BROADCAST", 2176 [RTN_ANYCAST] = "ANYCAST", 2177 [RTN_MULTICAST] = "MULTICAST", 2178 [RTN_BLACKHOLE] = "BLACKHOLE", 2179 [RTN_UNREACHABLE] = "UNREACHABLE", 2180 [RTN_PROHIBIT] = "PROHIBIT", 2181 [RTN_THROW] = "THROW", 2182 [RTN_NAT] = "NAT", 2183 [RTN_XRESOLVE] = "XRESOLVE", 2184 }; 2185 2186 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2187 { 2188 if (t < __RTN_MAX && rtn_type_names[t]) 2189 return rtn_type_names[t]; 2190 snprintf(buf, len, "type %u", t); 2191 return buf; 2192 } 2193 2194 /* Pretty print the trie */ 2195 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2196 { 2197 const struct fib_trie_iter *iter = seq->private; 2198 struct key_vector *n = v; 2199 2200 if (IS_TRIE(node_parent_rcu(n))) 2201 fib_table_print(seq, iter->tb); 2202 2203 if (IS_TNODE(n)) { 2204 __be32 prf = htonl(n->key); 2205 2206 seq_indent(seq, iter->depth-1); 2207 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2208 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2209 tn_info(n)->full_children, 2210 tn_info(n)->empty_children); 2211 } else { 2212 __be32 val = htonl(n->key); 2213 struct fib_alias *fa; 2214 2215 seq_indent(seq, iter->depth); 2216 seq_printf(seq, " |-- %pI4\n", &val); 2217 2218 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2219 char buf1[32], buf2[32]; 2220 2221 seq_indent(seq, iter->depth + 1); 2222 seq_printf(seq, " /%zu %s %s", 2223 KEYLENGTH - fa->fa_slen, 2224 rtn_scope(buf1, sizeof(buf1), 2225 fa->fa_info->fib_scope), 2226 rtn_type(buf2, sizeof(buf2), 2227 fa->fa_type)); 2228 if (fa->fa_tos) 2229 seq_printf(seq, " tos=%d", fa->fa_tos); 2230 seq_putc(seq, '\n'); 2231 } 2232 } 2233 2234 return 0; 2235 } 2236 2237 static const struct seq_operations fib_trie_seq_ops = { 2238 .start = fib_trie_seq_start, 2239 .next = fib_trie_seq_next, 2240 .stop = fib_trie_seq_stop, 2241 .show = fib_trie_seq_show, 2242 }; 2243 2244 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2245 { 2246 return seq_open_net(inode, file, &fib_trie_seq_ops, 2247 sizeof(struct fib_trie_iter)); 2248 } 2249 2250 static const struct file_operations fib_trie_fops = { 2251 .owner = THIS_MODULE, 2252 .open = fib_trie_seq_open, 2253 .read = seq_read, 2254 .llseek = seq_lseek, 2255 .release = seq_release_net, 2256 }; 2257 2258 struct fib_route_iter { 2259 struct seq_net_private p; 2260 struct fib_table *main_tb; 2261 struct key_vector *tnode; 2262 loff_t pos; 2263 t_key key; 2264 }; 2265 2266 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2267 loff_t pos) 2268 { 2269 struct fib_table *tb = iter->main_tb; 2270 struct key_vector *l, **tp = &iter->tnode; 2271 struct trie *t; 2272 t_key key; 2273 2274 /* use cache location of next-to-find key */ 2275 if (iter->pos > 0 && pos >= iter->pos) { 2276 pos -= iter->pos; 2277 key = iter->key; 2278 } else { 2279 t = (struct trie *)tb->tb_data; 2280 iter->tnode = t->kv; 2281 iter->pos = 0; 2282 key = 0; 2283 } 2284 2285 while ((l = leaf_walk_rcu(tp, key)) != NULL) { 2286 key = l->key + 1; 2287 iter->pos++; 2288 2289 if (pos-- <= 0) 2290 break; 2291 2292 l = NULL; 2293 2294 /* handle unlikely case of a key wrap */ 2295 if (!key) 2296 break; 2297 } 2298 2299 if (l) 2300 iter->key = key; /* remember it */ 2301 else 2302 iter->pos = 0; /* forget it */ 2303 2304 return l; 2305 } 2306 2307 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2308 __acquires(RCU) 2309 { 2310 struct fib_route_iter *iter = seq->private; 2311 struct fib_table *tb; 2312 struct trie *t; 2313 2314 rcu_read_lock(); 2315 2316 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2317 if (!tb) 2318 return NULL; 2319 2320 iter->main_tb = tb; 2321 2322 if (*pos != 0) 2323 return fib_route_get_idx(iter, *pos); 2324 2325 t = (struct trie *)tb->tb_data; 2326 iter->tnode = t->kv; 2327 iter->pos = 0; 2328 iter->key = 0; 2329 2330 return SEQ_START_TOKEN; 2331 } 2332 2333 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2334 { 2335 struct fib_route_iter *iter = seq->private; 2336 struct key_vector *l = NULL; 2337 t_key key = iter->key; 2338 2339 ++*pos; 2340 2341 /* only allow key of 0 for start of sequence */ 2342 if ((v == SEQ_START_TOKEN) || key) 2343 l = leaf_walk_rcu(&iter->tnode, key); 2344 2345 if (l) { 2346 iter->key = l->key + 1; 2347 iter->pos++; 2348 } else { 2349 iter->pos = 0; 2350 } 2351 2352 return l; 2353 } 2354 2355 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2356 __releases(RCU) 2357 { 2358 rcu_read_unlock(); 2359 } 2360 2361 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2362 { 2363 unsigned int flags = 0; 2364 2365 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2366 flags = RTF_REJECT; 2367 if (fi && fi->fib_nh->nh_gw) 2368 flags |= RTF_GATEWAY; 2369 if (mask == htonl(0xFFFFFFFF)) 2370 flags |= RTF_HOST; 2371 flags |= RTF_UP; 2372 return flags; 2373 } 2374 2375 /* 2376 * This outputs /proc/net/route. 2377 * The format of the file is not supposed to be changed 2378 * and needs to be same as fib_hash output to avoid breaking 2379 * legacy utilities 2380 */ 2381 static int fib_route_seq_show(struct seq_file *seq, void *v) 2382 { 2383 struct fib_alias *fa; 2384 struct key_vector *l = v; 2385 __be32 prefix; 2386 2387 if (v == SEQ_START_TOKEN) { 2388 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2389 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2390 "\tWindow\tIRTT"); 2391 return 0; 2392 } 2393 2394 prefix = htonl(l->key); 2395 2396 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2397 const struct fib_info *fi = fa->fa_info; 2398 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2399 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2400 2401 if ((fa->fa_type == RTN_BROADCAST) || 2402 (fa->fa_type == RTN_MULTICAST)) 2403 continue; 2404 2405 seq_setwidth(seq, 127); 2406 2407 if (fi) 2408 seq_printf(seq, 2409 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2410 "%d\t%08X\t%d\t%u\t%u", 2411 fi->fib_dev ? fi->fib_dev->name : "*", 2412 prefix, 2413 fi->fib_nh->nh_gw, flags, 0, 0, 2414 fi->fib_priority, 2415 mask, 2416 (fi->fib_advmss ? 2417 fi->fib_advmss + 40 : 0), 2418 fi->fib_window, 2419 fi->fib_rtt >> 3); 2420 else 2421 seq_printf(seq, 2422 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2423 "%d\t%08X\t%d\t%u\t%u", 2424 prefix, 0, flags, 0, 0, 0, 2425 mask, 0, 0, 0); 2426 2427 seq_pad(seq, '\n'); 2428 } 2429 2430 return 0; 2431 } 2432 2433 static const struct seq_operations fib_route_seq_ops = { 2434 .start = fib_route_seq_start, 2435 .next = fib_route_seq_next, 2436 .stop = fib_route_seq_stop, 2437 .show = fib_route_seq_show, 2438 }; 2439 2440 static int fib_route_seq_open(struct inode *inode, struct file *file) 2441 { 2442 return seq_open_net(inode, file, &fib_route_seq_ops, 2443 sizeof(struct fib_route_iter)); 2444 } 2445 2446 static const struct file_operations fib_route_fops = { 2447 .owner = THIS_MODULE, 2448 .open = fib_route_seq_open, 2449 .read = seq_read, 2450 .llseek = seq_lseek, 2451 .release = seq_release_net, 2452 }; 2453 2454 int __net_init fib_proc_init(struct net *net) 2455 { 2456 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2457 goto out1; 2458 2459 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2460 &fib_triestat_fops)) 2461 goto out2; 2462 2463 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2464 goto out3; 2465 2466 return 0; 2467 2468 out3: 2469 remove_proc_entry("fib_triestat", net->proc_net); 2470 out2: 2471 remove_proc_entry("fib_trie", net->proc_net); 2472 out1: 2473 return -ENOMEM; 2474 } 2475 2476 void __net_exit fib_proc_exit(struct net *net) 2477 { 2478 remove_proc_entry("fib_trie", net->proc_net); 2479 remove_proc_entry("fib_triestat", net->proc_net); 2480 remove_proc_entry("route", net->proc_net); 2481 } 2482 2483 #endif /* CONFIG_PROC_FS */ 2484