1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/prefetch.h> 75 #include <linux/export.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 int plen; 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 115 struct list_head falh; 116 struct rcu_head rcu; 117 }; 118 119 struct tnode { 120 unsigned long parent; 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned int full_children; /* KEYLENGTH bits needed */ 125 unsigned int empty_children; /* KEYLENGTH bits needed */ 126 union { 127 struct rcu_head rcu; 128 struct work_struct work; 129 struct tnode *tnode_free; 130 }; 131 struct rt_trie_node __rcu *child[0]; 132 }; 133 134 #ifdef CONFIG_IP_FIB_TRIE_STATS 135 struct trie_use_stats { 136 unsigned int gets; 137 unsigned int backtrack; 138 unsigned int semantic_match_passed; 139 unsigned int semantic_match_miss; 140 unsigned int null_node_hit; 141 unsigned int resize_node_skipped; 142 }; 143 #endif 144 145 struct trie_stat { 146 unsigned int totdepth; 147 unsigned int maxdepth; 148 unsigned int tnodes; 149 unsigned int leaves; 150 unsigned int nullpointers; 151 unsigned int prefixes; 152 unsigned int nodesizes[MAX_STAT_DEPTH]; 153 }; 154 155 struct trie { 156 struct rt_trie_node __rcu *trie; 157 #ifdef CONFIG_IP_FIB_TRIE_STATS 158 struct trie_use_stats stats; 159 #endif 160 }; 161 162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 163 int wasfull); 164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 165 static struct tnode *inflate(struct trie *t, struct tnode *tn); 166 static struct tnode *halve(struct trie *t, struct tnode *tn); 167 /* tnodes to free after resize(); protected by RTNL */ 168 static struct tnode *tnode_free_head; 169 static size_t tnode_free_size; 170 171 /* 172 * synchronize_rcu after call_rcu for that many pages; it should be especially 173 * useful before resizing the root node with PREEMPT_NONE configs; the value was 174 * obtained experimentally, aiming to avoid visible slowdown. 175 */ 176 static const int sync_pages = 128; 177 178 static struct kmem_cache *fn_alias_kmem __read_mostly; 179 static struct kmem_cache *trie_leaf_kmem __read_mostly; 180 181 /* 182 * caller must hold RTNL 183 */ 184 static inline struct tnode *node_parent(const struct rt_trie_node *node) 185 { 186 unsigned long parent; 187 188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 189 190 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 191 } 192 193 /* 194 * caller must hold RCU read lock or RTNL 195 */ 196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 197 { 198 unsigned long parent; 199 200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 201 lockdep_rtnl_is_held()); 202 203 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 204 } 205 206 /* Same as rcu_assign_pointer 207 * but that macro() assumes that value is a pointer. 208 */ 209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 210 { 211 smp_wmb(); 212 node->parent = (unsigned long)ptr | NODE_TYPE(node); 213 } 214 215 /* 216 * caller must hold RTNL 217 */ 218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 219 { 220 BUG_ON(i >= 1U << tn->bits); 221 222 return rtnl_dereference(tn->child[i]); 223 } 224 225 /* 226 * caller must hold RCU read lock or RTNL 227 */ 228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 229 { 230 BUG_ON(i >= 1U << tn->bits); 231 232 return rcu_dereference_rtnl(tn->child[i]); 233 } 234 235 static inline int tnode_child_length(const struct tnode *tn) 236 { 237 return 1 << tn->bits; 238 } 239 240 static inline t_key mask_pfx(t_key k, unsigned int l) 241 { 242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 243 } 244 245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 246 { 247 if (offset < KEYLENGTH) 248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 249 else 250 return 0; 251 } 252 253 static inline int tkey_equals(t_key a, t_key b) 254 { 255 return a == b; 256 } 257 258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 259 { 260 if (bits == 0 || offset >= KEYLENGTH) 261 return 1; 262 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 264 } 265 266 static inline int tkey_mismatch(t_key a, int offset, t_key b) 267 { 268 t_key diff = a ^ b; 269 int i = offset; 270 271 if (!diff) 272 return 0; 273 while ((diff << i) >> (KEYLENGTH-1) == 0) 274 i++; 275 return i; 276 } 277 278 /* 279 To understand this stuff, an understanding of keys and all their bits is 280 necessary. Every node in the trie has a key associated with it, but not 281 all of the bits in that key are significant. 282 283 Consider a node 'n' and its parent 'tp'. 284 285 If n is a leaf, every bit in its key is significant. Its presence is 286 necessitated by path compression, since during a tree traversal (when 287 searching for a leaf - unless we are doing an insertion) we will completely 288 ignore all skipped bits we encounter. Thus we need to verify, at the end of 289 a potentially successful search, that we have indeed been walking the 290 correct key path. 291 292 Note that we can never "miss" the correct key in the tree if present by 293 following the wrong path. Path compression ensures that segments of the key 294 that are the same for all keys with a given prefix are skipped, but the 295 skipped part *is* identical for each node in the subtrie below the skipped 296 bit! trie_insert() in this implementation takes care of that - note the 297 call to tkey_sub_equals() in trie_insert(). 298 299 if n is an internal node - a 'tnode' here, the various parts of its key 300 have many different meanings. 301 302 Example: 303 _________________________________________________________________ 304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 305 ----------------------------------------------------------------- 306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 307 308 _________________________________________________________________ 309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 310 ----------------------------------------------------------------- 311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 312 313 tp->pos = 7 314 tp->bits = 3 315 n->pos = 15 316 n->bits = 4 317 318 First, let's just ignore the bits that come before the parent tp, that is 319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 320 not use them for anything. 321 322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 323 index into the parent's child array. That is, they will be used to find 324 'n' among tp's children. 325 326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 327 for the node n. 328 329 All the bits we have seen so far are significant to the node n. The rest 330 of the bits are really not needed or indeed known in n->key. 331 332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 333 n's child array, and will of course be different for each child. 334 335 336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 337 at this point. 338 339 */ 340 341 static inline void check_tnode(const struct tnode *tn) 342 { 343 WARN_ON(tn && tn->pos+tn->bits > 32); 344 } 345 346 static const int halve_threshold = 25; 347 static const int inflate_threshold = 50; 348 static const int halve_threshold_root = 15; 349 static const int inflate_threshold_root = 30; 350 351 static void __alias_free_mem(struct rcu_head *head) 352 { 353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 354 kmem_cache_free(fn_alias_kmem, fa); 355 } 356 357 static inline void alias_free_mem_rcu(struct fib_alias *fa) 358 { 359 call_rcu(&fa->rcu, __alias_free_mem); 360 } 361 362 static void __leaf_free_rcu(struct rcu_head *head) 363 { 364 struct leaf *l = container_of(head, struct leaf, rcu); 365 kmem_cache_free(trie_leaf_kmem, l); 366 } 367 368 static inline void free_leaf(struct leaf *l) 369 { 370 call_rcu_bh(&l->rcu, __leaf_free_rcu); 371 } 372 373 static inline void free_leaf_info(struct leaf_info *leaf) 374 { 375 kfree_rcu(leaf, rcu); 376 } 377 378 static struct tnode *tnode_alloc(size_t size) 379 { 380 if (size <= PAGE_SIZE) 381 return kzalloc(size, GFP_KERNEL); 382 else 383 return vzalloc(size); 384 } 385 386 static void __tnode_vfree(struct work_struct *arg) 387 { 388 struct tnode *tn = container_of(arg, struct tnode, work); 389 vfree(tn); 390 } 391 392 static void __tnode_free_rcu(struct rcu_head *head) 393 { 394 struct tnode *tn = container_of(head, struct tnode, rcu); 395 size_t size = sizeof(struct tnode) + 396 (sizeof(struct rt_trie_node *) << tn->bits); 397 398 if (size <= PAGE_SIZE) 399 kfree(tn); 400 else { 401 INIT_WORK(&tn->work, __tnode_vfree); 402 schedule_work(&tn->work); 403 } 404 } 405 406 static inline void tnode_free(struct tnode *tn) 407 { 408 if (IS_LEAF(tn)) 409 free_leaf((struct leaf *) tn); 410 else 411 call_rcu(&tn->rcu, __tnode_free_rcu); 412 } 413 414 static void tnode_free_safe(struct tnode *tn) 415 { 416 BUG_ON(IS_LEAF(tn)); 417 tn->tnode_free = tnode_free_head; 418 tnode_free_head = tn; 419 tnode_free_size += sizeof(struct tnode) + 420 (sizeof(struct rt_trie_node *) << tn->bits); 421 } 422 423 static void tnode_free_flush(void) 424 { 425 struct tnode *tn; 426 427 while ((tn = tnode_free_head)) { 428 tnode_free_head = tn->tnode_free; 429 tn->tnode_free = NULL; 430 tnode_free(tn); 431 } 432 433 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 434 tnode_free_size = 0; 435 synchronize_rcu(); 436 } 437 } 438 439 static struct leaf *leaf_new(void) 440 { 441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 442 if (l) { 443 l->parent = T_LEAF; 444 INIT_HLIST_HEAD(&l->list); 445 } 446 return l; 447 } 448 449 static struct leaf_info *leaf_info_new(int plen) 450 { 451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 452 if (li) { 453 li->plen = plen; 454 li->mask_plen = ntohl(inet_make_mask(plen)); 455 INIT_LIST_HEAD(&li->falh); 456 } 457 return li; 458 } 459 460 static struct tnode *tnode_new(t_key key, int pos, int bits) 461 { 462 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 463 struct tnode *tn = tnode_alloc(sz); 464 465 if (tn) { 466 tn->parent = T_TNODE; 467 tn->pos = pos; 468 tn->bits = bits; 469 tn->key = key; 470 tn->full_children = 0; 471 tn->empty_children = 1<<bits; 472 } 473 474 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 475 sizeof(struct rt_trie_node *) << bits); 476 return tn; 477 } 478 479 /* 480 * Check whether a tnode 'n' is "full", i.e. it is an internal node 481 * and no bits are skipped. See discussion in dyntree paper p. 6 482 */ 483 484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 485 { 486 if (n == NULL || IS_LEAF(n)) 487 return 0; 488 489 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 490 } 491 492 static inline void put_child(struct tnode *tn, int i, 493 struct rt_trie_node *n) 494 { 495 tnode_put_child_reorg(tn, i, n, -1); 496 } 497 498 /* 499 * Add a child at position i overwriting the old value. 500 * Update the value of full_children and empty_children. 501 */ 502 503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 504 int wasfull) 505 { 506 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 507 int isfull; 508 509 BUG_ON(i >= 1<<tn->bits); 510 511 /* update emptyChildren */ 512 if (n == NULL && chi != NULL) 513 tn->empty_children++; 514 else if (n != NULL && chi == NULL) 515 tn->empty_children--; 516 517 /* update fullChildren */ 518 if (wasfull == -1) 519 wasfull = tnode_full(tn, chi); 520 521 isfull = tnode_full(tn, n); 522 if (wasfull && !isfull) 523 tn->full_children--; 524 else if (!wasfull && isfull) 525 tn->full_children++; 526 527 if (n) 528 node_set_parent(n, tn); 529 530 rcu_assign_pointer(tn->child[i], n); 531 } 532 533 #define MAX_WORK 10 534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 535 { 536 int i; 537 struct tnode *old_tn; 538 int inflate_threshold_use; 539 int halve_threshold_use; 540 int max_work; 541 542 if (!tn) 543 return NULL; 544 545 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 546 tn, inflate_threshold, halve_threshold); 547 548 /* No children */ 549 if (tn->empty_children == tnode_child_length(tn)) { 550 tnode_free_safe(tn); 551 return NULL; 552 } 553 /* One child */ 554 if (tn->empty_children == tnode_child_length(tn) - 1) 555 goto one_child; 556 /* 557 * Double as long as the resulting node has a number of 558 * nonempty nodes that are above the threshold. 559 */ 560 561 /* 562 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 563 * the Helsinki University of Technology and Matti Tikkanen of Nokia 564 * Telecommunications, page 6: 565 * "A node is doubled if the ratio of non-empty children to all 566 * children in the *doubled* node is at least 'high'." 567 * 568 * 'high' in this instance is the variable 'inflate_threshold'. It 569 * is expressed as a percentage, so we multiply it with 570 * tnode_child_length() and instead of multiplying by 2 (since the 571 * child array will be doubled by inflate()) and multiplying 572 * the left-hand side by 100 (to handle the percentage thing) we 573 * multiply the left-hand side by 50. 574 * 575 * The left-hand side may look a bit weird: tnode_child_length(tn) 576 * - tn->empty_children is of course the number of non-null children 577 * in the current node. tn->full_children is the number of "full" 578 * children, that is non-null tnodes with a skip value of 0. 579 * All of those will be doubled in the resulting inflated tnode, so 580 * we just count them one extra time here. 581 * 582 * A clearer way to write this would be: 583 * 584 * to_be_doubled = tn->full_children; 585 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 586 * tn->full_children; 587 * 588 * new_child_length = tnode_child_length(tn) * 2; 589 * 590 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 591 * new_child_length; 592 * if (new_fill_factor >= inflate_threshold) 593 * 594 * ...and so on, tho it would mess up the while () loop. 595 * 596 * anyway, 597 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 598 * inflate_threshold 599 * 600 * avoid a division: 601 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 602 * inflate_threshold * new_child_length 603 * 604 * expand not_to_be_doubled and to_be_doubled, and shorten: 605 * 100 * (tnode_child_length(tn) - tn->empty_children + 606 * tn->full_children) >= inflate_threshold * new_child_length 607 * 608 * expand new_child_length: 609 * 100 * (tnode_child_length(tn) - tn->empty_children + 610 * tn->full_children) >= 611 * inflate_threshold * tnode_child_length(tn) * 2 612 * 613 * shorten again: 614 * 50 * (tn->full_children + tnode_child_length(tn) - 615 * tn->empty_children) >= inflate_threshold * 616 * tnode_child_length(tn) 617 * 618 */ 619 620 check_tnode(tn); 621 622 /* Keep root node larger */ 623 624 if (!node_parent((struct rt_trie_node *)tn)) { 625 inflate_threshold_use = inflate_threshold_root; 626 halve_threshold_use = halve_threshold_root; 627 } else { 628 inflate_threshold_use = inflate_threshold; 629 halve_threshold_use = halve_threshold; 630 } 631 632 max_work = MAX_WORK; 633 while ((tn->full_children > 0 && max_work-- && 634 50 * (tn->full_children + tnode_child_length(tn) 635 - tn->empty_children) 636 >= inflate_threshold_use * tnode_child_length(tn))) { 637 638 old_tn = tn; 639 tn = inflate(t, tn); 640 641 if (IS_ERR(tn)) { 642 tn = old_tn; 643 #ifdef CONFIG_IP_FIB_TRIE_STATS 644 t->stats.resize_node_skipped++; 645 #endif 646 break; 647 } 648 } 649 650 check_tnode(tn); 651 652 /* Return if at least one inflate is run */ 653 if (max_work != MAX_WORK) 654 return (struct rt_trie_node *) tn; 655 656 /* 657 * Halve as long as the number of empty children in this 658 * node is above threshold. 659 */ 660 661 max_work = MAX_WORK; 662 while (tn->bits > 1 && max_work-- && 663 100 * (tnode_child_length(tn) - tn->empty_children) < 664 halve_threshold_use * tnode_child_length(tn)) { 665 666 old_tn = tn; 667 tn = halve(t, tn); 668 if (IS_ERR(tn)) { 669 tn = old_tn; 670 #ifdef CONFIG_IP_FIB_TRIE_STATS 671 t->stats.resize_node_skipped++; 672 #endif 673 break; 674 } 675 } 676 677 678 /* Only one child remains */ 679 if (tn->empty_children == tnode_child_length(tn) - 1) { 680 one_child: 681 for (i = 0; i < tnode_child_length(tn); i++) { 682 struct rt_trie_node *n; 683 684 n = rtnl_dereference(tn->child[i]); 685 if (!n) 686 continue; 687 688 /* compress one level */ 689 690 node_set_parent(n, NULL); 691 tnode_free_safe(tn); 692 return n; 693 } 694 } 695 return (struct rt_trie_node *) tn; 696 } 697 698 699 static void tnode_clean_free(struct tnode *tn) 700 { 701 int i; 702 struct tnode *tofree; 703 704 for (i = 0; i < tnode_child_length(tn); i++) { 705 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 706 if (tofree) 707 tnode_free(tofree); 708 } 709 tnode_free(tn); 710 } 711 712 static struct tnode *inflate(struct trie *t, struct tnode *tn) 713 { 714 struct tnode *oldtnode = tn; 715 int olen = tnode_child_length(tn); 716 int i; 717 718 pr_debug("In inflate\n"); 719 720 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 721 722 if (!tn) 723 return ERR_PTR(-ENOMEM); 724 725 /* 726 * Preallocate and store tnodes before the actual work so we 727 * don't get into an inconsistent state if memory allocation 728 * fails. In case of failure we return the oldnode and inflate 729 * of tnode is ignored. 730 */ 731 732 for (i = 0; i < olen; i++) { 733 struct tnode *inode; 734 735 inode = (struct tnode *) tnode_get_child(oldtnode, i); 736 if (inode && 737 IS_TNODE(inode) && 738 inode->pos == oldtnode->pos + oldtnode->bits && 739 inode->bits > 1) { 740 struct tnode *left, *right; 741 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 742 743 left = tnode_new(inode->key&(~m), inode->pos + 1, 744 inode->bits - 1); 745 if (!left) 746 goto nomem; 747 748 right = tnode_new(inode->key|m, inode->pos + 1, 749 inode->bits - 1); 750 751 if (!right) { 752 tnode_free(left); 753 goto nomem; 754 } 755 756 put_child(tn, 2*i, (struct rt_trie_node *) left); 757 put_child(tn, 2*i+1, (struct rt_trie_node *) right); 758 } 759 } 760 761 for (i = 0; i < olen; i++) { 762 struct tnode *inode; 763 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 764 struct tnode *left, *right; 765 int size, j; 766 767 /* An empty child */ 768 if (node == NULL) 769 continue; 770 771 /* A leaf or an internal node with skipped bits */ 772 773 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 774 tn->pos + tn->bits - 1) { 775 if (tkey_extract_bits(node->key, 776 oldtnode->pos + oldtnode->bits, 777 1) == 0) 778 put_child(tn, 2*i, node); 779 else 780 put_child(tn, 2*i+1, node); 781 continue; 782 } 783 784 /* An internal node with two children */ 785 inode = (struct tnode *) node; 786 787 if (inode->bits == 1) { 788 put_child(tn, 2*i, rtnl_dereference(inode->child[0])); 789 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); 790 791 tnode_free_safe(inode); 792 continue; 793 } 794 795 /* An internal node with more than two children */ 796 797 /* We will replace this node 'inode' with two new 798 * ones, 'left' and 'right', each with half of the 799 * original children. The two new nodes will have 800 * a position one bit further down the key and this 801 * means that the "significant" part of their keys 802 * (see the discussion near the top of this file) 803 * will differ by one bit, which will be "0" in 804 * left's key and "1" in right's key. Since we are 805 * moving the key position by one step, the bit that 806 * we are moving away from - the bit at position 807 * (inode->pos) - is the one that will differ between 808 * left and right. So... we synthesize that bit in the 809 * two new keys. 810 * The mask 'm' below will be a single "one" bit at 811 * the position (inode->pos) 812 */ 813 814 /* Use the old key, but set the new significant 815 * bit to zero. 816 */ 817 818 left = (struct tnode *) tnode_get_child(tn, 2*i); 819 put_child(tn, 2*i, NULL); 820 821 BUG_ON(!left); 822 823 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 824 put_child(tn, 2*i+1, NULL); 825 826 BUG_ON(!right); 827 828 size = tnode_child_length(left); 829 for (j = 0; j < size; j++) { 830 put_child(left, j, rtnl_dereference(inode->child[j])); 831 put_child(right, j, rtnl_dereference(inode->child[j + size])); 832 } 833 put_child(tn, 2*i, resize(t, left)); 834 put_child(tn, 2*i+1, resize(t, right)); 835 836 tnode_free_safe(inode); 837 } 838 tnode_free_safe(oldtnode); 839 return tn; 840 nomem: 841 tnode_clean_free(tn); 842 return ERR_PTR(-ENOMEM); 843 } 844 845 static struct tnode *halve(struct trie *t, struct tnode *tn) 846 { 847 struct tnode *oldtnode = tn; 848 struct rt_trie_node *left, *right; 849 int i; 850 int olen = tnode_child_length(tn); 851 852 pr_debug("In halve\n"); 853 854 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 855 856 if (!tn) 857 return ERR_PTR(-ENOMEM); 858 859 /* 860 * Preallocate and store tnodes before the actual work so we 861 * don't get into an inconsistent state if memory allocation 862 * fails. In case of failure we return the oldnode and halve 863 * of tnode is ignored. 864 */ 865 866 for (i = 0; i < olen; i += 2) { 867 left = tnode_get_child(oldtnode, i); 868 right = tnode_get_child(oldtnode, i+1); 869 870 /* Two nonempty children */ 871 if (left && right) { 872 struct tnode *newn; 873 874 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 875 876 if (!newn) 877 goto nomem; 878 879 put_child(tn, i/2, (struct rt_trie_node *)newn); 880 } 881 882 } 883 884 for (i = 0; i < olen; i += 2) { 885 struct tnode *newBinNode; 886 887 left = tnode_get_child(oldtnode, i); 888 right = tnode_get_child(oldtnode, i+1); 889 890 /* At least one of the children is empty */ 891 if (left == NULL) { 892 if (right == NULL) /* Both are empty */ 893 continue; 894 put_child(tn, i/2, right); 895 continue; 896 } 897 898 if (right == NULL) { 899 put_child(tn, i/2, left); 900 continue; 901 } 902 903 /* Two nonempty children */ 904 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 905 put_child(tn, i/2, NULL); 906 put_child(newBinNode, 0, left); 907 put_child(newBinNode, 1, right); 908 put_child(tn, i/2, resize(t, newBinNode)); 909 } 910 tnode_free_safe(oldtnode); 911 return tn; 912 nomem: 913 tnode_clean_free(tn); 914 return ERR_PTR(-ENOMEM); 915 } 916 917 /* readside must use rcu_read_lock currently dump routines 918 via get_fa_head and dump */ 919 920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 921 { 922 struct hlist_head *head = &l->list; 923 struct hlist_node *node; 924 struct leaf_info *li; 925 926 hlist_for_each_entry_rcu(li, node, head, hlist) 927 if (li->plen == plen) 928 return li; 929 930 return NULL; 931 } 932 933 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 934 { 935 struct leaf_info *li = find_leaf_info(l, plen); 936 937 if (!li) 938 return NULL; 939 940 return &li->falh; 941 } 942 943 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 944 { 945 struct leaf_info *li = NULL, *last = NULL; 946 struct hlist_node *node; 947 948 if (hlist_empty(head)) { 949 hlist_add_head_rcu(&new->hlist, head); 950 } else { 951 hlist_for_each_entry(li, node, head, hlist) { 952 if (new->plen > li->plen) 953 break; 954 955 last = li; 956 } 957 if (last) 958 hlist_add_after_rcu(&last->hlist, &new->hlist); 959 else 960 hlist_add_before_rcu(&new->hlist, &li->hlist); 961 } 962 } 963 964 /* rcu_read_lock needs to be hold by caller from readside */ 965 966 static struct leaf * 967 fib_find_node(struct trie *t, u32 key) 968 { 969 int pos; 970 struct tnode *tn; 971 struct rt_trie_node *n; 972 973 pos = 0; 974 n = rcu_dereference_rtnl(t->trie); 975 976 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 977 tn = (struct tnode *) n; 978 979 check_tnode(tn); 980 981 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 982 pos = tn->pos + tn->bits; 983 n = tnode_get_child_rcu(tn, 984 tkey_extract_bits(key, 985 tn->pos, 986 tn->bits)); 987 } else 988 break; 989 } 990 /* Case we have found a leaf. Compare prefixes */ 991 992 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 993 return (struct leaf *)n; 994 995 return NULL; 996 } 997 998 static void trie_rebalance(struct trie *t, struct tnode *tn) 999 { 1000 int wasfull; 1001 t_key cindex, key; 1002 struct tnode *tp; 1003 1004 key = tn->key; 1005 1006 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1007 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1008 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1009 tn = (struct tnode *)resize(t, tn); 1010 1011 tnode_put_child_reorg(tp, cindex, 1012 (struct rt_trie_node *)tn, wasfull); 1013 1014 tp = node_parent((struct rt_trie_node *) tn); 1015 if (!tp) 1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1017 1018 tnode_free_flush(); 1019 if (!tp) 1020 break; 1021 tn = tp; 1022 } 1023 1024 /* Handle last (top) tnode */ 1025 if (IS_TNODE(tn)) 1026 tn = (struct tnode *)resize(t, tn); 1027 1028 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1029 tnode_free_flush(); 1030 } 1031 1032 /* only used from updater-side */ 1033 1034 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1035 { 1036 int pos, newpos; 1037 struct tnode *tp = NULL, *tn = NULL; 1038 struct rt_trie_node *n; 1039 struct leaf *l; 1040 int missbit; 1041 struct list_head *fa_head = NULL; 1042 struct leaf_info *li; 1043 t_key cindex; 1044 1045 pos = 0; 1046 n = rtnl_dereference(t->trie); 1047 1048 /* If we point to NULL, stop. Either the tree is empty and we should 1049 * just put a new leaf in if, or we have reached an empty child slot, 1050 * and we should just put our new leaf in that. 1051 * If we point to a T_TNODE, check if it matches our key. Note that 1052 * a T_TNODE might be skipping any number of bits - its 'pos' need 1053 * not be the parent's 'pos'+'bits'! 1054 * 1055 * If it does match the current key, get pos/bits from it, extract 1056 * the index from our key, push the T_TNODE and walk the tree. 1057 * 1058 * If it doesn't, we have to replace it with a new T_TNODE. 1059 * 1060 * If we point to a T_LEAF, it might or might not have the same key 1061 * as we do. If it does, just change the value, update the T_LEAF's 1062 * value, and return it. 1063 * If it doesn't, we need to replace it with a T_TNODE. 1064 */ 1065 1066 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1067 tn = (struct tnode *) n; 1068 1069 check_tnode(tn); 1070 1071 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1072 tp = tn; 1073 pos = tn->pos + tn->bits; 1074 n = tnode_get_child(tn, 1075 tkey_extract_bits(key, 1076 tn->pos, 1077 tn->bits)); 1078 1079 BUG_ON(n && node_parent(n) != tn); 1080 } else 1081 break; 1082 } 1083 1084 /* 1085 * n ----> NULL, LEAF or TNODE 1086 * 1087 * tp is n's (parent) ----> NULL or TNODE 1088 */ 1089 1090 BUG_ON(tp && IS_LEAF(tp)); 1091 1092 /* Case 1: n is a leaf. Compare prefixes */ 1093 1094 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1095 l = (struct leaf *) n; 1096 li = leaf_info_new(plen); 1097 1098 if (!li) 1099 return NULL; 1100 1101 fa_head = &li->falh; 1102 insert_leaf_info(&l->list, li); 1103 goto done; 1104 } 1105 l = leaf_new(); 1106 1107 if (!l) 1108 return NULL; 1109 1110 l->key = key; 1111 li = leaf_info_new(plen); 1112 1113 if (!li) { 1114 free_leaf(l); 1115 return NULL; 1116 } 1117 1118 fa_head = &li->falh; 1119 insert_leaf_info(&l->list, li); 1120 1121 if (t->trie && n == NULL) { 1122 /* Case 2: n is NULL, and will just insert a new leaf */ 1123 1124 node_set_parent((struct rt_trie_node *)l, tp); 1125 1126 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1127 put_child(tp, cindex, (struct rt_trie_node *)l); 1128 } else { 1129 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1130 /* 1131 * Add a new tnode here 1132 * first tnode need some special handling 1133 */ 1134 1135 if (tp) 1136 pos = tp->pos+tp->bits; 1137 else 1138 pos = 0; 1139 1140 if (n) { 1141 newpos = tkey_mismatch(key, pos, n->key); 1142 tn = tnode_new(n->key, newpos, 1); 1143 } else { 1144 newpos = 0; 1145 tn = tnode_new(key, newpos, 1); /* First tnode */ 1146 } 1147 1148 if (!tn) { 1149 free_leaf_info(li); 1150 free_leaf(l); 1151 return NULL; 1152 } 1153 1154 node_set_parent((struct rt_trie_node *)tn, tp); 1155 1156 missbit = tkey_extract_bits(key, newpos, 1); 1157 put_child(tn, missbit, (struct rt_trie_node *)l); 1158 put_child(tn, 1-missbit, n); 1159 1160 if (tp) { 1161 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1162 put_child(tp, cindex, (struct rt_trie_node *)tn); 1163 } else { 1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1165 tp = tn; 1166 } 1167 } 1168 1169 if (tp && tp->pos + tp->bits > 32) 1170 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1171 tp, tp->pos, tp->bits, key, plen); 1172 1173 /* Rebalance the trie */ 1174 1175 trie_rebalance(t, tp); 1176 done: 1177 return fa_head; 1178 } 1179 1180 /* 1181 * Caller must hold RTNL. 1182 */ 1183 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1184 { 1185 struct trie *t = (struct trie *) tb->tb_data; 1186 struct fib_alias *fa, *new_fa; 1187 struct list_head *fa_head = NULL; 1188 struct fib_info *fi; 1189 int plen = cfg->fc_dst_len; 1190 u8 tos = cfg->fc_tos; 1191 u32 key, mask; 1192 int err; 1193 struct leaf *l; 1194 1195 if (plen > 32) 1196 return -EINVAL; 1197 1198 key = ntohl(cfg->fc_dst); 1199 1200 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1201 1202 mask = ntohl(inet_make_mask(plen)); 1203 1204 if (key & ~mask) 1205 return -EINVAL; 1206 1207 key = key & mask; 1208 1209 fi = fib_create_info(cfg); 1210 if (IS_ERR(fi)) { 1211 err = PTR_ERR(fi); 1212 goto err; 1213 } 1214 1215 l = fib_find_node(t, key); 1216 fa = NULL; 1217 1218 if (l) { 1219 fa_head = get_fa_head(l, plen); 1220 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1221 } 1222 1223 /* Now fa, if non-NULL, points to the first fib alias 1224 * with the same keys [prefix,tos,priority], if such key already 1225 * exists or to the node before which we will insert new one. 1226 * 1227 * If fa is NULL, we will need to allocate a new one and 1228 * insert to the head of f. 1229 * 1230 * If f is NULL, no fib node matched the destination key 1231 * and we need to allocate a new one of those as well. 1232 */ 1233 1234 if (fa && fa->fa_tos == tos && 1235 fa->fa_info->fib_priority == fi->fib_priority) { 1236 struct fib_alias *fa_first, *fa_match; 1237 1238 err = -EEXIST; 1239 if (cfg->fc_nlflags & NLM_F_EXCL) 1240 goto out; 1241 1242 /* We have 2 goals: 1243 * 1. Find exact match for type, scope, fib_info to avoid 1244 * duplicate routes 1245 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1246 */ 1247 fa_match = NULL; 1248 fa_first = fa; 1249 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1250 list_for_each_entry_continue(fa, fa_head, fa_list) { 1251 if (fa->fa_tos != tos) 1252 break; 1253 if (fa->fa_info->fib_priority != fi->fib_priority) 1254 break; 1255 if (fa->fa_type == cfg->fc_type && 1256 fa->fa_info == fi) { 1257 fa_match = fa; 1258 break; 1259 } 1260 } 1261 1262 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1263 struct fib_info *fi_drop; 1264 u8 state; 1265 1266 fa = fa_first; 1267 if (fa_match) { 1268 if (fa == fa_match) 1269 err = 0; 1270 goto out; 1271 } 1272 err = -ENOBUFS; 1273 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1274 if (new_fa == NULL) 1275 goto out; 1276 1277 fi_drop = fa->fa_info; 1278 new_fa->fa_tos = fa->fa_tos; 1279 new_fa->fa_info = fi; 1280 new_fa->fa_type = cfg->fc_type; 1281 state = fa->fa_state; 1282 new_fa->fa_state = state & ~FA_S_ACCESSED; 1283 1284 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1285 alias_free_mem_rcu(fa); 1286 1287 fib_release_info(fi_drop); 1288 if (state & FA_S_ACCESSED) 1289 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1290 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1291 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1292 1293 goto succeeded; 1294 } 1295 /* Error if we find a perfect match which 1296 * uses the same scope, type, and nexthop 1297 * information. 1298 */ 1299 if (fa_match) 1300 goto out; 1301 1302 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1303 fa = fa_first; 1304 } 1305 err = -ENOENT; 1306 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1307 goto out; 1308 1309 err = -ENOBUFS; 1310 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1311 if (new_fa == NULL) 1312 goto out; 1313 1314 new_fa->fa_info = fi; 1315 new_fa->fa_tos = tos; 1316 new_fa->fa_type = cfg->fc_type; 1317 new_fa->fa_state = 0; 1318 /* 1319 * Insert new entry to the list. 1320 */ 1321 1322 if (!fa_head) { 1323 fa_head = fib_insert_node(t, key, plen); 1324 if (unlikely(!fa_head)) { 1325 err = -ENOMEM; 1326 goto out_free_new_fa; 1327 } 1328 } 1329 1330 if (!plen) 1331 tb->tb_num_default++; 1332 1333 list_add_tail_rcu(&new_fa->fa_list, 1334 (fa ? &fa->fa_list : fa_head)); 1335 1336 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1337 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1338 &cfg->fc_nlinfo, 0); 1339 succeeded: 1340 return 0; 1341 1342 out_free_new_fa: 1343 kmem_cache_free(fn_alias_kmem, new_fa); 1344 out: 1345 fib_release_info(fi); 1346 err: 1347 return err; 1348 } 1349 1350 /* should be called with rcu_read_lock */ 1351 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1352 t_key key, const struct flowi4 *flp, 1353 struct fib_result *res, int fib_flags) 1354 { 1355 struct leaf_info *li; 1356 struct hlist_head *hhead = &l->list; 1357 struct hlist_node *node; 1358 1359 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1360 struct fib_alias *fa; 1361 1362 if (l->key != (key & li->mask_plen)) 1363 continue; 1364 1365 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1366 struct fib_info *fi = fa->fa_info; 1367 int nhsel, err; 1368 1369 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1370 continue; 1371 if (fi->fib_dead) 1372 continue; 1373 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1374 continue; 1375 fib_alias_accessed(fa); 1376 err = fib_props[fa->fa_type].error; 1377 if (err) { 1378 #ifdef CONFIG_IP_FIB_TRIE_STATS 1379 t->stats.semantic_match_passed++; 1380 #endif 1381 return err; 1382 } 1383 if (fi->fib_flags & RTNH_F_DEAD) 1384 continue; 1385 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1386 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1387 1388 if (nh->nh_flags & RTNH_F_DEAD) 1389 continue; 1390 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1391 continue; 1392 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 t->stats.semantic_match_passed++; 1395 #endif 1396 res->prefixlen = li->plen; 1397 res->nh_sel = nhsel; 1398 res->type = fa->fa_type; 1399 res->scope = fa->fa_info->fib_scope; 1400 res->fi = fi; 1401 res->table = tb; 1402 res->fa_head = &li->falh; 1403 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1404 atomic_inc(&fi->fib_clntref); 1405 return 0; 1406 } 1407 } 1408 1409 #ifdef CONFIG_IP_FIB_TRIE_STATS 1410 t->stats.semantic_match_miss++; 1411 #endif 1412 } 1413 1414 return 1; 1415 } 1416 1417 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1418 struct fib_result *res, int fib_flags) 1419 { 1420 struct trie *t = (struct trie *) tb->tb_data; 1421 int ret; 1422 struct rt_trie_node *n; 1423 struct tnode *pn; 1424 unsigned int pos, bits; 1425 t_key key = ntohl(flp->daddr); 1426 unsigned int chopped_off; 1427 t_key cindex = 0; 1428 unsigned int current_prefix_length = KEYLENGTH; 1429 struct tnode *cn; 1430 t_key pref_mismatch; 1431 1432 rcu_read_lock(); 1433 1434 n = rcu_dereference(t->trie); 1435 if (!n) 1436 goto failed; 1437 1438 #ifdef CONFIG_IP_FIB_TRIE_STATS 1439 t->stats.gets++; 1440 #endif 1441 1442 /* Just a leaf? */ 1443 if (IS_LEAF(n)) { 1444 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1445 goto found; 1446 } 1447 1448 pn = (struct tnode *) n; 1449 chopped_off = 0; 1450 1451 while (pn) { 1452 pos = pn->pos; 1453 bits = pn->bits; 1454 1455 if (!chopped_off) 1456 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1457 pos, bits); 1458 1459 n = tnode_get_child_rcu(pn, cindex); 1460 1461 if (n == NULL) { 1462 #ifdef CONFIG_IP_FIB_TRIE_STATS 1463 t->stats.null_node_hit++; 1464 #endif 1465 goto backtrace; 1466 } 1467 1468 if (IS_LEAF(n)) { 1469 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1470 if (ret > 0) 1471 goto backtrace; 1472 goto found; 1473 } 1474 1475 cn = (struct tnode *)n; 1476 1477 /* 1478 * It's a tnode, and we can do some extra checks here if we 1479 * like, to avoid descending into a dead-end branch. 1480 * This tnode is in the parent's child array at index 1481 * key[p_pos..p_pos+p_bits] but potentially with some bits 1482 * chopped off, so in reality the index may be just a 1483 * subprefix, padded with zero at the end. 1484 * We can also take a look at any skipped bits in this 1485 * tnode - everything up to p_pos is supposed to be ok, 1486 * and the non-chopped bits of the index (se previous 1487 * paragraph) are also guaranteed ok, but the rest is 1488 * considered unknown. 1489 * 1490 * The skipped bits are key[pos+bits..cn->pos]. 1491 */ 1492 1493 /* If current_prefix_length < pos+bits, we are already doing 1494 * actual prefix matching, which means everything from 1495 * pos+(bits-chopped_off) onward must be zero along some 1496 * branch of this subtree - otherwise there is *no* valid 1497 * prefix present. Here we can only check the skipped 1498 * bits. Remember, since we have already indexed into the 1499 * parent's child array, we know that the bits we chopped of 1500 * *are* zero. 1501 */ 1502 1503 /* NOTA BENE: Checking only skipped bits 1504 for the new node here */ 1505 1506 if (current_prefix_length < pos+bits) { 1507 if (tkey_extract_bits(cn->key, current_prefix_length, 1508 cn->pos - current_prefix_length) 1509 || !(cn->child[0])) 1510 goto backtrace; 1511 } 1512 1513 /* 1514 * If chopped_off=0, the index is fully validated and we 1515 * only need to look at the skipped bits for this, the new, 1516 * tnode. What we actually want to do is to find out if 1517 * these skipped bits match our key perfectly, or if we will 1518 * have to count on finding a matching prefix further down, 1519 * because if we do, we would like to have some way of 1520 * verifying the existence of such a prefix at this point. 1521 */ 1522 1523 /* The only thing we can do at this point is to verify that 1524 * any such matching prefix can indeed be a prefix to our 1525 * key, and if the bits in the node we are inspecting that 1526 * do not match our key are not ZERO, this cannot be true. 1527 * Thus, find out where there is a mismatch (before cn->pos) 1528 * and verify that all the mismatching bits are zero in the 1529 * new tnode's key. 1530 */ 1531 1532 /* 1533 * Note: We aren't very concerned about the piece of 1534 * the key that precede pn->pos+pn->bits, since these 1535 * have already been checked. The bits after cn->pos 1536 * aren't checked since these are by definition 1537 * "unknown" at this point. Thus, what we want to see 1538 * is if we are about to enter the "prefix matching" 1539 * state, and in that case verify that the skipped 1540 * bits that will prevail throughout this subtree are 1541 * zero, as they have to be if we are to find a 1542 * matching prefix. 1543 */ 1544 1545 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1546 1547 /* 1548 * In short: If skipped bits in this node do not match 1549 * the search key, enter the "prefix matching" 1550 * state.directly. 1551 */ 1552 if (pref_mismatch) { 1553 int mp = KEYLENGTH - fls(pref_mismatch); 1554 1555 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1556 goto backtrace; 1557 1558 if (current_prefix_length >= cn->pos) 1559 current_prefix_length = mp; 1560 } 1561 1562 pn = (struct tnode *)n; /* Descend */ 1563 chopped_off = 0; 1564 continue; 1565 1566 backtrace: 1567 chopped_off++; 1568 1569 /* As zero don't change the child key (cindex) */ 1570 while ((chopped_off <= pn->bits) 1571 && !(cindex & (1<<(chopped_off-1)))) 1572 chopped_off++; 1573 1574 /* Decrease current_... with bits chopped off */ 1575 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1576 current_prefix_length = pn->pos + pn->bits 1577 - chopped_off; 1578 1579 /* 1580 * Either we do the actual chop off according or if we have 1581 * chopped off all bits in this tnode walk up to our parent. 1582 */ 1583 1584 if (chopped_off <= pn->bits) { 1585 cindex &= ~(1 << (chopped_off-1)); 1586 } else { 1587 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1588 if (!parent) 1589 goto failed; 1590 1591 /* Get Child's index */ 1592 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1593 pn = parent; 1594 chopped_off = 0; 1595 1596 #ifdef CONFIG_IP_FIB_TRIE_STATS 1597 t->stats.backtrack++; 1598 #endif 1599 goto backtrace; 1600 } 1601 } 1602 failed: 1603 ret = 1; 1604 found: 1605 rcu_read_unlock(); 1606 return ret; 1607 } 1608 EXPORT_SYMBOL_GPL(fib_table_lookup); 1609 1610 /* 1611 * Remove the leaf and return parent. 1612 */ 1613 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1614 { 1615 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1616 1617 pr_debug("entering trie_leaf_remove(%p)\n", l); 1618 1619 if (tp) { 1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1621 put_child(tp, cindex, NULL); 1622 trie_rebalance(t, tp); 1623 } else 1624 RCU_INIT_POINTER(t->trie, NULL); 1625 1626 free_leaf(l); 1627 } 1628 1629 /* 1630 * Caller must hold RTNL. 1631 */ 1632 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1633 { 1634 struct trie *t = (struct trie *) tb->tb_data; 1635 u32 key, mask; 1636 int plen = cfg->fc_dst_len; 1637 u8 tos = cfg->fc_tos; 1638 struct fib_alias *fa, *fa_to_delete; 1639 struct list_head *fa_head; 1640 struct leaf *l; 1641 struct leaf_info *li; 1642 1643 if (plen > 32) 1644 return -EINVAL; 1645 1646 key = ntohl(cfg->fc_dst); 1647 mask = ntohl(inet_make_mask(plen)); 1648 1649 if (key & ~mask) 1650 return -EINVAL; 1651 1652 key = key & mask; 1653 l = fib_find_node(t, key); 1654 1655 if (!l) 1656 return -ESRCH; 1657 1658 fa_head = get_fa_head(l, plen); 1659 fa = fib_find_alias(fa_head, tos, 0); 1660 1661 if (!fa) 1662 return -ESRCH; 1663 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1665 1666 fa_to_delete = NULL; 1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1668 list_for_each_entry_continue(fa, fa_head, fa_list) { 1669 struct fib_info *fi = fa->fa_info; 1670 1671 if (fa->fa_tos != tos) 1672 break; 1673 1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1675 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1676 fa->fa_info->fib_scope == cfg->fc_scope) && 1677 (!cfg->fc_prefsrc || 1678 fi->fib_prefsrc == cfg->fc_prefsrc) && 1679 (!cfg->fc_protocol || 1680 fi->fib_protocol == cfg->fc_protocol) && 1681 fib_nh_match(cfg, fi) == 0) { 1682 fa_to_delete = fa; 1683 break; 1684 } 1685 } 1686 1687 if (!fa_to_delete) 1688 return -ESRCH; 1689 1690 fa = fa_to_delete; 1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1692 &cfg->fc_nlinfo, 0); 1693 1694 l = fib_find_node(t, key); 1695 li = find_leaf_info(l, plen); 1696 1697 list_del_rcu(&fa->fa_list); 1698 1699 if (!plen) 1700 tb->tb_num_default--; 1701 1702 if (list_empty(fa_head)) { 1703 hlist_del_rcu(&li->hlist); 1704 free_leaf_info(li); 1705 } 1706 1707 if (hlist_empty(&l->list)) 1708 trie_leaf_remove(t, l); 1709 1710 if (fa->fa_state & FA_S_ACCESSED) 1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1712 1713 fib_release_info(fa->fa_info); 1714 alias_free_mem_rcu(fa); 1715 return 0; 1716 } 1717 1718 static int trie_flush_list(struct list_head *head) 1719 { 1720 struct fib_alias *fa, *fa_node; 1721 int found = 0; 1722 1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1724 struct fib_info *fi = fa->fa_info; 1725 1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1727 list_del_rcu(&fa->fa_list); 1728 fib_release_info(fa->fa_info); 1729 alias_free_mem_rcu(fa); 1730 found++; 1731 } 1732 } 1733 return found; 1734 } 1735 1736 static int trie_flush_leaf(struct leaf *l) 1737 { 1738 int found = 0; 1739 struct hlist_head *lih = &l->list; 1740 struct hlist_node *node, *tmp; 1741 struct leaf_info *li = NULL; 1742 1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1744 found += trie_flush_list(&li->falh); 1745 1746 if (list_empty(&li->falh)) { 1747 hlist_del_rcu(&li->hlist); 1748 free_leaf_info(li); 1749 } 1750 } 1751 return found; 1752 } 1753 1754 /* 1755 * Scan for the next right leaf starting at node p->child[idx] 1756 * Since we have back pointer, no recursion necessary. 1757 */ 1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1759 { 1760 do { 1761 t_key idx; 1762 1763 if (c) 1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1765 else 1766 idx = 0; 1767 1768 while (idx < 1u << p->bits) { 1769 c = tnode_get_child_rcu(p, idx++); 1770 if (!c) 1771 continue; 1772 1773 if (IS_LEAF(c)) { 1774 prefetch(rcu_dereference_rtnl(p->child[idx])); 1775 return (struct leaf *) c; 1776 } 1777 1778 /* Rescan start scanning in new node */ 1779 p = (struct tnode *) c; 1780 idx = 0; 1781 } 1782 1783 /* Node empty, walk back up to parent */ 1784 c = (struct rt_trie_node *) p; 1785 } while ((p = node_parent_rcu(c)) != NULL); 1786 1787 return NULL; /* Root of trie */ 1788 } 1789 1790 static struct leaf *trie_firstleaf(struct trie *t) 1791 { 1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1793 1794 if (!n) 1795 return NULL; 1796 1797 if (IS_LEAF(n)) /* trie is just a leaf */ 1798 return (struct leaf *) n; 1799 1800 return leaf_walk_rcu(n, NULL); 1801 } 1802 1803 static struct leaf *trie_nextleaf(struct leaf *l) 1804 { 1805 struct rt_trie_node *c = (struct rt_trie_node *) l; 1806 struct tnode *p = node_parent_rcu(c); 1807 1808 if (!p) 1809 return NULL; /* trie with just one leaf */ 1810 1811 return leaf_walk_rcu(p, c); 1812 } 1813 1814 static struct leaf *trie_leafindex(struct trie *t, int index) 1815 { 1816 struct leaf *l = trie_firstleaf(t); 1817 1818 while (l && index-- > 0) 1819 l = trie_nextleaf(l); 1820 1821 return l; 1822 } 1823 1824 1825 /* 1826 * Caller must hold RTNL. 1827 */ 1828 int fib_table_flush(struct fib_table *tb) 1829 { 1830 struct trie *t = (struct trie *) tb->tb_data; 1831 struct leaf *l, *ll = NULL; 1832 int found = 0; 1833 1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1835 found += trie_flush_leaf(l); 1836 1837 if (ll && hlist_empty(&ll->list)) 1838 trie_leaf_remove(t, ll); 1839 ll = l; 1840 } 1841 1842 if (ll && hlist_empty(&ll->list)) 1843 trie_leaf_remove(t, ll); 1844 1845 pr_debug("trie_flush found=%d\n", found); 1846 return found; 1847 } 1848 1849 void fib_free_table(struct fib_table *tb) 1850 { 1851 kfree(tb); 1852 } 1853 1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1855 struct fib_table *tb, 1856 struct sk_buff *skb, struct netlink_callback *cb) 1857 { 1858 int i, s_i; 1859 struct fib_alias *fa; 1860 __be32 xkey = htonl(key); 1861 1862 s_i = cb->args[5]; 1863 i = 0; 1864 1865 /* rcu_read_lock is hold by caller */ 1866 1867 list_for_each_entry_rcu(fa, fah, fa_list) { 1868 if (i < s_i) { 1869 i++; 1870 continue; 1871 } 1872 1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1874 cb->nlh->nlmsg_seq, 1875 RTM_NEWROUTE, 1876 tb->tb_id, 1877 fa->fa_type, 1878 xkey, 1879 plen, 1880 fa->fa_tos, 1881 fa->fa_info, NLM_F_MULTI) < 0) { 1882 cb->args[5] = i; 1883 return -1; 1884 } 1885 i++; 1886 } 1887 cb->args[5] = i; 1888 return skb->len; 1889 } 1890 1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1892 struct sk_buff *skb, struct netlink_callback *cb) 1893 { 1894 struct leaf_info *li; 1895 struct hlist_node *node; 1896 int i, s_i; 1897 1898 s_i = cb->args[4]; 1899 i = 0; 1900 1901 /* rcu_read_lock is hold by caller */ 1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1903 if (i < s_i) { 1904 i++; 1905 continue; 1906 } 1907 1908 if (i > s_i) 1909 cb->args[5] = 0; 1910 1911 if (list_empty(&li->falh)) 1912 continue; 1913 1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1915 cb->args[4] = i; 1916 return -1; 1917 } 1918 i++; 1919 } 1920 1921 cb->args[4] = i; 1922 return skb->len; 1923 } 1924 1925 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1926 struct netlink_callback *cb) 1927 { 1928 struct leaf *l; 1929 struct trie *t = (struct trie *) tb->tb_data; 1930 t_key key = cb->args[2]; 1931 int count = cb->args[3]; 1932 1933 rcu_read_lock(); 1934 /* Dump starting at last key. 1935 * Note: 0.0.0.0/0 (ie default) is first key. 1936 */ 1937 if (count == 0) 1938 l = trie_firstleaf(t); 1939 else { 1940 /* Normally, continue from last key, but if that is missing 1941 * fallback to using slow rescan 1942 */ 1943 l = fib_find_node(t, key); 1944 if (!l) 1945 l = trie_leafindex(t, count); 1946 } 1947 1948 while (l) { 1949 cb->args[2] = l->key; 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1951 cb->args[3] = count; 1952 rcu_read_unlock(); 1953 return -1; 1954 } 1955 1956 ++count; 1957 l = trie_nextleaf(l); 1958 memset(&cb->args[4], 0, 1959 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1960 } 1961 cb->args[3] = count; 1962 rcu_read_unlock(); 1963 1964 return skb->len; 1965 } 1966 1967 void __init fib_trie_init(void) 1968 { 1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1970 sizeof(struct fib_alias), 1971 0, SLAB_PANIC, NULL); 1972 1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1974 max(sizeof(struct leaf), 1975 sizeof(struct leaf_info)), 1976 0, SLAB_PANIC, NULL); 1977 } 1978 1979 1980 struct fib_table *fib_trie_table(u32 id) 1981 { 1982 struct fib_table *tb; 1983 struct trie *t; 1984 1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1986 GFP_KERNEL); 1987 if (tb == NULL) 1988 return NULL; 1989 1990 tb->tb_id = id; 1991 tb->tb_default = -1; 1992 tb->tb_num_default = 0; 1993 1994 t = (struct trie *) tb->tb_data; 1995 memset(t, 0, sizeof(*t)); 1996 1997 return tb; 1998 } 1999 2000 #ifdef CONFIG_PROC_FS 2001 /* Depth first Trie walk iterator */ 2002 struct fib_trie_iter { 2003 struct seq_net_private p; 2004 struct fib_table *tb; 2005 struct tnode *tnode; 2006 unsigned int index; 2007 unsigned int depth; 2008 }; 2009 2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2011 { 2012 struct tnode *tn = iter->tnode; 2013 unsigned int cindex = iter->index; 2014 struct tnode *p; 2015 2016 /* A single entry routing table */ 2017 if (!tn) 2018 return NULL; 2019 2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2021 iter->tnode, iter->index, iter->depth); 2022 rescan: 2023 while (cindex < (1<<tn->bits)) { 2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2025 2026 if (n) { 2027 if (IS_LEAF(n)) { 2028 iter->tnode = tn; 2029 iter->index = cindex + 1; 2030 } else { 2031 /* push down one level */ 2032 iter->tnode = (struct tnode *) n; 2033 iter->index = 0; 2034 ++iter->depth; 2035 } 2036 return n; 2037 } 2038 2039 ++cindex; 2040 } 2041 2042 /* Current node exhausted, pop back up */ 2043 p = node_parent_rcu((struct rt_trie_node *)tn); 2044 if (p) { 2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2046 tn = p; 2047 --iter->depth; 2048 goto rescan; 2049 } 2050 2051 /* got root? */ 2052 return NULL; 2053 } 2054 2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2056 struct trie *t) 2057 { 2058 struct rt_trie_node *n; 2059 2060 if (!t) 2061 return NULL; 2062 2063 n = rcu_dereference(t->trie); 2064 if (!n) 2065 return NULL; 2066 2067 if (IS_TNODE(n)) { 2068 iter->tnode = (struct tnode *) n; 2069 iter->index = 0; 2070 iter->depth = 1; 2071 } else { 2072 iter->tnode = NULL; 2073 iter->index = 0; 2074 iter->depth = 0; 2075 } 2076 2077 return n; 2078 } 2079 2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2081 { 2082 struct rt_trie_node *n; 2083 struct fib_trie_iter iter; 2084 2085 memset(s, 0, sizeof(*s)); 2086 2087 rcu_read_lock(); 2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2089 if (IS_LEAF(n)) { 2090 struct leaf *l = (struct leaf *)n; 2091 struct leaf_info *li; 2092 struct hlist_node *tmp; 2093 2094 s->leaves++; 2095 s->totdepth += iter.depth; 2096 if (iter.depth > s->maxdepth) 2097 s->maxdepth = iter.depth; 2098 2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2100 ++s->prefixes; 2101 } else { 2102 const struct tnode *tn = (const struct tnode *) n; 2103 int i; 2104 2105 s->tnodes++; 2106 if (tn->bits < MAX_STAT_DEPTH) 2107 s->nodesizes[tn->bits]++; 2108 2109 for (i = 0; i < (1<<tn->bits); i++) 2110 if (!tn->child[i]) 2111 s->nullpointers++; 2112 } 2113 } 2114 rcu_read_unlock(); 2115 } 2116 2117 /* 2118 * This outputs /proc/net/fib_triestats 2119 */ 2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2121 { 2122 unsigned int i, max, pointers, bytes, avdepth; 2123 2124 if (stat->leaves) 2125 avdepth = stat->totdepth*100 / stat->leaves; 2126 else 2127 avdepth = 0; 2128 2129 seq_printf(seq, "\tAver depth: %u.%02d\n", 2130 avdepth / 100, avdepth % 100); 2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2132 2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2134 bytes = sizeof(struct leaf) * stat->leaves; 2135 2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2137 bytes += sizeof(struct leaf_info) * stat->prefixes; 2138 2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2140 bytes += sizeof(struct tnode) * stat->tnodes; 2141 2142 max = MAX_STAT_DEPTH; 2143 while (max > 0 && stat->nodesizes[max-1] == 0) 2144 max--; 2145 2146 pointers = 0; 2147 for (i = 1; i <= max; i++) 2148 if (stat->nodesizes[i] != 0) { 2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2150 pointers += (1<<i) * stat->nodesizes[i]; 2151 } 2152 seq_putc(seq, '\n'); 2153 seq_printf(seq, "\tPointers: %u\n", pointers); 2154 2155 bytes += sizeof(struct rt_trie_node *) * pointers; 2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2158 } 2159 2160 #ifdef CONFIG_IP_FIB_TRIE_STATS 2161 static void trie_show_usage(struct seq_file *seq, 2162 const struct trie_use_stats *stats) 2163 { 2164 seq_printf(seq, "\nCounters:\n---------\n"); 2165 seq_printf(seq, "gets = %u\n", stats->gets); 2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2167 seq_printf(seq, "semantic match passed = %u\n", 2168 stats->semantic_match_passed); 2169 seq_printf(seq, "semantic match miss = %u\n", 2170 stats->semantic_match_miss); 2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2172 seq_printf(seq, "skipped node resize = %u\n\n", 2173 stats->resize_node_skipped); 2174 } 2175 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2176 2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2178 { 2179 if (tb->tb_id == RT_TABLE_LOCAL) 2180 seq_puts(seq, "Local:\n"); 2181 else if (tb->tb_id == RT_TABLE_MAIN) 2182 seq_puts(seq, "Main:\n"); 2183 else 2184 seq_printf(seq, "Id %d:\n", tb->tb_id); 2185 } 2186 2187 2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2189 { 2190 struct net *net = (struct net *)seq->private; 2191 unsigned int h; 2192 2193 seq_printf(seq, 2194 "Basic info: size of leaf:" 2195 " %Zd bytes, size of tnode: %Zd bytes.\n", 2196 sizeof(struct leaf), sizeof(struct tnode)); 2197 2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2200 struct hlist_node *node; 2201 struct fib_table *tb; 2202 2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2204 struct trie *t = (struct trie *) tb->tb_data; 2205 struct trie_stat stat; 2206 2207 if (!t) 2208 continue; 2209 2210 fib_table_print(seq, tb); 2211 2212 trie_collect_stats(t, &stat); 2213 trie_show_stats(seq, &stat); 2214 #ifdef CONFIG_IP_FIB_TRIE_STATS 2215 trie_show_usage(seq, &t->stats); 2216 #endif 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2224 { 2225 return single_open_net(inode, file, fib_triestat_seq_show); 2226 } 2227 2228 static const struct file_operations fib_triestat_fops = { 2229 .owner = THIS_MODULE, 2230 .open = fib_triestat_seq_open, 2231 .read = seq_read, 2232 .llseek = seq_lseek, 2233 .release = single_release_net, 2234 }; 2235 2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2237 { 2238 struct fib_trie_iter *iter = seq->private; 2239 struct net *net = seq_file_net(seq); 2240 loff_t idx = 0; 2241 unsigned int h; 2242 2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2245 struct hlist_node *node; 2246 struct fib_table *tb; 2247 2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2249 struct rt_trie_node *n; 2250 2251 for (n = fib_trie_get_first(iter, 2252 (struct trie *) tb->tb_data); 2253 n; n = fib_trie_get_next(iter)) 2254 if (pos == idx++) { 2255 iter->tb = tb; 2256 return n; 2257 } 2258 } 2259 } 2260 2261 return NULL; 2262 } 2263 2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2265 __acquires(RCU) 2266 { 2267 rcu_read_lock(); 2268 return fib_trie_get_idx(seq, *pos); 2269 } 2270 2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2272 { 2273 struct fib_trie_iter *iter = seq->private; 2274 struct net *net = seq_file_net(seq); 2275 struct fib_table *tb = iter->tb; 2276 struct hlist_node *tb_node; 2277 unsigned int h; 2278 struct rt_trie_node *n; 2279 2280 ++*pos; 2281 /* next node in same table */ 2282 n = fib_trie_get_next(iter); 2283 if (n) 2284 return n; 2285 2286 /* walk rest of this hash chain */ 2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2291 if (n) 2292 goto found; 2293 } 2294 2295 /* new hash chain */ 2296 while (++h < FIB_TABLE_HASHSZ) { 2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2300 if (n) 2301 goto found; 2302 } 2303 } 2304 return NULL; 2305 2306 found: 2307 iter->tb = tb; 2308 return n; 2309 } 2310 2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2312 __releases(RCU) 2313 { 2314 rcu_read_unlock(); 2315 } 2316 2317 static void seq_indent(struct seq_file *seq, int n) 2318 { 2319 while (n-- > 0) 2320 seq_puts(seq, " "); 2321 } 2322 2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2324 { 2325 switch (s) { 2326 case RT_SCOPE_UNIVERSE: return "universe"; 2327 case RT_SCOPE_SITE: return "site"; 2328 case RT_SCOPE_LINK: return "link"; 2329 case RT_SCOPE_HOST: return "host"; 2330 case RT_SCOPE_NOWHERE: return "nowhere"; 2331 default: 2332 snprintf(buf, len, "scope=%d", s); 2333 return buf; 2334 } 2335 } 2336 2337 static const char *const rtn_type_names[__RTN_MAX] = { 2338 [RTN_UNSPEC] = "UNSPEC", 2339 [RTN_UNICAST] = "UNICAST", 2340 [RTN_LOCAL] = "LOCAL", 2341 [RTN_BROADCAST] = "BROADCAST", 2342 [RTN_ANYCAST] = "ANYCAST", 2343 [RTN_MULTICAST] = "MULTICAST", 2344 [RTN_BLACKHOLE] = "BLACKHOLE", 2345 [RTN_UNREACHABLE] = "UNREACHABLE", 2346 [RTN_PROHIBIT] = "PROHIBIT", 2347 [RTN_THROW] = "THROW", 2348 [RTN_NAT] = "NAT", 2349 [RTN_XRESOLVE] = "XRESOLVE", 2350 }; 2351 2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2353 { 2354 if (t < __RTN_MAX && rtn_type_names[t]) 2355 return rtn_type_names[t]; 2356 snprintf(buf, len, "type %u", t); 2357 return buf; 2358 } 2359 2360 /* Pretty print the trie */ 2361 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2362 { 2363 const struct fib_trie_iter *iter = seq->private; 2364 struct rt_trie_node *n = v; 2365 2366 if (!node_parent_rcu(n)) 2367 fib_table_print(seq, iter->tb); 2368 2369 if (IS_TNODE(n)) { 2370 struct tnode *tn = (struct tnode *) n; 2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2372 2373 seq_indent(seq, iter->depth-1); 2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2375 &prf, tn->pos, tn->bits, tn->full_children, 2376 tn->empty_children); 2377 2378 } else { 2379 struct leaf *l = (struct leaf *) n; 2380 struct leaf_info *li; 2381 struct hlist_node *node; 2382 __be32 val = htonl(l->key); 2383 2384 seq_indent(seq, iter->depth); 2385 seq_printf(seq, " |-- %pI4\n", &val); 2386 2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2388 struct fib_alias *fa; 2389 2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2391 char buf1[32], buf2[32]; 2392 2393 seq_indent(seq, iter->depth+1); 2394 seq_printf(seq, " /%d %s %s", li->plen, 2395 rtn_scope(buf1, sizeof(buf1), 2396 fa->fa_info->fib_scope), 2397 rtn_type(buf2, sizeof(buf2), 2398 fa->fa_type)); 2399 if (fa->fa_tos) 2400 seq_printf(seq, " tos=%d", fa->fa_tos); 2401 seq_putc(seq, '\n'); 2402 } 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static const struct seq_operations fib_trie_seq_ops = { 2410 .start = fib_trie_seq_start, 2411 .next = fib_trie_seq_next, 2412 .stop = fib_trie_seq_stop, 2413 .show = fib_trie_seq_show, 2414 }; 2415 2416 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2417 { 2418 return seq_open_net(inode, file, &fib_trie_seq_ops, 2419 sizeof(struct fib_trie_iter)); 2420 } 2421 2422 static const struct file_operations fib_trie_fops = { 2423 .owner = THIS_MODULE, 2424 .open = fib_trie_seq_open, 2425 .read = seq_read, 2426 .llseek = seq_lseek, 2427 .release = seq_release_net, 2428 }; 2429 2430 struct fib_route_iter { 2431 struct seq_net_private p; 2432 struct trie *main_trie; 2433 loff_t pos; 2434 t_key key; 2435 }; 2436 2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2438 { 2439 struct leaf *l = NULL; 2440 struct trie *t = iter->main_trie; 2441 2442 /* use cache location of last found key */ 2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2444 pos -= iter->pos; 2445 else { 2446 iter->pos = 0; 2447 l = trie_firstleaf(t); 2448 } 2449 2450 while (l && pos-- > 0) { 2451 iter->pos++; 2452 l = trie_nextleaf(l); 2453 } 2454 2455 if (l) 2456 iter->key = pos; /* remember it */ 2457 else 2458 iter->pos = 0; /* forget it */ 2459 2460 return l; 2461 } 2462 2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2464 __acquires(RCU) 2465 { 2466 struct fib_route_iter *iter = seq->private; 2467 struct fib_table *tb; 2468 2469 rcu_read_lock(); 2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2471 if (!tb) 2472 return NULL; 2473 2474 iter->main_trie = (struct trie *) tb->tb_data; 2475 if (*pos == 0) 2476 return SEQ_START_TOKEN; 2477 else 2478 return fib_route_get_idx(iter, *pos - 1); 2479 } 2480 2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2482 { 2483 struct fib_route_iter *iter = seq->private; 2484 struct leaf *l = v; 2485 2486 ++*pos; 2487 if (v == SEQ_START_TOKEN) { 2488 iter->pos = 0; 2489 l = trie_firstleaf(iter->main_trie); 2490 } else { 2491 iter->pos++; 2492 l = trie_nextleaf(l); 2493 } 2494 2495 if (l) 2496 iter->key = l->key; 2497 else 2498 iter->pos = 0; 2499 return l; 2500 } 2501 2502 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2503 __releases(RCU) 2504 { 2505 rcu_read_unlock(); 2506 } 2507 2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2509 { 2510 unsigned int flags = 0; 2511 2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2513 flags = RTF_REJECT; 2514 if (fi && fi->fib_nh->nh_gw) 2515 flags |= RTF_GATEWAY; 2516 if (mask == htonl(0xFFFFFFFF)) 2517 flags |= RTF_HOST; 2518 flags |= RTF_UP; 2519 return flags; 2520 } 2521 2522 /* 2523 * This outputs /proc/net/route. 2524 * The format of the file is not supposed to be changed 2525 * and needs to be same as fib_hash output to avoid breaking 2526 * legacy utilities 2527 */ 2528 static int fib_route_seq_show(struct seq_file *seq, void *v) 2529 { 2530 struct leaf *l = v; 2531 struct leaf_info *li; 2532 struct hlist_node *node; 2533 2534 if (v == SEQ_START_TOKEN) { 2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2537 "\tWindow\tIRTT"); 2538 return 0; 2539 } 2540 2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2542 struct fib_alias *fa; 2543 __be32 mask, prefix; 2544 2545 mask = inet_make_mask(li->plen); 2546 prefix = htonl(l->key); 2547 2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2549 const struct fib_info *fi = fa->fa_info; 2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2551 int len; 2552 2553 if (fa->fa_type == RTN_BROADCAST 2554 || fa->fa_type == RTN_MULTICAST) 2555 continue; 2556 2557 if (fi) 2558 seq_printf(seq, 2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2560 "%d\t%08X\t%d\t%u\t%u%n", 2561 fi->fib_dev ? fi->fib_dev->name : "*", 2562 prefix, 2563 fi->fib_nh->nh_gw, flags, 0, 0, 2564 fi->fib_priority, 2565 mask, 2566 (fi->fib_advmss ? 2567 fi->fib_advmss + 40 : 0), 2568 fi->fib_window, 2569 fi->fib_rtt >> 3, &len); 2570 else 2571 seq_printf(seq, 2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2573 "%d\t%08X\t%d\t%u\t%u%n", 2574 prefix, 0, flags, 0, 0, 0, 2575 mask, 0, 0, 0, &len); 2576 2577 seq_printf(seq, "%*s\n", 127 - len, ""); 2578 } 2579 } 2580 2581 return 0; 2582 } 2583 2584 static const struct seq_operations fib_route_seq_ops = { 2585 .start = fib_route_seq_start, 2586 .next = fib_route_seq_next, 2587 .stop = fib_route_seq_stop, 2588 .show = fib_route_seq_show, 2589 }; 2590 2591 static int fib_route_seq_open(struct inode *inode, struct file *file) 2592 { 2593 return seq_open_net(inode, file, &fib_route_seq_ops, 2594 sizeof(struct fib_route_iter)); 2595 } 2596 2597 static const struct file_operations fib_route_fops = { 2598 .owner = THIS_MODULE, 2599 .open = fib_route_seq_open, 2600 .read = seq_read, 2601 .llseek = seq_lseek, 2602 .release = seq_release_net, 2603 }; 2604 2605 int __net_init fib_proc_init(struct net *net) 2606 { 2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2608 goto out1; 2609 2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2611 &fib_triestat_fops)) 2612 goto out2; 2613 2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2615 goto out3; 2616 2617 return 0; 2618 2619 out3: 2620 proc_net_remove(net, "fib_triestat"); 2621 out2: 2622 proc_net_remove(net, "fib_trie"); 2623 out1: 2624 return -ENOMEM; 2625 } 2626 2627 void __net_exit fib_proc_exit(struct net *net) 2628 { 2629 proc_net_remove(net, "fib_trie"); 2630 proc_net_remove(net, "fib_triestat"); 2631 proc_net_remove(net, "route"); 2632 } 2633 2634 #endif /* CONFIG_PROC_FS */ 2635