xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 8730046c)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 static unsigned int fib_seq_sum(void)
88 {
89 	unsigned int fib_seq = 0;
90 	struct net *net;
91 
92 	rtnl_lock();
93 	for_each_net(net)
94 		fib_seq += net->ipv4.fib_seq;
95 	rtnl_unlock();
96 
97 	return fib_seq;
98 }
99 
100 static ATOMIC_NOTIFIER_HEAD(fib_chain);
101 
102 static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 			     enum fib_event_type event_type,
104 			     struct fib_notifier_info *info)
105 {
106 	info->net = net;
107 	return nb->notifier_call(nb, event_type, info);
108 }
109 
110 static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 			     enum fib_event_type event_type)
112 {
113 #ifdef CONFIG_IP_MULTIPLE_TABLES
114 	struct fib_notifier_info info;
115 
116 	if (net->ipv4.fib_has_custom_rules)
117 		call_fib_notifier(nb, net, event_type, &info);
118 #endif
119 }
120 
121 static void fib_notify(struct net *net, struct notifier_block *nb,
122 		       enum fib_event_type event_type);
123 
124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 				   enum fib_event_type event_type, u32 dst,
126 				   int dst_len, struct fib_info *fi,
127 				   u8 tos, u8 type, u32 tb_id, u32 nlflags)
128 {
129 	struct fib_entry_notifier_info info = {
130 		.dst = dst,
131 		.dst_len = dst_len,
132 		.fi = fi,
133 		.tos = tos,
134 		.type = type,
135 		.tb_id = tb_id,
136 		.nlflags = nlflags,
137 	};
138 	return call_fib_notifier(nb, net, event_type, &info.info);
139 }
140 
141 static bool fib_dump_is_consistent(struct notifier_block *nb,
142 				   void (*cb)(struct notifier_block *nb),
143 				   unsigned int fib_seq)
144 {
145 	atomic_notifier_chain_register(&fib_chain, nb);
146 	if (fib_seq == fib_seq_sum())
147 		return true;
148 	atomic_notifier_chain_unregister(&fib_chain, nb);
149 	if (cb)
150 		cb(nb);
151 	return false;
152 }
153 
154 #define FIB_DUMP_MAX_RETRIES 5
155 int register_fib_notifier(struct notifier_block *nb,
156 			  void (*cb)(struct notifier_block *nb))
157 {
158 	int retries = 0;
159 
160 	do {
161 		unsigned int fib_seq = fib_seq_sum();
162 		struct net *net;
163 
164 		/* Mutex semantics guarantee that every change done to
165 		 * FIB tries before we read the change sequence counter
166 		 * is now visible to us.
167 		 */
168 		rcu_read_lock();
169 		for_each_net_rcu(net) {
170 			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
171 			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
172 		}
173 		rcu_read_unlock();
174 
175 		if (fib_dump_is_consistent(nb, cb, fib_seq))
176 			return 0;
177 	} while (++retries < FIB_DUMP_MAX_RETRIES);
178 
179 	return -EBUSY;
180 }
181 EXPORT_SYMBOL(register_fib_notifier);
182 
183 int unregister_fib_notifier(struct notifier_block *nb)
184 {
185 	return atomic_notifier_chain_unregister(&fib_chain, nb);
186 }
187 EXPORT_SYMBOL(unregister_fib_notifier);
188 
189 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
190 		       struct fib_notifier_info *info)
191 {
192 	net->ipv4.fib_seq++;
193 	info->net = net;
194 	return atomic_notifier_call_chain(&fib_chain, event_type, info);
195 }
196 
197 static int call_fib_entry_notifiers(struct net *net,
198 				    enum fib_event_type event_type, u32 dst,
199 				    int dst_len, struct fib_info *fi,
200 				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
201 {
202 	struct fib_entry_notifier_info info = {
203 		.dst = dst,
204 		.dst_len = dst_len,
205 		.fi = fi,
206 		.tos = tos,
207 		.type = type,
208 		.tb_id = tb_id,
209 		.nlflags = nlflags,
210 	};
211 	return call_fib_notifiers(net, event_type, &info.info);
212 }
213 
214 #define MAX_STAT_DEPTH 32
215 
216 #define KEYLENGTH	(8*sizeof(t_key))
217 #define KEY_MAX		((t_key)~0)
218 
219 typedef unsigned int t_key;
220 
221 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
222 #define IS_TNODE(n)	((n)->bits)
223 #define IS_LEAF(n)	(!(n)->bits)
224 
225 struct key_vector {
226 	t_key key;
227 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
228 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
229 	unsigned char slen;
230 	union {
231 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
232 		struct hlist_head leaf;
233 		/* This array is valid if (pos | bits) > 0 (TNODE) */
234 		struct key_vector __rcu *tnode[0];
235 	};
236 };
237 
238 struct tnode {
239 	struct rcu_head rcu;
240 	t_key empty_children;		/* KEYLENGTH bits needed */
241 	t_key full_children;		/* KEYLENGTH bits needed */
242 	struct key_vector __rcu *parent;
243 	struct key_vector kv[1];
244 #define tn_bits kv[0].bits
245 };
246 
247 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
248 #define LEAF_SIZE	TNODE_SIZE(1)
249 
250 #ifdef CONFIG_IP_FIB_TRIE_STATS
251 struct trie_use_stats {
252 	unsigned int gets;
253 	unsigned int backtrack;
254 	unsigned int semantic_match_passed;
255 	unsigned int semantic_match_miss;
256 	unsigned int null_node_hit;
257 	unsigned int resize_node_skipped;
258 };
259 #endif
260 
261 struct trie_stat {
262 	unsigned int totdepth;
263 	unsigned int maxdepth;
264 	unsigned int tnodes;
265 	unsigned int leaves;
266 	unsigned int nullpointers;
267 	unsigned int prefixes;
268 	unsigned int nodesizes[MAX_STAT_DEPTH];
269 };
270 
271 struct trie {
272 	struct key_vector kv[1];
273 #ifdef CONFIG_IP_FIB_TRIE_STATS
274 	struct trie_use_stats __percpu *stats;
275 #endif
276 };
277 
278 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
279 static size_t tnode_free_size;
280 
281 /*
282  * synchronize_rcu after call_rcu for that many pages; it should be especially
283  * useful before resizing the root node with PREEMPT_NONE configs; the value was
284  * obtained experimentally, aiming to avoid visible slowdown.
285  */
286 static const int sync_pages = 128;
287 
288 static struct kmem_cache *fn_alias_kmem __read_mostly;
289 static struct kmem_cache *trie_leaf_kmem __read_mostly;
290 
291 static inline struct tnode *tn_info(struct key_vector *kv)
292 {
293 	return container_of(kv, struct tnode, kv[0]);
294 }
295 
296 /* caller must hold RTNL */
297 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
299 
300 /* caller must hold RCU read lock or RTNL */
301 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
303 
304 /* wrapper for rcu_assign_pointer */
305 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
306 {
307 	if (n)
308 		rcu_assign_pointer(tn_info(n)->parent, tp);
309 }
310 
311 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
312 
313 /* This provides us with the number of children in this node, in the case of a
314  * leaf this will return 0 meaning none of the children are accessible.
315  */
316 static inline unsigned long child_length(const struct key_vector *tn)
317 {
318 	return (1ul << tn->bits) & ~(1ul);
319 }
320 
321 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
322 
323 static inline unsigned long get_index(t_key key, struct key_vector *kv)
324 {
325 	unsigned long index = key ^ kv->key;
326 
327 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
328 		return 0;
329 
330 	return index >> kv->pos;
331 }
332 
333 /* To understand this stuff, an understanding of keys and all their bits is
334  * necessary. Every node in the trie has a key associated with it, but not
335  * all of the bits in that key are significant.
336  *
337  * Consider a node 'n' and its parent 'tp'.
338  *
339  * If n is a leaf, every bit in its key is significant. Its presence is
340  * necessitated by path compression, since during a tree traversal (when
341  * searching for a leaf - unless we are doing an insertion) we will completely
342  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343  * a potentially successful search, that we have indeed been walking the
344  * correct key path.
345  *
346  * Note that we can never "miss" the correct key in the tree if present by
347  * following the wrong path. Path compression ensures that segments of the key
348  * that are the same for all keys with a given prefix are skipped, but the
349  * skipped part *is* identical for each node in the subtrie below the skipped
350  * bit! trie_insert() in this implementation takes care of that.
351  *
352  * if n is an internal node - a 'tnode' here, the various parts of its key
353  * have many different meanings.
354  *
355  * Example:
356  * _________________________________________________________________
357  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358  * -----------------------------------------------------------------
359  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
360  *
361  * _________________________________________________________________
362  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363  * -----------------------------------------------------------------
364  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
365  *
366  * tp->pos = 22
367  * tp->bits = 3
368  * n->pos = 13
369  * n->bits = 4
370  *
371  * First, let's just ignore the bits that come before the parent tp, that is
372  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373  * point we do not use them for anything.
374  *
375  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376  * index into the parent's child array. That is, they will be used to find
377  * 'n' among tp's children.
378  *
379  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
380  * for the node n.
381  *
382  * All the bits we have seen so far are significant to the node n. The rest
383  * of the bits are really not needed or indeed known in n->key.
384  *
385  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386  * n's child array, and will of course be different for each child.
387  *
388  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
389  * at this point.
390  */
391 
392 static const int halve_threshold = 25;
393 static const int inflate_threshold = 50;
394 static const int halve_threshold_root = 15;
395 static const int inflate_threshold_root = 30;
396 
397 static void __alias_free_mem(struct rcu_head *head)
398 {
399 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
400 	kmem_cache_free(fn_alias_kmem, fa);
401 }
402 
403 static inline void alias_free_mem_rcu(struct fib_alias *fa)
404 {
405 	call_rcu(&fa->rcu, __alias_free_mem);
406 }
407 
408 #define TNODE_KMALLOC_MAX \
409 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410 #define TNODE_VMALLOC_MAX \
411 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
412 
413 static void __node_free_rcu(struct rcu_head *head)
414 {
415 	struct tnode *n = container_of(head, struct tnode, rcu);
416 
417 	if (!n->tn_bits)
418 		kmem_cache_free(trie_leaf_kmem, n);
419 	else
420 		kvfree(n);
421 }
422 
423 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
424 
425 static struct tnode *tnode_alloc(int bits)
426 {
427 	size_t size;
428 
429 	/* verify bits is within bounds */
430 	if (bits > TNODE_VMALLOC_MAX)
431 		return NULL;
432 
433 	/* determine size and verify it is non-zero and didn't overflow */
434 	size = TNODE_SIZE(1ul << bits);
435 
436 	if (size <= PAGE_SIZE)
437 		return kzalloc(size, GFP_KERNEL);
438 	else
439 		return vzalloc(size);
440 }
441 
442 static inline void empty_child_inc(struct key_vector *n)
443 {
444 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
445 }
446 
447 static inline void empty_child_dec(struct key_vector *n)
448 {
449 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
450 }
451 
452 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
453 {
454 	struct key_vector *l;
455 	struct tnode *kv;
456 
457 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
458 	if (!kv)
459 		return NULL;
460 
461 	/* initialize key vector */
462 	l = kv->kv;
463 	l->key = key;
464 	l->pos = 0;
465 	l->bits = 0;
466 	l->slen = fa->fa_slen;
467 
468 	/* link leaf to fib alias */
469 	INIT_HLIST_HEAD(&l->leaf);
470 	hlist_add_head(&fa->fa_list, &l->leaf);
471 
472 	return l;
473 }
474 
475 static struct key_vector *tnode_new(t_key key, int pos, int bits)
476 {
477 	unsigned int shift = pos + bits;
478 	struct key_vector *tn;
479 	struct tnode *tnode;
480 
481 	/* verify bits and pos their msb bits clear and values are valid */
482 	BUG_ON(!bits || (shift > KEYLENGTH));
483 
484 	tnode = tnode_alloc(bits);
485 	if (!tnode)
486 		return NULL;
487 
488 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
489 		 sizeof(struct key_vector *) << bits);
490 
491 	if (bits == KEYLENGTH)
492 		tnode->full_children = 1;
493 	else
494 		tnode->empty_children = 1ul << bits;
495 
496 	tn = tnode->kv;
497 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
498 	tn->pos = pos;
499 	tn->bits = bits;
500 	tn->slen = pos;
501 
502 	return tn;
503 }
504 
505 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
506  * and no bits are skipped. See discussion in dyntree paper p. 6
507  */
508 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
509 {
510 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
511 }
512 
513 /* Add a child at position i overwriting the old value.
514  * Update the value of full_children and empty_children.
515  */
516 static void put_child(struct key_vector *tn, unsigned long i,
517 		      struct key_vector *n)
518 {
519 	struct key_vector *chi = get_child(tn, i);
520 	int isfull, wasfull;
521 
522 	BUG_ON(i >= child_length(tn));
523 
524 	/* update emptyChildren, overflow into fullChildren */
525 	if (!n && chi)
526 		empty_child_inc(tn);
527 	if (n && !chi)
528 		empty_child_dec(tn);
529 
530 	/* update fullChildren */
531 	wasfull = tnode_full(tn, chi);
532 	isfull = tnode_full(tn, n);
533 
534 	if (wasfull && !isfull)
535 		tn_info(tn)->full_children--;
536 	else if (!wasfull && isfull)
537 		tn_info(tn)->full_children++;
538 
539 	if (n && (tn->slen < n->slen))
540 		tn->slen = n->slen;
541 
542 	rcu_assign_pointer(tn->tnode[i], n);
543 }
544 
545 static void update_children(struct key_vector *tn)
546 {
547 	unsigned long i;
548 
549 	/* update all of the child parent pointers */
550 	for (i = child_length(tn); i;) {
551 		struct key_vector *inode = get_child(tn, --i);
552 
553 		if (!inode)
554 			continue;
555 
556 		/* Either update the children of a tnode that
557 		 * already belongs to us or update the child
558 		 * to point to ourselves.
559 		 */
560 		if (node_parent(inode) == tn)
561 			update_children(inode);
562 		else
563 			node_set_parent(inode, tn);
564 	}
565 }
566 
567 static inline void put_child_root(struct key_vector *tp, t_key key,
568 				  struct key_vector *n)
569 {
570 	if (IS_TRIE(tp))
571 		rcu_assign_pointer(tp->tnode[0], n);
572 	else
573 		put_child(tp, get_index(key, tp), n);
574 }
575 
576 static inline void tnode_free_init(struct key_vector *tn)
577 {
578 	tn_info(tn)->rcu.next = NULL;
579 }
580 
581 static inline void tnode_free_append(struct key_vector *tn,
582 				     struct key_vector *n)
583 {
584 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
585 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
586 }
587 
588 static void tnode_free(struct key_vector *tn)
589 {
590 	struct callback_head *head = &tn_info(tn)->rcu;
591 
592 	while (head) {
593 		head = head->next;
594 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
595 		node_free(tn);
596 
597 		tn = container_of(head, struct tnode, rcu)->kv;
598 	}
599 
600 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
601 		tnode_free_size = 0;
602 		synchronize_rcu();
603 	}
604 }
605 
606 static struct key_vector *replace(struct trie *t,
607 				  struct key_vector *oldtnode,
608 				  struct key_vector *tn)
609 {
610 	struct key_vector *tp = node_parent(oldtnode);
611 	unsigned long i;
612 
613 	/* setup the parent pointer out of and back into this node */
614 	NODE_INIT_PARENT(tn, tp);
615 	put_child_root(tp, tn->key, tn);
616 
617 	/* update all of the child parent pointers */
618 	update_children(tn);
619 
620 	/* all pointers should be clean so we are done */
621 	tnode_free(oldtnode);
622 
623 	/* resize children now that oldtnode is freed */
624 	for (i = child_length(tn); i;) {
625 		struct key_vector *inode = get_child(tn, --i);
626 
627 		/* resize child node */
628 		if (tnode_full(tn, inode))
629 			tn = resize(t, inode);
630 	}
631 
632 	return tp;
633 }
634 
635 static struct key_vector *inflate(struct trie *t,
636 				  struct key_vector *oldtnode)
637 {
638 	struct key_vector *tn;
639 	unsigned long i;
640 	t_key m;
641 
642 	pr_debug("In inflate\n");
643 
644 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
645 	if (!tn)
646 		goto notnode;
647 
648 	/* prepare oldtnode to be freed */
649 	tnode_free_init(oldtnode);
650 
651 	/* Assemble all of the pointers in our cluster, in this case that
652 	 * represents all of the pointers out of our allocated nodes that
653 	 * point to existing tnodes and the links between our allocated
654 	 * nodes.
655 	 */
656 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
657 		struct key_vector *inode = get_child(oldtnode, --i);
658 		struct key_vector *node0, *node1;
659 		unsigned long j, k;
660 
661 		/* An empty child */
662 		if (!inode)
663 			continue;
664 
665 		/* A leaf or an internal node with skipped bits */
666 		if (!tnode_full(oldtnode, inode)) {
667 			put_child(tn, get_index(inode->key, tn), inode);
668 			continue;
669 		}
670 
671 		/* drop the node in the old tnode free list */
672 		tnode_free_append(oldtnode, inode);
673 
674 		/* An internal node with two children */
675 		if (inode->bits == 1) {
676 			put_child(tn, 2 * i + 1, get_child(inode, 1));
677 			put_child(tn, 2 * i, get_child(inode, 0));
678 			continue;
679 		}
680 
681 		/* We will replace this node 'inode' with two new
682 		 * ones, 'node0' and 'node1', each with half of the
683 		 * original children. The two new nodes will have
684 		 * a position one bit further down the key and this
685 		 * means that the "significant" part of their keys
686 		 * (see the discussion near the top of this file)
687 		 * will differ by one bit, which will be "0" in
688 		 * node0's key and "1" in node1's key. Since we are
689 		 * moving the key position by one step, the bit that
690 		 * we are moving away from - the bit at position
691 		 * (tn->pos) - is the one that will differ between
692 		 * node0 and node1. So... we synthesize that bit in the
693 		 * two new keys.
694 		 */
695 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
696 		if (!node1)
697 			goto nomem;
698 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
699 
700 		tnode_free_append(tn, node1);
701 		if (!node0)
702 			goto nomem;
703 		tnode_free_append(tn, node0);
704 
705 		/* populate child pointers in new nodes */
706 		for (k = child_length(inode), j = k / 2; j;) {
707 			put_child(node1, --j, get_child(inode, --k));
708 			put_child(node0, j, get_child(inode, j));
709 			put_child(node1, --j, get_child(inode, --k));
710 			put_child(node0, j, get_child(inode, j));
711 		}
712 
713 		/* link new nodes to parent */
714 		NODE_INIT_PARENT(node1, tn);
715 		NODE_INIT_PARENT(node0, tn);
716 
717 		/* link parent to nodes */
718 		put_child(tn, 2 * i + 1, node1);
719 		put_child(tn, 2 * i, node0);
720 	}
721 
722 	/* setup the parent pointers into and out of this node */
723 	return replace(t, oldtnode, tn);
724 nomem:
725 	/* all pointers should be clean so we are done */
726 	tnode_free(tn);
727 notnode:
728 	return NULL;
729 }
730 
731 static struct key_vector *halve(struct trie *t,
732 				struct key_vector *oldtnode)
733 {
734 	struct key_vector *tn;
735 	unsigned long i;
736 
737 	pr_debug("In halve\n");
738 
739 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
740 	if (!tn)
741 		goto notnode;
742 
743 	/* prepare oldtnode to be freed */
744 	tnode_free_init(oldtnode);
745 
746 	/* Assemble all of the pointers in our cluster, in this case that
747 	 * represents all of the pointers out of our allocated nodes that
748 	 * point to existing tnodes and the links between our allocated
749 	 * nodes.
750 	 */
751 	for (i = child_length(oldtnode); i;) {
752 		struct key_vector *node1 = get_child(oldtnode, --i);
753 		struct key_vector *node0 = get_child(oldtnode, --i);
754 		struct key_vector *inode;
755 
756 		/* At least one of the children is empty */
757 		if (!node1 || !node0) {
758 			put_child(tn, i / 2, node1 ? : node0);
759 			continue;
760 		}
761 
762 		/* Two nonempty children */
763 		inode = tnode_new(node0->key, oldtnode->pos, 1);
764 		if (!inode)
765 			goto nomem;
766 		tnode_free_append(tn, inode);
767 
768 		/* initialize pointers out of node */
769 		put_child(inode, 1, node1);
770 		put_child(inode, 0, node0);
771 		NODE_INIT_PARENT(inode, tn);
772 
773 		/* link parent to node */
774 		put_child(tn, i / 2, inode);
775 	}
776 
777 	/* setup the parent pointers into and out of this node */
778 	return replace(t, oldtnode, tn);
779 nomem:
780 	/* all pointers should be clean so we are done */
781 	tnode_free(tn);
782 notnode:
783 	return NULL;
784 }
785 
786 static struct key_vector *collapse(struct trie *t,
787 				   struct key_vector *oldtnode)
788 {
789 	struct key_vector *n, *tp;
790 	unsigned long i;
791 
792 	/* scan the tnode looking for that one child that might still exist */
793 	for (n = NULL, i = child_length(oldtnode); !n && i;)
794 		n = get_child(oldtnode, --i);
795 
796 	/* compress one level */
797 	tp = node_parent(oldtnode);
798 	put_child_root(tp, oldtnode->key, n);
799 	node_set_parent(n, tp);
800 
801 	/* drop dead node */
802 	node_free(oldtnode);
803 
804 	return tp;
805 }
806 
807 static unsigned char update_suffix(struct key_vector *tn)
808 {
809 	unsigned char slen = tn->pos;
810 	unsigned long stride, i;
811 	unsigned char slen_max;
812 
813 	/* only vector 0 can have a suffix length greater than or equal to
814 	 * tn->pos + tn->bits, the second highest node will have a suffix
815 	 * length at most of tn->pos + tn->bits - 1
816 	 */
817 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
818 
819 	/* search though the list of children looking for nodes that might
820 	 * have a suffix greater than the one we currently have.  This is
821 	 * why we start with a stride of 2 since a stride of 1 would
822 	 * represent the nodes with suffix length equal to tn->pos
823 	 */
824 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
825 		struct key_vector *n = get_child(tn, i);
826 
827 		if (!n || (n->slen <= slen))
828 			continue;
829 
830 		/* update stride and slen based on new value */
831 		stride <<= (n->slen - slen);
832 		slen = n->slen;
833 		i &= ~(stride - 1);
834 
835 		/* stop searching if we have hit the maximum possible value */
836 		if (slen >= slen_max)
837 			break;
838 	}
839 
840 	tn->slen = slen;
841 
842 	return slen;
843 }
844 
845 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
846  * the Helsinki University of Technology and Matti Tikkanen of Nokia
847  * Telecommunications, page 6:
848  * "A node is doubled if the ratio of non-empty children to all
849  * children in the *doubled* node is at least 'high'."
850  *
851  * 'high' in this instance is the variable 'inflate_threshold'. It
852  * is expressed as a percentage, so we multiply it with
853  * child_length() and instead of multiplying by 2 (since the
854  * child array will be doubled by inflate()) and multiplying
855  * the left-hand side by 100 (to handle the percentage thing) we
856  * multiply the left-hand side by 50.
857  *
858  * The left-hand side may look a bit weird: child_length(tn)
859  * - tn->empty_children is of course the number of non-null children
860  * in the current node. tn->full_children is the number of "full"
861  * children, that is non-null tnodes with a skip value of 0.
862  * All of those will be doubled in the resulting inflated tnode, so
863  * we just count them one extra time here.
864  *
865  * A clearer way to write this would be:
866  *
867  * to_be_doubled = tn->full_children;
868  * not_to_be_doubled = child_length(tn) - tn->empty_children -
869  *     tn->full_children;
870  *
871  * new_child_length = child_length(tn) * 2;
872  *
873  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
874  *      new_child_length;
875  * if (new_fill_factor >= inflate_threshold)
876  *
877  * ...and so on, tho it would mess up the while () loop.
878  *
879  * anyway,
880  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
881  *      inflate_threshold
882  *
883  * avoid a division:
884  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
885  *      inflate_threshold * new_child_length
886  *
887  * expand not_to_be_doubled and to_be_doubled, and shorten:
888  * 100 * (child_length(tn) - tn->empty_children +
889  *    tn->full_children) >= inflate_threshold * new_child_length
890  *
891  * expand new_child_length:
892  * 100 * (child_length(tn) - tn->empty_children +
893  *    tn->full_children) >=
894  *      inflate_threshold * child_length(tn) * 2
895  *
896  * shorten again:
897  * 50 * (tn->full_children + child_length(tn) -
898  *    tn->empty_children) >= inflate_threshold *
899  *    child_length(tn)
900  *
901  */
902 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
903 {
904 	unsigned long used = child_length(tn);
905 	unsigned long threshold = used;
906 
907 	/* Keep root node larger */
908 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
909 	used -= tn_info(tn)->empty_children;
910 	used += tn_info(tn)->full_children;
911 
912 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
913 
914 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
915 }
916 
917 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
918 {
919 	unsigned long used = child_length(tn);
920 	unsigned long threshold = used;
921 
922 	/* Keep root node larger */
923 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
924 	used -= tn_info(tn)->empty_children;
925 
926 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
927 
928 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
929 }
930 
931 static inline bool should_collapse(struct key_vector *tn)
932 {
933 	unsigned long used = child_length(tn);
934 
935 	used -= tn_info(tn)->empty_children;
936 
937 	/* account for bits == KEYLENGTH case */
938 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
939 		used -= KEY_MAX;
940 
941 	/* One child or none, time to drop us from the trie */
942 	return used < 2;
943 }
944 
945 #define MAX_WORK 10
946 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
947 {
948 #ifdef CONFIG_IP_FIB_TRIE_STATS
949 	struct trie_use_stats __percpu *stats = t->stats;
950 #endif
951 	struct key_vector *tp = node_parent(tn);
952 	unsigned long cindex = get_index(tn->key, tp);
953 	int max_work = MAX_WORK;
954 
955 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
956 		 tn, inflate_threshold, halve_threshold);
957 
958 	/* track the tnode via the pointer from the parent instead of
959 	 * doing it ourselves.  This way we can let RCU fully do its
960 	 * thing without us interfering
961 	 */
962 	BUG_ON(tn != get_child(tp, cindex));
963 
964 	/* Double as long as the resulting node has a number of
965 	 * nonempty nodes that are above the threshold.
966 	 */
967 	while (should_inflate(tp, tn) && max_work) {
968 		tp = inflate(t, tn);
969 		if (!tp) {
970 #ifdef CONFIG_IP_FIB_TRIE_STATS
971 			this_cpu_inc(stats->resize_node_skipped);
972 #endif
973 			break;
974 		}
975 
976 		max_work--;
977 		tn = get_child(tp, cindex);
978 	}
979 
980 	/* update parent in case inflate failed */
981 	tp = node_parent(tn);
982 
983 	/* Return if at least one inflate is run */
984 	if (max_work != MAX_WORK)
985 		return tp;
986 
987 	/* Halve as long as the number of empty children in this
988 	 * node is above threshold.
989 	 */
990 	while (should_halve(tp, tn) && max_work) {
991 		tp = halve(t, tn);
992 		if (!tp) {
993 #ifdef CONFIG_IP_FIB_TRIE_STATS
994 			this_cpu_inc(stats->resize_node_skipped);
995 #endif
996 			break;
997 		}
998 
999 		max_work--;
1000 		tn = get_child(tp, cindex);
1001 	}
1002 
1003 	/* Only one child remains */
1004 	if (should_collapse(tn))
1005 		return collapse(t, tn);
1006 
1007 	/* update parent in case halve failed */
1008 	return node_parent(tn);
1009 }
1010 
1011 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1012 {
1013 	unsigned char node_slen = tn->slen;
1014 
1015 	while ((node_slen > tn->pos) && (node_slen > slen)) {
1016 		slen = update_suffix(tn);
1017 		if (node_slen == slen)
1018 			break;
1019 
1020 		tn = node_parent(tn);
1021 		node_slen = tn->slen;
1022 	}
1023 }
1024 
1025 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1026 {
1027 	while (tn->slen < slen) {
1028 		tn->slen = slen;
1029 		tn = node_parent(tn);
1030 	}
1031 }
1032 
1033 /* rcu_read_lock needs to be hold by caller from readside */
1034 static struct key_vector *fib_find_node(struct trie *t,
1035 					struct key_vector **tp, u32 key)
1036 {
1037 	struct key_vector *pn, *n = t->kv;
1038 	unsigned long index = 0;
1039 
1040 	do {
1041 		pn = n;
1042 		n = get_child_rcu(n, index);
1043 
1044 		if (!n)
1045 			break;
1046 
1047 		index = get_cindex(key, n);
1048 
1049 		/* This bit of code is a bit tricky but it combines multiple
1050 		 * checks into a single check.  The prefix consists of the
1051 		 * prefix plus zeros for the bits in the cindex. The index
1052 		 * is the difference between the key and this value.  From
1053 		 * this we can actually derive several pieces of data.
1054 		 *   if (index >= (1ul << bits))
1055 		 *     we have a mismatch in skip bits and failed
1056 		 *   else
1057 		 *     we know the value is cindex
1058 		 *
1059 		 * This check is safe even if bits == KEYLENGTH due to the
1060 		 * fact that we can only allocate a node with 32 bits if a
1061 		 * long is greater than 32 bits.
1062 		 */
1063 		if (index >= (1ul << n->bits)) {
1064 			n = NULL;
1065 			break;
1066 		}
1067 
1068 		/* keep searching until we find a perfect match leaf or NULL */
1069 	} while (IS_TNODE(n));
1070 
1071 	*tp = pn;
1072 
1073 	return n;
1074 }
1075 
1076 /* Return the first fib alias matching TOS with
1077  * priority less than or equal to PRIO.
1078  */
1079 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1080 					u8 tos, u32 prio, u32 tb_id)
1081 {
1082 	struct fib_alias *fa;
1083 
1084 	if (!fah)
1085 		return NULL;
1086 
1087 	hlist_for_each_entry(fa, fah, fa_list) {
1088 		if (fa->fa_slen < slen)
1089 			continue;
1090 		if (fa->fa_slen != slen)
1091 			break;
1092 		if (fa->tb_id > tb_id)
1093 			continue;
1094 		if (fa->tb_id != tb_id)
1095 			break;
1096 		if (fa->fa_tos > tos)
1097 			continue;
1098 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099 			return fa;
1100 	}
1101 
1102 	return NULL;
1103 }
1104 
1105 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1106 {
1107 	while (!IS_TRIE(tn))
1108 		tn = resize(t, tn);
1109 }
1110 
1111 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1112 			   struct fib_alias *new, t_key key)
1113 {
1114 	struct key_vector *n, *l;
1115 
1116 	l = leaf_new(key, new);
1117 	if (!l)
1118 		goto noleaf;
1119 
1120 	/* retrieve child from parent node */
1121 	n = get_child(tp, get_index(key, tp));
1122 
1123 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1124 	 *
1125 	 *  Add a new tnode here
1126 	 *  first tnode need some special handling
1127 	 *  leaves us in position for handling as case 3
1128 	 */
1129 	if (n) {
1130 		struct key_vector *tn;
1131 
1132 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1133 		if (!tn)
1134 			goto notnode;
1135 
1136 		/* initialize routes out of node */
1137 		NODE_INIT_PARENT(tn, tp);
1138 		put_child(tn, get_index(key, tn) ^ 1, n);
1139 
1140 		/* start adding routes into the node */
1141 		put_child_root(tp, key, tn);
1142 		node_set_parent(n, tn);
1143 
1144 		/* parent now has a NULL spot where the leaf can go */
1145 		tp = tn;
1146 	}
1147 
1148 	/* Case 3: n is NULL, and will just insert a new leaf */
1149 	node_push_suffix(tp, new->fa_slen);
1150 	NODE_INIT_PARENT(l, tp);
1151 	put_child_root(tp, key, l);
1152 	trie_rebalance(t, tp);
1153 
1154 	return 0;
1155 notnode:
1156 	node_free(l);
1157 noleaf:
1158 	return -ENOMEM;
1159 }
1160 
1161 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1162 			    struct key_vector *l, struct fib_alias *new,
1163 			    struct fib_alias *fa, t_key key)
1164 {
1165 	if (!l)
1166 		return fib_insert_node(t, tp, new, key);
1167 
1168 	if (fa) {
1169 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1170 	} else {
1171 		struct fib_alias *last;
1172 
1173 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1174 			if (new->fa_slen < last->fa_slen)
1175 				break;
1176 			if ((new->fa_slen == last->fa_slen) &&
1177 			    (new->tb_id > last->tb_id))
1178 				break;
1179 			fa = last;
1180 		}
1181 
1182 		if (fa)
1183 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1184 		else
1185 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1186 	}
1187 
1188 	/* if we added to the tail node then we need to update slen */
1189 	if (l->slen < new->fa_slen) {
1190 		l->slen = new->fa_slen;
1191 		node_push_suffix(tp, new->fa_slen);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /* Caller must hold RTNL. */
1198 int fib_table_insert(struct net *net, struct fib_table *tb,
1199 		     struct fib_config *cfg)
1200 {
1201 	struct trie *t = (struct trie *)tb->tb_data;
1202 	struct fib_alias *fa, *new_fa;
1203 	struct key_vector *l, *tp;
1204 	u16 nlflags = NLM_F_EXCL;
1205 	struct fib_info *fi;
1206 	u8 plen = cfg->fc_dst_len;
1207 	u8 slen = KEYLENGTH - plen;
1208 	u8 tos = cfg->fc_tos;
1209 	u32 key;
1210 	int err;
1211 
1212 	if (plen > KEYLENGTH)
1213 		return -EINVAL;
1214 
1215 	key = ntohl(cfg->fc_dst);
1216 
1217 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1218 
1219 	if ((plen < KEYLENGTH) && (key << plen))
1220 		return -EINVAL;
1221 
1222 	fi = fib_create_info(cfg);
1223 	if (IS_ERR(fi)) {
1224 		err = PTR_ERR(fi);
1225 		goto err;
1226 	}
1227 
1228 	l = fib_find_node(t, &tp, key);
1229 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1230 				tb->tb_id) : NULL;
1231 
1232 	/* Now fa, if non-NULL, points to the first fib alias
1233 	 * with the same keys [prefix,tos,priority], if such key already
1234 	 * exists or to the node before which we will insert new one.
1235 	 *
1236 	 * If fa is NULL, we will need to allocate a new one and
1237 	 * insert to the tail of the section matching the suffix length
1238 	 * of the new alias.
1239 	 */
1240 
1241 	if (fa && fa->fa_tos == tos &&
1242 	    fa->fa_info->fib_priority == fi->fib_priority) {
1243 		struct fib_alias *fa_first, *fa_match;
1244 
1245 		err = -EEXIST;
1246 		if (cfg->fc_nlflags & NLM_F_EXCL)
1247 			goto out;
1248 
1249 		nlflags &= ~NLM_F_EXCL;
1250 
1251 		/* We have 2 goals:
1252 		 * 1. Find exact match for type, scope, fib_info to avoid
1253 		 * duplicate routes
1254 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1255 		 */
1256 		fa_match = NULL;
1257 		fa_first = fa;
1258 		hlist_for_each_entry_from(fa, fa_list) {
1259 			if ((fa->fa_slen != slen) ||
1260 			    (fa->tb_id != tb->tb_id) ||
1261 			    (fa->fa_tos != tos))
1262 				break;
1263 			if (fa->fa_info->fib_priority != fi->fib_priority)
1264 				break;
1265 			if (fa->fa_type == cfg->fc_type &&
1266 			    fa->fa_info == fi) {
1267 				fa_match = fa;
1268 				break;
1269 			}
1270 		}
1271 
1272 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1273 			struct fib_info *fi_drop;
1274 			u8 state;
1275 
1276 			nlflags |= NLM_F_REPLACE;
1277 			fa = fa_first;
1278 			if (fa_match) {
1279 				if (fa == fa_match)
1280 					err = 0;
1281 				goto out;
1282 			}
1283 			err = -ENOBUFS;
1284 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1285 			if (!new_fa)
1286 				goto out;
1287 
1288 			fi_drop = fa->fa_info;
1289 			new_fa->fa_tos = fa->fa_tos;
1290 			new_fa->fa_info = fi;
1291 			new_fa->fa_type = cfg->fc_type;
1292 			state = fa->fa_state;
1293 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1294 			new_fa->fa_slen = fa->fa_slen;
1295 			new_fa->tb_id = tb->tb_id;
1296 			new_fa->fa_default = -1;
1297 
1298 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1299 
1300 			alias_free_mem_rcu(fa);
1301 
1302 			fib_release_info(fi_drop);
1303 			if (state & FA_S_ACCESSED)
1304 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1305 
1306 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1307 						 key, plen, fi,
1308 						 new_fa->fa_tos, cfg->fc_type,
1309 						 tb->tb_id, cfg->fc_nlflags);
1310 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1311 				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1312 
1313 			goto succeeded;
1314 		}
1315 		/* Error if we find a perfect match which
1316 		 * uses the same scope, type, and nexthop
1317 		 * information.
1318 		 */
1319 		if (fa_match)
1320 			goto out;
1321 
1322 		if (cfg->fc_nlflags & NLM_F_APPEND)
1323 			nlflags |= NLM_F_APPEND;
1324 		else
1325 			fa = fa_first;
1326 	}
1327 	err = -ENOENT;
1328 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1329 		goto out;
1330 
1331 	nlflags |= NLM_F_CREATE;
1332 	err = -ENOBUFS;
1333 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1334 	if (!new_fa)
1335 		goto out;
1336 
1337 	new_fa->fa_info = fi;
1338 	new_fa->fa_tos = tos;
1339 	new_fa->fa_type = cfg->fc_type;
1340 	new_fa->fa_state = 0;
1341 	new_fa->fa_slen = slen;
1342 	new_fa->tb_id = tb->tb_id;
1343 	new_fa->fa_default = -1;
1344 
1345 	/* Insert new entry to the list. */
1346 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1347 	if (err)
1348 		goto out_free_new_fa;
1349 
1350 	if (!plen)
1351 		tb->tb_num_default++;
1352 
1353 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1355 				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1356 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1357 		  &cfg->fc_nlinfo, nlflags);
1358 succeeded:
1359 	return 0;
1360 
1361 out_free_new_fa:
1362 	kmem_cache_free(fn_alias_kmem, new_fa);
1363 out:
1364 	fib_release_info(fi);
1365 err:
1366 	return err;
1367 }
1368 
1369 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1370 {
1371 	t_key prefix = n->key;
1372 
1373 	return (key ^ prefix) & (prefix | -prefix);
1374 }
1375 
1376 /* should be called with rcu_read_lock */
1377 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1378 		     struct fib_result *res, int fib_flags)
1379 {
1380 	struct trie *t = (struct trie *) tb->tb_data;
1381 #ifdef CONFIG_IP_FIB_TRIE_STATS
1382 	struct trie_use_stats __percpu *stats = t->stats;
1383 #endif
1384 	const t_key key = ntohl(flp->daddr);
1385 	struct key_vector *n, *pn;
1386 	struct fib_alias *fa;
1387 	unsigned long index;
1388 	t_key cindex;
1389 
1390 	trace_fib_table_lookup(tb->tb_id, flp);
1391 
1392 	pn = t->kv;
1393 	cindex = 0;
1394 
1395 	n = get_child_rcu(pn, cindex);
1396 	if (!n)
1397 		return -EAGAIN;
1398 
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 	this_cpu_inc(stats->gets);
1401 #endif
1402 
1403 	/* Step 1: Travel to the longest prefix match in the trie */
1404 	for (;;) {
1405 		index = get_cindex(key, n);
1406 
1407 		/* This bit of code is a bit tricky but it combines multiple
1408 		 * checks into a single check.  The prefix consists of the
1409 		 * prefix plus zeros for the "bits" in the prefix. The index
1410 		 * is the difference between the key and this value.  From
1411 		 * this we can actually derive several pieces of data.
1412 		 *   if (index >= (1ul << bits))
1413 		 *     we have a mismatch in skip bits and failed
1414 		 *   else
1415 		 *     we know the value is cindex
1416 		 *
1417 		 * This check is safe even if bits == KEYLENGTH due to the
1418 		 * fact that we can only allocate a node with 32 bits if a
1419 		 * long is greater than 32 bits.
1420 		 */
1421 		if (index >= (1ul << n->bits))
1422 			break;
1423 
1424 		/* we have found a leaf. Prefixes have already been compared */
1425 		if (IS_LEAF(n))
1426 			goto found;
1427 
1428 		/* only record pn and cindex if we are going to be chopping
1429 		 * bits later.  Otherwise we are just wasting cycles.
1430 		 */
1431 		if (n->slen > n->pos) {
1432 			pn = n;
1433 			cindex = index;
1434 		}
1435 
1436 		n = get_child_rcu(n, index);
1437 		if (unlikely(!n))
1438 			goto backtrace;
1439 	}
1440 
1441 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1442 	for (;;) {
1443 		/* record the pointer where our next node pointer is stored */
1444 		struct key_vector __rcu **cptr = n->tnode;
1445 
1446 		/* This test verifies that none of the bits that differ
1447 		 * between the key and the prefix exist in the region of
1448 		 * the lsb and higher in the prefix.
1449 		 */
1450 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1451 			goto backtrace;
1452 
1453 		/* exit out and process leaf */
1454 		if (unlikely(IS_LEAF(n)))
1455 			break;
1456 
1457 		/* Don't bother recording parent info.  Since we are in
1458 		 * prefix match mode we will have to come back to wherever
1459 		 * we started this traversal anyway
1460 		 */
1461 
1462 		while ((n = rcu_dereference(*cptr)) == NULL) {
1463 backtrace:
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465 			if (!n)
1466 				this_cpu_inc(stats->null_node_hit);
1467 #endif
1468 			/* If we are at cindex 0 there are no more bits for
1469 			 * us to strip at this level so we must ascend back
1470 			 * up one level to see if there are any more bits to
1471 			 * be stripped there.
1472 			 */
1473 			while (!cindex) {
1474 				t_key pkey = pn->key;
1475 
1476 				/* If we don't have a parent then there is
1477 				 * nothing for us to do as we do not have any
1478 				 * further nodes to parse.
1479 				 */
1480 				if (IS_TRIE(pn))
1481 					return -EAGAIN;
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 				this_cpu_inc(stats->backtrack);
1484 #endif
1485 				/* Get Child's index */
1486 				pn = node_parent_rcu(pn);
1487 				cindex = get_index(pkey, pn);
1488 			}
1489 
1490 			/* strip the least significant bit from the cindex */
1491 			cindex &= cindex - 1;
1492 
1493 			/* grab pointer for next child node */
1494 			cptr = &pn->tnode[cindex];
1495 		}
1496 	}
1497 
1498 found:
1499 	/* this line carries forward the xor from earlier in the function */
1500 	index = key ^ n->key;
1501 
1502 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1503 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1504 		struct fib_info *fi = fa->fa_info;
1505 		int nhsel, err;
1506 
1507 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1508 			if (index >= (1ul << fa->fa_slen))
1509 				continue;
1510 		}
1511 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1512 			continue;
1513 		if (fi->fib_dead)
1514 			continue;
1515 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1516 			continue;
1517 		fib_alias_accessed(fa);
1518 		err = fib_props[fa->fa_type].error;
1519 		if (unlikely(err < 0)) {
1520 #ifdef CONFIG_IP_FIB_TRIE_STATS
1521 			this_cpu_inc(stats->semantic_match_passed);
1522 #endif
1523 			return err;
1524 		}
1525 		if (fi->fib_flags & RTNH_F_DEAD)
1526 			continue;
1527 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1528 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1529 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1530 
1531 			if (nh->nh_flags & RTNH_F_DEAD)
1532 				continue;
1533 			if (in_dev &&
1534 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1535 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1536 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1537 				continue;
1538 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1539 				if (flp->flowi4_oif &&
1540 				    flp->flowi4_oif != nh->nh_oif)
1541 					continue;
1542 			}
1543 
1544 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1545 				atomic_inc(&fi->fib_clntref);
1546 
1547 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1548 			res->nh_sel = nhsel;
1549 			res->type = fa->fa_type;
1550 			res->scope = fi->fib_scope;
1551 			res->fi = fi;
1552 			res->table = tb;
1553 			res->fa_head = &n->leaf;
1554 #ifdef CONFIG_IP_FIB_TRIE_STATS
1555 			this_cpu_inc(stats->semantic_match_passed);
1556 #endif
1557 			trace_fib_table_lookup_nh(nh);
1558 
1559 			return err;
1560 		}
1561 	}
1562 #ifdef CONFIG_IP_FIB_TRIE_STATS
1563 	this_cpu_inc(stats->semantic_match_miss);
1564 #endif
1565 	goto backtrace;
1566 }
1567 EXPORT_SYMBOL_GPL(fib_table_lookup);
1568 
1569 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1570 			     struct key_vector *l, struct fib_alias *old)
1571 {
1572 	/* record the location of the previous list_info entry */
1573 	struct hlist_node **pprev = old->fa_list.pprev;
1574 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1575 
1576 	/* remove the fib_alias from the list */
1577 	hlist_del_rcu(&old->fa_list);
1578 
1579 	/* if we emptied the list this leaf will be freed and we can sort
1580 	 * out parent suffix lengths as a part of trie_rebalance
1581 	 */
1582 	if (hlist_empty(&l->leaf)) {
1583 		if (tp->slen == l->slen)
1584 			node_pull_suffix(tp, tp->pos);
1585 		put_child_root(tp, l->key, NULL);
1586 		node_free(l);
1587 		trie_rebalance(t, tp);
1588 		return;
1589 	}
1590 
1591 	/* only access fa if it is pointing at the last valid hlist_node */
1592 	if (*pprev)
1593 		return;
1594 
1595 	/* update the trie with the latest suffix length */
1596 	l->slen = fa->fa_slen;
1597 	node_pull_suffix(tp, fa->fa_slen);
1598 }
1599 
1600 /* Caller must hold RTNL. */
1601 int fib_table_delete(struct net *net, struct fib_table *tb,
1602 		     struct fib_config *cfg)
1603 {
1604 	struct trie *t = (struct trie *) tb->tb_data;
1605 	struct fib_alias *fa, *fa_to_delete;
1606 	struct key_vector *l, *tp;
1607 	u8 plen = cfg->fc_dst_len;
1608 	u8 slen = KEYLENGTH - plen;
1609 	u8 tos = cfg->fc_tos;
1610 	u32 key;
1611 
1612 	if (plen > KEYLENGTH)
1613 		return -EINVAL;
1614 
1615 	key = ntohl(cfg->fc_dst);
1616 
1617 	if ((plen < KEYLENGTH) && (key << plen))
1618 		return -EINVAL;
1619 
1620 	l = fib_find_node(t, &tp, key);
1621 	if (!l)
1622 		return -ESRCH;
1623 
1624 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1625 	if (!fa)
1626 		return -ESRCH;
1627 
1628 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1629 
1630 	fa_to_delete = NULL;
1631 	hlist_for_each_entry_from(fa, fa_list) {
1632 		struct fib_info *fi = fa->fa_info;
1633 
1634 		if ((fa->fa_slen != slen) ||
1635 		    (fa->tb_id != tb->tb_id) ||
1636 		    (fa->fa_tos != tos))
1637 			break;
1638 
1639 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1641 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1642 		    (!cfg->fc_prefsrc ||
1643 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1644 		    (!cfg->fc_protocol ||
1645 		     fi->fib_protocol == cfg->fc_protocol) &&
1646 		    fib_nh_match(cfg, fi) == 0) {
1647 			fa_to_delete = fa;
1648 			break;
1649 		}
1650 	}
1651 
1652 	if (!fa_to_delete)
1653 		return -ESRCH;
1654 
1655 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1656 				 fa_to_delete->fa_info, tos, cfg->fc_type,
1657 				 tb->tb_id, 0);
1658 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1659 		  &cfg->fc_nlinfo, 0);
1660 
1661 	if (!plen)
1662 		tb->tb_num_default--;
1663 
1664 	fib_remove_alias(t, tp, l, fa_to_delete);
1665 
1666 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1667 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1668 
1669 	fib_release_info(fa_to_delete->fa_info);
1670 	alias_free_mem_rcu(fa_to_delete);
1671 	return 0;
1672 }
1673 
1674 /* Scan for the next leaf starting at the provided key value */
1675 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1676 {
1677 	struct key_vector *pn, *n = *tn;
1678 	unsigned long cindex;
1679 
1680 	/* this loop is meant to try and find the key in the trie */
1681 	do {
1682 		/* record parent and next child index */
1683 		pn = n;
1684 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1685 
1686 		if (cindex >> pn->bits)
1687 			break;
1688 
1689 		/* descend into the next child */
1690 		n = get_child_rcu(pn, cindex++);
1691 		if (!n)
1692 			break;
1693 
1694 		/* guarantee forward progress on the keys */
1695 		if (IS_LEAF(n) && (n->key >= key))
1696 			goto found;
1697 	} while (IS_TNODE(n));
1698 
1699 	/* this loop will search for the next leaf with a greater key */
1700 	while (!IS_TRIE(pn)) {
1701 		/* if we exhausted the parent node we will need to climb */
1702 		if (cindex >= (1ul << pn->bits)) {
1703 			t_key pkey = pn->key;
1704 
1705 			pn = node_parent_rcu(pn);
1706 			cindex = get_index(pkey, pn) + 1;
1707 			continue;
1708 		}
1709 
1710 		/* grab the next available node */
1711 		n = get_child_rcu(pn, cindex++);
1712 		if (!n)
1713 			continue;
1714 
1715 		/* no need to compare keys since we bumped the index */
1716 		if (IS_LEAF(n))
1717 			goto found;
1718 
1719 		/* Rescan start scanning in new node */
1720 		pn = n;
1721 		cindex = 0;
1722 	}
1723 
1724 	*tn = pn;
1725 	return NULL; /* Root of trie */
1726 found:
1727 	/* if we are at the limit for keys just return NULL for the tnode */
1728 	*tn = pn;
1729 	return n;
1730 }
1731 
1732 static void fib_trie_free(struct fib_table *tb)
1733 {
1734 	struct trie *t = (struct trie *)tb->tb_data;
1735 	struct key_vector *pn = t->kv;
1736 	unsigned long cindex = 1;
1737 	struct hlist_node *tmp;
1738 	struct fib_alias *fa;
1739 
1740 	/* walk trie in reverse order and free everything */
1741 	for (;;) {
1742 		struct key_vector *n;
1743 
1744 		if (!(cindex--)) {
1745 			t_key pkey = pn->key;
1746 
1747 			if (IS_TRIE(pn))
1748 				break;
1749 
1750 			n = pn;
1751 			pn = node_parent(pn);
1752 
1753 			/* drop emptied tnode */
1754 			put_child_root(pn, n->key, NULL);
1755 			node_free(n);
1756 
1757 			cindex = get_index(pkey, pn);
1758 
1759 			continue;
1760 		}
1761 
1762 		/* grab the next available node */
1763 		n = get_child(pn, cindex);
1764 		if (!n)
1765 			continue;
1766 
1767 		if (IS_TNODE(n)) {
1768 			/* record pn and cindex for leaf walking */
1769 			pn = n;
1770 			cindex = 1ul << n->bits;
1771 
1772 			continue;
1773 		}
1774 
1775 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776 			hlist_del_rcu(&fa->fa_list);
1777 			alias_free_mem_rcu(fa);
1778 		}
1779 
1780 		put_child_root(pn, n->key, NULL);
1781 		node_free(n);
1782 	}
1783 
1784 #ifdef CONFIG_IP_FIB_TRIE_STATS
1785 	free_percpu(t->stats);
1786 #endif
1787 	kfree(tb);
1788 }
1789 
1790 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1791 {
1792 	struct trie *ot = (struct trie *)oldtb->tb_data;
1793 	struct key_vector *l, *tp = ot->kv;
1794 	struct fib_table *local_tb;
1795 	struct fib_alias *fa;
1796 	struct trie *lt;
1797 	t_key key = 0;
1798 
1799 	if (oldtb->tb_data == oldtb->__data)
1800 		return oldtb;
1801 
1802 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1803 	if (!local_tb)
1804 		return NULL;
1805 
1806 	lt = (struct trie *)local_tb->tb_data;
1807 
1808 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1809 		struct key_vector *local_l = NULL, *local_tp;
1810 
1811 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1812 			struct fib_alias *new_fa;
1813 
1814 			if (local_tb->tb_id != fa->tb_id)
1815 				continue;
1816 
1817 			/* clone fa for new local table */
1818 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1819 			if (!new_fa)
1820 				goto out;
1821 
1822 			memcpy(new_fa, fa, sizeof(*fa));
1823 
1824 			/* insert clone into table */
1825 			if (!local_l)
1826 				local_l = fib_find_node(lt, &local_tp, l->key);
1827 
1828 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1829 					     NULL, l->key)) {
1830 				kmem_cache_free(fn_alias_kmem, new_fa);
1831 				goto out;
1832 			}
1833 		}
1834 
1835 		/* stop loop if key wrapped back to 0 */
1836 		key = l->key + 1;
1837 		if (key < l->key)
1838 			break;
1839 	}
1840 
1841 	return local_tb;
1842 out:
1843 	fib_trie_free(local_tb);
1844 
1845 	return NULL;
1846 }
1847 
1848 /* Caller must hold RTNL */
1849 void fib_table_flush_external(struct fib_table *tb)
1850 {
1851 	struct trie *t = (struct trie *)tb->tb_data;
1852 	struct key_vector *pn = t->kv;
1853 	unsigned long cindex = 1;
1854 	struct hlist_node *tmp;
1855 	struct fib_alias *fa;
1856 
1857 	/* walk trie in reverse order */
1858 	for (;;) {
1859 		unsigned char slen = 0;
1860 		struct key_vector *n;
1861 
1862 		if (!(cindex--)) {
1863 			t_key pkey = pn->key;
1864 
1865 			/* cannot resize the trie vector */
1866 			if (IS_TRIE(pn))
1867 				break;
1868 
1869 			/* update the suffix to address pulled leaves */
1870 			if (pn->slen > pn->pos)
1871 				update_suffix(pn);
1872 
1873 			/* resize completed node */
1874 			pn = resize(t, pn);
1875 			cindex = get_index(pkey, pn);
1876 
1877 			continue;
1878 		}
1879 
1880 		/* grab the next available node */
1881 		n = get_child(pn, cindex);
1882 		if (!n)
1883 			continue;
1884 
1885 		if (IS_TNODE(n)) {
1886 			/* record pn and cindex for leaf walking */
1887 			pn = n;
1888 			cindex = 1ul << n->bits;
1889 
1890 			continue;
1891 		}
1892 
1893 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894 			/* if alias was cloned to local then we just
1895 			 * need to remove the local copy from main
1896 			 */
1897 			if (tb->tb_id != fa->tb_id) {
1898 				hlist_del_rcu(&fa->fa_list);
1899 				alias_free_mem_rcu(fa);
1900 				continue;
1901 			}
1902 
1903 			/* record local slen */
1904 			slen = fa->fa_slen;
1905 		}
1906 
1907 		/* update leaf slen */
1908 		n->slen = slen;
1909 
1910 		if (hlist_empty(&n->leaf)) {
1911 			put_child_root(pn, n->key, NULL);
1912 			node_free(n);
1913 		}
1914 	}
1915 }
1916 
1917 /* Caller must hold RTNL. */
1918 int fib_table_flush(struct net *net, struct fib_table *tb)
1919 {
1920 	struct trie *t = (struct trie *)tb->tb_data;
1921 	struct key_vector *pn = t->kv;
1922 	unsigned long cindex = 1;
1923 	struct hlist_node *tmp;
1924 	struct fib_alias *fa;
1925 	int found = 0;
1926 
1927 	/* walk trie in reverse order */
1928 	for (;;) {
1929 		unsigned char slen = 0;
1930 		struct key_vector *n;
1931 
1932 		if (!(cindex--)) {
1933 			t_key pkey = pn->key;
1934 
1935 			/* cannot resize the trie vector */
1936 			if (IS_TRIE(pn))
1937 				break;
1938 
1939 			/* update the suffix to address pulled leaves */
1940 			if (pn->slen > pn->pos)
1941 				update_suffix(pn);
1942 
1943 			/* resize completed node */
1944 			pn = resize(t, pn);
1945 			cindex = get_index(pkey, pn);
1946 
1947 			continue;
1948 		}
1949 
1950 		/* grab the next available node */
1951 		n = get_child(pn, cindex);
1952 		if (!n)
1953 			continue;
1954 
1955 		if (IS_TNODE(n)) {
1956 			/* record pn and cindex for leaf walking */
1957 			pn = n;
1958 			cindex = 1ul << n->bits;
1959 
1960 			continue;
1961 		}
1962 
1963 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1964 			struct fib_info *fi = fa->fa_info;
1965 
1966 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1967 				slen = fa->fa_slen;
1968 				continue;
1969 			}
1970 
1971 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1972 						 n->key,
1973 						 KEYLENGTH - fa->fa_slen,
1974 						 fi, fa->fa_tos, fa->fa_type,
1975 						 tb->tb_id, 0);
1976 			hlist_del_rcu(&fa->fa_list);
1977 			fib_release_info(fa->fa_info);
1978 			alias_free_mem_rcu(fa);
1979 			found++;
1980 		}
1981 
1982 		/* update leaf slen */
1983 		n->slen = slen;
1984 
1985 		if (hlist_empty(&n->leaf)) {
1986 			put_child_root(pn, n->key, NULL);
1987 			node_free(n);
1988 		}
1989 	}
1990 
1991 	pr_debug("trie_flush found=%d\n", found);
1992 	return found;
1993 }
1994 
1995 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1996 			    struct fib_table *tb, struct notifier_block *nb,
1997 			    enum fib_event_type event_type)
1998 {
1999 	struct fib_alias *fa;
2000 
2001 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2002 		struct fib_info *fi = fa->fa_info;
2003 
2004 		if (!fi)
2005 			continue;
2006 
2007 		/* local and main table can share the same trie,
2008 		 * so don't notify twice for the same entry.
2009 		 */
2010 		if (tb->tb_id != fa->tb_id)
2011 			continue;
2012 
2013 		call_fib_entry_notifier(nb, net, event_type, l->key,
2014 					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2015 					fa->fa_type, fa->tb_id, 0);
2016 	}
2017 }
2018 
2019 static void fib_table_notify(struct net *net, struct fib_table *tb,
2020 			     struct notifier_block *nb,
2021 			     enum fib_event_type event_type)
2022 {
2023 	struct trie *t = (struct trie *)tb->tb_data;
2024 	struct key_vector *l, *tp = t->kv;
2025 	t_key key = 0;
2026 
2027 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2028 		fib_leaf_notify(net, l, tb, nb, event_type);
2029 
2030 		key = l->key + 1;
2031 		/* stop in case of wrap around */
2032 		if (key < l->key)
2033 			break;
2034 	}
2035 }
2036 
2037 static void fib_notify(struct net *net, struct notifier_block *nb,
2038 		       enum fib_event_type event_type)
2039 {
2040 	unsigned int h;
2041 
2042 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2043 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2044 		struct fib_table *tb;
2045 
2046 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2047 			fib_table_notify(net, tb, nb, event_type);
2048 	}
2049 }
2050 
2051 static void __trie_free_rcu(struct rcu_head *head)
2052 {
2053 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2054 #ifdef CONFIG_IP_FIB_TRIE_STATS
2055 	struct trie *t = (struct trie *)tb->tb_data;
2056 
2057 	if (tb->tb_data == tb->__data)
2058 		free_percpu(t->stats);
2059 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2060 	kfree(tb);
2061 }
2062 
2063 void fib_free_table(struct fib_table *tb)
2064 {
2065 	call_rcu(&tb->rcu, __trie_free_rcu);
2066 }
2067 
2068 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2069 			     struct sk_buff *skb, struct netlink_callback *cb)
2070 {
2071 	__be32 xkey = htonl(l->key);
2072 	struct fib_alias *fa;
2073 	int i, s_i;
2074 
2075 	s_i = cb->args[4];
2076 	i = 0;
2077 
2078 	/* rcu_read_lock is hold by caller */
2079 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2080 		if (i < s_i) {
2081 			i++;
2082 			continue;
2083 		}
2084 
2085 		if (tb->tb_id != fa->tb_id) {
2086 			i++;
2087 			continue;
2088 		}
2089 
2090 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2091 				  cb->nlh->nlmsg_seq,
2092 				  RTM_NEWROUTE,
2093 				  tb->tb_id,
2094 				  fa->fa_type,
2095 				  xkey,
2096 				  KEYLENGTH - fa->fa_slen,
2097 				  fa->fa_tos,
2098 				  fa->fa_info, NLM_F_MULTI) < 0) {
2099 			cb->args[4] = i;
2100 			return -1;
2101 		}
2102 		i++;
2103 	}
2104 
2105 	cb->args[4] = i;
2106 	return skb->len;
2107 }
2108 
2109 /* rcu_read_lock needs to be hold by caller from readside */
2110 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2111 		   struct netlink_callback *cb)
2112 {
2113 	struct trie *t = (struct trie *)tb->tb_data;
2114 	struct key_vector *l, *tp = t->kv;
2115 	/* Dump starting at last key.
2116 	 * Note: 0.0.0.0/0 (ie default) is first key.
2117 	 */
2118 	int count = cb->args[2];
2119 	t_key key = cb->args[3];
2120 
2121 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2122 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2123 			cb->args[3] = key;
2124 			cb->args[2] = count;
2125 			return -1;
2126 		}
2127 
2128 		++count;
2129 		key = l->key + 1;
2130 
2131 		memset(&cb->args[4], 0,
2132 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2133 
2134 		/* stop loop if key wrapped back to 0 */
2135 		if (key < l->key)
2136 			break;
2137 	}
2138 
2139 	cb->args[3] = key;
2140 	cb->args[2] = count;
2141 
2142 	return skb->len;
2143 }
2144 
2145 void __init fib_trie_init(void)
2146 {
2147 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2148 					  sizeof(struct fib_alias),
2149 					  0, SLAB_PANIC, NULL);
2150 
2151 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2152 					   LEAF_SIZE,
2153 					   0, SLAB_PANIC, NULL);
2154 }
2155 
2156 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2157 {
2158 	struct fib_table *tb;
2159 	struct trie *t;
2160 	size_t sz = sizeof(*tb);
2161 
2162 	if (!alias)
2163 		sz += sizeof(struct trie);
2164 
2165 	tb = kzalloc(sz, GFP_KERNEL);
2166 	if (!tb)
2167 		return NULL;
2168 
2169 	tb->tb_id = id;
2170 	tb->tb_num_default = 0;
2171 	tb->tb_data = (alias ? alias->__data : tb->__data);
2172 
2173 	if (alias)
2174 		return tb;
2175 
2176 	t = (struct trie *) tb->tb_data;
2177 	t->kv[0].pos = KEYLENGTH;
2178 	t->kv[0].slen = KEYLENGTH;
2179 #ifdef CONFIG_IP_FIB_TRIE_STATS
2180 	t->stats = alloc_percpu(struct trie_use_stats);
2181 	if (!t->stats) {
2182 		kfree(tb);
2183 		tb = NULL;
2184 	}
2185 #endif
2186 
2187 	return tb;
2188 }
2189 
2190 #ifdef CONFIG_PROC_FS
2191 /* Depth first Trie walk iterator */
2192 struct fib_trie_iter {
2193 	struct seq_net_private p;
2194 	struct fib_table *tb;
2195 	struct key_vector *tnode;
2196 	unsigned int index;
2197 	unsigned int depth;
2198 };
2199 
2200 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2201 {
2202 	unsigned long cindex = iter->index;
2203 	struct key_vector *pn = iter->tnode;
2204 	t_key pkey;
2205 
2206 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207 		 iter->tnode, iter->index, iter->depth);
2208 
2209 	while (!IS_TRIE(pn)) {
2210 		while (cindex < child_length(pn)) {
2211 			struct key_vector *n = get_child_rcu(pn, cindex++);
2212 
2213 			if (!n)
2214 				continue;
2215 
2216 			if (IS_LEAF(n)) {
2217 				iter->tnode = pn;
2218 				iter->index = cindex;
2219 			} else {
2220 				/* push down one level */
2221 				iter->tnode = n;
2222 				iter->index = 0;
2223 				++iter->depth;
2224 			}
2225 
2226 			return n;
2227 		}
2228 
2229 		/* Current node exhausted, pop back up */
2230 		pkey = pn->key;
2231 		pn = node_parent_rcu(pn);
2232 		cindex = get_index(pkey, pn) + 1;
2233 		--iter->depth;
2234 	}
2235 
2236 	/* record root node so further searches know we are done */
2237 	iter->tnode = pn;
2238 	iter->index = 0;
2239 
2240 	return NULL;
2241 }
2242 
2243 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2244 					     struct trie *t)
2245 {
2246 	struct key_vector *n, *pn;
2247 
2248 	if (!t)
2249 		return NULL;
2250 
2251 	pn = t->kv;
2252 	n = rcu_dereference(pn->tnode[0]);
2253 	if (!n)
2254 		return NULL;
2255 
2256 	if (IS_TNODE(n)) {
2257 		iter->tnode = n;
2258 		iter->index = 0;
2259 		iter->depth = 1;
2260 	} else {
2261 		iter->tnode = pn;
2262 		iter->index = 0;
2263 		iter->depth = 0;
2264 	}
2265 
2266 	return n;
2267 }
2268 
2269 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2270 {
2271 	struct key_vector *n;
2272 	struct fib_trie_iter iter;
2273 
2274 	memset(s, 0, sizeof(*s));
2275 
2276 	rcu_read_lock();
2277 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2278 		if (IS_LEAF(n)) {
2279 			struct fib_alias *fa;
2280 
2281 			s->leaves++;
2282 			s->totdepth += iter.depth;
2283 			if (iter.depth > s->maxdepth)
2284 				s->maxdepth = iter.depth;
2285 
2286 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2287 				++s->prefixes;
2288 		} else {
2289 			s->tnodes++;
2290 			if (n->bits < MAX_STAT_DEPTH)
2291 				s->nodesizes[n->bits]++;
2292 			s->nullpointers += tn_info(n)->empty_children;
2293 		}
2294 	}
2295 	rcu_read_unlock();
2296 }
2297 
2298 /*
2299  *	This outputs /proc/net/fib_triestats
2300  */
2301 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2302 {
2303 	unsigned int i, max, pointers, bytes, avdepth;
2304 
2305 	if (stat->leaves)
2306 		avdepth = stat->totdepth*100 / stat->leaves;
2307 	else
2308 		avdepth = 0;
2309 
2310 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2311 		   avdepth / 100, avdepth % 100);
2312 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2313 
2314 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2315 	bytes = LEAF_SIZE * stat->leaves;
2316 
2317 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2318 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2319 
2320 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2321 	bytes += TNODE_SIZE(0) * stat->tnodes;
2322 
2323 	max = MAX_STAT_DEPTH;
2324 	while (max > 0 && stat->nodesizes[max-1] == 0)
2325 		max--;
2326 
2327 	pointers = 0;
2328 	for (i = 1; i < max; i++)
2329 		if (stat->nodesizes[i] != 0) {
2330 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2331 			pointers += (1<<i) * stat->nodesizes[i];
2332 		}
2333 	seq_putc(seq, '\n');
2334 	seq_printf(seq, "\tPointers: %u\n", pointers);
2335 
2336 	bytes += sizeof(struct key_vector *) * pointers;
2337 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2338 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2339 }
2340 
2341 #ifdef CONFIG_IP_FIB_TRIE_STATS
2342 static void trie_show_usage(struct seq_file *seq,
2343 			    const struct trie_use_stats __percpu *stats)
2344 {
2345 	struct trie_use_stats s = { 0 };
2346 	int cpu;
2347 
2348 	/* loop through all of the CPUs and gather up the stats */
2349 	for_each_possible_cpu(cpu) {
2350 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2351 
2352 		s.gets += pcpu->gets;
2353 		s.backtrack += pcpu->backtrack;
2354 		s.semantic_match_passed += pcpu->semantic_match_passed;
2355 		s.semantic_match_miss += pcpu->semantic_match_miss;
2356 		s.null_node_hit += pcpu->null_node_hit;
2357 		s.resize_node_skipped += pcpu->resize_node_skipped;
2358 	}
2359 
2360 	seq_printf(seq, "\nCounters:\n---------\n");
2361 	seq_printf(seq, "gets = %u\n", s.gets);
2362 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2363 	seq_printf(seq, "semantic match passed = %u\n",
2364 		   s.semantic_match_passed);
2365 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2366 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2367 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2368 }
2369 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2370 
2371 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2372 {
2373 	if (tb->tb_id == RT_TABLE_LOCAL)
2374 		seq_puts(seq, "Local:\n");
2375 	else if (tb->tb_id == RT_TABLE_MAIN)
2376 		seq_puts(seq, "Main:\n");
2377 	else
2378 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2379 }
2380 
2381 
2382 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2383 {
2384 	struct net *net = (struct net *)seq->private;
2385 	unsigned int h;
2386 
2387 	seq_printf(seq,
2388 		   "Basic info: size of leaf:"
2389 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2390 		   LEAF_SIZE, TNODE_SIZE(0));
2391 
2392 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2393 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2394 		struct fib_table *tb;
2395 
2396 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2397 			struct trie *t = (struct trie *) tb->tb_data;
2398 			struct trie_stat stat;
2399 
2400 			if (!t)
2401 				continue;
2402 
2403 			fib_table_print(seq, tb);
2404 
2405 			trie_collect_stats(t, &stat);
2406 			trie_show_stats(seq, &stat);
2407 #ifdef CONFIG_IP_FIB_TRIE_STATS
2408 			trie_show_usage(seq, t->stats);
2409 #endif
2410 		}
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2417 {
2418 	return single_open_net(inode, file, fib_triestat_seq_show);
2419 }
2420 
2421 static const struct file_operations fib_triestat_fops = {
2422 	.owner	= THIS_MODULE,
2423 	.open	= fib_triestat_seq_open,
2424 	.read	= seq_read,
2425 	.llseek	= seq_lseek,
2426 	.release = single_release_net,
2427 };
2428 
2429 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2430 {
2431 	struct fib_trie_iter *iter = seq->private;
2432 	struct net *net = seq_file_net(seq);
2433 	loff_t idx = 0;
2434 	unsigned int h;
2435 
2436 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2437 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2438 		struct fib_table *tb;
2439 
2440 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2441 			struct key_vector *n;
2442 
2443 			for (n = fib_trie_get_first(iter,
2444 						    (struct trie *) tb->tb_data);
2445 			     n; n = fib_trie_get_next(iter))
2446 				if (pos == idx++) {
2447 					iter->tb = tb;
2448 					return n;
2449 				}
2450 		}
2451 	}
2452 
2453 	return NULL;
2454 }
2455 
2456 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2457 	__acquires(RCU)
2458 {
2459 	rcu_read_lock();
2460 	return fib_trie_get_idx(seq, *pos);
2461 }
2462 
2463 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2464 {
2465 	struct fib_trie_iter *iter = seq->private;
2466 	struct net *net = seq_file_net(seq);
2467 	struct fib_table *tb = iter->tb;
2468 	struct hlist_node *tb_node;
2469 	unsigned int h;
2470 	struct key_vector *n;
2471 
2472 	++*pos;
2473 	/* next node in same table */
2474 	n = fib_trie_get_next(iter);
2475 	if (n)
2476 		return n;
2477 
2478 	/* walk rest of this hash chain */
2479 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2480 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2481 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2482 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2483 		if (n)
2484 			goto found;
2485 	}
2486 
2487 	/* new hash chain */
2488 	while (++h < FIB_TABLE_HASHSZ) {
2489 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2490 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2491 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2492 			if (n)
2493 				goto found;
2494 		}
2495 	}
2496 	return NULL;
2497 
2498 found:
2499 	iter->tb = tb;
2500 	return n;
2501 }
2502 
2503 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2504 	__releases(RCU)
2505 {
2506 	rcu_read_unlock();
2507 }
2508 
2509 static void seq_indent(struct seq_file *seq, int n)
2510 {
2511 	while (n-- > 0)
2512 		seq_puts(seq, "   ");
2513 }
2514 
2515 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2516 {
2517 	switch (s) {
2518 	case RT_SCOPE_UNIVERSE: return "universe";
2519 	case RT_SCOPE_SITE:	return "site";
2520 	case RT_SCOPE_LINK:	return "link";
2521 	case RT_SCOPE_HOST:	return "host";
2522 	case RT_SCOPE_NOWHERE:	return "nowhere";
2523 	default:
2524 		snprintf(buf, len, "scope=%d", s);
2525 		return buf;
2526 	}
2527 }
2528 
2529 static const char *const rtn_type_names[__RTN_MAX] = {
2530 	[RTN_UNSPEC] = "UNSPEC",
2531 	[RTN_UNICAST] = "UNICAST",
2532 	[RTN_LOCAL] = "LOCAL",
2533 	[RTN_BROADCAST] = "BROADCAST",
2534 	[RTN_ANYCAST] = "ANYCAST",
2535 	[RTN_MULTICAST] = "MULTICAST",
2536 	[RTN_BLACKHOLE] = "BLACKHOLE",
2537 	[RTN_UNREACHABLE] = "UNREACHABLE",
2538 	[RTN_PROHIBIT] = "PROHIBIT",
2539 	[RTN_THROW] = "THROW",
2540 	[RTN_NAT] = "NAT",
2541 	[RTN_XRESOLVE] = "XRESOLVE",
2542 };
2543 
2544 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2545 {
2546 	if (t < __RTN_MAX && rtn_type_names[t])
2547 		return rtn_type_names[t];
2548 	snprintf(buf, len, "type %u", t);
2549 	return buf;
2550 }
2551 
2552 /* Pretty print the trie */
2553 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2554 {
2555 	const struct fib_trie_iter *iter = seq->private;
2556 	struct key_vector *n = v;
2557 
2558 	if (IS_TRIE(node_parent_rcu(n)))
2559 		fib_table_print(seq, iter->tb);
2560 
2561 	if (IS_TNODE(n)) {
2562 		__be32 prf = htonl(n->key);
2563 
2564 		seq_indent(seq, iter->depth-1);
2565 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2566 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2567 			   tn_info(n)->full_children,
2568 			   tn_info(n)->empty_children);
2569 	} else {
2570 		__be32 val = htonl(n->key);
2571 		struct fib_alias *fa;
2572 
2573 		seq_indent(seq, iter->depth);
2574 		seq_printf(seq, "  |-- %pI4\n", &val);
2575 
2576 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2577 			char buf1[32], buf2[32];
2578 
2579 			seq_indent(seq, iter->depth + 1);
2580 			seq_printf(seq, "  /%zu %s %s",
2581 				   KEYLENGTH - fa->fa_slen,
2582 				   rtn_scope(buf1, sizeof(buf1),
2583 					     fa->fa_info->fib_scope),
2584 				   rtn_type(buf2, sizeof(buf2),
2585 					    fa->fa_type));
2586 			if (fa->fa_tos)
2587 				seq_printf(seq, " tos=%d", fa->fa_tos);
2588 			seq_putc(seq, '\n');
2589 		}
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 static const struct seq_operations fib_trie_seq_ops = {
2596 	.start  = fib_trie_seq_start,
2597 	.next   = fib_trie_seq_next,
2598 	.stop   = fib_trie_seq_stop,
2599 	.show   = fib_trie_seq_show,
2600 };
2601 
2602 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2603 {
2604 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2605 			    sizeof(struct fib_trie_iter));
2606 }
2607 
2608 static const struct file_operations fib_trie_fops = {
2609 	.owner  = THIS_MODULE,
2610 	.open   = fib_trie_seq_open,
2611 	.read   = seq_read,
2612 	.llseek = seq_lseek,
2613 	.release = seq_release_net,
2614 };
2615 
2616 struct fib_route_iter {
2617 	struct seq_net_private p;
2618 	struct fib_table *main_tb;
2619 	struct key_vector *tnode;
2620 	loff_t	pos;
2621 	t_key	key;
2622 };
2623 
2624 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2625 					    loff_t pos)
2626 {
2627 	struct key_vector *l, **tp = &iter->tnode;
2628 	t_key key;
2629 
2630 	/* use cached location of previously found key */
2631 	if (iter->pos > 0 && pos >= iter->pos) {
2632 		key = iter->key;
2633 	} else {
2634 		iter->pos = 1;
2635 		key = 0;
2636 	}
2637 
2638 	pos -= iter->pos;
2639 
2640 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2641 		key = l->key + 1;
2642 		iter->pos++;
2643 		l = NULL;
2644 
2645 		/* handle unlikely case of a key wrap */
2646 		if (!key)
2647 			break;
2648 	}
2649 
2650 	if (l)
2651 		iter->key = l->key;	/* remember it */
2652 	else
2653 		iter->pos = 0;		/* forget it */
2654 
2655 	return l;
2656 }
2657 
2658 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2659 	__acquires(RCU)
2660 {
2661 	struct fib_route_iter *iter = seq->private;
2662 	struct fib_table *tb;
2663 	struct trie *t;
2664 
2665 	rcu_read_lock();
2666 
2667 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2668 	if (!tb)
2669 		return NULL;
2670 
2671 	iter->main_tb = tb;
2672 	t = (struct trie *)tb->tb_data;
2673 	iter->tnode = t->kv;
2674 
2675 	if (*pos != 0)
2676 		return fib_route_get_idx(iter, *pos);
2677 
2678 	iter->pos = 0;
2679 	iter->key = KEY_MAX;
2680 
2681 	return SEQ_START_TOKEN;
2682 }
2683 
2684 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2685 {
2686 	struct fib_route_iter *iter = seq->private;
2687 	struct key_vector *l = NULL;
2688 	t_key key = iter->key + 1;
2689 
2690 	++*pos;
2691 
2692 	/* only allow key of 0 for start of sequence */
2693 	if ((v == SEQ_START_TOKEN) || key)
2694 		l = leaf_walk_rcu(&iter->tnode, key);
2695 
2696 	if (l) {
2697 		iter->key = l->key;
2698 		iter->pos++;
2699 	} else {
2700 		iter->pos = 0;
2701 	}
2702 
2703 	return l;
2704 }
2705 
2706 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2707 	__releases(RCU)
2708 {
2709 	rcu_read_unlock();
2710 }
2711 
2712 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2713 {
2714 	unsigned int flags = 0;
2715 
2716 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2717 		flags = RTF_REJECT;
2718 	if (fi && fi->fib_nh->nh_gw)
2719 		flags |= RTF_GATEWAY;
2720 	if (mask == htonl(0xFFFFFFFF))
2721 		flags |= RTF_HOST;
2722 	flags |= RTF_UP;
2723 	return flags;
2724 }
2725 
2726 /*
2727  *	This outputs /proc/net/route.
2728  *	The format of the file is not supposed to be changed
2729  *	and needs to be same as fib_hash output to avoid breaking
2730  *	legacy utilities
2731  */
2732 static int fib_route_seq_show(struct seq_file *seq, void *v)
2733 {
2734 	struct fib_route_iter *iter = seq->private;
2735 	struct fib_table *tb = iter->main_tb;
2736 	struct fib_alias *fa;
2737 	struct key_vector *l = v;
2738 	__be32 prefix;
2739 
2740 	if (v == SEQ_START_TOKEN) {
2741 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2742 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2743 			   "\tWindow\tIRTT");
2744 		return 0;
2745 	}
2746 
2747 	prefix = htonl(l->key);
2748 
2749 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2750 		const struct fib_info *fi = fa->fa_info;
2751 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2752 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2753 
2754 		if ((fa->fa_type == RTN_BROADCAST) ||
2755 		    (fa->fa_type == RTN_MULTICAST))
2756 			continue;
2757 
2758 		if (fa->tb_id != tb->tb_id)
2759 			continue;
2760 
2761 		seq_setwidth(seq, 127);
2762 
2763 		if (fi)
2764 			seq_printf(seq,
2765 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766 				   "%d\t%08X\t%d\t%u\t%u",
2767 				   fi->fib_dev ? fi->fib_dev->name : "*",
2768 				   prefix,
2769 				   fi->fib_nh->nh_gw, flags, 0, 0,
2770 				   fi->fib_priority,
2771 				   mask,
2772 				   (fi->fib_advmss ?
2773 				    fi->fib_advmss + 40 : 0),
2774 				   fi->fib_window,
2775 				   fi->fib_rtt >> 3);
2776 		else
2777 			seq_printf(seq,
2778 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 				   "%d\t%08X\t%d\t%u\t%u",
2780 				   prefix, 0, flags, 0, 0, 0,
2781 				   mask, 0, 0, 0);
2782 
2783 		seq_pad(seq, '\n');
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 static const struct seq_operations fib_route_seq_ops = {
2790 	.start  = fib_route_seq_start,
2791 	.next   = fib_route_seq_next,
2792 	.stop   = fib_route_seq_stop,
2793 	.show   = fib_route_seq_show,
2794 };
2795 
2796 static int fib_route_seq_open(struct inode *inode, struct file *file)
2797 {
2798 	return seq_open_net(inode, file, &fib_route_seq_ops,
2799 			    sizeof(struct fib_route_iter));
2800 }
2801 
2802 static const struct file_operations fib_route_fops = {
2803 	.owner  = THIS_MODULE,
2804 	.open   = fib_route_seq_open,
2805 	.read   = seq_read,
2806 	.llseek = seq_lseek,
2807 	.release = seq_release_net,
2808 };
2809 
2810 int __net_init fib_proc_init(struct net *net)
2811 {
2812 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2813 		goto out1;
2814 
2815 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2816 			 &fib_triestat_fops))
2817 		goto out2;
2818 
2819 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2820 		goto out3;
2821 
2822 	return 0;
2823 
2824 out3:
2825 	remove_proc_entry("fib_triestat", net->proc_net);
2826 out2:
2827 	remove_proc_entry("fib_trie", net->proc_net);
2828 out1:
2829 	return -ENOMEM;
2830 }
2831 
2832 void __net_exit fib_proc_exit(struct net *net)
2833 {
2834 	remove_proc_entry("fib_trie", net->proc_net);
2835 	remove_proc_entry("fib_triestat", net->proc_net);
2836 	remove_proc_entry("route", net->proc_net);
2837 }
2838 
2839 #endif /* CONFIG_PROC_FS */
2840