xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/prefetch.h>
75 #include <linux/export.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH (8*sizeof(t_key))
88 
89 typedef unsigned int t_key;
90 
91 #define T_TNODE 0
92 #define T_LEAF  1
93 #define NODE_TYPE_MASK	0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98 
99 struct rt_trie_node {
100 	unsigned long parent;
101 	t_key key;
102 };
103 
104 struct leaf {
105 	unsigned long parent;
106 	t_key key;
107 	struct hlist_head list;
108 	struct rcu_head rcu;
109 };
110 
111 struct leaf_info {
112 	struct hlist_node hlist;
113 	int plen;
114 	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
115 	struct list_head falh;
116 	struct rcu_head rcu;
117 };
118 
119 struct tnode {
120 	unsigned long parent;
121 	t_key key;
122 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124 	unsigned int full_children;	/* KEYLENGTH bits needed */
125 	unsigned int empty_children;	/* KEYLENGTH bits needed */
126 	union {
127 		struct rcu_head rcu;
128 		struct work_struct work;
129 		struct tnode *tnode_free;
130 	};
131 	struct rt_trie_node __rcu *child[0];
132 };
133 
134 #ifdef CONFIG_IP_FIB_TRIE_STATS
135 struct trie_use_stats {
136 	unsigned int gets;
137 	unsigned int backtrack;
138 	unsigned int semantic_match_passed;
139 	unsigned int semantic_match_miss;
140 	unsigned int null_node_hit;
141 	unsigned int resize_node_skipped;
142 };
143 #endif
144 
145 struct trie_stat {
146 	unsigned int totdepth;
147 	unsigned int maxdepth;
148 	unsigned int tnodes;
149 	unsigned int leaves;
150 	unsigned int nullpointers;
151 	unsigned int prefixes;
152 	unsigned int nodesizes[MAX_STAT_DEPTH];
153 };
154 
155 struct trie {
156 	struct rt_trie_node __rcu *trie;
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 	struct trie_use_stats stats;
159 #endif
160 };
161 
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163 				  int wasfull);
164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165 static struct tnode *inflate(struct trie *t, struct tnode *tn);
166 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 /* tnodes to free after resize(); protected by RTNL */
168 static struct tnode *tnode_free_head;
169 static size_t tnode_free_size;
170 
171 /*
172  * synchronize_rcu after call_rcu for that many pages; it should be especially
173  * useful before resizing the root node with PREEMPT_NONE configs; the value was
174  * obtained experimentally, aiming to avoid visible slowdown.
175  */
176 static const int sync_pages = 128;
177 
178 static struct kmem_cache *fn_alias_kmem __read_mostly;
179 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180 
181 /*
182  * caller must hold RTNL
183  */
184 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 {
186 	unsigned long parent;
187 
188 	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189 
190 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191 }
192 
193 /*
194  * caller must hold RCU read lock or RTNL
195  */
196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 {
198 	unsigned long parent;
199 
200 	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 							   lockdep_rtnl_is_held());
202 
203 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204 }
205 
206 /* Same as rcu_assign_pointer
207  * but that macro() assumes that value is a pointer.
208  */
209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 {
211 	smp_wmb();
212 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
213 }
214 
215 /*
216  * caller must hold RTNL
217  */
218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 {
220 	BUG_ON(i >= 1U << tn->bits);
221 
222 	return rtnl_dereference(tn->child[i]);
223 }
224 
225 /*
226  * caller must hold RCU read lock or RTNL
227  */
228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 {
230 	BUG_ON(i >= 1U << tn->bits);
231 
232 	return rcu_dereference_rtnl(tn->child[i]);
233 }
234 
235 static inline int tnode_child_length(const struct tnode *tn)
236 {
237 	return 1 << tn->bits;
238 }
239 
240 static inline t_key mask_pfx(t_key k, unsigned int l)
241 {
242 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243 }
244 
245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 {
247 	if (offset < KEYLENGTH)
248 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249 	else
250 		return 0;
251 }
252 
253 static inline int tkey_equals(t_key a, t_key b)
254 {
255 	return a == b;
256 }
257 
258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 {
260 	if (bits == 0 || offset >= KEYLENGTH)
261 		return 1;
262 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264 }
265 
266 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 {
268 	t_key diff = a ^ b;
269 	int i = offset;
270 
271 	if (!diff)
272 		return 0;
273 	while ((diff << i) >> (KEYLENGTH-1) == 0)
274 		i++;
275 	return i;
276 }
277 
278 /*
279   To understand this stuff, an understanding of keys and all their bits is
280   necessary. Every node in the trie has a key associated with it, but not
281   all of the bits in that key are significant.
282 
283   Consider a node 'n' and its parent 'tp'.
284 
285   If n is a leaf, every bit in its key is significant. Its presence is
286   necessitated by path compression, since during a tree traversal (when
287   searching for a leaf - unless we are doing an insertion) we will completely
288   ignore all skipped bits we encounter. Thus we need to verify, at the end of
289   a potentially successful search, that we have indeed been walking the
290   correct key path.
291 
292   Note that we can never "miss" the correct key in the tree if present by
293   following the wrong path. Path compression ensures that segments of the key
294   that are the same for all keys with a given prefix are skipped, but the
295   skipped part *is* identical for each node in the subtrie below the skipped
296   bit! trie_insert() in this implementation takes care of that - note the
297   call to tkey_sub_equals() in trie_insert().
298 
299   if n is an internal node - a 'tnode' here, the various parts of its key
300   have many different meanings.
301 
302   Example:
303   _________________________________________________________________
304   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305   -----------------------------------------------------------------
306     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
307 
308   _________________________________________________________________
309   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310   -----------------------------------------------------------------
311    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
312 
313   tp->pos = 7
314   tp->bits = 3
315   n->pos = 15
316   n->bits = 4
317 
318   First, let's just ignore the bits that come before the parent tp, that is
319   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320   not use them for anything.
321 
322   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323   index into the parent's child array. That is, they will be used to find
324   'n' among tp's children.
325 
326   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327   for the node n.
328 
329   All the bits we have seen so far are significant to the node n. The rest
330   of the bits are really not needed or indeed known in n->key.
331 
332   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333   n's child array, and will of course be different for each child.
334 
335 
336   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337   at this point.
338 
339 */
340 
341 static inline void check_tnode(const struct tnode *tn)
342 {
343 	WARN_ON(tn && tn->pos+tn->bits > 32);
344 }
345 
346 static const int halve_threshold = 25;
347 static const int inflate_threshold = 50;
348 static const int halve_threshold_root = 15;
349 static const int inflate_threshold_root = 30;
350 
351 static void __alias_free_mem(struct rcu_head *head)
352 {
353 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 	kmem_cache_free(fn_alias_kmem, fa);
355 }
356 
357 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 {
359 	call_rcu(&fa->rcu, __alias_free_mem);
360 }
361 
362 static void __leaf_free_rcu(struct rcu_head *head)
363 {
364 	struct leaf *l = container_of(head, struct leaf, rcu);
365 	kmem_cache_free(trie_leaf_kmem, l);
366 }
367 
368 static inline void free_leaf(struct leaf *l)
369 {
370 	call_rcu(&l->rcu, __leaf_free_rcu);
371 }
372 
373 static inline void free_leaf_info(struct leaf_info *leaf)
374 {
375 	kfree_rcu(leaf, rcu);
376 }
377 
378 static struct tnode *tnode_alloc(size_t size)
379 {
380 	if (size <= PAGE_SIZE)
381 		return kzalloc(size, GFP_KERNEL);
382 	else
383 		return vzalloc(size);
384 }
385 
386 static void __tnode_vfree(struct work_struct *arg)
387 {
388 	struct tnode *tn = container_of(arg, struct tnode, work);
389 	vfree(tn);
390 }
391 
392 static void __tnode_free_rcu(struct rcu_head *head)
393 {
394 	struct tnode *tn = container_of(head, struct tnode, rcu);
395 	size_t size = sizeof(struct tnode) +
396 		      (sizeof(struct rt_trie_node *) << tn->bits);
397 
398 	if (size <= PAGE_SIZE)
399 		kfree(tn);
400 	else {
401 		INIT_WORK(&tn->work, __tnode_vfree);
402 		schedule_work(&tn->work);
403 	}
404 }
405 
406 static inline void tnode_free(struct tnode *tn)
407 {
408 	if (IS_LEAF(tn))
409 		free_leaf((struct leaf *) tn);
410 	else
411 		call_rcu(&tn->rcu, __tnode_free_rcu);
412 }
413 
414 static void tnode_free_safe(struct tnode *tn)
415 {
416 	BUG_ON(IS_LEAF(tn));
417 	tn->tnode_free = tnode_free_head;
418 	tnode_free_head = tn;
419 	tnode_free_size += sizeof(struct tnode) +
420 			   (sizeof(struct rt_trie_node *) << tn->bits);
421 }
422 
423 static void tnode_free_flush(void)
424 {
425 	struct tnode *tn;
426 
427 	while ((tn = tnode_free_head)) {
428 		tnode_free_head = tn->tnode_free;
429 		tn->tnode_free = NULL;
430 		tnode_free(tn);
431 	}
432 
433 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 		tnode_free_size = 0;
435 		synchronize_rcu();
436 	}
437 }
438 
439 static struct leaf *leaf_new(void)
440 {
441 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442 	if (l) {
443 		l->parent = T_LEAF;
444 		INIT_HLIST_HEAD(&l->list);
445 	}
446 	return l;
447 }
448 
449 static struct leaf_info *leaf_info_new(int plen)
450 {
451 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
452 	if (li) {
453 		li->plen = plen;
454 		li->mask_plen = ntohl(inet_make_mask(plen));
455 		INIT_LIST_HEAD(&li->falh);
456 	}
457 	return li;
458 }
459 
460 static struct tnode *tnode_new(t_key key, int pos, int bits)
461 {
462 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
463 	struct tnode *tn = tnode_alloc(sz);
464 
465 	if (tn) {
466 		tn->parent = T_TNODE;
467 		tn->pos = pos;
468 		tn->bits = bits;
469 		tn->key = key;
470 		tn->full_children = 0;
471 		tn->empty_children = 1<<bits;
472 	}
473 
474 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
475 		 sizeof(struct rt_trie_node *) << bits);
476 	return tn;
477 }
478 
479 /*
480  * Check whether a tnode 'n' is "full", i.e. it is an internal node
481  * and no bits are skipped. See discussion in dyntree paper p. 6
482  */
483 
484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
485 {
486 	if (n == NULL || IS_LEAF(n))
487 		return 0;
488 
489 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
490 }
491 
492 static inline void put_child(struct tnode *tn, int i,
493 			     struct rt_trie_node *n)
494 {
495 	tnode_put_child_reorg(tn, i, n, -1);
496 }
497 
498  /*
499   * Add a child at position i overwriting the old value.
500   * Update the value of full_children and empty_children.
501   */
502 
503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
504 				  int wasfull)
505 {
506 	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
507 	int isfull;
508 
509 	BUG_ON(i >= 1<<tn->bits);
510 
511 	/* update emptyChildren */
512 	if (n == NULL && chi != NULL)
513 		tn->empty_children++;
514 	else if (n != NULL && chi == NULL)
515 		tn->empty_children--;
516 
517 	/* update fullChildren */
518 	if (wasfull == -1)
519 		wasfull = tnode_full(tn, chi);
520 
521 	isfull = tnode_full(tn, n);
522 	if (wasfull && !isfull)
523 		tn->full_children--;
524 	else if (!wasfull && isfull)
525 		tn->full_children++;
526 
527 	if (n)
528 		node_set_parent(n, tn);
529 
530 	rcu_assign_pointer(tn->child[i], n);
531 }
532 
533 #define MAX_WORK 10
534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
535 {
536 	int i;
537 	struct tnode *old_tn;
538 	int inflate_threshold_use;
539 	int halve_threshold_use;
540 	int max_work;
541 
542 	if (!tn)
543 		return NULL;
544 
545 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
546 		 tn, inflate_threshold, halve_threshold);
547 
548 	/* No children */
549 	if (tn->empty_children == tnode_child_length(tn)) {
550 		tnode_free_safe(tn);
551 		return NULL;
552 	}
553 	/* One child */
554 	if (tn->empty_children == tnode_child_length(tn) - 1)
555 		goto one_child;
556 	/*
557 	 * Double as long as the resulting node has a number of
558 	 * nonempty nodes that are above the threshold.
559 	 */
560 
561 	/*
562 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
563 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
564 	 * Telecommunications, page 6:
565 	 * "A node is doubled if the ratio of non-empty children to all
566 	 * children in the *doubled* node is at least 'high'."
567 	 *
568 	 * 'high' in this instance is the variable 'inflate_threshold'. It
569 	 * is expressed as a percentage, so we multiply it with
570 	 * tnode_child_length() and instead of multiplying by 2 (since the
571 	 * child array will be doubled by inflate()) and multiplying
572 	 * the left-hand side by 100 (to handle the percentage thing) we
573 	 * multiply the left-hand side by 50.
574 	 *
575 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
576 	 * - tn->empty_children is of course the number of non-null children
577 	 * in the current node. tn->full_children is the number of "full"
578 	 * children, that is non-null tnodes with a skip value of 0.
579 	 * All of those will be doubled in the resulting inflated tnode, so
580 	 * we just count them one extra time here.
581 	 *
582 	 * A clearer way to write this would be:
583 	 *
584 	 * to_be_doubled = tn->full_children;
585 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
586 	 *     tn->full_children;
587 	 *
588 	 * new_child_length = tnode_child_length(tn) * 2;
589 	 *
590 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
591 	 *      new_child_length;
592 	 * if (new_fill_factor >= inflate_threshold)
593 	 *
594 	 * ...and so on, tho it would mess up the while () loop.
595 	 *
596 	 * anyway,
597 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
598 	 *      inflate_threshold
599 	 *
600 	 * avoid a division:
601 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
602 	 *      inflate_threshold * new_child_length
603 	 *
604 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
605 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
606 	 *    tn->full_children) >= inflate_threshold * new_child_length
607 	 *
608 	 * expand new_child_length:
609 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
610 	 *    tn->full_children) >=
611 	 *      inflate_threshold * tnode_child_length(tn) * 2
612 	 *
613 	 * shorten again:
614 	 * 50 * (tn->full_children + tnode_child_length(tn) -
615 	 *    tn->empty_children) >= inflate_threshold *
616 	 *    tnode_child_length(tn)
617 	 *
618 	 */
619 
620 	check_tnode(tn);
621 
622 	/* Keep root node larger  */
623 
624 	if (!node_parent((struct rt_trie_node *)tn)) {
625 		inflate_threshold_use = inflate_threshold_root;
626 		halve_threshold_use = halve_threshold_root;
627 	} else {
628 		inflate_threshold_use = inflate_threshold;
629 		halve_threshold_use = halve_threshold;
630 	}
631 
632 	max_work = MAX_WORK;
633 	while ((tn->full_children > 0 &&  max_work-- &&
634 		50 * (tn->full_children + tnode_child_length(tn)
635 		      - tn->empty_children)
636 		>= inflate_threshold_use * tnode_child_length(tn))) {
637 
638 		old_tn = tn;
639 		tn = inflate(t, tn);
640 
641 		if (IS_ERR(tn)) {
642 			tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 			t->stats.resize_node_skipped++;
645 #endif
646 			break;
647 		}
648 	}
649 
650 	check_tnode(tn);
651 
652 	/* Return if at least one inflate is run */
653 	if (max_work != MAX_WORK)
654 		return (struct rt_trie_node *) tn;
655 
656 	/*
657 	 * Halve as long as the number of empty children in this
658 	 * node is above threshold.
659 	 */
660 
661 	max_work = MAX_WORK;
662 	while (tn->bits > 1 &&  max_work-- &&
663 	       100 * (tnode_child_length(tn) - tn->empty_children) <
664 	       halve_threshold_use * tnode_child_length(tn)) {
665 
666 		old_tn = tn;
667 		tn = halve(t, tn);
668 		if (IS_ERR(tn)) {
669 			tn = old_tn;
670 #ifdef CONFIG_IP_FIB_TRIE_STATS
671 			t->stats.resize_node_skipped++;
672 #endif
673 			break;
674 		}
675 	}
676 
677 
678 	/* Only one child remains */
679 	if (tn->empty_children == tnode_child_length(tn) - 1) {
680 one_child:
681 		for (i = 0; i < tnode_child_length(tn); i++) {
682 			struct rt_trie_node *n;
683 
684 			n = rtnl_dereference(tn->child[i]);
685 			if (!n)
686 				continue;
687 
688 			/* compress one level */
689 
690 			node_set_parent(n, NULL);
691 			tnode_free_safe(tn);
692 			return n;
693 		}
694 	}
695 	return (struct rt_trie_node *) tn;
696 }
697 
698 
699 static void tnode_clean_free(struct tnode *tn)
700 {
701 	int i;
702 	struct tnode *tofree;
703 
704 	for (i = 0; i < tnode_child_length(tn); i++) {
705 		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
706 		if (tofree)
707 			tnode_free(tofree);
708 	}
709 	tnode_free(tn);
710 }
711 
712 static struct tnode *inflate(struct trie *t, struct tnode *tn)
713 {
714 	struct tnode *oldtnode = tn;
715 	int olen = tnode_child_length(tn);
716 	int i;
717 
718 	pr_debug("In inflate\n");
719 
720 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
721 
722 	if (!tn)
723 		return ERR_PTR(-ENOMEM);
724 
725 	/*
726 	 * Preallocate and store tnodes before the actual work so we
727 	 * don't get into an inconsistent state if memory allocation
728 	 * fails. In case of failure we return the oldnode and  inflate
729 	 * of tnode is ignored.
730 	 */
731 
732 	for (i = 0; i < olen; i++) {
733 		struct tnode *inode;
734 
735 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
736 		if (inode &&
737 		    IS_TNODE(inode) &&
738 		    inode->pos == oldtnode->pos + oldtnode->bits &&
739 		    inode->bits > 1) {
740 			struct tnode *left, *right;
741 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
742 
743 			left = tnode_new(inode->key&(~m), inode->pos + 1,
744 					 inode->bits - 1);
745 			if (!left)
746 				goto nomem;
747 
748 			right = tnode_new(inode->key|m, inode->pos + 1,
749 					  inode->bits - 1);
750 
751 			if (!right) {
752 				tnode_free(left);
753 				goto nomem;
754 			}
755 
756 			put_child(tn, 2*i, (struct rt_trie_node *) left);
757 			put_child(tn, 2*i+1, (struct rt_trie_node *) right);
758 		}
759 	}
760 
761 	for (i = 0; i < olen; i++) {
762 		struct tnode *inode;
763 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
764 		struct tnode *left, *right;
765 		int size, j;
766 
767 		/* An empty child */
768 		if (node == NULL)
769 			continue;
770 
771 		/* A leaf or an internal node with skipped bits */
772 
773 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
774 		   tn->pos + tn->bits - 1) {
775 			if (tkey_extract_bits(node->key,
776 					      oldtnode->pos + oldtnode->bits,
777 					      1) == 0)
778 				put_child(tn, 2*i, node);
779 			else
780 				put_child(tn, 2*i+1, node);
781 			continue;
782 		}
783 
784 		/* An internal node with two children */
785 		inode = (struct tnode *) node;
786 
787 		if (inode->bits == 1) {
788 			put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
789 			put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
790 
791 			tnode_free_safe(inode);
792 			continue;
793 		}
794 
795 		/* An internal node with more than two children */
796 
797 		/* We will replace this node 'inode' with two new
798 		 * ones, 'left' and 'right', each with half of the
799 		 * original children. The two new nodes will have
800 		 * a position one bit further down the key and this
801 		 * means that the "significant" part of their keys
802 		 * (see the discussion near the top of this file)
803 		 * will differ by one bit, which will be "0" in
804 		 * left's key and "1" in right's key. Since we are
805 		 * moving the key position by one step, the bit that
806 		 * we are moving away from - the bit at position
807 		 * (inode->pos) - is the one that will differ between
808 		 * left and right. So... we synthesize that bit in the
809 		 * two  new keys.
810 		 * The mask 'm' below will be a single "one" bit at
811 		 * the position (inode->pos)
812 		 */
813 
814 		/* Use the old key, but set the new significant
815 		 *   bit to zero.
816 		 */
817 
818 		left = (struct tnode *) tnode_get_child(tn, 2*i);
819 		put_child(tn, 2*i, NULL);
820 
821 		BUG_ON(!left);
822 
823 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
824 		put_child(tn, 2*i+1, NULL);
825 
826 		BUG_ON(!right);
827 
828 		size = tnode_child_length(left);
829 		for (j = 0; j < size; j++) {
830 			put_child(left, j, rtnl_dereference(inode->child[j]));
831 			put_child(right, j, rtnl_dereference(inode->child[j + size]));
832 		}
833 		put_child(tn, 2*i, resize(t, left));
834 		put_child(tn, 2*i+1, resize(t, right));
835 
836 		tnode_free_safe(inode);
837 	}
838 	tnode_free_safe(oldtnode);
839 	return tn;
840 nomem:
841 	tnode_clean_free(tn);
842 	return ERR_PTR(-ENOMEM);
843 }
844 
845 static struct tnode *halve(struct trie *t, struct tnode *tn)
846 {
847 	struct tnode *oldtnode = tn;
848 	struct rt_trie_node *left, *right;
849 	int i;
850 	int olen = tnode_child_length(tn);
851 
852 	pr_debug("In halve\n");
853 
854 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
855 
856 	if (!tn)
857 		return ERR_PTR(-ENOMEM);
858 
859 	/*
860 	 * Preallocate and store tnodes before the actual work so we
861 	 * don't get into an inconsistent state if memory allocation
862 	 * fails. In case of failure we return the oldnode and halve
863 	 * of tnode is ignored.
864 	 */
865 
866 	for (i = 0; i < olen; i += 2) {
867 		left = tnode_get_child(oldtnode, i);
868 		right = tnode_get_child(oldtnode, i+1);
869 
870 		/* Two nonempty children */
871 		if (left && right) {
872 			struct tnode *newn;
873 
874 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
875 
876 			if (!newn)
877 				goto nomem;
878 
879 			put_child(tn, i/2, (struct rt_trie_node *)newn);
880 		}
881 
882 	}
883 
884 	for (i = 0; i < olen; i += 2) {
885 		struct tnode *newBinNode;
886 
887 		left = tnode_get_child(oldtnode, i);
888 		right = tnode_get_child(oldtnode, i+1);
889 
890 		/* At least one of the children is empty */
891 		if (left == NULL) {
892 			if (right == NULL)    /* Both are empty */
893 				continue;
894 			put_child(tn, i/2, right);
895 			continue;
896 		}
897 
898 		if (right == NULL) {
899 			put_child(tn, i/2, left);
900 			continue;
901 		}
902 
903 		/* Two nonempty children */
904 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
905 		put_child(tn, i/2, NULL);
906 		put_child(newBinNode, 0, left);
907 		put_child(newBinNode, 1, right);
908 		put_child(tn, i/2, resize(t, newBinNode));
909 	}
910 	tnode_free_safe(oldtnode);
911 	return tn;
912 nomem:
913 	tnode_clean_free(tn);
914 	return ERR_PTR(-ENOMEM);
915 }
916 
917 /* readside must use rcu_read_lock currently dump routines
918  via get_fa_head and dump */
919 
920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
921 {
922 	struct hlist_head *head = &l->list;
923 	struct leaf_info *li;
924 
925 	hlist_for_each_entry_rcu(li, head, hlist)
926 		if (li->plen == plen)
927 			return li;
928 
929 	return NULL;
930 }
931 
932 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
933 {
934 	struct leaf_info *li = find_leaf_info(l, plen);
935 
936 	if (!li)
937 		return NULL;
938 
939 	return &li->falh;
940 }
941 
942 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
943 {
944 	struct leaf_info *li = NULL, *last = NULL;
945 
946 	if (hlist_empty(head)) {
947 		hlist_add_head_rcu(&new->hlist, head);
948 	} else {
949 		hlist_for_each_entry(li, head, hlist) {
950 			if (new->plen > li->plen)
951 				break;
952 
953 			last = li;
954 		}
955 		if (last)
956 			hlist_add_after_rcu(&last->hlist, &new->hlist);
957 		else
958 			hlist_add_before_rcu(&new->hlist, &li->hlist);
959 	}
960 }
961 
962 /* rcu_read_lock needs to be hold by caller from readside */
963 
964 static struct leaf *
965 fib_find_node(struct trie *t, u32 key)
966 {
967 	int pos;
968 	struct tnode *tn;
969 	struct rt_trie_node *n;
970 
971 	pos = 0;
972 	n = rcu_dereference_rtnl(t->trie);
973 
974 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
975 		tn = (struct tnode *) n;
976 
977 		check_tnode(tn);
978 
979 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
980 			pos = tn->pos + tn->bits;
981 			n = tnode_get_child_rcu(tn,
982 						tkey_extract_bits(key,
983 								  tn->pos,
984 								  tn->bits));
985 		} else
986 			break;
987 	}
988 	/* Case we have found a leaf. Compare prefixes */
989 
990 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
991 		return (struct leaf *)n;
992 
993 	return NULL;
994 }
995 
996 static void trie_rebalance(struct trie *t, struct tnode *tn)
997 {
998 	int wasfull;
999 	t_key cindex, key;
1000 	struct tnode *tp;
1001 
1002 	key = tn->key;
1003 
1004 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1005 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1006 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1007 		tn = (struct tnode *)resize(t, tn);
1008 
1009 		tnode_put_child_reorg(tp, cindex,
1010 				      (struct rt_trie_node *)tn, wasfull);
1011 
1012 		tp = node_parent((struct rt_trie_node *) tn);
1013 		if (!tp)
1014 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1015 
1016 		tnode_free_flush();
1017 		if (!tp)
1018 			break;
1019 		tn = tp;
1020 	}
1021 
1022 	/* Handle last (top) tnode */
1023 	if (IS_TNODE(tn))
1024 		tn = (struct tnode *)resize(t, tn);
1025 
1026 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1027 	tnode_free_flush();
1028 }
1029 
1030 /* only used from updater-side */
1031 
1032 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1033 {
1034 	int pos, newpos;
1035 	struct tnode *tp = NULL, *tn = NULL;
1036 	struct rt_trie_node *n;
1037 	struct leaf *l;
1038 	int missbit;
1039 	struct list_head *fa_head = NULL;
1040 	struct leaf_info *li;
1041 	t_key cindex;
1042 
1043 	pos = 0;
1044 	n = rtnl_dereference(t->trie);
1045 
1046 	/* If we point to NULL, stop. Either the tree is empty and we should
1047 	 * just put a new leaf in if, or we have reached an empty child slot,
1048 	 * and we should just put our new leaf in that.
1049 	 * If we point to a T_TNODE, check if it matches our key. Note that
1050 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1051 	 * not be the parent's 'pos'+'bits'!
1052 	 *
1053 	 * If it does match the current key, get pos/bits from it, extract
1054 	 * the index from our key, push the T_TNODE and walk the tree.
1055 	 *
1056 	 * If it doesn't, we have to replace it with a new T_TNODE.
1057 	 *
1058 	 * If we point to a T_LEAF, it might or might not have the same key
1059 	 * as we do. If it does, just change the value, update the T_LEAF's
1060 	 * value, and return it.
1061 	 * If it doesn't, we need to replace it with a T_TNODE.
1062 	 */
1063 
1064 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1065 		tn = (struct tnode *) n;
1066 
1067 		check_tnode(tn);
1068 
1069 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1070 			tp = tn;
1071 			pos = tn->pos + tn->bits;
1072 			n = tnode_get_child(tn,
1073 					    tkey_extract_bits(key,
1074 							      tn->pos,
1075 							      tn->bits));
1076 
1077 			BUG_ON(n && node_parent(n) != tn);
1078 		} else
1079 			break;
1080 	}
1081 
1082 	/*
1083 	 * n  ----> NULL, LEAF or TNODE
1084 	 *
1085 	 * tp is n's (parent) ----> NULL or TNODE
1086 	 */
1087 
1088 	BUG_ON(tp && IS_LEAF(tp));
1089 
1090 	/* Case 1: n is a leaf. Compare prefixes */
1091 
1092 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1093 		l = (struct leaf *) n;
1094 		li = leaf_info_new(plen);
1095 
1096 		if (!li)
1097 			return NULL;
1098 
1099 		fa_head = &li->falh;
1100 		insert_leaf_info(&l->list, li);
1101 		goto done;
1102 	}
1103 	l = leaf_new();
1104 
1105 	if (!l)
1106 		return NULL;
1107 
1108 	l->key = key;
1109 	li = leaf_info_new(plen);
1110 
1111 	if (!li) {
1112 		free_leaf(l);
1113 		return NULL;
1114 	}
1115 
1116 	fa_head = &li->falh;
1117 	insert_leaf_info(&l->list, li);
1118 
1119 	if (t->trie && n == NULL) {
1120 		/* Case 2: n is NULL, and will just insert a new leaf */
1121 
1122 		node_set_parent((struct rt_trie_node *)l, tp);
1123 
1124 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 		put_child(tp, cindex, (struct rt_trie_node *)l);
1126 	} else {
1127 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1128 		/*
1129 		 *  Add a new tnode here
1130 		 *  first tnode need some special handling
1131 		 */
1132 
1133 		if (tp)
1134 			pos = tp->pos+tp->bits;
1135 		else
1136 			pos = 0;
1137 
1138 		if (n) {
1139 			newpos = tkey_mismatch(key, pos, n->key);
1140 			tn = tnode_new(n->key, newpos, 1);
1141 		} else {
1142 			newpos = 0;
1143 			tn = tnode_new(key, newpos, 1); /* First tnode */
1144 		}
1145 
1146 		if (!tn) {
1147 			free_leaf_info(li);
1148 			free_leaf(l);
1149 			return NULL;
1150 		}
1151 
1152 		node_set_parent((struct rt_trie_node *)tn, tp);
1153 
1154 		missbit = tkey_extract_bits(key, newpos, 1);
1155 		put_child(tn, missbit, (struct rt_trie_node *)l);
1156 		put_child(tn, 1-missbit, n);
1157 
1158 		if (tp) {
1159 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1160 			put_child(tp, cindex, (struct rt_trie_node *)tn);
1161 		} else {
1162 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1163 			tp = tn;
1164 		}
1165 	}
1166 
1167 	if (tp && tp->pos + tp->bits > 32)
1168 		pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1169 			tp, tp->pos, tp->bits, key, plen);
1170 
1171 	/* Rebalance the trie */
1172 
1173 	trie_rebalance(t, tp);
1174 done:
1175 	return fa_head;
1176 }
1177 
1178 /*
1179  * Caller must hold RTNL.
1180  */
1181 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1182 {
1183 	struct trie *t = (struct trie *) tb->tb_data;
1184 	struct fib_alias *fa, *new_fa;
1185 	struct list_head *fa_head = NULL;
1186 	struct fib_info *fi;
1187 	int plen = cfg->fc_dst_len;
1188 	u8 tos = cfg->fc_tos;
1189 	u32 key, mask;
1190 	int err;
1191 	struct leaf *l;
1192 
1193 	if (plen > 32)
1194 		return -EINVAL;
1195 
1196 	key = ntohl(cfg->fc_dst);
1197 
1198 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1199 
1200 	mask = ntohl(inet_make_mask(plen));
1201 
1202 	if (key & ~mask)
1203 		return -EINVAL;
1204 
1205 	key = key & mask;
1206 
1207 	fi = fib_create_info(cfg);
1208 	if (IS_ERR(fi)) {
1209 		err = PTR_ERR(fi);
1210 		goto err;
1211 	}
1212 
1213 	l = fib_find_node(t, key);
1214 	fa = NULL;
1215 
1216 	if (l) {
1217 		fa_head = get_fa_head(l, plen);
1218 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1219 	}
1220 
1221 	/* Now fa, if non-NULL, points to the first fib alias
1222 	 * with the same keys [prefix,tos,priority], if such key already
1223 	 * exists or to the node before which we will insert new one.
1224 	 *
1225 	 * If fa is NULL, we will need to allocate a new one and
1226 	 * insert to the head of f.
1227 	 *
1228 	 * If f is NULL, no fib node matched the destination key
1229 	 * and we need to allocate a new one of those as well.
1230 	 */
1231 
1232 	if (fa && fa->fa_tos == tos &&
1233 	    fa->fa_info->fib_priority == fi->fib_priority) {
1234 		struct fib_alias *fa_first, *fa_match;
1235 
1236 		err = -EEXIST;
1237 		if (cfg->fc_nlflags & NLM_F_EXCL)
1238 			goto out;
1239 
1240 		/* We have 2 goals:
1241 		 * 1. Find exact match for type, scope, fib_info to avoid
1242 		 * duplicate routes
1243 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1244 		 */
1245 		fa_match = NULL;
1246 		fa_first = fa;
1247 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1248 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1249 			if (fa->fa_tos != tos)
1250 				break;
1251 			if (fa->fa_info->fib_priority != fi->fib_priority)
1252 				break;
1253 			if (fa->fa_type == cfg->fc_type &&
1254 			    fa->fa_info == fi) {
1255 				fa_match = fa;
1256 				break;
1257 			}
1258 		}
1259 
1260 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1261 			struct fib_info *fi_drop;
1262 			u8 state;
1263 
1264 			fa = fa_first;
1265 			if (fa_match) {
1266 				if (fa == fa_match)
1267 					err = 0;
1268 				goto out;
1269 			}
1270 			err = -ENOBUFS;
1271 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1272 			if (new_fa == NULL)
1273 				goto out;
1274 
1275 			fi_drop = fa->fa_info;
1276 			new_fa->fa_tos = fa->fa_tos;
1277 			new_fa->fa_info = fi;
1278 			new_fa->fa_type = cfg->fc_type;
1279 			state = fa->fa_state;
1280 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1281 
1282 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1283 			alias_free_mem_rcu(fa);
1284 
1285 			fib_release_info(fi_drop);
1286 			if (state & FA_S_ACCESSED)
1287 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1288 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1289 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1290 
1291 			goto succeeded;
1292 		}
1293 		/* Error if we find a perfect match which
1294 		 * uses the same scope, type, and nexthop
1295 		 * information.
1296 		 */
1297 		if (fa_match)
1298 			goto out;
1299 
1300 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1301 			fa = fa_first;
1302 	}
1303 	err = -ENOENT;
1304 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1305 		goto out;
1306 
1307 	err = -ENOBUFS;
1308 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1309 	if (new_fa == NULL)
1310 		goto out;
1311 
1312 	new_fa->fa_info = fi;
1313 	new_fa->fa_tos = tos;
1314 	new_fa->fa_type = cfg->fc_type;
1315 	new_fa->fa_state = 0;
1316 	/*
1317 	 * Insert new entry to the list.
1318 	 */
1319 
1320 	if (!fa_head) {
1321 		fa_head = fib_insert_node(t, key, plen);
1322 		if (unlikely(!fa_head)) {
1323 			err = -ENOMEM;
1324 			goto out_free_new_fa;
1325 		}
1326 	}
1327 
1328 	if (!plen)
1329 		tb->tb_num_default++;
1330 
1331 	list_add_tail_rcu(&new_fa->fa_list,
1332 			  (fa ? &fa->fa_list : fa_head));
1333 
1334 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1335 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1336 		  &cfg->fc_nlinfo, 0);
1337 succeeded:
1338 	return 0;
1339 
1340 out_free_new_fa:
1341 	kmem_cache_free(fn_alias_kmem, new_fa);
1342 out:
1343 	fib_release_info(fi);
1344 err:
1345 	return err;
1346 }
1347 
1348 /* should be called with rcu_read_lock */
1349 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1350 		      t_key key,  const struct flowi4 *flp,
1351 		      struct fib_result *res, int fib_flags)
1352 {
1353 	struct leaf_info *li;
1354 	struct hlist_head *hhead = &l->list;
1355 
1356 	hlist_for_each_entry_rcu(li, hhead, hlist) {
1357 		struct fib_alias *fa;
1358 
1359 		if (l->key != (key & li->mask_plen))
1360 			continue;
1361 
1362 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1363 			struct fib_info *fi = fa->fa_info;
1364 			int nhsel, err;
1365 
1366 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1367 				continue;
1368 			if (fi->fib_dead)
1369 				continue;
1370 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1371 				continue;
1372 			fib_alias_accessed(fa);
1373 			err = fib_props[fa->fa_type].error;
1374 			if (err) {
1375 #ifdef CONFIG_IP_FIB_TRIE_STATS
1376 				t->stats.semantic_match_passed++;
1377 #endif
1378 				return err;
1379 			}
1380 			if (fi->fib_flags & RTNH_F_DEAD)
1381 				continue;
1382 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1383 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1384 
1385 				if (nh->nh_flags & RTNH_F_DEAD)
1386 					continue;
1387 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1388 					continue;
1389 
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 				t->stats.semantic_match_passed++;
1392 #endif
1393 				res->prefixlen = li->plen;
1394 				res->nh_sel = nhsel;
1395 				res->type = fa->fa_type;
1396 				res->scope = fa->fa_info->fib_scope;
1397 				res->fi = fi;
1398 				res->table = tb;
1399 				res->fa_head = &li->falh;
1400 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1401 					atomic_inc(&fi->fib_clntref);
1402 				return 0;
1403 			}
1404 		}
1405 
1406 #ifdef CONFIG_IP_FIB_TRIE_STATS
1407 		t->stats.semantic_match_miss++;
1408 #endif
1409 	}
1410 
1411 	return 1;
1412 }
1413 
1414 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1415 		     struct fib_result *res, int fib_flags)
1416 {
1417 	struct trie *t = (struct trie *) tb->tb_data;
1418 	int ret;
1419 	struct rt_trie_node *n;
1420 	struct tnode *pn;
1421 	unsigned int pos, bits;
1422 	t_key key = ntohl(flp->daddr);
1423 	unsigned int chopped_off;
1424 	t_key cindex = 0;
1425 	unsigned int current_prefix_length = KEYLENGTH;
1426 	struct tnode *cn;
1427 	t_key pref_mismatch;
1428 
1429 	rcu_read_lock();
1430 
1431 	n = rcu_dereference(t->trie);
1432 	if (!n)
1433 		goto failed;
1434 
1435 #ifdef CONFIG_IP_FIB_TRIE_STATS
1436 	t->stats.gets++;
1437 #endif
1438 
1439 	/* Just a leaf? */
1440 	if (IS_LEAF(n)) {
1441 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1442 		goto found;
1443 	}
1444 
1445 	pn = (struct tnode *) n;
1446 	chopped_off = 0;
1447 
1448 	while (pn) {
1449 		pos = pn->pos;
1450 		bits = pn->bits;
1451 
1452 		if (!chopped_off)
1453 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1454 						   pos, bits);
1455 
1456 		n = tnode_get_child_rcu(pn, cindex);
1457 
1458 		if (n == NULL) {
1459 #ifdef CONFIG_IP_FIB_TRIE_STATS
1460 			t->stats.null_node_hit++;
1461 #endif
1462 			goto backtrace;
1463 		}
1464 
1465 		if (IS_LEAF(n)) {
1466 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1467 			if (ret > 0)
1468 				goto backtrace;
1469 			goto found;
1470 		}
1471 
1472 		cn = (struct tnode *)n;
1473 
1474 		/*
1475 		 * It's a tnode, and we can do some extra checks here if we
1476 		 * like, to avoid descending into a dead-end branch.
1477 		 * This tnode is in the parent's child array at index
1478 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1479 		 * chopped off, so in reality the index may be just a
1480 		 * subprefix, padded with zero at the end.
1481 		 * We can also take a look at any skipped bits in this
1482 		 * tnode - everything up to p_pos is supposed to be ok,
1483 		 * and the non-chopped bits of the index (se previous
1484 		 * paragraph) are also guaranteed ok, but the rest is
1485 		 * considered unknown.
1486 		 *
1487 		 * The skipped bits are key[pos+bits..cn->pos].
1488 		 */
1489 
1490 		/* If current_prefix_length < pos+bits, we are already doing
1491 		 * actual prefix  matching, which means everything from
1492 		 * pos+(bits-chopped_off) onward must be zero along some
1493 		 * branch of this subtree - otherwise there is *no* valid
1494 		 * prefix present. Here we can only check the skipped
1495 		 * bits. Remember, since we have already indexed into the
1496 		 * parent's child array, we know that the bits we chopped of
1497 		 * *are* zero.
1498 		 */
1499 
1500 		/* NOTA BENE: Checking only skipped bits
1501 		   for the new node here */
1502 
1503 		if (current_prefix_length < pos+bits) {
1504 			if (tkey_extract_bits(cn->key, current_prefix_length,
1505 						cn->pos - current_prefix_length)
1506 			    || !(cn->child[0]))
1507 				goto backtrace;
1508 		}
1509 
1510 		/*
1511 		 * If chopped_off=0, the index is fully validated and we
1512 		 * only need to look at the skipped bits for this, the new,
1513 		 * tnode. What we actually want to do is to find out if
1514 		 * these skipped bits match our key perfectly, or if we will
1515 		 * have to count on finding a matching prefix further down,
1516 		 * because if we do, we would like to have some way of
1517 		 * verifying the existence of such a prefix at this point.
1518 		 */
1519 
1520 		/* The only thing we can do at this point is to verify that
1521 		 * any such matching prefix can indeed be a prefix to our
1522 		 * key, and if the bits in the node we are inspecting that
1523 		 * do not match our key are not ZERO, this cannot be true.
1524 		 * Thus, find out where there is a mismatch (before cn->pos)
1525 		 * and verify that all the mismatching bits are zero in the
1526 		 * new tnode's key.
1527 		 */
1528 
1529 		/*
1530 		 * Note: We aren't very concerned about the piece of
1531 		 * the key that precede pn->pos+pn->bits, since these
1532 		 * have already been checked. The bits after cn->pos
1533 		 * aren't checked since these are by definition
1534 		 * "unknown" at this point. Thus, what we want to see
1535 		 * is if we are about to enter the "prefix matching"
1536 		 * state, and in that case verify that the skipped
1537 		 * bits that will prevail throughout this subtree are
1538 		 * zero, as they have to be if we are to find a
1539 		 * matching prefix.
1540 		 */
1541 
1542 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1543 
1544 		/*
1545 		 * In short: If skipped bits in this node do not match
1546 		 * the search key, enter the "prefix matching"
1547 		 * state.directly.
1548 		 */
1549 		if (pref_mismatch) {
1550 			/* fls(x) = __fls(x) + 1 */
1551 			int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1552 
1553 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1554 				goto backtrace;
1555 
1556 			if (current_prefix_length >= cn->pos)
1557 				current_prefix_length = mp;
1558 		}
1559 
1560 		pn = (struct tnode *)n; /* Descend */
1561 		chopped_off = 0;
1562 		continue;
1563 
1564 backtrace:
1565 		chopped_off++;
1566 
1567 		/* As zero don't change the child key (cindex) */
1568 		while ((chopped_off <= pn->bits)
1569 		       && !(cindex & (1<<(chopped_off-1))))
1570 			chopped_off++;
1571 
1572 		/* Decrease current_... with bits chopped off */
1573 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1574 			current_prefix_length = pn->pos + pn->bits
1575 				- chopped_off;
1576 
1577 		/*
1578 		 * Either we do the actual chop off according or if we have
1579 		 * chopped off all bits in this tnode walk up to our parent.
1580 		 */
1581 
1582 		if (chopped_off <= pn->bits) {
1583 			cindex &= ~(1 << (chopped_off-1));
1584 		} else {
1585 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1586 			if (!parent)
1587 				goto failed;
1588 
1589 			/* Get Child's index */
1590 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1591 			pn = parent;
1592 			chopped_off = 0;
1593 
1594 #ifdef CONFIG_IP_FIB_TRIE_STATS
1595 			t->stats.backtrack++;
1596 #endif
1597 			goto backtrace;
1598 		}
1599 	}
1600 failed:
1601 	ret = 1;
1602 found:
1603 	rcu_read_unlock();
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(fib_table_lookup);
1607 
1608 /*
1609  * Remove the leaf and return parent.
1610  */
1611 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1612 {
1613 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1614 
1615 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1616 
1617 	if (tp) {
1618 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1619 		put_child(tp, cindex, NULL);
1620 		trie_rebalance(t, tp);
1621 	} else
1622 		RCU_INIT_POINTER(t->trie, NULL);
1623 
1624 	free_leaf(l);
1625 }
1626 
1627 /*
1628  * Caller must hold RTNL.
1629  */
1630 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1631 {
1632 	struct trie *t = (struct trie *) tb->tb_data;
1633 	u32 key, mask;
1634 	int plen = cfg->fc_dst_len;
1635 	u8 tos = cfg->fc_tos;
1636 	struct fib_alias *fa, *fa_to_delete;
1637 	struct list_head *fa_head;
1638 	struct leaf *l;
1639 	struct leaf_info *li;
1640 
1641 	if (plen > 32)
1642 		return -EINVAL;
1643 
1644 	key = ntohl(cfg->fc_dst);
1645 	mask = ntohl(inet_make_mask(plen));
1646 
1647 	if (key & ~mask)
1648 		return -EINVAL;
1649 
1650 	key = key & mask;
1651 	l = fib_find_node(t, key);
1652 
1653 	if (!l)
1654 		return -ESRCH;
1655 
1656 	li = find_leaf_info(l, plen);
1657 
1658 	if (!li)
1659 		return -ESRCH;
1660 
1661 	fa_head = &li->falh;
1662 	fa = fib_find_alias(fa_head, tos, 0);
1663 
1664 	if (!fa)
1665 		return -ESRCH;
1666 
1667 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1668 
1669 	fa_to_delete = NULL;
1670 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1671 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1672 		struct fib_info *fi = fa->fa_info;
1673 
1674 		if (fa->fa_tos != tos)
1675 			break;
1676 
1677 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1678 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1679 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1680 		    (!cfg->fc_prefsrc ||
1681 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1682 		    (!cfg->fc_protocol ||
1683 		     fi->fib_protocol == cfg->fc_protocol) &&
1684 		    fib_nh_match(cfg, fi) == 0) {
1685 			fa_to_delete = fa;
1686 			break;
1687 		}
1688 	}
1689 
1690 	if (!fa_to_delete)
1691 		return -ESRCH;
1692 
1693 	fa = fa_to_delete;
1694 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1695 		  &cfg->fc_nlinfo, 0);
1696 
1697 	list_del_rcu(&fa->fa_list);
1698 
1699 	if (!plen)
1700 		tb->tb_num_default--;
1701 
1702 	if (list_empty(fa_head)) {
1703 		hlist_del_rcu(&li->hlist);
1704 		free_leaf_info(li);
1705 	}
1706 
1707 	if (hlist_empty(&l->list))
1708 		trie_leaf_remove(t, l);
1709 
1710 	if (fa->fa_state & FA_S_ACCESSED)
1711 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1712 
1713 	fib_release_info(fa->fa_info);
1714 	alias_free_mem_rcu(fa);
1715 	return 0;
1716 }
1717 
1718 static int trie_flush_list(struct list_head *head)
1719 {
1720 	struct fib_alias *fa, *fa_node;
1721 	int found = 0;
1722 
1723 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 		struct fib_info *fi = fa->fa_info;
1725 
1726 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 			list_del_rcu(&fa->fa_list);
1728 			fib_release_info(fa->fa_info);
1729 			alias_free_mem_rcu(fa);
1730 			found++;
1731 		}
1732 	}
1733 	return found;
1734 }
1735 
1736 static int trie_flush_leaf(struct leaf *l)
1737 {
1738 	int found = 0;
1739 	struct hlist_head *lih = &l->list;
1740 	struct hlist_node *tmp;
1741 	struct leaf_info *li = NULL;
1742 
1743 	hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1744 		found += trie_flush_list(&li->falh);
1745 
1746 		if (list_empty(&li->falh)) {
1747 			hlist_del_rcu(&li->hlist);
1748 			free_leaf_info(li);
1749 		}
1750 	}
1751 	return found;
1752 }
1753 
1754 /*
1755  * Scan for the next right leaf starting at node p->child[idx]
1756  * Since we have back pointer, no recursion necessary.
1757  */
1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759 {
1760 	do {
1761 		t_key idx;
1762 
1763 		if (c)
1764 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765 		else
1766 			idx = 0;
1767 
1768 		while (idx < 1u << p->bits) {
1769 			c = tnode_get_child_rcu(p, idx++);
1770 			if (!c)
1771 				continue;
1772 
1773 			if (IS_LEAF(c)) {
1774 				prefetch(rcu_dereference_rtnl(p->child[idx]));
1775 				return (struct leaf *) c;
1776 			}
1777 
1778 			/* Rescan start scanning in new node */
1779 			p = (struct tnode *) c;
1780 			idx = 0;
1781 		}
1782 
1783 		/* Node empty, walk back up to parent */
1784 		c = (struct rt_trie_node *) p;
1785 	} while ((p = node_parent_rcu(c)) != NULL);
1786 
1787 	return NULL; /* Root of trie */
1788 }
1789 
1790 static struct leaf *trie_firstleaf(struct trie *t)
1791 {
1792 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1793 
1794 	if (!n)
1795 		return NULL;
1796 
1797 	if (IS_LEAF(n))          /* trie is just a leaf */
1798 		return (struct leaf *) n;
1799 
1800 	return leaf_walk_rcu(n, NULL);
1801 }
1802 
1803 static struct leaf *trie_nextleaf(struct leaf *l)
1804 {
1805 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1806 	struct tnode *p = node_parent_rcu(c);
1807 
1808 	if (!p)
1809 		return NULL;	/* trie with just one leaf */
1810 
1811 	return leaf_walk_rcu(p, c);
1812 }
1813 
1814 static struct leaf *trie_leafindex(struct trie *t, int index)
1815 {
1816 	struct leaf *l = trie_firstleaf(t);
1817 
1818 	while (l && index-- > 0)
1819 		l = trie_nextleaf(l);
1820 
1821 	return l;
1822 }
1823 
1824 
1825 /*
1826  * Caller must hold RTNL.
1827  */
1828 int fib_table_flush(struct fib_table *tb)
1829 {
1830 	struct trie *t = (struct trie *) tb->tb_data;
1831 	struct leaf *l, *ll = NULL;
1832 	int found = 0;
1833 
1834 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835 		found += trie_flush_leaf(l);
1836 
1837 		if (ll && hlist_empty(&ll->list))
1838 			trie_leaf_remove(t, ll);
1839 		ll = l;
1840 	}
1841 
1842 	if (ll && hlist_empty(&ll->list))
1843 		trie_leaf_remove(t, ll);
1844 
1845 	pr_debug("trie_flush found=%d\n", found);
1846 	return found;
1847 }
1848 
1849 void fib_free_table(struct fib_table *tb)
1850 {
1851 	kfree(tb);
1852 }
1853 
1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 			   struct fib_table *tb,
1856 			   struct sk_buff *skb, struct netlink_callback *cb)
1857 {
1858 	int i, s_i;
1859 	struct fib_alias *fa;
1860 	__be32 xkey = htonl(key);
1861 
1862 	s_i = cb->args[5];
1863 	i = 0;
1864 
1865 	/* rcu_read_lock is hold by caller */
1866 
1867 	list_for_each_entry_rcu(fa, fah, fa_list) {
1868 		if (i < s_i) {
1869 			i++;
1870 			continue;
1871 		}
1872 
1873 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1874 				  cb->nlh->nlmsg_seq,
1875 				  RTM_NEWROUTE,
1876 				  tb->tb_id,
1877 				  fa->fa_type,
1878 				  xkey,
1879 				  plen,
1880 				  fa->fa_tos,
1881 				  fa->fa_info, NLM_F_MULTI) < 0) {
1882 			cb->args[5] = i;
1883 			return -1;
1884 		}
1885 		i++;
1886 	}
1887 	cb->args[5] = i;
1888 	return skb->len;
1889 }
1890 
1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 			struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 	struct leaf_info *li;
1895 	int i, s_i;
1896 
1897 	s_i = cb->args[4];
1898 	i = 0;
1899 
1900 	/* rcu_read_lock is hold by caller */
1901 	hlist_for_each_entry_rcu(li, &l->list, hlist) {
1902 		if (i < s_i) {
1903 			i++;
1904 			continue;
1905 		}
1906 
1907 		if (i > s_i)
1908 			cb->args[5] = 0;
1909 
1910 		if (list_empty(&li->falh))
1911 			continue;
1912 
1913 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1914 			cb->args[4] = i;
1915 			return -1;
1916 		}
1917 		i++;
1918 	}
1919 
1920 	cb->args[4] = i;
1921 	return skb->len;
1922 }
1923 
1924 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1925 		   struct netlink_callback *cb)
1926 {
1927 	struct leaf *l;
1928 	struct trie *t = (struct trie *) tb->tb_data;
1929 	t_key key = cb->args[2];
1930 	int count = cb->args[3];
1931 
1932 	rcu_read_lock();
1933 	/* Dump starting at last key.
1934 	 * Note: 0.0.0.0/0 (ie default) is first key.
1935 	 */
1936 	if (count == 0)
1937 		l = trie_firstleaf(t);
1938 	else {
1939 		/* Normally, continue from last key, but if that is missing
1940 		 * fallback to using slow rescan
1941 		 */
1942 		l = fib_find_node(t, key);
1943 		if (!l)
1944 			l = trie_leafindex(t, count);
1945 	}
1946 
1947 	while (l) {
1948 		cb->args[2] = l->key;
1949 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1950 			cb->args[3] = count;
1951 			rcu_read_unlock();
1952 			return -1;
1953 		}
1954 
1955 		++count;
1956 		l = trie_nextleaf(l);
1957 		memset(&cb->args[4], 0,
1958 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1959 	}
1960 	cb->args[3] = count;
1961 	rcu_read_unlock();
1962 
1963 	return skb->len;
1964 }
1965 
1966 void __init fib_trie_init(void)
1967 {
1968 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 					  sizeof(struct fib_alias),
1970 					  0, SLAB_PANIC, NULL);
1971 
1972 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1973 					   max(sizeof(struct leaf),
1974 					       sizeof(struct leaf_info)),
1975 					   0, SLAB_PANIC, NULL);
1976 }
1977 
1978 
1979 struct fib_table *fib_trie_table(u32 id)
1980 {
1981 	struct fib_table *tb;
1982 	struct trie *t;
1983 
1984 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1985 		     GFP_KERNEL);
1986 	if (tb == NULL)
1987 		return NULL;
1988 
1989 	tb->tb_id = id;
1990 	tb->tb_default = -1;
1991 	tb->tb_num_default = 0;
1992 
1993 	t = (struct trie *) tb->tb_data;
1994 	memset(t, 0, sizeof(*t));
1995 
1996 	return tb;
1997 }
1998 
1999 #ifdef CONFIG_PROC_FS
2000 /* Depth first Trie walk iterator */
2001 struct fib_trie_iter {
2002 	struct seq_net_private p;
2003 	struct fib_table *tb;
2004 	struct tnode *tnode;
2005 	unsigned int index;
2006 	unsigned int depth;
2007 };
2008 
2009 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2010 {
2011 	struct tnode *tn = iter->tnode;
2012 	unsigned int cindex = iter->index;
2013 	struct tnode *p;
2014 
2015 	/* A single entry routing table */
2016 	if (!tn)
2017 		return NULL;
2018 
2019 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2020 		 iter->tnode, iter->index, iter->depth);
2021 rescan:
2022 	while (cindex < (1<<tn->bits)) {
2023 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2024 
2025 		if (n) {
2026 			if (IS_LEAF(n)) {
2027 				iter->tnode = tn;
2028 				iter->index = cindex + 1;
2029 			} else {
2030 				/* push down one level */
2031 				iter->tnode = (struct tnode *) n;
2032 				iter->index = 0;
2033 				++iter->depth;
2034 			}
2035 			return n;
2036 		}
2037 
2038 		++cindex;
2039 	}
2040 
2041 	/* Current node exhausted, pop back up */
2042 	p = node_parent_rcu((struct rt_trie_node *)tn);
2043 	if (p) {
2044 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2045 		tn = p;
2046 		--iter->depth;
2047 		goto rescan;
2048 	}
2049 
2050 	/* got root? */
2051 	return NULL;
2052 }
2053 
2054 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2055 				       struct trie *t)
2056 {
2057 	struct rt_trie_node *n;
2058 
2059 	if (!t)
2060 		return NULL;
2061 
2062 	n = rcu_dereference(t->trie);
2063 	if (!n)
2064 		return NULL;
2065 
2066 	if (IS_TNODE(n)) {
2067 		iter->tnode = (struct tnode *) n;
2068 		iter->index = 0;
2069 		iter->depth = 1;
2070 	} else {
2071 		iter->tnode = NULL;
2072 		iter->index = 0;
2073 		iter->depth = 0;
2074 	}
2075 
2076 	return n;
2077 }
2078 
2079 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2080 {
2081 	struct rt_trie_node *n;
2082 	struct fib_trie_iter iter;
2083 
2084 	memset(s, 0, sizeof(*s));
2085 
2086 	rcu_read_lock();
2087 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2088 		if (IS_LEAF(n)) {
2089 			struct leaf *l = (struct leaf *)n;
2090 			struct leaf_info *li;
2091 
2092 			s->leaves++;
2093 			s->totdepth += iter.depth;
2094 			if (iter.depth > s->maxdepth)
2095 				s->maxdepth = iter.depth;
2096 
2097 			hlist_for_each_entry_rcu(li, &l->list, hlist)
2098 				++s->prefixes;
2099 		} else {
2100 			const struct tnode *tn = (const struct tnode *) n;
2101 			int i;
2102 
2103 			s->tnodes++;
2104 			if (tn->bits < MAX_STAT_DEPTH)
2105 				s->nodesizes[tn->bits]++;
2106 
2107 			for (i = 0; i < (1<<tn->bits); i++)
2108 				if (!tn->child[i])
2109 					s->nullpointers++;
2110 		}
2111 	}
2112 	rcu_read_unlock();
2113 }
2114 
2115 /*
2116  *	This outputs /proc/net/fib_triestats
2117  */
2118 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2119 {
2120 	unsigned int i, max, pointers, bytes, avdepth;
2121 
2122 	if (stat->leaves)
2123 		avdepth = stat->totdepth*100 / stat->leaves;
2124 	else
2125 		avdepth = 0;
2126 
2127 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2128 		   avdepth / 100, avdepth % 100);
2129 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2130 
2131 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2132 	bytes = sizeof(struct leaf) * stat->leaves;
2133 
2134 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2135 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2136 
2137 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2138 	bytes += sizeof(struct tnode) * stat->tnodes;
2139 
2140 	max = MAX_STAT_DEPTH;
2141 	while (max > 0 && stat->nodesizes[max-1] == 0)
2142 		max--;
2143 
2144 	pointers = 0;
2145 	for (i = 1; i <= max; i++)
2146 		if (stat->nodesizes[i] != 0) {
2147 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2148 			pointers += (1<<i) * stat->nodesizes[i];
2149 		}
2150 	seq_putc(seq, '\n');
2151 	seq_printf(seq, "\tPointers: %u\n", pointers);
2152 
2153 	bytes += sizeof(struct rt_trie_node *) * pointers;
2154 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2155 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2156 }
2157 
2158 #ifdef CONFIG_IP_FIB_TRIE_STATS
2159 static void trie_show_usage(struct seq_file *seq,
2160 			    const struct trie_use_stats *stats)
2161 {
2162 	seq_printf(seq, "\nCounters:\n---------\n");
2163 	seq_printf(seq, "gets = %u\n", stats->gets);
2164 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2165 	seq_printf(seq, "semantic match passed = %u\n",
2166 		   stats->semantic_match_passed);
2167 	seq_printf(seq, "semantic match miss = %u\n",
2168 		   stats->semantic_match_miss);
2169 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2170 	seq_printf(seq, "skipped node resize = %u\n\n",
2171 		   stats->resize_node_skipped);
2172 }
2173 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2174 
2175 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2176 {
2177 	if (tb->tb_id == RT_TABLE_LOCAL)
2178 		seq_puts(seq, "Local:\n");
2179 	else if (tb->tb_id == RT_TABLE_MAIN)
2180 		seq_puts(seq, "Main:\n");
2181 	else
2182 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2183 }
2184 
2185 
2186 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2187 {
2188 	struct net *net = (struct net *)seq->private;
2189 	unsigned int h;
2190 
2191 	seq_printf(seq,
2192 		   "Basic info: size of leaf:"
2193 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2194 		   sizeof(struct leaf), sizeof(struct tnode));
2195 
2196 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2197 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2198 		struct fib_table *tb;
2199 
2200 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2201 			struct trie *t = (struct trie *) tb->tb_data;
2202 			struct trie_stat stat;
2203 
2204 			if (!t)
2205 				continue;
2206 
2207 			fib_table_print(seq, tb);
2208 
2209 			trie_collect_stats(t, &stat);
2210 			trie_show_stats(seq, &stat);
2211 #ifdef CONFIG_IP_FIB_TRIE_STATS
2212 			trie_show_usage(seq, &t->stats);
2213 #endif
2214 		}
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2221 {
2222 	return single_open_net(inode, file, fib_triestat_seq_show);
2223 }
2224 
2225 static const struct file_operations fib_triestat_fops = {
2226 	.owner	= THIS_MODULE,
2227 	.open	= fib_triestat_seq_open,
2228 	.read	= seq_read,
2229 	.llseek	= seq_lseek,
2230 	.release = single_release_net,
2231 };
2232 
2233 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2234 {
2235 	struct fib_trie_iter *iter = seq->private;
2236 	struct net *net = seq_file_net(seq);
2237 	loff_t idx = 0;
2238 	unsigned int h;
2239 
2240 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2241 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2242 		struct fib_table *tb;
2243 
2244 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2245 			struct rt_trie_node *n;
2246 
2247 			for (n = fib_trie_get_first(iter,
2248 						    (struct trie *) tb->tb_data);
2249 			     n; n = fib_trie_get_next(iter))
2250 				if (pos == idx++) {
2251 					iter->tb = tb;
2252 					return n;
2253 				}
2254 		}
2255 	}
2256 
2257 	return NULL;
2258 }
2259 
2260 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2261 	__acquires(RCU)
2262 {
2263 	rcu_read_lock();
2264 	return fib_trie_get_idx(seq, *pos);
2265 }
2266 
2267 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2268 {
2269 	struct fib_trie_iter *iter = seq->private;
2270 	struct net *net = seq_file_net(seq);
2271 	struct fib_table *tb = iter->tb;
2272 	struct hlist_node *tb_node;
2273 	unsigned int h;
2274 	struct rt_trie_node *n;
2275 
2276 	++*pos;
2277 	/* next node in same table */
2278 	n = fib_trie_get_next(iter);
2279 	if (n)
2280 		return n;
2281 
2282 	/* walk rest of this hash chain */
2283 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2284 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2285 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2286 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2287 		if (n)
2288 			goto found;
2289 	}
2290 
2291 	/* new hash chain */
2292 	while (++h < FIB_TABLE_HASHSZ) {
2293 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2294 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2295 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2296 			if (n)
2297 				goto found;
2298 		}
2299 	}
2300 	return NULL;
2301 
2302 found:
2303 	iter->tb = tb;
2304 	return n;
2305 }
2306 
2307 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2308 	__releases(RCU)
2309 {
2310 	rcu_read_unlock();
2311 }
2312 
2313 static void seq_indent(struct seq_file *seq, int n)
2314 {
2315 	while (n-- > 0)
2316 		seq_puts(seq, "   ");
2317 }
2318 
2319 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2320 {
2321 	switch (s) {
2322 	case RT_SCOPE_UNIVERSE: return "universe";
2323 	case RT_SCOPE_SITE:	return "site";
2324 	case RT_SCOPE_LINK:	return "link";
2325 	case RT_SCOPE_HOST:	return "host";
2326 	case RT_SCOPE_NOWHERE:	return "nowhere";
2327 	default:
2328 		snprintf(buf, len, "scope=%d", s);
2329 		return buf;
2330 	}
2331 }
2332 
2333 static const char *const rtn_type_names[__RTN_MAX] = {
2334 	[RTN_UNSPEC] = "UNSPEC",
2335 	[RTN_UNICAST] = "UNICAST",
2336 	[RTN_LOCAL] = "LOCAL",
2337 	[RTN_BROADCAST] = "BROADCAST",
2338 	[RTN_ANYCAST] = "ANYCAST",
2339 	[RTN_MULTICAST] = "MULTICAST",
2340 	[RTN_BLACKHOLE] = "BLACKHOLE",
2341 	[RTN_UNREACHABLE] = "UNREACHABLE",
2342 	[RTN_PROHIBIT] = "PROHIBIT",
2343 	[RTN_THROW] = "THROW",
2344 	[RTN_NAT] = "NAT",
2345 	[RTN_XRESOLVE] = "XRESOLVE",
2346 };
2347 
2348 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2349 {
2350 	if (t < __RTN_MAX && rtn_type_names[t])
2351 		return rtn_type_names[t];
2352 	snprintf(buf, len, "type %u", t);
2353 	return buf;
2354 }
2355 
2356 /* Pretty print the trie */
2357 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2358 {
2359 	const struct fib_trie_iter *iter = seq->private;
2360 	struct rt_trie_node *n = v;
2361 
2362 	if (!node_parent_rcu(n))
2363 		fib_table_print(seq, iter->tb);
2364 
2365 	if (IS_TNODE(n)) {
2366 		struct tnode *tn = (struct tnode *) n;
2367 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2368 
2369 		seq_indent(seq, iter->depth-1);
2370 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2371 			   &prf, tn->pos, tn->bits, tn->full_children,
2372 			   tn->empty_children);
2373 
2374 	} else {
2375 		struct leaf *l = (struct leaf *) n;
2376 		struct leaf_info *li;
2377 		__be32 val = htonl(l->key);
2378 
2379 		seq_indent(seq, iter->depth);
2380 		seq_printf(seq, "  |-- %pI4\n", &val);
2381 
2382 		hlist_for_each_entry_rcu(li, &l->list, hlist) {
2383 			struct fib_alias *fa;
2384 
2385 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2386 				char buf1[32], buf2[32];
2387 
2388 				seq_indent(seq, iter->depth+1);
2389 				seq_printf(seq, "  /%d %s %s", li->plen,
2390 					   rtn_scope(buf1, sizeof(buf1),
2391 						     fa->fa_info->fib_scope),
2392 					   rtn_type(buf2, sizeof(buf2),
2393 						    fa->fa_type));
2394 				if (fa->fa_tos)
2395 					seq_printf(seq, " tos=%d", fa->fa_tos);
2396 				seq_putc(seq, '\n');
2397 			}
2398 		}
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static const struct seq_operations fib_trie_seq_ops = {
2405 	.start  = fib_trie_seq_start,
2406 	.next   = fib_trie_seq_next,
2407 	.stop   = fib_trie_seq_stop,
2408 	.show   = fib_trie_seq_show,
2409 };
2410 
2411 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2412 {
2413 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2414 			    sizeof(struct fib_trie_iter));
2415 }
2416 
2417 static const struct file_operations fib_trie_fops = {
2418 	.owner  = THIS_MODULE,
2419 	.open   = fib_trie_seq_open,
2420 	.read   = seq_read,
2421 	.llseek = seq_lseek,
2422 	.release = seq_release_net,
2423 };
2424 
2425 struct fib_route_iter {
2426 	struct seq_net_private p;
2427 	struct trie *main_trie;
2428 	loff_t	pos;
2429 	t_key	key;
2430 };
2431 
2432 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2433 {
2434 	struct leaf *l = NULL;
2435 	struct trie *t = iter->main_trie;
2436 
2437 	/* use cache location of last found key */
2438 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2439 		pos -= iter->pos;
2440 	else {
2441 		iter->pos = 0;
2442 		l = trie_firstleaf(t);
2443 	}
2444 
2445 	while (l && pos-- > 0) {
2446 		iter->pos++;
2447 		l = trie_nextleaf(l);
2448 	}
2449 
2450 	if (l)
2451 		iter->key = pos;	/* remember it */
2452 	else
2453 		iter->pos = 0;		/* forget it */
2454 
2455 	return l;
2456 }
2457 
2458 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2459 	__acquires(RCU)
2460 {
2461 	struct fib_route_iter *iter = seq->private;
2462 	struct fib_table *tb;
2463 
2464 	rcu_read_lock();
2465 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2466 	if (!tb)
2467 		return NULL;
2468 
2469 	iter->main_trie = (struct trie *) tb->tb_data;
2470 	if (*pos == 0)
2471 		return SEQ_START_TOKEN;
2472 	else
2473 		return fib_route_get_idx(iter, *pos - 1);
2474 }
2475 
2476 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2477 {
2478 	struct fib_route_iter *iter = seq->private;
2479 	struct leaf *l = v;
2480 
2481 	++*pos;
2482 	if (v == SEQ_START_TOKEN) {
2483 		iter->pos = 0;
2484 		l = trie_firstleaf(iter->main_trie);
2485 	} else {
2486 		iter->pos++;
2487 		l = trie_nextleaf(l);
2488 	}
2489 
2490 	if (l)
2491 		iter->key = l->key;
2492 	else
2493 		iter->pos = 0;
2494 	return l;
2495 }
2496 
2497 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2498 	__releases(RCU)
2499 {
2500 	rcu_read_unlock();
2501 }
2502 
2503 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2504 {
2505 	unsigned int flags = 0;
2506 
2507 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2508 		flags = RTF_REJECT;
2509 	if (fi && fi->fib_nh->nh_gw)
2510 		flags |= RTF_GATEWAY;
2511 	if (mask == htonl(0xFFFFFFFF))
2512 		flags |= RTF_HOST;
2513 	flags |= RTF_UP;
2514 	return flags;
2515 }
2516 
2517 /*
2518  *	This outputs /proc/net/route.
2519  *	The format of the file is not supposed to be changed
2520  *	and needs to be same as fib_hash output to avoid breaking
2521  *	legacy utilities
2522  */
2523 static int fib_route_seq_show(struct seq_file *seq, void *v)
2524 {
2525 	struct leaf *l = v;
2526 	struct leaf_info *li;
2527 
2528 	if (v == SEQ_START_TOKEN) {
2529 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2530 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2531 			   "\tWindow\tIRTT");
2532 		return 0;
2533 	}
2534 
2535 	hlist_for_each_entry_rcu(li, &l->list, hlist) {
2536 		struct fib_alias *fa;
2537 		__be32 mask, prefix;
2538 
2539 		mask = inet_make_mask(li->plen);
2540 		prefix = htonl(l->key);
2541 
2542 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2543 			const struct fib_info *fi = fa->fa_info;
2544 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2545 			int len;
2546 
2547 			if (fa->fa_type == RTN_BROADCAST
2548 			    || fa->fa_type == RTN_MULTICAST)
2549 				continue;
2550 
2551 			if (fi)
2552 				seq_printf(seq,
2553 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2554 					 "%d\t%08X\t%d\t%u\t%u%n",
2555 					 fi->fib_dev ? fi->fib_dev->name : "*",
2556 					 prefix,
2557 					 fi->fib_nh->nh_gw, flags, 0, 0,
2558 					 fi->fib_priority,
2559 					 mask,
2560 					 (fi->fib_advmss ?
2561 					  fi->fib_advmss + 40 : 0),
2562 					 fi->fib_window,
2563 					 fi->fib_rtt >> 3, &len);
2564 			else
2565 				seq_printf(seq,
2566 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2567 					 "%d\t%08X\t%d\t%u\t%u%n",
2568 					 prefix, 0, flags, 0, 0, 0,
2569 					 mask, 0, 0, 0, &len);
2570 
2571 			seq_printf(seq, "%*s\n", 127 - len, "");
2572 		}
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 static const struct seq_operations fib_route_seq_ops = {
2579 	.start  = fib_route_seq_start,
2580 	.next   = fib_route_seq_next,
2581 	.stop   = fib_route_seq_stop,
2582 	.show   = fib_route_seq_show,
2583 };
2584 
2585 static int fib_route_seq_open(struct inode *inode, struct file *file)
2586 {
2587 	return seq_open_net(inode, file, &fib_route_seq_ops,
2588 			    sizeof(struct fib_route_iter));
2589 }
2590 
2591 static const struct file_operations fib_route_fops = {
2592 	.owner  = THIS_MODULE,
2593 	.open   = fib_route_seq_open,
2594 	.read   = seq_read,
2595 	.llseek = seq_lseek,
2596 	.release = seq_release_net,
2597 };
2598 
2599 int __net_init fib_proc_init(struct net *net)
2600 {
2601 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2602 		goto out1;
2603 
2604 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2605 			 &fib_triestat_fops))
2606 		goto out2;
2607 
2608 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2609 		goto out3;
2610 
2611 	return 0;
2612 
2613 out3:
2614 	remove_proc_entry("fib_triestat", net->proc_net);
2615 out2:
2616 	remove_proc_entry("fib_trie", net->proc_net);
2617 out1:
2618 	return -ENOMEM;
2619 }
2620 
2621 void __net_exit fib_proc_exit(struct net *net)
2622 {
2623 	remove_proc_entry("fib_trie", net->proc_net);
2624 	remove_proc_entry("fib_triestat", net->proc_net);
2625 	remove_proc_entry("route", net->proc_net);
2626 }
2627 
2628 #endif /* CONFIG_PROC_FS */
2629