1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/prefetch.h> 75 #include <linux/export.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 int plen; 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 115 struct list_head falh; 116 struct rcu_head rcu; 117 }; 118 119 struct tnode { 120 unsigned long parent; 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned int full_children; /* KEYLENGTH bits needed */ 125 unsigned int empty_children; /* KEYLENGTH bits needed */ 126 union { 127 struct rcu_head rcu; 128 struct work_struct work; 129 struct tnode *tnode_free; 130 }; 131 struct rt_trie_node __rcu *child[0]; 132 }; 133 134 #ifdef CONFIG_IP_FIB_TRIE_STATS 135 struct trie_use_stats { 136 unsigned int gets; 137 unsigned int backtrack; 138 unsigned int semantic_match_passed; 139 unsigned int semantic_match_miss; 140 unsigned int null_node_hit; 141 unsigned int resize_node_skipped; 142 }; 143 #endif 144 145 struct trie_stat { 146 unsigned int totdepth; 147 unsigned int maxdepth; 148 unsigned int tnodes; 149 unsigned int leaves; 150 unsigned int nullpointers; 151 unsigned int prefixes; 152 unsigned int nodesizes[MAX_STAT_DEPTH]; 153 }; 154 155 struct trie { 156 struct rt_trie_node __rcu *trie; 157 #ifdef CONFIG_IP_FIB_TRIE_STATS 158 struct trie_use_stats stats; 159 #endif 160 }; 161 162 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 163 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 164 int wasfull); 165 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 166 static struct tnode *inflate(struct trie *t, struct tnode *tn); 167 static struct tnode *halve(struct trie *t, struct tnode *tn); 168 /* tnodes to free after resize(); protected by RTNL */ 169 static struct tnode *tnode_free_head; 170 static size_t tnode_free_size; 171 172 /* 173 * synchronize_rcu after call_rcu for that many pages; it should be especially 174 * useful before resizing the root node with PREEMPT_NONE configs; the value was 175 * obtained experimentally, aiming to avoid visible slowdown. 176 */ 177 static const int sync_pages = 128; 178 179 static struct kmem_cache *fn_alias_kmem __read_mostly; 180 static struct kmem_cache *trie_leaf_kmem __read_mostly; 181 182 /* 183 * caller must hold RTNL 184 */ 185 static inline struct tnode *node_parent(const struct rt_trie_node *node) 186 { 187 unsigned long parent; 188 189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 190 191 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 192 } 193 194 /* 195 * caller must hold RCU read lock or RTNL 196 */ 197 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 198 { 199 unsigned long parent; 200 201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 202 lockdep_rtnl_is_held()); 203 204 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 205 } 206 207 /* Same as rcu_assign_pointer 208 * but that macro() assumes that value is a pointer. 209 */ 210 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 211 { 212 smp_wmb(); 213 node->parent = (unsigned long)ptr | NODE_TYPE(node); 214 } 215 216 /* 217 * caller must hold RTNL 218 */ 219 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 220 { 221 BUG_ON(i >= 1U << tn->bits); 222 223 return rtnl_dereference(tn->child[i]); 224 } 225 226 /* 227 * caller must hold RCU read lock or RTNL 228 */ 229 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 230 { 231 BUG_ON(i >= 1U << tn->bits); 232 233 return rcu_dereference_rtnl(tn->child[i]); 234 } 235 236 static inline int tnode_child_length(const struct tnode *tn) 237 { 238 return 1 << tn->bits; 239 } 240 241 static inline t_key mask_pfx(t_key k, unsigned int l) 242 { 243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 244 } 245 246 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 247 { 248 if (offset < KEYLENGTH) 249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 250 else 251 return 0; 252 } 253 254 static inline int tkey_equals(t_key a, t_key b) 255 { 256 return a == b; 257 } 258 259 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 260 { 261 if (bits == 0 || offset >= KEYLENGTH) 262 return 1; 263 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 265 } 266 267 static inline int tkey_mismatch(t_key a, int offset, t_key b) 268 { 269 t_key diff = a ^ b; 270 int i = offset; 271 272 if (!diff) 273 return 0; 274 while ((diff << i) >> (KEYLENGTH-1) == 0) 275 i++; 276 return i; 277 } 278 279 /* 280 To understand this stuff, an understanding of keys and all their bits is 281 necessary. Every node in the trie has a key associated with it, but not 282 all of the bits in that key are significant. 283 284 Consider a node 'n' and its parent 'tp'. 285 286 If n is a leaf, every bit in its key is significant. Its presence is 287 necessitated by path compression, since during a tree traversal (when 288 searching for a leaf - unless we are doing an insertion) we will completely 289 ignore all skipped bits we encounter. Thus we need to verify, at the end of 290 a potentially successful search, that we have indeed been walking the 291 correct key path. 292 293 Note that we can never "miss" the correct key in the tree if present by 294 following the wrong path. Path compression ensures that segments of the key 295 that are the same for all keys with a given prefix are skipped, but the 296 skipped part *is* identical for each node in the subtrie below the skipped 297 bit! trie_insert() in this implementation takes care of that - note the 298 call to tkey_sub_equals() in trie_insert(). 299 300 if n is an internal node - a 'tnode' here, the various parts of its key 301 have many different meanings. 302 303 Example: 304 _________________________________________________________________ 305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 306 ----------------------------------------------------------------- 307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 308 309 _________________________________________________________________ 310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 311 ----------------------------------------------------------------- 312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 313 314 tp->pos = 7 315 tp->bits = 3 316 n->pos = 15 317 n->bits = 4 318 319 First, let's just ignore the bits that come before the parent tp, that is 320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 321 not use them for anything. 322 323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 324 index into the parent's child array. That is, they will be used to find 325 'n' among tp's children. 326 327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 328 for the node n. 329 330 All the bits we have seen so far are significant to the node n. The rest 331 of the bits are really not needed or indeed known in n->key. 332 333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 334 n's child array, and will of course be different for each child. 335 336 337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 338 at this point. 339 340 */ 341 342 static inline void check_tnode(const struct tnode *tn) 343 { 344 WARN_ON(tn && tn->pos+tn->bits > 32); 345 } 346 347 static const int halve_threshold = 25; 348 static const int inflate_threshold = 50; 349 static const int halve_threshold_root = 15; 350 static const int inflate_threshold_root = 30; 351 352 static void __alias_free_mem(struct rcu_head *head) 353 { 354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 355 kmem_cache_free(fn_alias_kmem, fa); 356 } 357 358 static inline void alias_free_mem_rcu(struct fib_alias *fa) 359 { 360 call_rcu(&fa->rcu, __alias_free_mem); 361 } 362 363 static void __leaf_free_rcu(struct rcu_head *head) 364 { 365 struct leaf *l = container_of(head, struct leaf, rcu); 366 kmem_cache_free(trie_leaf_kmem, l); 367 } 368 369 static inline void free_leaf(struct leaf *l) 370 { 371 call_rcu_bh(&l->rcu, __leaf_free_rcu); 372 } 373 374 static inline void free_leaf_info(struct leaf_info *leaf) 375 { 376 kfree_rcu(leaf, rcu); 377 } 378 379 static struct tnode *tnode_alloc(size_t size) 380 { 381 if (size <= PAGE_SIZE) 382 return kzalloc(size, GFP_KERNEL); 383 else 384 return vzalloc(size); 385 } 386 387 static void __tnode_vfree(struct work_struct *arg) 388 { 389 struct tnode *tn = container_of(arg, struct tnode, work); 390 vfree(tn); 391 } 392 393 static void __tnode_free_rcu(struct rcu_head *head) 394 { 395 struct tnode *tn = container_of(head, struct tnode, rcu); 396 size_t size = sizeof(struct tnode) + 397 (sizeof(struct rt_trie_node *) << tn->bits); 398 399 if (size <= PAGE_SIZE) 400 kfree(tn); 401 else { 402 INIT_WORK(&tn->work, __tnode_vfree); 403 schedule_work(&tn->work); 404 } 405 } 406 407 static inline void tnode_free(struct tnode *tn) 408 { 409 if (IS_LEAF(tn)) 410 free_leaf((struct leaf *) tn); 411 else 412 call_rcu(&tn->rcu, __tnode_free_rcu); 413 } 414 415 static void tnode_free_safe(struct tnode *tn) 416 { 417 BUG_ON(IS_LEAF(tn)); 418 tn->tnode_free = tnode_free_head; 419 tnode_free_head = tn; 420 tnode_free_size += sizeof(struct tnode) + 421 (sizeof(struct rt_trie_node *) << tn->bits); 422 } 423 424 static void tnode_free_flush(void) 425 { 426 struct tnode *tn; 427 428 while ((tn = tnode_free_head)) { 429 tnode_free_head = tn->tnode_free; 430 tn->tnode_free = NULL; 431 tnode_free(tn); 432 } 433 434 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 435 tnode_free_size = 0; 436 synchronize_rcu(); 437 } 438 } 439 440 static struct leaf *leaf_new(void) 441 { 442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 443 if (l) { 444 l->parent = T_LEAF; 445 INIT_HLIST_HEAD(&l->list); 446 } 447 return l; 448 } 449 450 static struct leaf_info *leaf_info_new(int plen) 451 { 452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 453 if (li) { 454 li->plen = plen; 455 li->mask_plen = ntohl(inet_make_mask(plen)); 456 INIT_LIST_HEAD(&li->falh); 457 } 458 return li; 459 } 460 461 static struct tnode *tnode_new(t_key key, int pos, int bits) 462 { 463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 464 struct tnode *tn = tnode_alloc(sz); 465 466 if (tn) { 467 tn->parent = T_TNODE; 468 tn->pos = pos; 469 tn->bits = bits; 470 tn->key = key; 471 tn->full_children = 0; 472 tn->empty_children = 1<<bits; 473 } 474 475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 476 sizeof(struct rt_trie_node) << bits); 477 return tn; 478 } 479 480 /* 481 * Check whether a tnode 'n' is "full", i.e. it is an internal node 482 * and no bits are skipped. See discussion in dyntree paper p. 6 483 */ 484 485 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 486 { 487 if (n == NULL || IS_LEAF(n)) 488 return 0; 489 490 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 491 } 492 493 static inline void put_child(struct trie *t, struct tnode *tn, int i, 494 struct rt_trie_node *n) 495 { 496 tnode_put_child_reorg(tn, i, n, -1); 497 } 498 499 /* 500 * Add a child at position i overwriting the old value. 501 * Update the value of full_children and empty_children. 502 */ 503 504 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 505 int wasfull) 506 { 507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 508 int isfull; 509 510 BUG_ON(i >= 1<<tn->bits); 511 512 /* update emptyChildren */ 513 if (n == NULL && chi != NULL) 514 tn->empty_children++; 515 else if (n != NULL && chi == NULL) 516 tn->empty_children--; 517 518 /* update fullChildren */ 519 if (wasfull == -1) 520 wasfull = tnode_full(tn, chi); 521 522 isfull = tnode_full(tn, n); 523 if (wasfull && !isfull) 524 tn->full_children--; 525 else if (!wasfull && isfull) 526 tn->full_children++; 527 528 if (n) 529 node_set_parent(n, tn); 530 531 rcu_assign_pointer(tn->child[i], n); 532 } 533 534 #define MAX_WORK 10 535 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 536 { 537 int i; 538 struct tnode *old_tn; 539 int inflate_threshold_use; 540 int halve_threshold_use; 541 int max_work; 542 543 if (!tn) 544 return NULL; 545 546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 547 tn, inflate_threshold, halve_threshold); 548 549 /* No children */ 550 if (tn->empty_children == tnode_child_length(tn)) { 551 tnode_free_safe(tn); 552 return NULL; 553 } 554 /* One child */ 555 if (tn->empty_children == tnode_child_length(tn) - 1) 556 goto one_child; 557 /* 558 * Double as long as the resulting node has a number of 559 * nonempty nodes that are above the threshold. 560 */ 561 562 /* 563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 564 * the Helsinki University of Technology and Matti Tikkanen of Nokia 565 * Telecommunications, page 6: 566 * "A node is doubled if the ratio of non-empty children to all 567 * children in the *doubled* node is at least 'high'." 568 * 569 * 'high' in this instance is the variable 'inflate_threshold'. It 570 * is expressed as a percentage, so we multiply it with 571 * tnode_child_length() and instead of multiplying by 2 (since the 572 * child array will be doubled by inflate()) and multiplying 573 * the left-hand side by 100 (to handle the percentage thing) we 574 * multiply the left-hand side by 50. 575 * 576 * The left-hand side may look a bit weird: tnode_child_length(tn) 577 * - tn->empty_children is of course the number of non-null children 578 * in the current node. tn->full_children is the number of "full" 579 * children, that is non-null tnodes with a skip value of 0. 580 * All of those will be doubled in the resulting inflated tnode, so 581 * we just count them one extra time here. 582 * 583 * A clearer way to write this would be: 584 * 585 * to_be_doubled = tn->full_children; 586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 587 * tn->full_children; 588 * 589 * new_child_length = tnode_child_length(tn) * 2; 590 * 591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 592 * new_child_length; 593 * if (new_fill_factor >= inflate_threshold) 594 * 595 * ...and so on, tho it would mess up the while () loop. 596 * 597 * anyway, 598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 599 * inflate_threshold 600 * 601 * avoid a division: 602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 603 * inflate_threshold * new_child_length 604 * 605 * expand not_to_be_doubled and to_be_doubled, and shorten: 606 * 100 * (tnode_child_length(tn) - tn->empty_children + 607 * tn->full_children) >= inflate_threshold * new_child_length 608 * 609 * expand new_child_length: 610 * 100 * (tnode_child_length(tn) - tn->empty_children + 611 * tn->full_children) >= 612 * inflate_threshold * tnode_child_length(tn) * 2 613 * 614 * shorten again: 615 * 50 * (tn->full_children + tnode_child_length(tn) - 616 * tn->empty_children) >= inflate_threshold * 617 * tnode_child_length(tn) 618 * 619 */ 620 621 check_tnode(tn); 622 623 /* Keep root node larger */ 624 625 if (!node_parent((struct rt_trie_node *)tn)) { 626 inflate_threshold_use = inflate_threshold_root; 627 halve_threshold_use = halve_threshold_root; 628 } else { 629 inflate_threshold_use = inflate_threshold; 630 halve_threshold_use = halve_threshold; 631 } 632 633 max_work = MAX_WORK; 634 while ((tn->full_children > 0 && max_work-- && 635 50 * (tn->full_children + tnode_child_length(tn) 636 - tn->empty_children) 637 >= inflate_threshold_use * tnode_child_length(tn))) { 638 639 old_tn = tn; 640 tn = inflate(t, tn); 641 642 if (IS_ERR(tn)) { 643 tn = old_tn; 644 #ifdef CONFIG_IP_FIB_TRIE_STATS 645 t->stats.resize_node_skipped++; 646 #endif 647 break; 648 } 649 } 650 651 check_tnode(tn); 652 653 /* Return if at least one inflate is run */ 654 if (max_work != MAX_WORK) 655 return (struct rt_trie_node *) tn; 656 657 /* 658 * Halve as long as the number of empty children in this 659 * node is above threshold. 660 */ 661 662 max_work = MAX_WORK; 663 while (tn->bits > 1 && max_work-- && 664 100 * (tnode_child_length(tn) - tn->empty_children) < 665 halve_threshold_use * tnode_child_length(tn)) { 666 667 old_tn = tn; 668 tn = halve(t, tn); 669 if (IS_ERR(tn)) { 670 tn = old_tn; 671 #ifdef CONFIG_IP_FIB_TRIE_STATS 672 t->stats.resize_node_skipped++; 673 #endif 674 break; 675 } 676 } 677 678 679 /* Only one child remains */ 680 if (tn->empty_children == tnode_child_length(tn) - 1) { 681 one_child: 682 for (i = 0; i < tnode_child_length(tn); i++) { 683 struct rt_trie_node *n; 684 685 n = rtnl_dereference(tn->child[i]); 686 if (!n) 687 continue; 688 689 /* compress one level */ 690 691 node_set_parent(n, NULL); 692 tnode_free_safe(tn); 693 return n; 694 } 695 } 696 return (struct rt_trie_node *) tn; 697 } 698 699 700 static void tnode_clean_free(struct tnode *tn) 701 { 702 int i; 703 struct tnode *tofree; 704 705 for (i = 0; i < tnode_child_length(tn); i++) { 706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 707 if (tofree) 708 tnode_free(tofree); 709 } 710 tnode_free(tn); 711 } 712 713 static struct tnode *inflate(struct trie *t, struct tnode *tn) 714 { 715 struct tnode *oldtnode = tn; 716 int olen = tnode_child_length(tn); 717 int i; 718 719 pr_debug("In inflate\n"); 720 721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 722 723 if (!tn) 724 return ERR_PTR(-ENOMEM); 725 726 /* 727 * Preallocate and store tnodes before the actual work so we 728 * don't get into an inconsistent state if memory allocation 729 * fails. In case of failure we return the oldnode and inflate 730 * of tnode is ignored. 731 */ 732 733 for (i = 0; i < olen; i++) { 734 struct tnode *inode; 735 736 inode = (struct tnode *) tnode_get_child(oldtnode, i); 737 if (inode && 738 IS_TNODE(inode) && 739 inode->pos == oldtnode->pos + oldtnode->bits && 740 inode->bits > 1) { 741 struct tnode *left, *right; 742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 743 744 left = tnode_new(inode->key&(~m), inode->pos + 1, 745 inode->bits - 1); 746 if (!left) 747 goto nomem; 748 749 right = tnode_new(inode->key|m, inode->pos + 1, 750 inode->bits - 1); 751 752 if (!right) { 753 tnode_free(left); 754 goto nomem; 755 } 756 757 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 759 } 760 } 761 762 for (i = 0; i < olen; i++) { 763 struct tnode *inode; 764 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 765 struct tnode *left, *right; 766 int size, j; 767 768 /* An empty child */ 769 if (node == NULL) 770 continue; 771 772 /* A leaf or an internal node with skipped bits */ 773 774 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 775 tn->pos + tn->bits - 1) { 776 if (tkey_extract_bits(node->key, 777 oldtnode->pos + oldtnode->bits, 778 1) == 0) 779 put_child(t, tn, 2*i, node); 780 else 781 put_child(t, tn, 2*i+1, node); 782 continue; 783 } 784 785 /* An internal node with two children */ 786 inode = (struct tnode *) node; 787 788 if (inode->bits == 1) { 789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); 790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); 791 792 tnode_free_safe(inode); 793 continue; 794 } 795 796 /* An internal node with more than two children */ 797 798 /* We will replace this node 'inode' with two new 799 * ones, 'left' and 'right', each with half of the 800 * original children. The two new nodes will have 801 * a position one bit further down the key and this 802 * means that the "significant" part of their keys 803 * (see the discussion near the top of this file) 804 * will differ by one bit, which will be "0" in 805 * left's key and "1" in right's key. Since we are 806 * moving the key position by one step, the bit that 807 * we are moving away from - the bit at position 808 * (inode->pos) - is the one that will differ between 809 * left and right. So... we synthesize that bit in the 810 * two new keys. 811 * The mask 'm' below will be a single "one" bit at 812 * the position (inode->pos) 813 */ 814 815 /* Use the old key, but set the new significant 816 * bit to zero. 817 */ 818 819 left = (struct tnode *) tnode_get_child(tn, 2*i); 820 put_child(t, tn, 2*i, NULL); 821 822 BUG_ON(!left); 823 824 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 825 put_child(t, tn, 2*i+1, NULL); 826 827 BUG_ON(!right); 828 829 size = tnode_child_length(left); 830 for (j = 0; j < size; j++) { 831 put_child(t, left, j, rtnl_dereference(inode->child[j])); 832 put_child(t, right, j, rtnl_dereference(inode->child[j + size])); 833 } 834 put_child(t, tn, 2*i, resize(t, left)); 835 put_child(t, tn, 2*i+1, resize(t, right)); 836 837 tnode_free_safe(inode); 838 } 839 tnode_free_safe(oldtnode); 840 return tn; 841 nomem: 842 tnode_clean_free(tn); 843 return ERR_PTR(-ENOMEM); 844 } 845 846 static struct tnode *halve(struct trie *t, struct tnode *tn) 847 { 848 struct tnode *oldtnode = tn; 849 struct rt_trie_node *left, *right; 850 int i; 851 int olen = tnode_child_length(tn); 852 853 pr_debug("In halve\n"); 854 855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 856 857 if (!tn) 858 return ERR_PTR(-ENOMEM); 859 860 /* 861 * Preallocate and store tnodes before the actual work so we 862 * don't get into an inconsistent state if memory allocation 863 * fails. In case of failure we return the oldnode and halve 864 * of tnode is ignored. 865 */ 866 867 for (i = 0; i < olen; i += 2) { 868 left = tnode_get_child(oldtnode, i); 869 right = tnode_get_child(oldtnode, i+1); 870 871 /* Two nonempty children */ 872 if (left && right) { 873 struct tnode *newn; 874 875 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 876 877 if (!newn) 878 goto nomem; 879 880 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 881 } 882 883 } 884 885 for (i = 0; i < olen; i += 2) { 886 struct tnode *newBinNode; 887 888 left = tnode_get_child(oldtnode, i); 889 right = tnode_get_child(oldtnode, i+1); 890 891 /* At least one of the children is empty */ 892 if (left == NULL) { 893 if (right == NULL) /* Both are empty */ 894 continue; 895 put_child(t, tn, i/2, right); 896 continue; 897 } 898 899 if (right == NULL) { 900 put_child(t, tn, i/2, left); 901 continue; 902 } 903 904 /* Two nonempty children */ 905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 906 put_child(t, tn, i/2, NULL); 907 put_child(t, newBinNode, 0, left); 908 put_child(t, newBinNode, 1, right); 909 put_child(t, tn, i/2, resize(t, newBinNode)); 910 } 911 tnode_free_safe(oldtnode); 912 return tn; 913 nomem: 914 tnode_clean_free(tn); 915 return ERR_PTR(-ENOMEM); 916 } 917 918 /* readside must use rcu_read_lock currently dump routines 919 via get_fa_head and dump */ 920 921 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 922 { 923 struct hlist_head *head = &l->list; 924 struct hlist_node *node; 925 struct leaf_info *li; 926 927 hlist_for_each_entry_rcu(li, node, head, hlist) 928 if (li->plen == plen) 929 return li; 930 931 return NULL; 932 } 933 934 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 935 { 936 struct leaf_info *li = find_leaf_info(l, plen); 937 938 if (!li) 939 return NULL; 940 941 return &li->falh; 942 } 943 944 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 945 { 946 struct leaf_info *li = NULL, *last = NULL; 947 struct hlist_node *node; 948 949 if (hlist_empty(head)) { 950 hlist_add_head_rcu(&new->hlist, head); 951 } else { 952 hlist_for_each_entry(li, node, head, hlist) { 953 if (new->plen > li->plen) 954 break; 955 956 last = li; 957 } 958 if (last) 959 hlist_add_after_rcu(&last->hlist, &new->hlist); 960 else 961 hlist_add_before_rcu(&new->hlist, &li->hlist); 962 } 963 } 964 965 /* rcu_read_lock needs to be hold by caller from readside */ 966 967 static struct leaf * 968 fib_find_node(struct trie *t, u32 key) 969 { 970 int pos; 971 struct tnode *tn; 972 struct rt_trie_node *n; 973 974 pos = 0; 975 n = rcu_dereference_rtnl(t->trie); 976 977 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 978 tn = (struct tnode *) n; 979 980 check_tnode(tn); 981 982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 983 pos = tn->pos + tn->bits; 984 n = tnode_get_child_rcu(tn, 985 tkey_extract_bits(key, 986 tn->pos, 987 tn->bits)); 988 } else 989 break; 990 } 991 /* Case we have found a leaf. Compare prefixes */ 992 993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 994 return (struct leaf *)n; 995 996 return NULL; 997 } 998 999 static void trie_rebalance(struct trie *t, struct tnode *tn) 1000 { 1001 int wasfull; 1002 t_key cindex, key; 1003 struct tnode *tp; 1004 1005 key = tn->key; 1006 1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1010 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1011 1012 tnode_put_child_reorg((struct tnode *)tp, cindex, 1013 (struct rt_trie_node *)tn, wasfull); 1014 1015 tp = node_parent((struct rt_trie_node *) tn); 1016 if (!tp) 1017 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1018 1019 tnode_free_flush(); 1020 if (!tp) 1021 break; 1022 tn = tp; 1023 } 1024 1025 /* Handle last (top) tnode */ 1026 if (IS_TNODE(tn)) 1027 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1028 1029 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1030 tnode_free_flush(); 1031 } 1032 1033 /* only used from updater-side */ 1034 1035 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1036 { 1037 int pos, newpos; 1038 struct tnode *tp = NULL, *tn = NULL; 1039 struct rt_trie_node *n; 1040 struct leaf *l; 1041 int missbit; 1042 struct list_head *fa_head = NULL; 1043 struct leaf_info *li; 1044 t_key cindex; 1045 1046 pos = 0; 1047 n = rtnl_dereference(t->trie); 1048 1049 /* If we point to NULL, stop. Either the tree is empty and we should 1050 * just put a new leaf in if, or we have reached an empty child slot, 1051 * and we should just put our new leaf in that. 1052 * If we point to a T_TNODE, check if it matches our key. Note that 1053 * a T_TNODE might be skipping any number of bits - its 'pos' need 1054 * not be the parent's 'pos'+'bits'! 1055 * 1056 * If it does match the current key, get pos/bits from it, extract 1057 * the index from our key, push the T_TNODE and walk the tree. 1058 * 1059 * If it doesn't, we have to replace it with a new T_TNODE. 1060 * 1061 * If we point to a T_LEAF, it might or might not have the same key 1062 * as we do. If it does, just change the value, update the T_LEAF's 1063 * value, and return it. 1064 * If it doesn't, we need to replace it with a T_TNODE. 1065 */ 1066 1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1068 tn = (struct tnode *) n; 1069 1070 check_tnode(tn); 1071 1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1073 tp = tn; 1074 pos = tn->pos + tn->bits; 1075 n = tnode_get_child(tn, 1076 tkey_extract_bits(key, 1077 tn->pos, 1078 tn->bits)); 1079 1080 BUG_ON(n && node_parent(n) != tn); 1081 } else 1082 break; 1083 } 1084 1085 /* 1086 * n ----> NULL, LEAF or TNODE 1087 * 1088 * tp is n's (parent) ----> NULL or TNODE 1089 */ 1090 1091 BUG_ON(tp && IS_LEAF(tp)); 1092 1093 /* Case 1: n is a leaf. Compare prefixes */ 1094 1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1096 l = (struct leaf *) n; 1097 li = leaf_info_new(plen); 1098 1099 if (!li) 1100 return NULL; 1101 1102 fa_head = &li->falh; 1103 insert_leaf_info(&l->list, li); 1104 goto done; 1105 } 1106 l = leaf_new(); 1107 1108 if (!l) 1109 return NULL; 1110 1111 l->key = key; 1112 li = leaf_info_new(plen); 1113 1114 if (!li) { 1115 free_leaf(l); 1116 return NULL; 1117 } 1118 1119 fa_head = &li->falh; 1120 insert_leaf_info(&l->list, li); 1121 1122 if (t->trie && n == NULL) { 1123 /* Case 2: n is NULL, and will just insert a new leaf */ 1124 1125 node_set_parent((struct rt_trie_node *)l, tp); 1126 1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1128 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); 1129 } else { 1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1131 /* 1132 * Add a new tnode here 1133 * first tnode need some special handling 1134 */ 1135 1136 if (tp) 1137 pos = tp->pos+tp->bits; 1138 else 1139 pos = 0; 1140 1141 if (n) { 1142 newpos = tkey_mismatch(key, pos, n->key); 1143 tn = tnode_new(n->key, newpos, 1); 1144 } else { 1145 newpos = 0; 1146 tn = tnode_new(key, newpos, 1); /* First tnode */ 1147 } 1148 1149 if (!tn) { 1150 free_leaf_info(li); 1151 free_leaf(l); 1152 return NULL; 1153 } 1154 1155 node_set_parent((struct rt_trie_node *)tn, tp); 1156 1157 missbit = tkey_extract_bits(key, newpos, 1); 1158 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1159 put_child(t, tn, 1-missbit, n); 1160 1161 if (tp) { 1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1163 put_child(t, (struct tnode *)tp, cindex, 1164 (struct rt_trie_node *)tn); 1165 } else { 1166 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1167 tp = tn; 1168 } 1169 } 1170 1171 if (tp && tp->pos + tp->bits > 32) 1172 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1173 tp, tp->pos, tp->bits, key, plen); 1174 1175 /* Rebalance the trie */ 1176 1177 trie_rebalance(t, tp); 1178 done: 1179 return fa_head; 1180 } 1181 1182 /* 1183 * Caller must hold RTNL. 1184 */ 1185 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1186 { 1187 struct trie *t = (struct trie *) tb->tb_data; 1188 struct fib_alias *fa, *new_fa; 1189 struct list_head *fa_head = NULL; 1190 struct fib_info *fi; 1191 int plen = cfg->fc_dst_len; 1192 u8 tos = cfg->fc_tos; 1193 u32 key, mask; 1194 int err; 1195 struct leaf *l; 1196 1197 if (plen > 32) 1198 return -EINVAL; 1199 1200 key = ntohl(cfg->fc_dst); 1201 1202 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1203 1204 mask = ntohl(inet_make_mask(plen)); 1205 1206 if (key & ~mask) 1207 return -EINVAL; 1208 1209 key = key & mask; 1210 1211 fi = fib_create_info(cfg); 1212 if (IS_ERR(fi)) { 1213 err = PTR_ERR(fi); 1214 goto err; 1215 } 1216 1217 l = fib_find_node(t, key); 1218 fa = NULL; 1219 1220 if (l) { 1221 fa_head = get_fa_head(l, plen); 1222 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1223 } 1224 1225 /* Now fa, if non-NULL, points to the first fib alias 1226 * with the same keys [prefix,tos,priority], if such key already 1227 * exists or to the node before which we will insert new one. 1228 * 1229 * If fa is NULL, we will need to allocate a new one and 1230 * insert to the head of f. 1231 * 1232 * If f is NULL, no fib node matched the destination key 1233 * and we need to allocate a new one of those as well. 1234 */ 1235 1236 if (fa && fa->fa_tos == tos && 1237 fa->fa_info->fib_priority == fi->fib_priority) { 1238 struct fib_alias *fa_first, *fa_match; 1239 1240 err = -EEXIST; 1241 if (cfg->fc_nlflags & NLM_F_EXCL) 1242 goto out; 1243 1244 /* We have 2 goals: 1245 * 1. Find exact match for type, scope, fib_info to avoid 1246 * duplicate routes 1247 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1248 */ 1249 fa_match = NULL; 1250 fa_first = fa; 1251 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1252 list_for_each_entry_continue(fa, fa_head, fa_list) { 1253 if (fa->fa_tos != tos) 1254 break; 1255 if (fa->fa_info->fib_priority != fi->fib_priority) 1256 break; 1257 if (fa->fa_type == cfg->fc_type && 1258 fa->fa_info == fi) { 1259 fa_match = fa; 1260 break; 1261 } 1262 } 1263 1264 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1265 struct fib_info *fi_drop; 1266 u8 state; 1267 1268 fa = fa_first; 1269 if (fa_match) { 1270 if (fa == fa_match) 1271 err = 0; 1272 goto out; 1273 } 1274 err = -ENOBUFS; 1275 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1276 if (new_fa == NULL) 1277 goto out; 1278 1279 fi_drop = fa->fa_info; 1280 new_fa->fa_tos = fa->fa_tos; 1281 new_fa->fa_info = fi; 1282 new_fa->fa_type = cfg->fc_type; 1283 state = fa->fa_state; 1284 new_fa->fa_state = state & ~FA_S_ACCESSED; 1285 1286 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1287 alias_free_mem_rcu(fa); 1288 1289 fib_release_info(fi_drop); 1290 if (state & FA_S_ACCESSED) 1291 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1292 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1293 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1294 1295 goto succeeded; 1296 } 1297 /* Error if we find a perfect match which 1298 * uses the same scope, type, and nexthop 1299 * information. 1300 */ 1301 if (fa_match) 1302 goto out; 1303 1304 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1305 fa = fa_first; 1306 } 1307 err = -ENOENT; 1308 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1309 goto out; 1310 1311 err = -ENOBUFS; 1312 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1313 if (new_fa == NULL) 1314 goto out; 1315 1316 new_fa->fa_info = fi; 1317 new_fa->fa_tos = tos; 1318 new_fa->fa_type = cfg->fc_type; 1319 new_fa->fa_state = 0; 1320 /* 1321 * Insert new entry to the list. 1322 */ 1323 1324 if (!fa_head) { 1325 fa_head = fib_insert_node(t, key, plen); 1326 if (unlikely(!fa_head)) { 1327 err = -ENOMEM; 1328 goto out_free_new_fa; 1329 } 1330 } 1331 1332 if (!plen) 1333 tb->tb_num_default++; 1334 1335 list_add_tail_rcu(&new_fa->fa_list, 1336 (fa ? &fa->fa_list : fa_head)); 1337 1338 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1339 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1340 &cfg->fc_nlinfo, 0); 1341 succeeded: 1342 return 0; 1343 1344 out_free_new_fa: 1345 kmem_cache_free(fn_alias_kmem, new_fa); 1346 out: 1347 fib_release_info(fi); 1348 err: 1349 return err; 1350 } 1351 1352 /* should be called with rcu_read_lock */ 1353 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1354 t_key key, const struct flowi4 *flp, 1355 struct fib_result *res, int fib_flags) 1356 { 1357 struct leaf_info *li; 1358 struct hlist_head *hhead = &l->list; 1359 struct hlist_node *node; 1360 1361 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1362 struct fib_alias *fa; 1363 1364 if (l->key != (key & li->mask_plen)) 1365 continue; 1366 1367 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1368 struct fib_info *fi = fa->fa_info; 1369 int nhsel, err; 1370 1371 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1372 continue; 1373 if (fi->fib_dead) 1374 continue; 1375 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1376 continue; 1377 fib_alias_accessed(fa); 1378 err = fib_props[fa->fa_type].error; 1379 if (err) { 1380 #ifdef CONFIG_IP_FIB_TRIE_STATS 1381 t->stats.semantic_match_passed++; 1382 #endif 1383 return err; 1384 } 1385 if (fi->fib_flags & RTNH_F_DEAD) 1386 continue; 1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1388 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1389 1390 if (nh->nh_flags & RTNH_F_DEAD) 1391 continue; 1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1393 continue; 1394 1395 #ifdef CONFIG_IP_FIB_TRIE_STATS 1396 t->stats.semantic_match_passed++; 1397 #endif 1398 res->prefixlen = li->plen; 1399 res->nh_sel = nhsel; 1400 res->type = fa->fa_type; 1401 res->scope = fa->fa_info->fib_scope; 1402 res->fi = fi; 1403 res->table = tb; 1404 res->fa_head = &li->falh; 1405 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1406 atomic_inc(&fi->fib_clntref); 1407 return 0; 1408 } 1409 } 1410 1411 #ifdef CONFIG_IP_FIB_TRIE_STATS 1412 t->stats.semantic_match_miss++; 1413 #endif 1414 } 1415 1416 return 1; 1417 } 1418 1419 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1420 struct fib_result *res, int fib_flags) 1421 { 1422 struct trie *t = (struct trie *) tb->tb_data; 1423 int ret; 1424 struct rt_trie_node *n; 1425 struct tnode *pn; 1426 unsigned int pos, bits; 1427 t_key key = ntohl(flp->daddr); 1428 unsigned int chopped_off; 1429 t_key cindex = 0; 1430 unsigned int current_prefix_length = KEYLENGTH; 1431 struct tnode *cn; 1432 t_key pref_mismatch; 1433 1434 rcu_read_lock(); 1435 1436 n = rcu_dereference(t->trie); 1437 if (!n) 1438 goto failed; 1439 1440 #ifdef CONFIG_IP_FIB_TRIE_STATS 1441 t->stats.gets++; 1442 #endif 1443 1444 /* Just a leaf? */ 1445 if (IS_LEAF(n)) { 1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1447 goto found; 1448 } 1449 1450 pn = (struct tnode *) n; 1451 chopped_off = 0; 1452 1453 while (pn) { 1454 pos = pn->pos; 1455 bits = pn->bits; 1456 1457 if (!chopped_off) 1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1459 pos, bits); 1460 1461 n = tnode_get_child_rcu(pn, cindex); 1462 1463 if (n == NULL) { 1464 #ifdef CONFIG_IP_FIB_TRIE_STATS 1465 t->stats.null_node_hit++; 1466 #endif 1467 goto backtrace; 1468 } 1469 1470 if (IS_LEAF(n)) { 1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1472 if (ret > 0) 1473 goto backtrace; 1474 goto found; 1475 } 1476 1477 cn = (struct tnode *)n; 1478 1479 /* 1480 * It's a tnode, and we can do some extra checks here if we 1481 * like, to avoid descending into a dead-end branch. 1482 * This tnode is in the parent's child array at index 1483 * key[p_pos..p_pos+p_bits] but potentially with some bits 1484 * chopped off, so in reality the index may be just a 1485 * subprefix, padded with zero at the end. 1486 * We can also take a look at any skipped bits in this 1487 * tnode - everything up to p_pos is supposed to be ok, 1488 * and the non-chopped bits of the index (se previous 1489 * paragraph) are also guaranteed ok, but the rest is 1490 * considered unknown. 1491 * 1492 * The skipped bits are key[pos+bits..cn->pos]. 1493 */ 1494 1495 /* If current_prefix_length < pos+bits, we are already doing 1496 * actual prefix matching, which means everything from 1497 * pos+(bits-chopped_off) onward must be zero along some 1498 * branch of this subtree - otherwise there is *no* valid 1499 * prefix present. Here we can only check the skipped 1500 * bits. Remember, since we have already indexed into the 1501 * parent's child array, we know that the bits we chopped of 1502 * *are* zero. 1503 */ 1504 1505 /* NOTA BENE: Checking only skipped bits 1506 for the new node here */ 1507 1508 if (current_prefix_length < pos+bits) { 1509 if (tkey_extract_bits(cn->key, current_prefix_length, 1510 cn->pos - current_prefix_length) 1511 || !(cn->child[0])) 1512 goto backtrace; 1513 } 1514 1515 /* 1516 * If chopped_off=0, the index is fully validated and we 1517 * only need to look at the skipped bits for this, the new, 1518 * tnode. What we actually want to do is to find out if 1519 * these skipped bits match our key perfectly, or if we will 1520 * have to count on finding a matching prefix further down, 1521 * because if we do, we would like to have some way of 1522 * verifying the existence of such a prefix at this point. 1523 */ 1524 1525 /* The only thing we can do at this point is to verify that 1526 * any such matching prefix can indeed be a prefix to our 1527 * key, and if the bits in the node we are inspecting that 1528 * do not match our key are not ZERO, this cannot be true. 1529 * Thus, find out where there is a mismatch (before cn->pos) 1530 * and verify that all the mismatching bits are zero in the 1531 * new tnode's key. 1532 */ 1533 1534 /* 1535 * Note: We aren't very concerned about the piece of 1536 * the key that precede pn->pos+pn->bits, since these 1537 * have already been checked. The bits after cn->pos 1538 * aren't checked since these are by definition 1539 * "unknown" at this point. Thus, what we want to see 1540 * is if we are about to enter the "prefix matching" 1541 * state, and in that case verify that the skipped 1542 * bits that will prevail throughout this subtree are 1543 * zero, as they have to be if we are to find a 1544 * matching prefix. 1545 */ 1546 1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1548 1549 /* 1550 * In short: If skipped bits in this node do not match 1551 * the search key, enter the "prefix matching" 1552 * state.directly. 1553 */ 1554 if (pref_mismatch) { 1555 int mp = KEYLENGTH - fls(pref_mismatch); 1556 1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1558 goto backtrace; 1559 1560 if (current_prefix_length >= cn->pos) 1561 current_prefix_length = mp; 1562 } 1563 1564 pn = (struct tnode *)n; /* Descend */ 1565 chopped_off = 0; 1566 continue; 1567 1568 backtrace: 1569 chopped_off++; 1570 1571 /* As zero don't change the child key (cindex) */ 1572 while ((chopped_off <= pn->bits) 1573 && !(cindex & (1<<(chopped_off-1)))) 1574 chopped_off++; 1575 1576 /* Decrease current_... with bits chopped off */ 1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1578 current_prefix_length = pn->pos + pn->bits 1579 - chopped_off; 1580 1581 /* 1582 * Either we do the actual chop off according or if we have 1583 * chopped off all bits in this tnode walk up to our parent. 1584 */ 1585 1586 if (chopped_off <= pn->bits) { 1587 cindex &= ~(1 << (chopped_off-1)); 1588 } else { 1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1590 if (!parent) 1591 goto failed; 1592 1593 /* Get Child's index */ 1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1595 pn = parent; 1596 chopped_off = 0; 1597 1598 #ifdef CONFIG_IP_FIB_TRIE_STATS 1599 t->stats.backtrack++; 1600 #endif 1601 goto backtrace; 1602 } 1603 } 1604 failed: 1605 ret = 1; 1606 found: 1607 rcu_read_unlock(); 1608 return ret; 1609 } 1610 EXPORT_SYMBOL_GPL(fib_table_lookup); 1611 1612 /* 1613 * Remove the leaf and return parent. 1614 */ 1615 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1616 { 1617 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1618 1619 pr_debug("entering trie_leaf_remove(%p)\n", l); 1620 1621 if (tp) { 1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1623 put_child(t, (struct tnode *)tp, cindex, NULL); 1624 trie_rebalance(t, tp); 1625 } else 1626 RCU_INIT_POINTER(t->trie, NULL); 1627 1628 free_leaf(l); 1629 } 1630 1631 /* 1632 * Caller must hold RTNL. 1633 */ 1634 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1635 { 1636 struct trie *t = (struct trie *) tb->tb_data; 1637 u32 key, mask; 1638 int plen = cfg->fc_dst_len; 1639 u8 tos = cfg->fc_tos; 1640 struct fib_alias *fa, *fa_to_delete; 1641 struct list_head *fa_head; 1642 struct leaf *l; 1643 struct leaf_info *li; 1644 1645 if (plen > 32) 1646 return -EINVAL; 1647 1648 key = ntohl(cfg->fc_dst); 1649 mask = ntohl(inet_make_mask(plen)); 1650 1651 if (key & ~mask) 1652 return -EINVAL; 1653 1654 key = key & mask; 1655 l = fib_find_node(t, key); 1656 1657 if (!l) 1658 return -ESRCH; 1659 1660 fa_head = get_fa_head(l, plen); 1661 fa = fib_find_alias(fa_head, tos, 0); 1662 1663 if (!fa) 1664 return -ESRCH; 1665 1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1667 1668 fa_to_delete = NULL; 1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1670 list_for_each_entry_continue(fa, fa_head, fa_list) { 1671 struct fib_info *fi = fa->fa_info; 1672 1673 if (fa->fa_tos != tos) 1674 break; 1675 1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1677 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1678 fa->fa_info->fib_scope == cfg->fc_scope) && 1679 (!cfg->fc_prefsrc || 1680 fi->fib_prefsrc == cfg->fc_prefsrc) && 1681 (!cfg->fc_protocol || 1682 fi->fib_protocol == cfg->fc_protocol) && 1683 fib_nh_match(cfg, fi) == 0) { 1684 fa_to_delete = fa; 1685 break; 1686 } 1687 } 1688 1689 if (!fa_to_delete) 1690 return -ESRCH; 1691 1692 fa = fa_to_delete; 1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1694 &cfg->fc_nlinfo, 0); 1695 1696 l = fib_find_node(t, key); 1697 li = find_leaf_info(l, plen); 1698 1699 list_del_rcu(&fa->fa_list); 1700 1701 if (!plen) 1702 tb->tb_num_default--; 1703 1704 if (list_empty(fa_head)) { 1705 hlist_del_rcu(&li->hlist); 1706 free_leaf_info(li); 1707 } 1708 1709 if (hlist_empty(&l->list)) 1710 trie_leaf_remove(t, l); 1711 1712 if (fa->fa_state & FA_S_ACCESSED) 1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1714 1715 fib_release_info(fa->fa_info); 1716 alias_free_mem_rcu(fa); 1717 return 0; 1718 } 1719 1720 static int trie_flush_list(struct list_head *head) 1721 { 1722 struct fib_alias *fa, *fa_node; 1723 int found = 0; 1724 1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1726 struct fib_info *fi = fa->fa_info; 1727 1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1729 list_del_rcu(&fa->fa_list); 1730 fib_release_info(fa->fa_info); 1731 alias_free_mem_rcu(fa); 1732 found++; 1733 } 1734 } 1735 return found; 1736 } 1737 1738 static int trie_flush_leaf(struct leaf *l) 1739 { 1740 int found = 0; 1741 struct hlist_head *lih = &l->list; 1742 struct hlist_node *node, *tmp; 1743 struct leaf_info *li = NULL; 1744 1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1746 found += trie_flush_list(&li->falh); 1747 1748 if (list_empty(&li->falh)) { 1749 hlist_del_rcu(&li->hlist); 1750 free_leaf_info(li); 1751 } 1752 } 1753 return found; 1754 } 1755 1756 /* 1757 * Scan for the next right leaf starting at node p->child[idx] 1758 * Since we have back pointer, no recursion necessary. 1759 */ 1760 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1761 { 1762 do { 1763 t_key idx; 1764 1765 if (c) 1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1767 else 1768 idx = 0; 1769 1770 while (idx < 1u << p->bits) { 1771 c = tnode_get_child_rcu(p, idx++); 1772 if (!c) 1773 continue; 1774 1775 if (IS_LEAF(c)) { 1776 prefetch(rcu_dereference_rtnl(p->child[idx])); 1777 return (struct leaf *) c; 1778 } 1779 1780 /* Rescan start scanning in new node */ 1781 p = (struct tnode *) c; 1782 idx = 0; 1783 } 1784 1785 /* Node empty, walk back up to parent */ 1786 c = (struct rt_trie_node *) p; 1787 } while ((p = node_parent_rcu(c)) != NULL); 1788 1789 return NULL; /* Root of trie */ 1790 } 1791 1792 static struct leaf *trie_firstleaf(struct trie *t) 1793 { 1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1795 1796 if (!n) 1797 return NULL; 1798 1799 if (IS_LEAF(n)) /* trie is just a leaf */ 1800 return (struct leaf *) n; 1801 1802 return leaf_walk_rcu(n, NULL); 1803 } 1804 1805 static struct leaf *trie_nextleaf(struct leaf *l) 1806 { 1807 struct rt_trie_node *c = (struct rt_trie_node *) l; 1808 struct tnode *p = node_parent_rcu(c); 1809 1810 if (!p) 1811 return NULL; /* trie with just one leaf */ 1812 1813 return leaf_walk_rcu(p, c); 1814 } 1815 1816 static struct leaf *trie_leafindex(struct trie *t, int index) 1817 { 1818 struct leaf *l = trie_firstleaf(t); 1819 1820 while (l && index-- > 0) 1821 l = trie_nextleaf(l); 1822 1823 return l; 1824 } 1825 1826 1827 /* 1828 * Caller must hold RTNL. 1829 */ 1830 int fib_table_flush(struct fib_table *tb) 1831 { 1832 struct trie *t = (struct trie *) tb->tb_data; 1833 struct leaf *l, *ll = NULL; 1834 int found = 0; 1835 1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1837 found += trie_flush_leaf(l); 1838 1839 if (ll && hlist_empty(&ll->list)) 1840 trie_leaf_remove(t, ll); 1841 ll = l; 1842 } 1843 1844 if (ll && hlist_empty(&ll->list)) 1845 trie_leaf_remove(t, ll); 1846 1847 pr_debug("trie_flush found=%d\n", found); 1848 return found; 1849 } 1850 1851 void fib_free_table(struct fib_table *tb) 1852 { 1853 kfree(tb); 1854 } 1855 1856 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1857 struct fib_table *tb, 1858 struct sk_buff *skb, struct netlink_callback *cb) 1859 { 1860 int i, s_i; 1861 struct fib_alias *fa; 1862 __be32 xkey = htonl(key); 1863 1864 s_i = cb->args[5]; 1865 i = 0; 1866 1867 /* rcu_read_lock is hold by caller */ 1868 1869 list_for_each_entry_rcu(fa, fah, fa_list) { 1870 if (i < s_i) { 1871 i++; 1872 continue; 1873 } 1874 1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1876 cb->nlh->nlmsg_seq, 1877 RTM_NEWROUTE, 1878 tb->tb_id, 1879 fa->fa_type, 1880 xkey, 1881 plen, 1882 fa->fa_tos, 1883 fa->fa_info, NLM_F_MULTI) < 0) { 1884 cb->args[5] = i; 1885 return -1; 1886 } 1887 i++; 1888 } 1889 cb->args[5] = i; 1890 return skb->len; 1891 } 1892 1893 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1894 struct sk_buff *skb, struct netlink_callback *cb) 1895 { 1896 struct leaf_info *li; 1897 struct hlist_node *node; 1898 int i, s_i; 1899 1900 s_i = cb->args[4]; 1901 i = 0; 1902 1903 /* rcu_read_lock is hold by caller */ 1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1905 if (i < s_i) { 1906 i++; 1907 continue; 1908 } 1909 1910 if (i > s_i) 1911 cb->args[5] = 0; 1912 1913 if (list_empty(&li->falh)) 1914 continue; 1915 1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1917 cb->args[4] = i; 1918 return -1; 1919 } 1920 i++; 1921 } 1922 1923 cb->args[4] = i; 1924 return skb->len; 1925 } 1926 1927 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1928 struct netlink_callback *cb) 1929 { 1930 struct leaf *l; 1931 struct trie *t = (struct trie *) tb->tb_data; 1932 t_key key = cb->args[2]; 1933 int count = cb->args[3]; 1934 1935 rcu_read_lock(); 1936 /* Dump starting at last key. 1937 * Note: 0.0.0.0/0 (ie default) is first key. 1938 */ 1939 if (count == 0) 1940 l = trie_firstleaf(t); 1941 else { 1942 /* Normally, continue from last key, but if that is missing 1943 * fallback to using slow rescan 1944 */ 1945 l = fib_find_node(t, key); 1946 if (!l) 1947 l = trie_leafindex(t, count); 1948 } 1949 1950 while (l) { 1951 cb->args[2] = l->key; 1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1953 cb->args[3] = count; 1954 rcu_read_unlock(); 1955 return -1; 1956 } 1957 1958 ++count; 1959 l = trie_nextleaf(l); 1960 memset(&cb->args[4], 0, 1961 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1962 } 1963 cb->args[3] = count; 1964 rcu_read_unlock(); 1965 1966 return skb->len; 1967 } 1968 1969 void __init fib_trie_init(void) 1970 { 1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1972 sizeof(struct fib_alias), 1973 0, SLAB_PANIC, NULL); 1974 1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1976 max(sizeof(struct leaf), 1977 sizeof(struct leaf_info)), 1978 0, SLAB_PANIC, NULL); 1979 } 1980 1981 1982 struct fib_table *fib_trie_table(u32 id) 1983 { 1984 struct fib_table *tb; 1985 struct trie *t; 1986 1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1988 GFP_KERNEL); 1989 if (tb == NULL) 1990 return NULL; 1991 1992 tb->tb_id = id; 1993 tb->tb_default = -1; 1994 tb->tb_num_default = 0; 1995 1996 t = (struct trie *) tb->tb_data; 1997 memset(t, 0, sizeof(*t)); 1998 1999 return tb; 2000 } 2001 2002 #ifdef CONFIG_PROC_FS 2003 /* Depth first Trie walk iterator */ 2004 struct fib_trie_iter { 2005 struct seq_net_private p; 2006 struct fib_table *tb; 2007 struct tnode *tnode; 2008 unsigned int index; 2009 unsigned int depth; 2010 }; 2011 2012 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2013 { 2014 struct tnode *tn = iter->tnode; 2015 unsigned int cindex = iter->index; 2016 struct tnode *p; 2017 2018 /* A single entry routing table */ 2019 if (!tn) 2020 return NULL; 2021 2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2023 iter->tnode, iter->index, iter->depth); 2024 rescan: 2025 while (cindex < (1<<tn->bits)) { 2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2027 2028 if (n) { 2029 if (IS_LEAF(n)) { 2030 iter->tnode = tn; 2031 iter->index = cindex + 1; 2032 } else { 2033 /* push down one level */ 2034 iter->tnode = (struct tnode *) n; 2035 iter->index = 0; 2036 ++iter->depth; 2037 } 2038 return n; 2039 } 2040 2041 ++cindex; 2042 } 2043 2044 /* Current node exhausted, pop back up */ 2045 p = node_parent_rcu((struct rt_trie_node *)tn); 2046 if (p) { 2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2048 tn = p; 2049 --iter->depth; 2050 goto rescan; 2051 } 2052 2053 /* got root? */ 2054 return NULL; 2055 } 2056 2057 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2058 struct trie *t) 2059 { 2060 struct rt_trie_node *n; 2061 2062 if (!t) 2063 return NULL; 2064 2065 n = rcu_dereference(t->trie); 2066 if (!n) 2067 return NULL; 2068 2069 if (IS_TNODE(n)) { 2070 iter->tnode = (struct tnode *) n; 2071 iter->index = 0; 2072 iter->depth = 1; 2073 } else { 2074 iter->tnode = NULL; 2075 iter->index = 0; 2076 iter->depth = 0; 2077 } 2078 2079 return n; 2080 } 2081 2082 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2083 { 2084 struct rt_trie_node *n; 2085 struct fib_trie_iter iter; 2086 2087 memset(s, 0, sizeof(*s)); 2088 2089 rcu_read_lock(); 2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2091 if (IS_LEAF(n)) { 2092 struct leaf *l = (struct leaf *)n; 2093 struct leaf_info *li; 2094 struct hlist_node *tmp; 2095 2096 s->leaves++; 2097 s->totdepth += iter.depth; 2098 if (iter.depth > s->maxdepth) 2099 s->maxdepth = iter.depth; 2100 2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2102 ++s->prefixes; 2103 } else { 2104 const struct tnode *tn = (const struct tnode *) n; 2105 int i; 2106 2107 s->tnodes++; 2108 if (tn->bits < MAX_STAT_DEPTH) 2109 s->nodesizes[tn->bits]++; 2110 2111 for (i = 0; i < (1<<tn->bits); i++) 2112 if (!tn->child[i]) 2113 s->nullpointers++; 2114 } 2115 } 2116 rcu_read_unlock(); 2117 } 2118 2119 /* 2120 * This outputs /proc/net/fib_triestats 2121 */ 2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2123 { 2124 unsigned int i, max, pointers, bytes, avdepth; 2125 2126 if (stat->leaves) 2127 avdepth = stat->totdepth*100 / stat->leaves; 2128 else 2129 avdepth = 0; 2130 2131 seq_printf(seq, "\tAver depth: %u.%02d\n", 2132 avdepth / 100, avdepth % 100); 2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2134 2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2136 bytes = sizeof(struct leaf) * stat->leaves; 2137 2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2139 bytes += sizeof(struct leaf_info) * stat->prefixes; 2140 2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2142 bytes += sizeof(struct tnode) * stat->tnodes; 2143 2144 max = MAX_STAT_DEPTH; 2145 while (max > 0 && stat->nodesizes[max-1] == 0) 2146 max--; 2147 2148 pointers = 0; 2149 for (i = 1; i <= max; i++) 2150 if (stat->nodesizes[i] != 0) { 2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2152 pointers += (1<<i) * stat->nodesizes[i]; 2153 } 2154 seq_putc(seq, '\n'); 2155 seq_printf(seq, "\tPointers: %u\n", pointers); 2156 2157 bytes += sizeof(struct rt_trie_node *) * pointers; 2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2160 } 2161 2162 #ifdef CONFIG_IP_FIB_TRIE_STATS 2163 static void trie_show_usage(struct seq_file *seq, 2164 const struct trie_use_stats *stats) 2165 { 2166 seq_printf(seq, "\nCounters:\n---------\n"); 2167 seq_printf(seq, "gets = %u\n", stats->gets); 2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2169 seq_printf(seq, "semantic match passed = %u\n", 2170 stats->semantic_match_passed); 2171 seq_printf(seq, "semantic match miss = %u\n", 2172 stats->semantic_match_miss); 2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2174 seq_printf(seq, "skipped node resize = %u\n\n", 2175 stats->resize_node_skipped); 2176 } 2177 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2178 2179 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2180 { 2181 if (tb->tb_id == RT_TABLE_LOCAL) 2182 seq_puts(seq, "Local:\n"); 2183 else if (tb->tb_id == RT_TABLE_MAIN) 2184 seq_puts(seq, "Main:\n"); 2185 else 2186 seq_printf(seq, "Id %d:\n", tb->tb_id); 2187 } 2188 2189 2190 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2191 { 2192 struct net *net = (struct net *)seq->private; 2193 unsigned int h; 2194 2195 seq_printf(seq, 2196 "Basic info: size of leaf:" 2197 " %Zd bytes, size of tnode: %Zd bytes.\n", 2198 sizeof(struct leaf), sizeof(struct tnode)); 2199 2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2202 struct hlist_node *node; 2203 struct fib_table *tb; 2204 2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2206 struct trie *t = (struct trie *) tb->tb_data; 2207 struct trie_stat stat; 2208 2209 if (!t) 2210 continue; 2211 2212 fib_table_print(seq, tb); 2213 2214 trie_collect_stats(t, &stat); 2215 trie_show_stats(seq, &stat); 2216 #ifdef CONFIG_IP_FIB_TRIE_STATS 2217 trie_show_usage(seq, &t->stats); 2218 #endif 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2226 { 2227 return single_open_net(inode, file, fib_triestat_seq_show); 2228 } 2229 2230 static const struct file_operations fib_triestat_fops = { 2231 .owner = THIS_MODULE, 2232 .open = fib_triestat_seq_open, 2233 .read = seq_read, 2234 .llseek = seq_lseek, 2235 .release = single_release_net, 2236 }; 2237 2238 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2239 { 2240 struct fib_trie_iter *iter = seq->private; 2241 struct net *net = seq_file_net(seq); 2242 loff_t idx = 0; 2243 unsigned int h; 2244 2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2247 struct hlist_node *node; 2248 struct fib_table *tb; 2249 2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2251 struct rt_trie_node *n; 2252 2253 for (n = fib_trie_get_first(iter, 2254 (struct trie *) tb->tb_data); 2255 n; n = fib_trie_get_next(iter)) 2256 if (pos == idx++) { 2257 iter->tb = tb; 2258 return n; 2259 } 2260 } 2261 } 2262 2263 return NULL; 2264 } 2265 2266 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2267 __acquires(RCU) 2268 { 2269 rcu_read_lock(); 2270 return fib_trie_get_idx(seq, *pos); 2271 } 2272 2273 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2274 { 2275 struct fib_trie_iter *iter = seq->private; 2276 struct net *net = seq_file_net(seq); 2277 struct fib_table *tb = iter->tb; 2278 struct hlist_node *tb_node; 2279 unsigned int h; 2280 struct rt_trie_node *n; 2281 2282 ++*pos; 2283 /* next node in same table */ 2284 n = fib_trie_get_next(iter); 2285 if (n) 2286 return n; 2287 2288 /* walk rest of this hash chain */ 2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2293 if (n) 2294 goto found; 2295 } 2296 2297 /* new hash chain */ 2298 while (++h < FIB_TABLE_HASHSZ) { 2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2302 if (n) 2303 goto found; 2304 } 2305 } 2306 return NULL; 2307 2308 found: 2309 iter->tb = tb; 2310 return n; 2311 } 2312 2313 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2314 __releases(RCU) 2315 { 2316 rcu_read_unlock(); 2317 } 2318 2319 static void seq_indent(struct seq_file *seq, int n) 2320 { 2321 while (n-- > 0) 2322 seq_puts(seq, " "); 2323 } 2324 2325 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2326 { 2327 switch (s) { 2328 case RT_SCOPE_UNIVERSE: return "universe"; 2329 case RT_SCOPE_SITE: return "site"; 2330 case RT_SCOPE_LINK: return "link"; 2331 case RT_SCOPE_HOST: return "host"; 2332 case RT_SCOPE_NOWHERE: return "nowhere"; 2333 default: 2334 snprintf(buf, len, "scope=%d", s); 2335 return buf; 2336 } 2337 } 2338 2339 static const char *const rtn_type_names[__RTN_MAX] = { 2340 [RTN_UNSPEC] = "UNSPEC", 2341 [RTN_UNICAST] = "UNICAST", 2342 [RTN_LOCAL] = "LOCAL", 2343 [RTN_BROADCAST] = "BROADCAST", 2344 [RTN_ANYCAST] = "ANYCAST", 2345 [RTN_MULTICAST] = "MULTICAST", 2346 [RTN_BLACKHOLE] = "BLACKHOLE", 2347 [RTN_UNREACHABLE] = "UNREACHABLE", 2348 [RTN_PROHIBIT] = "PROHIBIT", 2349 [RTN_THROW] = "THROW", 2350 [RTN_NAT] = "NAT", 2351 [RTN_XRESOLVE] = "XRESOLVE", 2352 }; 2353 2354 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2355 { 2356 if (t < __RTN_MAX && rtn_type_names[t]) 2357 return rtn_type_names[t]; 2358 snprintf(buf, len, "type %u", t); 2359 return buf; 2360 } 2361 2362 /* Pretty print the trie */ 2363 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2364 { 2365 const struct fib_trie_iter *iter = seq->private; 2366 struct rt_trie_node *n = v; 2367 2368 if (!node_parent_rcu(n)) 2369 fib_table_print(seq, iter->tb); 2370 2371 if (IS_TNODE(n)) { 2372 struct tnode *tn = (struct tnode *) n; 2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2374 2375 seq_indent(seq, iter->depth-1); 2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2377 &prf, tn->pos, tn->bits, tn->full_children, 2378 tn->empty_children); 2379 2380 } else { 2381 struct leaf *l = (struct leaf *) n; 2382 struct leaf_info *li; 2383 struct hlist_node *node; 2384 __be32 val = htonl(l->key); 2385 2386 seq_indent(seq, iter->depth); 2387 seq_printf(seq, " |-- %pI4\n", &val); 2388 2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2390 struct fib_alias *fa; 2391 2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2393 char buf1[32], buf2[32]; 2394 2395 seq_indent(seq, iter->depth+1); 2396 seq_printf(seq, " /%d %s %s", li->plen, 2397 rtn_scope(buf1, sizeof(buf1), 2398 fa->fa_info->fib_scope), 2399 rtn_type(buf2, sizeof(buf2), 2400 fa->fa_type)); 2401 if (fa->fa_tos) 2402 seq_printf(seq, " tos=%d", fa->fa_tos); 2403 seq_putc(seq, '\n'); 2404 } 2405 } 2406 } 2407 2408 return 0; 2409 } 2410 2411 static const struct seq_operations fib_trie_seq_ops = { 2412 .start = fib_trie_seq_start, 2413 .next = fib_trie_seq_next, 2414 .stop = fib_trie_seq_stop, 2415 .show = fib_trie_seq_show, 2416 }; 2417 2418 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2419 { 2420 return seq_open_net(inode, file, &fib_trie_seq_ops, 2421 sizeof(struct fib_trie_iter)); 2422 } 2423 2424 static const struct file_operations fib_trie_fops = { 2425 .owner = THIS_MODULE, 2426 .open = fib_trie_seq_open, 2427 .read = seq_read, 2428 .llseek = seq_lseek, 2429 .release = seq_release_net, 2430 }; 2431 2432 struct fib_route_iter { 2433 struct seq_net_private p; 2434 struct trie *main_trie; 2435 loff_t pos; 2436 t_key key; 2437 }; 2438 2439 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2440 { 2441 struct leaf *l = NULL; 2442 struct trie *t = iter->main_trie; 2443 2444 /* use cache location of last found key */ 2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2446 pos -= iter->pos; 2447 else { 2448 iter->pos = 0; 2449 l = trie_firstleaf(t); 2450 } 2451 2452 while (l && pos-- > 0) { 2453 iter->pos++; 2454 l = trie_nextleaf(l); 2455 } 2456 2457 if (l) 2458 iter->key = pos; /* remember it */ 2459 else 2460 iter->pos = 0; /* forget it */ 2461 2462 return l; 2463 } 2464 2465 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2466 __acquires(RCU) 2467 { 2468 struct fib_route_iter *iter = seq->private; 2469 struct fib_table *tb; 2470 2471 rcu_read_lock(); 2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2473 if (!tb) 2474 return NULL; 2475 2476 iter->main_trie = (struct trie *) tb->tb_data; 2477 if (*pos == 0) 2478 return SEQ_START_TOKEN; 2479 else 2480 return fib_route_get_idx(iter, *pos - 1); 2481 } 2482 2483 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2484 { 2485 struct fib_route_iter *iter = seq->private; 2486 struct leaf *l = v; 2487 2488 ++*pos; 2489 if (v == SEQ_START_TOKEN) { 2490 iter->pos = 0; 2491 l = trie_firstleaf(iter->main_trie); 2492 } else { 2493 iter->pos++; 2494 l = trie_nextleaf(l); 2495 } 2496 2497 if (l) 2498 iter->key = l->key; 2499 else 2500 iter->pos = 0; 2501 return l; 2502 } 2503 2504 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2505 __releases(RCU) 2506 { 2507 rcu_read_unlock(); 2508 } 2509 2510 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2511 { 2512 unsigned int flags = 0; 2513 2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2515 flags = RTF_REJECT; 2516 if (fi && fi->fib_nh->nh_gw) 2517 flags |= RTF_GATEWAY; 2518 if (mask == htonl(0xFFFFFFFF)) 2519 flags |= RTF_HOST; 2520 flags |= RTF_UP; 2521 return flags; 2522 } 2523 2524 /* 2525 * This outputs /proc/net/route. 2526 * The format of the file is not supposed to be changed 2527 * and needs to be same as fib_hash output to avoid breaking 2528 * legacy utilities 2529 */ 2530 static int fib_route_seq_show(struct seq_file *seq, void *v) 2531 { 2532 struct leaf *l = v; 2533 struct leaf_info *li; 2534 struct hlist_node *node; 2535 2536 if (v == SEQ_START_TOKEN) { 2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2539 "\tWindow\tIRTT"); 2540 return 0; 2541 } 2542 2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2544 struct fib_alias *fa; 2545 __be32 mask, prefix; 2546 2547 mask = inet_make_mask(li->plen); 2548 prefix = htonl(l->key); 2549 2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2551 const struct fib_info *fi = fa->fa_info; 2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2553 int len; 2554 2555 if (fa->fa_type == RTN_BROADCAST 2556 || fa->fa_type == RTN_MULTICAST) 2557 continue; 2558 2559 if (fi) 2560 seq_printf(seq, 2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2562 "%d\t%08X\t%d\t%u\t%u%n", 2563 fi->fib_dev ? fi->fib_dev->name : "*", 2564 prefix, 2565 fi->fib_nh->nh_gw, flags, 0, 0, 2566 fi->fib_priority, 2567 mask, 2568 (fi->fib_advmss ? 2569 fi->fib_advmss + 40 : 0), 2570 fi->fib_window, 2571 fi->fib_rtt >> 3, &len); 2572 else 2573 seq_printf(seq, 2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2575 "%d\t%08X\t%d\t%u\t%u%n", 2576 prefix, 0, flags, 0, 0, 0, 2577 mask, 0, 0, 0, &len); 2578 2579 seq_printf(seq, "%*s\n", 127 - len, ""); 2580 } 2581 } 2582 2583 return 0; 2584 } 2585 2586 static const struct seq_operations fib_route_seq_ops = { 2587 .start = fib_route_seq_start, 2588 .next = fib_route_seq_next, 2589 .stop = fib_route_seq_stop, 2590 .show = fib_route_seq_show, 2591 }; 2592 2593 static int fib_route_seq_open(struct inode *inode, struct file *file) 2594 { 2595 return seq_open_net(inode, file, &fib_route_seq_ops, 2596 sizeof(struct fib_route_iter)); 2597 } 2598 2599 static const struct file_operations fib_route_fops = { 2600 .owner = THIS_MODULE, 2601 .open = fib_route_seq_open, 2602 .read = seq_read, 2603 .llseek = seq_lseek, 2604 .release = seq_release_net, 2605 }; 2606 2607 int __net_init fib_proc_init(struct net *net) 2608 { 2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2610 goto out1; 2611 2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2613 &fib_triestat_fops)) 2614 goto out2; 2615 2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2617 goto out3; 2618 2619 return 0; 2620 2621 out3: 2622 proc_net_remove(net, "fib_triestat"); 2623 out2: 2624 proc_net_remove(net, "fib_trie"); 2625 out1: 2626 return -ENOMEM; 2627 } 2628 2629 void __net_exit fib_proc_exit(struct net *net) 2630 { 2631 proc_net_remove(net, "fib_trie"); 2632 proc_net_remove(net, "fib_triestat"); 2633 proc_net_remove(net, "route"); 2634 } 2635 2636 #endif /* CONFIG_PROC_FS */ 2637