xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 
39 #define VERSION "0.409"
40 
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76 
77 static int call_fib_entry_notifier(struct notifier_block *nb,
78 				   enum fib_event_type event_type, u32 dst,
79 				   int dst_len, struct fib_alias *fa,
80 				   struct netlink_ext_ack *extack)
81 {
82 	struct fib_entry_notifier_info info = {
83 		.info.extack = extack,
84 		.dst = dst,
85 		.dst_len = dst_len,
86 		.fi = fa->fa_info,
87 		.tos = fa->fa_tos,
88 		.type = fa->fa_type,
89 		.tb_id = fa->tb_id,
90 	};
91 	return call_fib4_notifier(nb, event_type, &info.info);
92 }
93 
94 static int call_fib_entry_notifiers(struct net *net,
95 				    enum fib_event_type event_type, u32 dst,
96 				    int dst_len, struct fib_alias *fa,
97 				    struct netlink_ext_ack *extack)
98 {
99 	struct fib_entry_notifier_info info = {
100 		.info.extack = extack,
101 		.dst = dst,
102 		.dst_len = dst_len,
103 		.fi = fa->fa_info,
104 		.tos = fa->fa_tos,
105 		.type = fa->fa_type,
106 		.tb_id = fa->tb_id,
107 	};
108 	return call_fib4_notifiers(net, event_type, &info.info);
109 }
110 
111 #define MAX_STAT_DEPTH 32
112 
113 #define KEYLENGTH	(8*sizeof(t_key))
114 #define KEY_MAX		((t_key)~0)
115 
116 typedef unsigned int t_key;
117 
118 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
119 #define IS_TNODE(n)	((n)->bits)
120 #define IS_LEAF(n)	(!(n)->bits)
121 
122 struct key_vector {
123 	t_key key;
124 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
125 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
126 	unsigned char slen;
127 	union {
128 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
129 		struct hlist_head leaf;
130 		/* This array is valid if (pos | bits) > 0 (TNODE) */
131 		struct key_vector __rcu *tnode[0];
132 	};
133 };
134 
135 struct tnode {
136 	struct rcu_head rcu;
137 	t_key empty_children;		/* KEYLENGTH bits needed */
138 	t_key full_children;		/* KEYLENGTH bits needed */
139 	struct key_vector __rcu *parent;
140 	struct key_vector kv[1];
141 #define tn_bits kv[0].bits
142 };
143 
144 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
145 #define LEAF_SIZE	TNODE_SIZE(1)
146 
147 #ifdef CONFIG_IP_FIB_TRIE_STATS
148 struct trie_use_stats {
149 	unsigned int gets;
150 	unsigned int backtrack;
151 	unsigned int semantic_match_passed;
152 	unsigned int semantic_match_miss;
153 	unsigned int null_node_hit;
154 	unsigned int resize_node_skipped;
155 };
156 #endif
157 
158 struct trie_stat {
159 	unsigned int totdepth;
160 	unsigned int maxdepth;
161 	unsigned int tnodes;
162 	unsigned int leaves;
163 	unsigned int nullpointers;
164 	unsigned int prefixes;
165 	unsigned int nodesizes[MAX_STAT_DEPTH];
166 };
167 
168 struct trie {
169 	struct key_vector kv[1];
170 #ifdef CONFIG_IP_FIB_TRIE_STATS
171 	struct trie_use_stats __percpu *stats;
172 #endif
173 };
174 
175 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
176 static unsigned int tnode_free_size;
177 
178 /*
179  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
180  * especially useful before resizing the root node with PREEMPT_NONE configs;
181  * the value was obtained experimentally, aiming to avoid visible slowdown.
182  */
183 unsigned int sysctl_fib_sync_mem = 512 * 1024;
184 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
185 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
186 
187 static struct kmem_cache *fn_alias_kmem __ro_after_init;
188 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
189 
190 static inline struct tnode *tn_info(struct key_vector *kv)
191 {
192 	return container_of(kv, struct tnode, kv[0]);
193 }
194 
195 /* caller must hold RTNL */
196 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
197 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
198 
199 /* caller must hold RCU read lock or RTNL */
200 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
201 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
202 
203 /* wrapper for rcu_assign_pointer */
204 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
205 {
206 	if (n)
207 		rcu_assign_pointer(tn_info(n)->parent, tp);
208 }
209 
210 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
211 
212 /* This provides us with the number of children in this node, in the case of a
213  * leaf this will return 0 meaning none of the children are accessible.
214  */
215 static inline unsigned long child_length(const struct key_vector *tn)
216 {
217 	return (1ul << tn->bits) & ~(1ul);
218 }
219 
220 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
221 
222 static inline unsigned long get_index(t_key key, struct key_vector *kv)
223 {
224 	unsigned long index = key ^ kv->key;
225 
226 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
227 		return 0;
228 
229 	return index >> kv->pos;
230 }
231 
232 /* To understand this stuff, an understanding of keys and all their bits is
233  * necessary. Every node in the trie has a key associated with it, but not
234  * all of the bits in that key are significant.
235  *
236  * Consider a node 'n' and its parent 'tp'.
237  *
238  * If n is a leaf, every bit in its key is significant. Its presence is
239  * necessitated by path compression, since during a tree traversal (when
240  * searching for a leaf - unless we are doing an insertion) we will completely
241  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
242  * a potentially successful search, that we have indeed been walking the
243  * correct key path.
244  *
245  * Note that we can never "miss" the correct key in the tree if present by
246  * following the wrong path. Path compression ensures that segments of the key
247  * that are the same for all keys with a given prefix are skipped, but the
248  * skipped part *is* identical for each node in the subtrie below the skipped
249  * bit! trie_insert() in this implementation takes care of that.
250  *
251  * if n is an internal node - a 'tnode' here, the various parts of its key
252  * have many different meanings.
253  *
254  * Example:
255  * _________________________________________________________________
256  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
257  * -----------------------------------------------------------------
258  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
259  *
260  * _________________________________________________________________
261  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
262  * -----------------------------------------------------------------
263  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
264  *
265  * tp->pos = 22
266  * tp->bits = 3
267  * n->pos = 13
268  * n->bits = 4
269  *
270  * First, let's just ignore the bits that come before the parent tp, that is
271  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
272  * point we do not use them for anything.
273  *
274  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
275  * index into the parent's child array. That is, they will be used to find
276  * 'n' among tp's children.
277  *
278  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
279  * for the node n.
280  *
281  * All the bits we have seen so far are significant to the node n. The rest
282  * of the bits are really not needed or indeed known in n->key.
283  *
284  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
285  * n's child array, and will of course be different for each child.
286  *
287  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
288  * at this point.
289  */
290 
291 static const int halve_threshold = 25;
292 static const int inflate_threshold = 50;
293 static const int halve_threshold_root = 15;
294 static const int inflate_threshold_root = 30;
295 
296 static void __alias_free_mem(struct rcu_head *head)
297 {
298 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
299 	kmem_cache_free(fn_alias_kmem, fa);
300 }
301 
302 static inline void alias_free_mem_rcu(struct fib_alias *fa)
303 {
304 	call_rcu(&fa->rcu, __alias_free_mem);
305 }
306 
307 #define TNODE_KMALLOC_MAX \
308 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 #define TNODE_VMALLOC_MAX \
310 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
311 
312 static void __node_free_rcu(struct rcu_head *head)
313 {
314 	struct tnode *n = container_of(head, struct tnode, rcu);
315 
316 	if (!n->tn_bits)
317 		kmem_cache_free(trie_leaf_kmem, n);
318 	else
319 		kvfree(n);
320 }
321 
322 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
323 
324 static struct tnode *tnode_alloc(int bits)
325 {
326 	size_t size;
327 
328 	/* verify bits is within bounds */
329 	if (bits > TNODE_VMALLOC_MAX)
330 		return NULL;
331 
332 	/* determine size and verify it is non-zero and didn't overflow */
333 	size = TNODE_SIZE(1ul << bits);
334 
335 	if (size <= PAGE_SIZE)
336 		return kzalloc(size, GFP_KERNEL);
337 	else
338 		return vzalloc(size);
339 }
340 
341 static inline void empty_child_inc(struct key_vector *n)
342 {
343 	tn_info(n)->empty_children++;
344 
345 	if (!tn_info(n)->empty_children)
346 		tn_info(n)->full_children++;
347 }
348 
349 static inline void empty_child_dec(struct key_vector *n)
350 {
351 	if (!tn_info(n)->empty_children)
352 		tn_info(n)->full_children--;
353 
354 	tn_info(n)->empty_children--;
355 }
356 
357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
358 {
359 	struct key_vector *l;
360 	struct tnode *kv;
361 
362 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 	if (!kv)
364 		return NULL;
365 
366 	/* initialize key vector */
367 	l = kv->kv;
368 	l->key = key;
369 	l->pos = 0;
370 	l->bits = 0;
371 	l->slen = fa->fa_slen;
372 
373 	/* link leaf to fib alias */
374 	INIT_HLIST_HEAD(&l->leaf);
375 	hlist_add_head(&fa->fa_list, &l->leaf);
376 
377 	return l;
378 }
379 
380 static struct key_vector *tnode_new(t_key key, int pos, int bits)
381 {
382 	unsigned int shift = pos + bits;
383 	struct key_vector *tn;
384 	struct tnode *tnode;
385 
386 	/* verify bits and pos their msb bits clear and values are valid */
387 	BUG_ON(!bits || (shift > KEYLENGTH));
388 
389 	tnode = tnode_alloc(bits);
390 	if (!tnode)
391 		return NULL;
392 
393 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 		 sizeof(struct key_vector *) << bits);
395 
396 	if (bits == KEYLENGTH)
397 		tnode->full_children = 1;
398 	else
399 		tnode->empty_children = 1ul << bits;
400 
401 	tn = tnode->kv;
402 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 	tn->pos = pos;
404 	tn->bits = bits;
405 	tn->slen = pos;
406 
407 	return tn;
408 }
409 
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411  * and no bits are skipped. See discussion in dyntree paper p. 6
412  */
413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
414 {
415 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
416 }
417 
418 /* Add a child at position i overwriting the old value.
419  * Update the value of full_children and empty_children.
420  */
421 static void put_child(struct key_vector *tn, unsigned long i,
422 		      struct key_vector *n)
423 {
424 	struct key_vector *chi = get_child(tn, i);
425 	int isfull, wasfull;
426 
427 	BUG_ON(i >= child_length(tn));
428 
429 	/* update emptyChildren, overflow into fullChildren */
430 	if (!n && chi)
431 		empty_child_inc(tn);
432 	if (n && !chi)
433 		empty_child_dec(tn);
434 
435 	/* update fullChildren */
436 	wasfull = tnode_full(tn, chi);
437 	isfull = tnode_full(tn, n);
438 
439 	if (wasfull && !isfull)
440 		tn_info(tn)->full_children--;
441 	else if (!wasfull && isfull)
442 		tn_info(tn)->full_children++;
443 
444 	if (n && (tn->slen < n->slen))
445 		tn->slen = n->slen;
446 
447 	rcu_assign_pointer(tn->tnode[i], n);
448 }
449 
450 static void update_children(struct key_vector *tn)
451 {
452 	unsigned long i;
453 
454 	/* update all of the child parent pointers */
455 	for (i = child_length(tn); i;) {
456 		struct key_vector *inode = get_child(tn, --i);
457 
458 		if (!inode)
459 			continue;
460 
461 		/* Either update the children of a tnode that
462 		 * already belongs to us or update the child
463 		 * to point to ourselves.
464 		 */
465 		if (node_parent(inode) == tn)
466 			update_children(inode);
467 		else
468 			node_set_parent(inode, tn);
469 	}
470 }
471 
472 static inline void put_child_root(struct key_vector *tp, t_key key,
473 				  struct key_vector *n)
474 {
475 	if (IS_TRIE(tp))
476 		rcu_assign_pointer(tp->tnode[0], n);
477 	else
478 		put_child(tp, get_index(key, tp), n);
479 }
480 
481 static inline void tnode_free_init(struct key_vector *tn)
482 {
483 	tn_info(tn)->rcu.next = NULL;
484 }
485 
486 static inline void tnode_free_append(struct key_vector *tn,
487 				     struct key_vector *n)
488 {
489 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
491 }
492 
493 static void tnode_free(struct key_vector *tn)
494 {
495 	struct callback_head *head = &tn_info(tn)->rcu;
496 
497 	while (head) {
498 		head = head->next;
499 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 		node_free(tn);
501 
502 		tn = container_of(head, struct tnode, rcu)->kv;
503 	}
504 
505 	if (tnode_free_size >= sysctl_fib_sync_mem) {
506 		tnode_free_size = 0;
507 		synchronize_rcu();
508 	}
509 }
510 
511 static struct key_vector *replace(struct trie *t,
512 				  struct key_vector *oldtnode,
513 				  struct key_vector *tn)
514 {
515 	struct key_vector *tp = node_parent(oldtnode);
516 	unsigned long i;
517 
518 	/* setup the parent pointer out of and back into this node */
519 	NODE_INIT_PARENT(tn, tp);
520 	put_child_root(tp, tn->key, tn);
521 
522 	/* update all of the child parent pointers */
523 	update_children(tn);
524 
525 	/* all pointers should be clean so we are done */
526 	tnode_free(oldtnode);
527 
528 	/* resize children now that oldtnode is freed */
529 	for (i = child_length(tn); i;) {
530 		struct key_vector *inode = get_child(tn, --i);
531 
532 		/* resize child node */
533 		if (tnode_full(tn, inode))
534 			tn = resize(t, inode);
535 	}
536 
537 	return tp;
538 }
539 
540 static struct key_vector *inflate(struct trie *t,
541 				  struct key_vector *oldtnode)
542 {
543 	struct key_vector *tn;
544 	unsigned long i;
545 	t_key m;
546 
547 	pr_debug("In inflate\n");
548 
549 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
550 	if (!tn)
551 		goto notnode;
552 
553 	/* prepare oldtnode to be freed */
554 	tnode_free_init(oldtnode);
555 
556 	/* Assemble all of the pointers in our cluster, in this case that
557 	 * represents all of the pointers out of our allocated nodes that
558 	 * point to existing tnodes and the links between our allocated
559 	 * nodes.
560 	 */
561 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562 		struct key_vector *inode = get_child(oldtnode, --i);
563 		struct key_vector *node0, *node1;
564 		unsigned long j, k;
565 
566 		/* An empty child */
567 		if (!inode)
568 			continue;
569 
570 		/* A leaf or an internal node with skipped bits */
571 		if (!tnode_full(oldtnode, inode)) {
572 			put_child(tn, get_index(inode->key, tn), inode);
573 			continue;
574 		}
575 
576 		/* drop the node in the old tnode free list */
577 		tnode_free_append(oldtnode, inode);
578 
579 		/* An internal node with two children */
580 		if (inode->bits == 1) {
581 			put_child(tn, 2 * i + 1, get_child(inode, 1));
582 			put_child(tn, 2 * i, get_child(inode, 0));
583 			continue;
584 		}
585 
586 		/* We will replace this node 'inode' with two new
587 		 * ones, 'node0' and 'node1', each with half of the
588 		 * original children. The two new nodes will have
589 		 * a position one bit further down the key and this
590 		 * means that the "significant" part of their keys
591 		 * (see the discussion near the top of this file)
592 		 * will differ by one bit, which will be "0" in
593 		 * node0's key and "1" in node1's key. Since we are
594 		 * moving the key position by one step, the bit that
595 		 * we are moving away from - the bit at position
596 		 * (tn->pos) - is the one that will differ between
597 		 * node0 and node1. So... we synthesize that bit in the
598 		 * two new keys.
599 		 */
600 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 		if (!node1)
602 			goto nomem;
603 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
604 
605 		tnode_free_append(tn, node1);
606 		if (!node0)
607 			goto nomem;
608 		tnode_free_append(tn, node0);
609 
610 		/* populate child pointers in new nodes */
611 		for (k = child_length(inode), j = k / 2; j;) {
612 			put_child(node1, --j, get_child(inode, --k));
613 			put_child(node0, j, get_child(inode, j));
614 			put_child(node1, --j, get_child(inode, --k));
615 			put_child(node0, j, get_child(inode, j));
616 		}
617 
618 		/* link new nodes to parent */
619 		NODE_INIT_PARENT(node1, tn);
620 		NODE_INIT_PARENT(node0, tn);
621 
622 		/* link parent to nodes */
623 		put_child(tn, 2 * i + 1, node1);
624 		put_child(tn, 2 * i, node0);
625 	}
626 
627 	/* setup the parent pointers into and out of this node */
628 	return replace(t, oldtnode, tn);
629 nomem:
630 	/* all pointers should be clean so we are done */
631 	tnode_free(tn);
632 notnode:
633 	return NULL;
634 }
635 
636 static struct key_vector *halve(struct trie *t,
637 				struct key_vector *oldtnode)
638 {
639 	struct key_vector *tn;
640 	unsigned long i;
641 
642 	pr_debug("In halve\n");
643 
644 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645 	if (!tn)
646 		goto notnode;
647 
648 	/* prepare oldtnode to be freed */
649 	tnode_free_init(oldtnode);
650 
651 	/* Assemble all of the pointers in our cluster, in this case that
652 	 * represents all of the pointers out of our allocated nodes that
653 	 * point to existing tnodes and the links between our allocated
654 	 * nodes.
655 	 */
656 	for (i = child_length(oldtnode); i;) {
657 		struct key_vector *node1 = get_child(oldtnode, --i);
658 		struct key_vector *node0 = get_child(oldtnode, --i);
659 		struct key_vector *inode;
660 
661 		/* At least one of the children is empty */
662 		if (!node1 || !node0) {
663 			put_child(tn, i / 2, node1 ? : node0);
664 			continue;
665 		}
666 
667 		/* Two nonempty children */
668 		inode = tnode_new(node0->key, oldtnode->pos, 1);
669 		if (!inode)
670 			goto nomem;
671 		tnode_free_append(tn, inode);
672 
673 		/* initialize pointers out of node */
674 		put_child(inode, 1, node1);
675 		put_child(inode, 0, node0);
676 		NODE_INIT_PARENT(inode, tn);
677 
678 		/* link parent to node */
679 		put_child(tn, i / 2, inode);
680 	}
681 
682 	/* setup the parent pointers into and out of this node */
683 	return replace(t, oldtnode, tn);
684 nomem:
685 	/* all pointers should be clean so we are done */
686 	tnode_free(tn);
687 notnode:
688 	return NULL;
689 }
690 
691 static struct key_vector *collapse(struct trie *t,
692 				   struct key_vector *oldtnode)
693 {
694 	struct key_vector *n, *tp;
695 	unsigned long i;
696 
697 	/* scan the tnode looking for that one child that might still exist */
698 	for (n = NULL, i = child_length(oldtnode); !n && i;)
699 		n = get_child(oldtnode, --i);
700 
701 	/* compress one level */
702 	tp = node_parent(oldtnode);
703 	put_child_root(tp, oldtnode->key, n);
704 	node_set_parent(n, tp);
705 
706 	/* drop dead node */
707 	node_free(oldtnode);
708 
709 	return tp;
710 }
711 
712 static unsigned char update_suffix(struct key_vector *tn)
713 {
714 	unsigned char slen = tn->pos;
715 	unsigned long stride, i;
716 	unsigned char slen_max;
717 
718 	/* only vector 0 can have a suffix length greater than or equal to
719 	 * tn->pos + tn->bits, the second highest node will have a suffix
720 	 * length at most of tn->pos + tn->bits - 1
721 	 */
722 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
723 
724 	/* search though the list of children looking for nodes that might
725 	 * have a suffix greater than the one we currently have.  This is
726 	 * why we start with a stride of 2 since a stride of 1 would
727 	 * represent the nodes with suffix length equal to tn->pos
728 	 */
729 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730 		struct key_vector *n = get_child(tn, i);
731 
732 		if (!n || (n->slen <= slen))
733 			continue;
734 
735 		/* update stride and slen based on new value */
736 		stride <<= (n->slen - slen);
737 		slen = n->slen;
738 		i &= ~(stride - 1);
739 
740 		/* stop searching if we have hit the maximum possible value */
741 		if (slen >= slen_max)
742 			break;
743 	}
744 
745 	tn->slen = slen;
746 
747 	return slen;
748 }
749 
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751  * the Helsinki University of Technology and Matti Tikkanen of Nokia
752  * Telecommunications, page 6:
753  * "A node is doubled if the ratio of non-empty children to all
754  * children in the *doubled* node is at least 'high'."
755  *
756  * 'high' in this instance is the variable 'inflate_threshold'. It
757  * is expressed as a percentage, so we multiply it with
758  * child_length() and instead of multiplying by 2 (since the
759  * child array will be doubled by inflate()) and multiplying
760  * the left-hand side by 100 (to handle the percentage thing) we
761  * multiply the left-hand side by 50.
762  *
763  * The left-hand side may look a bit weird: child_length(tn)
764  * - tn->empty_children is of course the number of non-null children
765  * in the current node. tn->full_children is the number of "full"
766  * children, that is non-null tnodes with a skip value of 0.
767  * All of those will be doubled in the resulting inflated tnode, so
768  * we just count them one extra time here.
769  *
770  * A clearer way to write this would be:
771  *
772  * to_be_doubled = tn->full_children;
773  * not_to_be_doubled = child_length(tn) - tn->empty_children -
774  *     tn->full_children;
775  *
776  * new_child_length = child_length(tn) * 2;
777  *
778  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779  *      new_child_length;
780  * if (new_fill_factor >= inflate_threshold)
781  *
782  * ...and so on, tho it would mess up the while () loop.
783  *
784  * anyway,
785  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786  *      inflate_threshold
787  *
788  * avoid a division:
789  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790  *      inflate_threshold * new_child_length
791  *
792  * expand not_to_be_doubled and to_be_doubled, and shorten:
793  * 100 * (child_length(tn) - tn->empty_children +
794  *    tn->full_children) >= inflate_threshold * new_child_length
795  *
796  * expand new_child_length:
797  * 100 * (child_length(tn) - tn->empty_children +
798  *    tn->full_children) >=
799  *      inflate_threshold * child_length(tn) * 2
800  *
801  * shorten again:
802  * 50 * (tn->full_children + child_length(tn) -
803  *    tn->empty_children) >= inflate_threshold *
804  *    child_length(tn)
805  *
806  */
807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
808 {
809 	unsigned long used = child_length(tn);
810 	unsigned long threshold = used;
811 
812 	/* Keep root node larger */
813 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 	used -= tn_info(tn)->empty_children;
815 	used += tn_info(tn)->full_children;
816 
817 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
818 
819 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
820 }
821 
822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
823 {
824 	unsigned long used = child_length(tn);
825 	unsigned long threshold = used;
826 
827 	/* Keep root node larger */
828 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829 	used -= tn_info(tn)->empty_children;
830 
831 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832 
833 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834 }
835 
836 static inline bool should_collapse(struct key_vector *tn)
837 {
838 	unsigned long used = child_length(tn);
839 
840 	used -= tn_info(tn)->empty_children;
841 
842 	/* account for bits == KEYLENGTH case */
843 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 		used -= KEY_MAX;
845 
846 	/* One child or none, time to drop us from the trie */
847 	return used < 2;
848 }
849 
850 #define MAX_WORK 10
851 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
852 {
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 	struct trie_use_stats __percpu *stats = t->stats;
855 #endif
856 	struct key_vector *tp = node_parent(tn);
857 	unsigned long cindex = get_index(tn->key, tp);
858 	int max_work = MAX_WORK;
859 
860 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 		 tn, inflate_threshold, halve_threshold);
862 
863 	/* track the tnode via the pointer from the parent instead of
864 	 * doing it ourselves.  This way we can let RCU fully do its
865 	 * thing without us interfering
866 	 */
867 	BUG_ON(tn != get_child(tp, cindex));
868 
869 	/* Double as long as the resulting node has a number of
870 	 * nonempty nodes that are above the threshold.
871 	 */
872 	while (should_inflate(tp, tn) && max_work) {
873 		tp = inflate(t, tn);
874 		if (!tp) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 			this_cpu_inc(stats->resize_node_skipped);
877 #endif
878 			break;
879 		}
880 
881 		max_work--;
882 		tn = get_child(tp, cindex);
883 	}
884 
885 	/* update parent in case inflate failed */
886 	tp = node_parent(tn);
887 
888 	/* Return if at least one inflate is run */
889 	if (max_work != MAX_WORK)
890 		return tp;
891 
892 	/* Halve as long as the number of empty children in this
893 	 * node is above threshold.
894 	 */
895 	while (should_halve(tp, tn) && max_work) {
896 		tp = halve(t, tn);
897 		if (!tp) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 			this_cpu_inc(stats->resize_node_skipped);
900 #endif
901 			break;
902 		}
903 
904 		max_work--;
905 		tn = get_child(tp, cindex);
906 	}
907 
908 	/* Only one child remains */
909 	if (should_collapse(tn))
910 		return collapse(t, tn);
911 
912 	/* update parent in case halve failed */
913 	return node_parent(tn);
914 }
915 
916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
917 {
918 	unsigned char node_slen = tn->slen;
919 
920 	while ((node_slen > tn->pos) && (node_slen > slen)) {
921 		slen = update_suffix(tn);
922 		if (node_slen == slen)
923 			break;
924 
925 		tn = node_parent(tn);
926 		node_slen = tn->slen;
927 	}
928 }
929 
930 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
931 {
932 	while (tn->slen < slen) {
933 		tn->slen = slen;
934 		tn = node_parent(tn);
935 	}
936 }
937 
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector *fib_find_node(struct trie *t,
940 					struct key_vector **tp, u32 key)
941 {
942 	struct key_vector *pn, *n = t->kv;
943 	unsigned long index = 0;
944 
945 	do {
946 		pn = n;
947 		n = get_child_rcu(n, index);
948 
949 		if (!n)
950 			break;
951 
952 		index = get_cindex(key, n);
953 
954 		/* This bit of code is a bit tricky but it combines multiple
955 		 * checks into a single check.  The prefix consists of the
956 		 * prefix plus zeros for the bits in the cindex. The index
957 		 * is the difference between the key and this value.  From
958 		 * this we can actually derive several pieces of data.
959 		 *   if (index >= (1ul << bits))
960 		 *     we have a mismatch in skip bits and failed
961 		 *   else
962 		 *     we know the value is cindex
963 		 *
964 		 * This check is safe even if bits == KEYLENGTH due to the
965 		 * fact that we can only allocate a node with 32 bits if a
966 		 * long is greater than 32 bits.
967 		 */
968 		if (index >= (1ul << n->bits)) {
969 			n = NULL;
970 			break;
971 		}
972 
973 		/* keep searching until we find a perfect match leaf or NULL */
974 	} while (IS_TNODE(n));
975 
976 	*tp = pn;
977 
978 	return n;
979 }
980 
981 /* Return the first fib alias matching TOS with
982  * priority less than or equal to PRIO.
983  */
984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
985 					u8 tos, u32 prio, u32 tb_id)
986 {
987 	struct fib_alias *fa;
988 
989 	if (!fah)
990 		return NULL;
991 
992 	hlist_for_each_entry(fa, fah, fa_list) {
993 		if (fa->fa_slen < slen)
994 			continue;
995 		if (fa->fa_slen != slen)
996 			break;
997 		if (fa->tb_id > tb_id)
998 			continue;
999 		if (fa->tb_id != tb_id)
1000 			break;
1001 		if (fa->fa_tos > tos)
1002 			continue;
1003 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 			return fa;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1011 {
1012 	while (!IS_TRIE(tn))
1013 		tn = resize(t, tn);
1014 }
1015 
1016 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017 			   struct fib_alias *new, t_key key)
1018 {
1019 	struct key_vector *n, *l;
1020 
1021 	l = leaf_new(key, new);
1022 	if (!l)
1023 		goto noleaf;
1024 
1025 	/* retrieve child from parent node */
1026 	n = get_child(tp, get_index(key, tp));
1027 
1028 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029 	 *
1030 	 *  Add a new tnode here
1031 	 *  first tnode need some special handling
1032 	 *  leaves us in position for handling as case 3
1033 	 */
1034 	if (n) {
1035 		struct key_vector *tn;
1036 
1037 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1038 		if (!tn)
1039 			goto notnode;
1040 
1041 		/* initialize routes out of node */
1042 		NODE_INIT_PARENT(tn, tp);
1043 		put_child(tn, get_index(key, tn) ^ 1, n);
1044 
1045 		/* start adding routes into the node */
1046 		put_child_root(tp, key, tn);
1047 		node_set_parent(n, tn);
1048 
1049 		/* parent now has a NULL spot where the leaf can go */
1050 		tp = tn;
1051 	}
1052 
1053 	/* Case 3: n is NULL, and will just insert a new leaf */
1054 	node_push_suffix(tp, new->fa_slen);
1055 	NODE_INIT_PARENT(l, tp);
1056 	put_child_root(tp, key, l);
1057 	trie_rebalance(t, tp);
1058 
1059 	return 0;
1060 notnode:
1061 	node_free(l);
1062 noleaf:
1063 	return -ENOMEM;
1064 }
1065 
1066 /* fib notifier for ADD is sent before calling fib_insert_alias with
1067  * the expectation that the only possible failure ENOMEM
1068  */
1069 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1070 			    struct key_vector *l, struct fib_alias *new,
1071 			    struct fib_alias *fa, t_key key)
1072 {
1073 	if (!l)
1074 		return fib_insert_node(t, tp, new, key);
1075 
1076 	if (fa) {
1077 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1078 	} else {
1079 		struct fib_alias *last;
1080 
1081 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1082 			if (new->fa_slen < last->fa_slen)
1083 				break;
1084 			if ((new->fa_slen == last->fa_slen) &&
1085 			    (new->tb_id > last->tb_id))
1086 				break;
1087 			fa = last;
1088 		}
1089 
1090 		if (fa)
1091 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1092 		else
1093 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1094 	}
1095 
1096 	/* if we added to the tail node then we need to update slen */
1097 	if (l->slen < new->fa_slen) {
1098 		l->slen = new->fa_slen;
1099 		node_push_suffix(tp, new->fa_slen);
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1106 {
1107 	if (plen > KEYLENGTH) {
1108 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1109 		return false;
1110 	}
1111 
1112 	if ((plen < KEYLENGTH) && (key << plen)) {
1113 		NL_SET_ERR_MSG(extack,
1114 			       "Invalid prefix for given prefix length");
1115 		return false;
1116 	}
1117 
1118 	return true;
1119 }
1120 
1121 /* Caller must hold RTNL. */
1122 int fib_table_insert(struct net *net, struct fib_table *tb,
1123 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1124 {
1125 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1126 	struct trie *t = (struct trie *)tb->tb_data;
1127 	struct fib_alias *fa, *new_fa;
1128 	struct key_vector *l, *tp;
1129 	u16 nlflags = NLM_F_EXCL;
1130 	struct fib_info *fi;
1131 	u8 plen = cfg->fc_dst_len;
1132 	u8 slen = KEYLENGTH - plen;
1133 	u8 tos = cfg->fc_tos;
1134 	u32 key;
1135 	int err;
1136 
1137 	key = ntohl(cfg->fc_dst);
1138 
1139 	if (!fib_valid_key_len(key, plen, extack))
1140 		return -EINVAL;
1141 
1142 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1143 
1144 	fi = fib_create_info(cfg, extack);
1145 	if (IS_ERR(fi)) {
1146 		err = PTR_ERR(fi);
1147 		goto err;
1148 	}
1149 
1150 	l = fib_find_node(t, &tp, key);
1151 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1152 				tb->tb_id) : NULL;
1153 
1154 	/* Now fa, if non-NULL, points to the first fib alias
1155 	 * with the same keys [prefix,tos,priority], if such key already
1156 	 * exists or to the node before which we will insert new one.
1157 	 *
1158 	 * If fa is NULL, we will need to allocate a new one and
1159 	 * insert to the tail of the section matching the suffix length
1160 	 * of the new alias.
1161 	 */
1162 
1163 	if (fa && fa->fa_tos == tos &&
1164 	    fa->fa_info->fib_priority == fi->fib_priority) {
1165 		struct fib_alias *fa_first, *fa_match;
1166 
1167 		err = -EEXIST;
1168 		if (cfg->fc_nlflags & NLM_F_EXCL)
1169 			goto out;
1170 
1171 		nlflags &= ~NLM_F_EXCL;
1172 
1173 		/* We have 2 goals:
1174 		 * 1. Find exact match for type, scope, fib_info to avoid
1175 		 * duplicate routes
1176 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1177 		 */
1178 		fa_match = NULL;
1179 		fa_first = fa;
1180 		hlist_for_each_entry_from(fa, fa_list) {
1181 			if ((fa->fa_slen != slen) ||
1182 			    (fa->tb_id != tb->tb_id) ||
1183 			    (fa->fa_tos != tos))
1184 				break;
1185 			if (fa->fa_info->fib_priority != fi->fib_priority)
1186 				break;
1187 			if (fa->fa_type == cfg->fc_type &&
1188 			    fa->fa_info == fi) {
1189 				fa_match = fa;
1190 				break;
1191 			}
1192 		}
1193 
1194 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1195 			struct fib_info *fi_drop;
1196 			u8 state;
1197 
1198 			nlflags |= NLM_F_REPLACE;
1199 			fa = fa_first;
1200 			if (fa_match) {
1201 				if (fa == fa_match)
1202 					err = 0;
1203 				goto out;
1204 			}
1205 			err = -ENOBUFS;
1206 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207 			if (!new_fa)
1208 				goto out;
1209 
1210 			fi_drop = fa->fa_info;
1211 			new_fa->fa_tos = fa->fa_tos;
1212 			new_fa->fa_info = fi;
1213 			new_fa->fa_type = cfg->fc_type;
1214 			state = fa->fa_state;
1215 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1216 			new_fa->fa_slen = fa->fa_slen;
1217 			new_fa->tb_id = tb->tb_id;
1218 			new_fa->fa_default = -1;
1219 
1220 			err = call_fib_entry_notifiers(net,
1221 						       FIB_EVENT_ENTRY_REPLACE,
1222 						       key, plen, new_fa,
1223 						       extack);
1224 			if (err)
1225 				goto out_free_new_fa;
1226 
1227 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1228 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1229 
1230 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1231 
1232 			alias_free_mem_rcu(fa);
1233 
1234 			fib_release_info(fi_drop);
1235 			if (state & FA_S_ACCESSED)
1236 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237 
1238 			goto succeeded;
1239 		}
1240 		/* Error if we find a perfect match which
1241 		 * uses the same scope, type, and nexthop
1242 		 * information.
1243 		 */
1244 		if (fa_match)
1245 			goto out;
1246 
1247 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1248 			event = FIB_EVENT_ENTRY_APPEND;
1249 			nlflags |= NLM_F_APPEND;
1250 		} else {
1251 			fa = fa_first;
1252 		}
1253 	}
1254 	err = -ENOENT;
1255 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1256 		goto out;
1257 
1258 	nlflags |= NLM_F_CREATE;
1259 	err = -ENOBUFS;
1260 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1261 	if (!new_fa)
1262 		goto out;
1263 
1264 	new_fa->fa_info = fi;
1265 	new_fa->fa_tos = tos;
1266 	new_fa->fa_type = cfg->fc_type;
1267 	new_fa->fa_state = 0;
1268 	new_fa->fa_slen = slen;
1269 	new_fa->tb_id = tb->tb_id;
1270 	new_fa->fa_default = -1;
1271 
1272 	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1273 	if (err)
1274 		goto out_free_new_fa;
1275 
1276 	/* Insert new entry to the list. */
1277 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1278 	if (err)
1279 		goto out_fib_notif;
1280 
1281 	if (!plen)
1282 		tb->tb_num_default++;
1283 
1284 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1285 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1286 		  &cfg->fc_nlinfo, nlflags);
1287 succeeded:
1288 	return 0;
1289 
1290 out_fib_notif:
1291 	/* notifier was sent that entry would be added to trie, but
1292 	 * the add failed and need to recover. Only failure for
1293 	 * fib_insert_alias is ENOMEM.
1294 	 */
1295 	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1296 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1297 				 plen, new_fa, NULL);
1298 out_free_new_fa:
1299 	kmem_cache_free(fn_alias_kmem, new_fa);
1300 out:
1301 	fib_release_info(fi);
1302 err:
1303 	return err;
1304 }
1305 
1306 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1307 {
1308 	t_key prefix = n->key;
1309 
1310 	return (key ^ prefix) & (prefix | -prefix);
1311 }
1312 
1313 /* should be called with rcu_read_lock */
1314 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1315 		     struct fib_result *res, int fib_flags)
1316 {
1317 	struct trie *t = (struct trie *) tb->tb_data;
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 	struct trie_use_stats __percpu *stats = t->stats;
1320 #endif
1321 	const t_key key = ntohl(flp->daddr);
1322 	struct key_vector *n, *pn;
1323 	struct fib_alias *fa;
1324 	unsigned long index;
1325 	t_key cindex;
1326 
1327 	pn = t->kv;
1328 	cindex = 0;
1329 
1330 	n = get_child_rcu(pn, cindex);
1331 	if (!n) {
1332 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1333 		return -EAGAIN;
1334 	}
1335 
1336 #ifdef CONFIG_IP_FIB_TRIE_STATS
1337 	this_cpu_inc(stats->gets);
1338 #endif
1339 
1340 	/* Step 1: Travel to the longest prefix match in the trie */
1341 	for (;;) {
1342 		index = get_cindex(key, n);
1343 
1344 		/* This bit of code is a bit tricky but it combines multiple
1345 		 * checks into a single check.  The prefix consists of the
1346 		 * prefix plus zeros for the "bits" in the prefix. The index
1347 		 * is the difference between the key and this value.  From
1348 		 * this we can actually derive several pieces of data.
1349 		 *   if (index >= (1ul << bits))
1350 		 *     we have a mismatch in skip bits and failed
1351 		 *   else
1352 		 *     we know the value is cindex
1353 		 *
1354 		 * This check is safe even if bits == KEYLENGTH due to the
1355 		 * fact that we can only allocate a node with 32 bits if a
1356 		 * long is greater than 32 bits.
1357 		 */
1358 		if (index >= (1ul << n->bits))
1359 			break;
1360 
1361 		/* we have found a leaf. Prefixes have already been compared */
1362 		if (IS_LEAF(n))
1363 			goto found;
1364 
1365 		/* only record pn and cindex if we are going to be chopping
1366 		 * bits later.  Otherwise we are just wasting cycles.
1367 		 */
1368 		if (n->slen > n->pos) {
1369 			pn = n;
1370 			cindex = index;
1371 		}
1372 
1373 		n = get_child_rcu(n, index);
1374 		if (unlikely(!n))
1375 			goto backtrace;
1376 	}
1377 
1378 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1379 	for (;;) {
1380 		/* record the pointer where our next node pointer is stored */
1381 		struct key_vector __rcu **cptr = n->tnode;
1382 
1383 		/* This test verifies that none of the bits that differ
1384 		 * between the key and the prefix exist in the region of
1385 		 * the lsb and higher in the prefix.
1386 		 */
1387 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1388 			goto backtrace;
1389 
1390 		/* exit out and process leaf */
1391 		if (unlikely(IS_LEAF(n)))
1392 			break;
1393 
1394 		/* Don't bother recording parent info.  Since we are in
1395 		 * prefix match mode we will have to come back to wherever
1396 		 * we started this traversal anyway
1397 		 */
1398 
1399 		while ((n = rcu_dereference(*cptr)) == NULL) {
1400 backtrace:
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 			if (!n)
1403 				this_cpu_inc(stats->null_node_hit);
1404 #endif
1405 			/* If we are at cindex 0 there are no more bits for
1406 			 * us to strip at this level so we must ascend back
1407 			 * up one level to see if there are any more bits to
1408 			 * be stripped there.
1409 			 */
1410 			while (!cindex) {
1411 				t_key pkey = pn->key;
1412 
1413 				/* If we don't have a parent then there is
1414 				 * nothing for us to do as we do not have any
1415 				 * further nodes to parse.
1416 				 */
1417 				if (IS_TRIE(pn)) {
1418 					trace_fib_table_lookup(tb->tb_id, flp,
1419 							       NULL, -EAGAIN);
1420 					return -EAGAIN;
1421 				}
1422 #ifdef CONFIG_IP_FIB_TRIE_STATS
1423 				this_cpu_inc(stats->backtrack);
1424 #endif
1425 				/* Get Child's index */
1426 				pn = node_parent_rcu(pn);
1427 				cindex = get_index(pkey, pn);
1428 			}
1429 
1430 			/* strip the least significant bit from the cindex */
1431 			cindex &= cindex - 1;
1432 
1433 			/* grab pointer for next child node */
1434 			cptr = &pn->tnode[cindex];
1435 		}
1436 	}
1437 
1438 found:
1439 	/* this line carries forward the xor from earlier in the function */
1440 	index = key ^ n->key;
1441 
1442 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1443 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1444 		struct fib_info *fi = fa->fa_info;
1445 		int nhsel, err;
1446 
1447 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1448 			if (index >= (1ul << fa->fa_slen))
1449 				continue;
1450 		}
1451 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1452 			continue;
1453 		if (fi->fib_dead)
1454 			continue;
1455 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1456 			continue;
1457 		fib_alias_accessed(fa);
1458 		err = fib_props[fa->fa_type].error;
1459 		if (unlikely(err < 0)) {
1460 out_reject:
1461 #ifdef CONFIG_IP_FIB_TRIE_STATS
1462 			this_cpu_inc(stats->semantic_match_passed);
1463 #endif
1464 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1465 			return err;
1466 		}
1467 		if (fi->fib_flags & RTNH_F_DEAD)
1468 			continue;
1469 
1470 		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1471 			err = fib_props[RTN_BLACKHOLE].error;
1472 			goto out_reject;
1473 		}
1474 
1475 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1476 			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1477 
1478 			if (nhc->nhc_flags & RTNH_F_DEAD)
1479 				continue;
1480 			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1481 			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1482 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1483 				continue;
1484 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1485 				if (flp->flowi4_oif &&
1486 				    flp->flowi4_oif != nhc->nhc_oif)
1487 					continue;
1488 			}
1489 
1490 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1491 				refcount_inc(&fi->fib_clntref);
1492 
1493 			res->prefix = htonl(n->key);
1494 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1495 			res->nh_sel = nhsel;
1496 			res->nhc = nhc;
1497 			res->type = fa->fa_type;
1498 			res->scope = fi->fib_scope;
1499 			res->fi = fi;
1500 			res->table = tb;
1501 			res->fa_head = &n->leaf;
1502 #ifdef CONFIG_IP_FIB_TRIE_STATS
1503 			this_cpu_inc(stats->semantic_match_passed);
1504 #endif
1505 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1506 
1507 			return err;
1508 		}
1509 	}
1510 #ifdef CONFIG_IP_FIB_TRIE_STATS
1511 	this_cpu_inc(stats->semantic_match_miss);
1512 #endif
1513 	goto backtrace;
1514 }
1515 EXPORT_SYMBOL_GPL(fib_table_lookup);
1516 
1517 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1518 			     struct key_vector *l, struct fib_alias *old)
1519 {
1520 	/* record the location of the previous list_info entry */
1521 	struct hlist_node **pprev = old->fa_list.pprev;
1522 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1523 
1524 	/* remove the fib_alias from the list */
1525 	hlist_del_rcu(&old->fa_list);
1526 
1527 	/* if we emptied the list this leaf will be freed and we can sort
1528 	 * out parent suffix lengths as a part of trie_rebalance
1529 	 */
1530 	if (hlist_empty(&l->leaf)) {
1531 		if (tp->slen == l->slen)
1532 			node_pull_suffix(tp, tp->pos);
1533 		put_child_root(tp, l->key, NULL);
1534 		node_free(l);
1535 		trie_rebalance(t, tp);
1536 		return;
1537 	}
1538 
1539 	/* only access fa if it is pointing at the last valid hlist_node */
1540 	if (*pprev)
1541 		return;
1542 
1543 	/* update the trie with the latest suffix length */
1544 	l->slen = fa->fa_slen;
1545 	node_pull_suffix(tp, fa->fa_slen);
1546 }
1547 
1548 /* Caller must hold RTNL. */
1549 int fib_table_delete(struct net *net, struct fib_table *tb,
1550 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1551 {
1552 	struct trie *t = (struct trie *) tb->tb_data;
1553 	struct fib_alias *fa, *fa_to_delete;
1554 	struct key_vector *l, *tp;
1555 	u8 plen = cfg->fc_dst_len;
1556 	u8 slen = KEYLENGTH - plen;
1557 	u8 tos = cfg->fc_tos;
1558 	u32 key;
1559 
1560 	key = ntohl(cfg->fc_dst);
1561 
1562 	if (!fib_valid_key_len(key, plen, extack))
1563 		return -EINVAL;
1564 
1565 	l = fib_find_node(t, &tp, key);
1566 	if (!l)
1567 		return -ESRCH;
1568 
1569 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1570 	if (!fa)
1571 		return -ESRCH;
1572 
1573 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1574 
1575 	fa_to_delete = NULL;
1576 	hlist_for_each_entry_from(fa, fa_list) {
1577 		struct fib_info *fi = fa->fa_info;
1578 
1579 		if ((fa->fa_slen != slen) ||
1580 		    (fa->tb_id != tb->tb_id) ||
1581 		    (fa->fa_tos != tos))
1582 			break;
1583 
1584 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1585 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1586 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1587 		    (!cfg->fc_prefsrc ||
1588 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1589 		    (!cfg->fc_protocol ||
1590 		     fi->fib_protocol == cfg->fc_protocol) &&
1591 		    fib_nh_match(cfg, fi, extack) == 0 &&
1592 		    fib_metrics_match(cfg, fi)) {
1593 			fa_to_delete = fa;
1594 			break;
1595 		}
1596 	}
1597 
1598 	if (!fa_to_delete)
1599 		return -ESRCH;
1600 
1601 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1602 				 fa_to_delete, extack);
1603 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1604 		  &cfg->fc_nlinfo, 0);
1605 
1606 	if (!plen)
1607 		tb->tb_num_default--;
1608 
1609 	fib_remove_alias(t, tp, l, fa_to_delete);
1610 
1611 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1612 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1613 
1614 	fib_release_info(fa_to_delete->fa_info);
1615 	alias_free_mem_rcu(fa_to_delete);
1616 	return 0;
1617 }
1618 
1619 /* Scan for the next leaf starting at the provided key value */
1620 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1621 {
1622 	struct key_vector *pn, *n = *tn;
1623 	unsigned long cindex;
1624 
1625 	/* this loop is meant to try and find the key in the trie */
1626 	do {
1627 		/* record parent and next child index */
1628 		pn = n;
1629 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1630 
1631 		if (cindex >> pn->bits)
1632 			break;
1633 
1634 		/* descend into the next child */
1635 		n = get_child_rcu(pn, cindex++);
1636 		if (!n)
1637 			break;
1638 
1639 		/* guarantee forward progress on the keys */
1640 		if (IS_LEAF(n) && (n->key >= key))
1641 			goto found;
1642 	} while (IS_TNODE(n));
1643 
1644 	/* this loop will search for the next leaf with a greater key */
1645 	while (!IS_TRIE(pn)) {
1646 		/* if we exhausted the parent node we will need to climb */
1647 		if (cindex >= (1ul << pn->bits)) {
1648 			t_key pkey = pn->key;
1649 
1650 			pn = node_parent_rcu(pn);
1651 			cindex = get_index(pkey, pn) + 1;
1652 			continue;
1653 		}
1654 
1655 		/* grab the next available node */
1656 		n = get_child_rcu(pn, cindex++);
1657 		if (!n)
1658 			continue;
1659 
1660 		/* no need to compare keys since we bumped the index */
1661 		if (IS_LEAF(n))
1662 			goto found;
1663 
1664 		/* Rescan start scanning in new node */
1665 		pn = n;
1666 		cindex = 0;
1667 	}
1668 
1669 	*tn = pn;
1670 	return NULL; /* Root of trie */
1671 found:
1672 	/* if we are at the limit for keys just return NULL for the tnode */
1673 	*tn = pn;
1674 	return n;
1675 }
1676 
1677 static void fib_trie_free(struct fib_table *tb)
1678 {
1679 	struct trie *t = (struct trie *)tb->tb_data;
1680 	struct key_vector *pn = t->kv;
1681 	unsigned long cindex = 1;
1682 	struct hlist_node *tmp;
1683 	struct fib_alias *fa;
1684 
1685 	/* walk trie in reverse order and free everything */
1686 	for (;;) {
1687 		struct key_vector *n;
1688 
1689 		if (!(cindex--)) {
1690 			t_key pkey = pn->key;
1691 
1692 			if (IS_TRIE(pn))
1693 				break;
1694 
1695 			n = pn;
1696 			pn = node_parent(pn);
1697 
1698 			/* drop emptied tnode */
1699 			put_child_root(pn, n->key, NULL);
1700 			node_free(n);
1701 
1702 			cindex = get_index(pkey, pn);
1703 
1704 			continue;
1705 		}
1706 
1707 		/* grab the next available node */
1708 		n = get_child(pn, cindex);
1709 		if (!n)
1710 			continue;
1711 
1712 		if (IS_TNODE(n)) {
1713 			/* record pn and cindex for leaf walking */
1714 			pn = n;
1715 			cindex = 1ul << n->bits;
1716 
1717 			continue;
1718 		}
1719 
1720 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1721 			hlist_del_rcu(&fa->fa_list);
1722 			alias_free_mem_rcu(fa);
1723 		}
1724 
1725 		put_child_root(pn, n->key, NULL);
1726 		node_free(n);
1727 	}
1728 
1729 #ifdef CONFIG_IP_FIB_TRIE_STATS
1730 	free_percpu(t->stats);
1731 #endif
1732 	kfree(tb);
1733 }
1734 
1735 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1736 {
1737 	struct trie *ot = (struct trie *)oldtb->tb_data;
1738 	struct key_vector *l, *tp = ot->kv;
1739 	struct fib_table *local_tb;
1740 	struct fib_alias *fa;
1741 	struct trie *lt;
1742 	t_key key = 0;
1743 
1744 	if (oldtb->tb_data == oldtb->__data)
1745 		return oldtb;
1746 
1747 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1748 	if (!local_tb)
1749 		return NULL;
1750 
1751 	lt = (struct trie *)local_tb->tb_data;
1752 
1753 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1754 		struct key_vector *local_l = NULL, *local_tp;
1755 
1756 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1757 			struct fib_alias *new_fa;
1758 
1759 			if (local_tb->tb_id != fa->tb_id)
1760 				continue;
1761 
1762 			/* clone fa for new local table */
1763 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1764 			if (!new_fa)
1765 				goto out;
1766 
1767 			memcpy(new_fa, fa, sizeof(*fa));
1768 
1769 			/* insert clone into table */
1770 			if (!local_l)
1771 				local_l = fib_find_node(lt, &local_tp, l->key);
1772 
1773 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1774 					     NULL, l->key)) {
1775 				kmem_cache_free(fn_alias_kmem, new_fa);
1776 				goto out;
1777 			}
1778 		}
1779 
1780 		/* stop loop if key wrapped back to 0 */
1781 		key = l->key + 1;
1782 		if (key < l->key)
1783 			break;
1784 	}
1785 
1786 	return local_tb;
1787 out:
1788 	fib_trie_free(local_tb);
1789 
1790 	return NULL;
1791 }
1792 
1793 /* Caller must hold RTNL */
1794 void fib_table_flush_external(struct fib_table *tb)
1795 {
1796 	struct trie *t = (struct trie *)tb->tb_data;
1797 	struct key_vector *pn = t->kv;
1798 	unsigned long cindex = 1;
1799 	struct hlist_node *tmp;
1800 	struct fib_alias *fa;
1801 
1802 	/* walk trie in reverse order */
1803 	for (;;) {
1804 		unsigned char slen = 0;
1805 		struct key_vector *n;
1806 
1807 		if (!(cindex--)) {
1808 			t_key pkey = pn->key;
1809 
1810 			/* cannot resize the trie vector */
1811 			if (IS_TRIE(pn))
1812 				break;
1813 
1814 			/* update the suffix to address pulled leaves */
1815 			if (pn->slen > pn->pos)
1816 				update_suffix(pn);
1817 
1818 			/* resize completed node */
1819 			pn = resize(t, pn);
1820 			cindex = get_index(pkey, pn);
1821 
1822 			continue;
1823 		}
1824 
1825 		/* grab the next available node */
1826 		n = get_child(pn, cindex);
1827 		if (!n)
1828 			continue;
1829 
1830 		if (IS_TNODE(n)) {
1831 			/* record pn and cindex for leaf walking */
1832 			pn = n;
1833 			cindex = 1ul << n->bits;
1834 
1835 			continue;
1836 		}
1837 
1838 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1839 			/* if alias was cloned to local then we just
1840 			 * need to remove the local copy from main
1841 			 */
1842 			if (tb->tb_id != fa->tb_id) {
1843 				hlist_del_rcu(&fa->fa_list);
1844 				alias_free_mem_rcu(fa);
1845 				continue;
1846 			}
1847 
1848 			/* record local slen */
1849 			slen = fa->fa_slen;
1850 		}
1851 
1852 		/* update leaf slen */
1853 		n->slen = slen;
1854 
1855 		if (hlist_empty(&n->leaf)) {
1856 			put_child_root(pn, n->key, NULL);
1857 			node_free(n);
1858 		}
1859 	}
1860 }
1861 
1862 /* Caller must hold RTNL. */
1863 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1864 {
1865 	struct trie *t = (struct trie *)tb->tb_data;
1866 	struct key_vector *pn = t->kv;
1867 	unsigned long cindex = 1;
1868 	struct hlist_node *tmp;
1869 	struct fib_alias *fa;
1870 	int found = 0;
1871 
1872 	/* walk trie in reverse order */
1873 	for (;;) {
1874 		unsigned char slen = 0;
1875 		struct key_vector *n;
1876 
1877 		if (!(cindex--)) {
1878 			t_key pkey = pn->key;
1879 
1880 			/* cannot resize the trie vector */
1881 			if (IS_TRIE(pn))
1882 				break;
1883 
1884 			/* update the suffix to address pulled leaves */
1885 			if (pn->slen > pn->pos)
1886 				update_suffix(pn);
1887 
1888 			/* resize completed node */
1889 			pn = resize(t, pn);
1890 			cindex = get_index(pkey, pn);
1891 
1892 			continue;
1893 		}
1894 
1895 		/* grab the next available node */
1896 		n = get_child(pn, cindex);
1897 		if (!n)
1898 			continue;
1899 
1900 		if (IS_TNODE(n)) {
1901 			/* record pn and cindex for leaf walking */
1902 			pn = n;
1903 			cindex = 1ul << n->bits;
1904 
1905 			continue;
1906 		}
1907 
1908 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1909 			struct fib_info *fi = fa->fa_info;
1910 
1911 			if (!fi || tb->tb_id != fa->tb_id ||
1912 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1913 			     !fib_props[fa->fa_type].error)) {
1914 				slen = fa->fa_slen;
1915 				continue;
1916 			}
1917 
1918 			/* Do not flush error routes if network namespace is
1919 			 * not being dismantled
1920 			 */
1921 			if (!flush_all && fib_props[fa->fa_type].error) {
1922 				slen = fa->fa_slen;
1923 				continue;
1924 			}
1925 
1926 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1927 						 n->key,
1928 						 KEYLENGTH - fa->fa_slen, fa,
1929 						 NULL);
1930 			hlist_del_rcu(&fa->fa_list);
1931 			fib_release_info(fa->fa_info);
1932 			alias_free_mem_rcu(fa);
1933 			found++;
1934 		}
1935 
1936 		/* update leaf slen */
1937 		n->slen = slen;
1938 
1939 		if (hlist_empty(&n->leaf)) {
1940 			put_child_root(pn, n->key, NULL);
1941 			node_free(n);
1942 		}
1943 	}
1944 
1945 	pr_debug("trie_flush found=%d\n", found);
1946 	return found;
1947 }
1948 
1949 /* derived from fib_trie_free */
1950 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1951 				     struct nl_info *info)
1952 {
1953 	struct trie *t = (struct trie *)tb->tb_data;
1954 	struct key_vector *pn = t->kv;
1955 	unsigned long cindex = 1;
1956 	struct fib_alias *fa;
1957 
1958 	for (;;) {
1959 		struct key_vector *n;
1960 
1961 		if (!(cindex--)) {
1962 			t_key pkey = pn->key;
1963 
1964 			if (IS_TRIE(pn))
1965 				break;
1966 
1967 			pn = node_parent(pn);
1968 			cindex = get_index(pkey, pn);
1969 			continue;
1970 		}
1971 
1972 		/* grab the next available node */
1973 		n = get_child(pn, cindex);
1974 		if (!n)
1975 			continue;
1976 
1977 		if (IS_TNODE(n)) {
1978 			/* record pn and cindex for leaf walking */
1979 			pn = n;
1980 			cindex = 1ul << n->bits;
1981 
1982 			continue;
1983 		}
1984 
1985 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
1986 			struct fib_info *fi = fa->fa_info;
1987 
1988 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1989 				continue;
1990 
1991 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1992 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
1993 				  info, NLM_F_REPLACE);
1994 
1995 			/* call_fib_entry_notifiers will be removed when
1996 			 * in-kernel notifier is implemented and supported
1997 			 * for nexthop objects
1998 			 */
1999 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2000 						 n->key,
2001 						 KEYLENGTH - fa->fa_slen, fa,
2002 						 NULL);
2003 		}
2004 	}
2005 }
2006 
2007 void fib_info_notify_update(struct net *net, struct nl_info *info)
2008 {
2009 	unsigned int h;
2010 
2011 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2012 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2013 		struct fib_table *tb;
2014 
2015 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2016 			__fib_info_notify_update(net, tb, info);
2017 	}
2018 }
2019 
2020 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2021 			   struct notifier_block *nb,
2022 			   struct netlink_ext_ack *extack)
2023 {
2024 	struct fib_alias *fa;
2025 	int err;
2026 
2027 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2028 		struct fib_info *fi = fa->fa_info;
2029 
2030 		if (!fi)
2031 			continue;
2032 
2033 		/* local and main table can share the same trie,
2034 		 * so don't notify twice for the same entry.
2035 		 */
2036 		if (tb->tb_id != fa->tb_id)
2037 			continue;
2038 
2039 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_ADD, l->key,
2040 					      KEYLENGTH - fa->fa_slen,
2041 					      fa, extack);
2042 		if (err)
2043 			return err;
2044 	}
2045 	return 0;
2046 }
2047 
2048 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2049 			    struct netlink_ext_ack *extack)
2050 {
2051 	struct trie *t = (struct trie *)tb->tb_data;
2052 	struct key_vector *l, *tp = t->kv;
2053 	t_key key = 0;
2054 	int err;
2055 
2056 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2057 		err = fib_leaf_notify(l, tb, nb, extack);
2058 		if (err)
2059 			return err;
2060 
2061 		key = l->key + 1;
2062 		/* stop in case of wrap around */
2063 		if (key < l->key)
2064 			break;
2065 	}
2066 	return 0;
2067 }
2068 
2069 int fib_notify(struct net *net, struct notifier_block *nb,
2070 	       struct netlink_ext_ack *extack)
2071 {
2072 	unsigned int h;
2073 	int err;
2074 
2075 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2076 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2077 		struct fib_table *tb;
2078 
2079 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2080 			err = fib_table_notify(tb, nb, extack);
2081 			if (err)
2082 				return err;
2083 		}
2084 	}
2085 	return 0;
2086 }
2087 
2088 static void __trie_free_rcu(struct rcu_head *head)
2089 {
2090 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2091 #ifdef CONFIG_IP_FIB_TRIE_STATS
2092 	struct trie *t = (struct trie *)tb->tb_data;
2093 
2094 	if (tb->tb_data == tb->__data)
2095 		free_percpu(t->stats);
2096 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2097 	kfree(tb);
2098 }
2099 
2100 void fib_free_table(struct fib_table *tb)
2101 {
2102 	call_rcu(&tb->rcu, __trie_free_rcu);
2103 }
2104 
2105 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2106 			     struct sk_buff *skb, struct netlink_callback *cb,
2107 			     struct fib_dump_filter *filter)
2108 {
2109 	unsigned int flags = NLM_F_MULTI;
2110 	__be32 xkey = htonl(l->key);
2111 	int i, s_i, i_fa, s_fa, err;
2112 	struct fib_alias *fa;
2113 
2114 	if (filter->filter_set ||
2115 	    !filter->dump_exceptions || !filter->dump_routes)
2116 		flags |= NLM_F_DUMP_FILTERED;
2117 
2118 	s_i = cb->args[4];
2119 	s_fa = cb->args[5];
2120 	i = 0;
2121 
2122 	/* rcu_read_lock is hold by caller */
2123 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2124 		struct fib_info *fi = fa->fa_info;
2125 
2126 		if (i < s_i)
2127 			goto next;
2128 
2129 		i_fa = 0;
2130 
2131 		if (tb->tb_id != fa->tb_id)
2132 			goto next;
2133 
2134 		if (filter->filter_set) {
2135 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2136 				goto next;
2137 
2138 			if ((filter->protocol &&
2139 			     fi->fib_protocol != filter->protocol))
2140 				goto next;
2141 
2142 			if (filter->dev &&
2143 			    !fib_info_nh_uses_dev(fi, filter->dev))
2144 				goto next;
2145 		}
2146 
2147 		if (filter->dump_routes) {
2148 			if (!s_fa) {
2149 				err = fib_dump_info(skb,
2150 						    NETLINK_CB(cb->skb).portid,
2151 						    cb->nlh->nlmsg_seq,
2152 						    RTM_NEWROUTE,
2153 						    tb->tb_id, fa->fa_type,
2154 						    xkey,
2155 						    KEYLENGTH - fa->fa_slen,
2156 						    fa->fa_tos, fi, flags);
2157 				if (err < 0)
2158 					goto stop;
2159 			}
2160 
2161 			i_fa++;
2162 		}
2163 
2164 		if (filter->dump_exceptions) {
2165 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2166 						 &i_fa, s_fa, flags);
2167 			if (err < 0)
2168 				goto stop;
2169 		}
2170 
2171 next:
2172 		i++;
2173 	}
2174 
2175 	cb->args[4] = i;
2176 	return skb->len;
2177 
2178 stop:
2179 	cb->args[4] = i;
2180 	cb->args[5] = i_fa;
2181 	return err;
2182 }
2183 
2184 /* rcu_read_lock needs to be hold by caller from readside */
2185 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2186 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2187 {
2188 	struct trie *t = (struct trie *)tb->tb_data;
2189 	struct key_vector *l, *tp = t->kv;
2190 	/* Dump starting at last key.
2191 	 * Note: 0.0.0.0/0 (ie default) is first key.
2192 	 */
2193 	int count = cb->args[2];
2194 	t_key key = cb->args[3];
2195 
2196 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2197 		int err;
2198 
2199 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2200 		if (err < 0) {
2201 			cb->args[3] = key;
2202 			cb->args[2] = count;
2203 			return err;
2204 		}
2205 
2206 		++count;
2207 		key = l->key + 1;
2208 
2209 		memset(&cb->args[4], 0,
2210 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2211 
2212 		/* stop loop if key wrapped back to 0 */
2213 		if (key < l->key)
2214 			break;
2215 	}
2216 
2217 	cb->args[3] = key;
2218 	cb->args[2] = count;
2219 
2220 	return skb->len;
2221 }
2222 
2223 void __init fib_trie_init(void)
2224 {
2225 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2226 					  sizeof(struct fib_alias),
2227 					  0, SLAB_PANIC, NULL);
2228 
2229 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2230 					   LEAF_SIZE,
2231 					   0, SLAB_PANIC, NULL);
2232 }
2233 
2234 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2235 {
2236 	struct fib_table *tb;
2237 	struct trie *t;
2238 	size_t sz = sizeof(*tb);
2239 
2240 	if (!alias)
2241 		sz += sizeof(struct trie);
2242 
2243 	tb = kzalloc(sz, GFP_KERNEL);
2244 	if (!tb)
2245 		return NULL;
2246 
2247 	tb->tb_id = id;
2248 	tb->tb_num_default = 0;
2249 	tb->tb_data = (alias ? alias->__data : tb->__data);
2250 
2251 	if (alias)
2252 		return tb;
2253 
2254 	t = (struct trie *) tb->tb_data;
2255 	t->kv[0].pos = KEYLENGTH;
2256 	t->kv[0].slen = KEYLENGTH;
2257 #ifdef CONFIG_IP_FIB_TRIE_STATS
2258 	t->stats = alloc_percpu(struct trie_use_stats);
2259 	if (!t->stats) {
2260 		kfree(tb);
2261 		tb = NULL;
2262 	}
2263 #endif
2264 
2265 	return tb;
2266 }
2267 
2268 #ifdef CONFIG_PROC_FS
2269 /* Depth first Trie walk iterator */
2270 struct fib_trie_iter {
2271 	struct seq_net_private p;
2272 	struct fib_table *tb;
2273 	struct key_vector *tnode;
2274 	unsigned int index;
2275 	unsigned int depth;
2276 };
2277 
2278 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2279 {
2280 	unsigned long cindex = iter->index;
2281 	struct key_vector *pn = iter->tnode;
2282 	t_key pkey;
2283 
2284 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2285 		 iter->tnode, iter->index, iter->depth);
2286 
2287 	while (!IS_TRIE(pn)) {
2288 		while (cindex < child_length(pn)) {
2289 			struct key_vector *n = get_child_rcu(pn, cindex++);
2290 
2291 			if (!n)
2292 				continue;
2293 
2294 			if (IS_LEAF(n)) {
2295 				iter->tnode = pn;
2296 				iter->index = cindex;
2297 			} else {
2298 				/* push down one level */
2299 				iter->tnode = n;
2300 				iter->index = 0;
2301 				++iter->depth;
2302 			}
2303 
2304 			return n;
2305 		}
2306 
2307 		/* Current node exhausted, pop back up */
2308 		pkey = pn->key;
2309 		pn = node_parent_rcu(pn);
2310 		cindex = get_index(pkey, pn) + 1;
2311 		--iter->depth;
2312 	}
2313 
2314 	/* record root node so further searches know we are done */
2315 	iter->tnode = pn;
2316 	iter->index = 0;
2317 
2318 	return NULL;
2319 }
2320 
2321 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2322 					     struct trie *t)
2323 {
2324 	struct key_vector *n, *pn;
2325 
2326 	if (!t)
2327 		return NULL;
2328 
2329 	pn = t->kv;
2330 	n = rcu_dereference(pn->tnode[0]);
2331 	if (!n)
2332 		return NULL;
2333 
2334 	if (IS_TNODE(n)) {
2335 		iter->tnode = n;
2336 		iter->index = 0;
2337 		iter->depth = 1;
2338 	} else {
2339 		iter->tnode = pn;
2340 		iter->index = 0;
2341 		iter->depth = 0;
2342 	}
2343 
2344 	return n;
2345 }
2346 
2347 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2348 {
2349 	struct key_vector *n;
2350 	struct fib_trie_iter iter;
2351 
2352 	memset(s, 0, sizeof(*s));
2353 
2354 	rcu_read_lock();
2355 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2356 		if (IS_LEAF(n)) {
2357 			struct fib_alias *fa;
2358 
2359 			s->leaves++;
2360 			s->totdepth += iter.depth;
2361 			if (iter.depth > s->maxdepth)
2362 				s->maxdepth = iter.depth;
2363 
2364 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2365 				++s->prefixes;
2366 		} else {
2367 			s->tnodes++;
2368 			if (n->bits < MAX_STAT_DEPTH)
2369 				s->nodesizes[n->bits]++;
2370 			s->nullpointers += tn_info(n)->empty_children;
2371 		}
2372 	}
2373 	rcu_read_unlock();
2374 }
2375 
2376 /*
2377  *	This outputs /proc/net/fib_triestats
2378  */
2379 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2380 {
2381 	unsigned int i, max, pointers, bytes, avdepth;
2382 
2383 	if (stat->leaves)
2384 		avdepth = stat->totdepth*100 / stat->leaves;
2385 	else
2386 		avdepth = 0;
2387 
2388 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2389 		   avdepth / 100, avdepth % 100);
2390 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2391 
2392 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2393 	bytes = LEAF_SIZE * stat->leaves;
2394 
2395 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2396 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2397 
2398 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2399 	bytes += TNODE_SIZE(0) * stat->tnodes;
2400 
2401 	max = MAX_STAT_DEPTH;
2402 	while (max > 0 && stat->nodesizes[max-1] == 0)
2403 		max--;
2404 
2405 	pointers = 0;
2406 	for (i = 1; i < max; i++)
2407 		if (stat->nodesizes[i] != 0) {
2408 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2409 			pointers += (1<<i) * stat->nodesizes[i];
2410 		}
2411 	seq_putc(seq, '\n');
2412 	seq_printf(seq, "\tPointers: %u\n", pointers);
2413 
2414 	bytes += sizeof(struct key_vector *) * pointers;
2415 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2416 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2417 }
2418 
2419 #ifdef CONFIG_IP_FIB_TRIE_STATS
2420 static void trie_show_usage(struct seq_file *seq,
2421 			    const struct trie_use_stats __percpu *stats)
2422 {
2423 	struct trie_use_stats s = { 0 };
2424 	int cpu;
2425 
2426 	/* loop through all of the CPUs and gather up the stats */
2427 	for_each_possible_cpu(cpu) {
2428 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2429 
2430 		s.gets += pcpu->gets;
2431 		s.backtrack += pcpu->backtrack;
2432 		s.semantic_match_passed += pcpu->semantic_match_passed;
2433 		s.semantic_match_miss += pcpu->semantic_match_miss;
2434 		s.null_node_hit += pcpu->null_node_hit;
2435 		s.resize_node_skipped += pcpu->resize_node_skipped;
2436 	}
2437 
2438 	seq_printf(seq, "\nCounters:\n---------\n");
2439 	seq_printf(seq, "gets = %u\n", s.gets);
2440 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2441 	seq_printf(seq, "semantic match passed = %u\n",
2442 		   s.semantic_match_passed);
2443 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2444 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2445 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2446 }
2447 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2448 
2449 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2450 {
2451 	if (tb->tb_id == RT_TABLE_LOCAL)
2452 		seq_puts(seq, "Local:\n");
2453 	else if (tb->tb_id == RT_TABLE_MAIN)
2454 		seq_puts(seq, "Main:\n");
2455 	else
2456 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2457 }
2458 
2459 
2460 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2461 {
2462 	struct net *net = (struct net *)seq->private;
2463 	unsigned int h;
2464 
2465 	seq_printf(seq,
2466 		   "Basic info: size of leaf:"
2467 		   " %zd bytes, size of tnode: %zd bytes.\n",
2468 		   LEAF_SIZE, TNODE_SIZE(0));
2469 
2470 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2471 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2472 		struct fib_table *tb;
2473 
2474 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2475 			struct trie *t = (struct trie *) tb->tb_data;
2476 			struct trie_stat stat;
2477 
2478 			if (!t)
2479 				continue;
2480 
2481 			fib_table_print(seq, tb);
2482 
2483 			trie_collect_stats(t, &stat);
2484 			trie_show_stats(seq, &stat);
2485 #ifdef CONFIG_IP_FIB_TRIE_STATS
2486 			trie_show_usage(seq, t->stats);
2487 #endif
2488 		}
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2495 {
2496 	struct fib_trie_iter *iter = seq->private;
2497 	struct net *net = seq_file_net(seq);
2498 	loff_t idx = 0;
2499 	unsigned int h;
2500 
2501 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2502 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2503 		struct fib_table *tb;
2504 
2505 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2506 			struct key_vector *n;
2507 
2508 			for (n = fib_trie_get_first(iter,
2509 						    (struct trie *) tb->tb_data);
2510 			     n; n = fib_trie_get_next(iter))
2511 				if (pos == idx++) {
2512 					iter->tb = tb;
2513 					return n;
2514 				}
2515 		}
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
2521 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2522 	__acquires(RCU)
2523 {
2524 	rcu_read_lock();
2525 	return fib_trie_get_idx(seq, *pos);
2526 }
2527 
2528 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2529 {
2530 	struct fib_trie_iter *iter = seq->private;
2531 	struct net *net = seq_file_net(seq);
2532 	struct fib_table *tb = iter->tb;
2533 	struct hlist_node *tb_node;
2534 	unsigned int h;
2535 	struct key_vector *n;
2536 
2537 	++*pos;
2538 	/* next node in same table */
2539 	n = fib_trie_get_next(iter);
2540 	if (n)
2541 		return n;
2542 
2543 	/* walk rest of this hash chain */
2544 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2545 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2546 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2547 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2548 		if (n)
2549 			goto found;
2550 	}
2551 
2552 	/* new hash chain */
2553 	while (++h < FIB_TABLE_HASHSZ) {
2554 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2555 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2556 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2557 			if (n)
2558 				goto found;
2559 		}
2560 	}
2561 	return NULL;
2562 
2563 found:
2564 	iter->tb = tb;
2565 	return n;
2566 }
2567 
2568 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2569 	__releases(RCU)
2570 {
2571 	rcu_read_unlock();
2572 }
2573 
2574 static void seq_indent(struct seq_file *seq, int n)
2575 {
2576 	while (n-- > 0)
2577 		seq_puts(seq, "   ");
2578 }
2579 
2580 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2581 {
2582 	switch (s) {
2583 	case RT_SCOPE_UNIVERSE: return "universe";
2584 	case RT_SCOPE_SITE:	return "site";
2585 	case RT_SCOPE_LINK:	return "link";
2586 	case RT_SCOPE_HOST:	return "host";
2587 	case RT_SCOPE_NOWHERE:	return "nowhere";
2588 	default:
2589 		snprintf(buf, len, "scope=%d", s);
2590 		return buf;
2591 	}
2592 }
2593 
2594 static const char *const rtn_type_names[__RTN_MAX] = {
2595 	[RTN_UNSPEC] = "UNSPEC",
2596 	[RTN_UNICAST] = "UNICAST",
2597 	[RTN_LOCAL] = "LOCAL",
2598 	[RTN_BROADCAST] = "BROADCAST",
2599 	[RTN_ANYCAST] = "ANYCAST",
2600 	[RTN_MULTICAST] = "MULTICAST",
2601 	[RTN_BLACKHOLE] = "BLACKHOLE",
2602 	[RTN_UNREACHABLE] = "UNREACHABLE",
2603 	[RTN_PROHIBIT] = "PROHIBIT",
2604 	[RTN_THROW] = "THROW",
2605 	[RTN_NAT] = "NAT",
2606 	[RTN_XRESOLVE] = "XRESOLVE",
2607 };
2608 
2609 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2610 {
2611 	if (t < __RTN_MAX && rtn_type_names[t])
2612 		return rtn_type_names[t];
2613 	snprintf(buf, len, "type %u", t);
2614 	return buf;
2615 }
2616 
2617 /* Pretty print the trie */
2618 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2619 {
2620 	const struct fib_trie_iter *iter = seq->private;
2621 	struct key_vector *n = v;
2622 
2623 	if (IS_TRIE(node_parent_rcu(n)))
2624 		fib_table_print(seq, iter->tb);
2625 
2626 	if (IS_TNODE(n)) {
2627 		__be32 prf = htonl(n->key);
2628 
2629 		seq_indent(seq, iter->depth-1);
2630 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2631 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2632 			   tn_info(n)->full_children,
2633 			   tn_info(n)->empty_children);
2634 	} else {
2635 		__be32 val = htonl(n->key);
2636 		struct fib_alias *fa;
2637 
2638 		seq_indent(seq, iter->depth);
2639 		seq_printf(seq, "  |-- %pI4\n", &val);
2640 
2641 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2642 			char buf1[32], buf2[32];
2643 
2644 			seq_indent(seq, iter->depth + 1);
2645 			seq_printf(seq, "  /%zu %s %s",
2646 				   KEYLENGTH - fa->fa_slen,
2647 				   rtn_scope(buf1, sizeof(buf1),
2648 					     fa->fa_info->fib_scope),
2649 				   rtn_type(buf2, sizeof(buf2),
2650 					    fa->fa_type));
2651 			if (fa->fa_tos)
2652 				seq_printf(seq, " tos=%d", fa->fa_tos);
2653 			seq_putc(seq, '\n');
2654 		}
2655 	}
2656 
2657 	return 0;
2658 }
2659 
2660 static const struct seq_operations fib_trie_seq_ops = {
2661 	.start  = fib_trie_seq_start,
2662 	.next   = fib_trie_seq_next,
2663 	.stop   = fib_trie_seq_stop,
2664 	.show   = fib_trie_seq_show,
2665 };
2666 
2667 struct fib_route_iter {
2668 	struct seq_net_private p;
2669 	struct fib_table *main_tb;
2670 	struct key_vector *tnode;
2671 	loff_t	pos;
2672 	t_key	key;
2673 };
2674 
2675 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2676 					    loff_t pos)
2677 {
2678 	struct key_vector *l, **tp = &iter->tnode;
2679 	t_key key;
2680 
2681 	/* use cached location of previously found key */
2682 	if (iter->pos > 0 && pos >= iter->pos) {
2683 		key = iter->key;
2684 	} else {
2685 		iter->pos = 1;
2686 		key = 0;
2687 	}
2688 
2689 	pos -= iter->pos;
2690 
2691 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2692 		key = l->key + 1;
2693 		iter->pos++;
2694 		l = NULL;
2695 
2696 		/* handle unlikely case of a key wrap */
2697 		if (!key)
2698 			break;
2699 	}
2700 
2701 	if (l)
2702 		iter->key = l->key;	/* remember it */
2703 	else
2704 		iter->pos = 0;		/* forget it */
2705 
2706 	return l;
2707 }
2708 
2709 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2710 	__acquires(RCU)
2711 {
2712 	struct fib_route_iter *iter = seq->private;
2713 	struct fib_table *tb;
2714 	struct trie *t;
2715 
2716 	rcu_read_lock();
2717 
2718 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2719 	if (!tb)
2720 		return NULL;
2721 
2722 	iter->main_tb = tb;
2723 	t = (struct trie *)tb->tb_data;
2724 	iter->tnode = t->kv;
2725 
2726 	if (*pos != 0)
2727 		return fib_route_get_idx(iter, *pos);
2728 
2729 	iter->pos = 0;
2730 	iter->key = KEY_MAX;
2731 
2732 	return SEQ_START_TOKEN;
2733 }
2734 
2735 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2736 {
2737 	struct fib_route_iter *iter = seq->private;
2738 	struct key_vector *l = NULL;
2739 	t_key key = iter->key + 1;
2740 
2741 	++*pos;
2742 
2743 	/* only allow key of 0 for start of sequence */
2744 	if ((v == SEQ_START_TOKEN) || key)
2745 		l = leaf_walk_rcu(&iter->tnode, key);
2746 
2747 	if (l) {
2748 		iter->key = l->key;
2749 		iter->pos++;
2750 	} else {
2751 		iter->pos = 0;
2752 	}
2753 
2754 	return l;
2755 }
2756 
2757 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2758 	__releases(RCU)
2759 {
2760 	rcu_read_unlock();
2761 }
2762 
2763 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2764 {
2765 	unsigned int flags = 0;
2766 
2767 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2768 		flags = RTF_REJECT;
2769 	if (fi) {
2770 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2771 
2772 		if (nhc->nhc_gw.ipv4)
2773 			flags |= RTF_GATEWAY;
2774 	}
2775 	if (mask == htonl(0xFFFFFFFF))
2776 		flags |= RTF_HOST;
2777 	flags |= RTF_UP;
2778 	return flags;
2779 }
2780 
2781 /*
2782  *	This outputs /proc/net/route.
2783  *	The format of the file is not supposed to be changed
2784  *	and needs to be same as fib_hash output to avoid breaking
2785  *	legacy utilities
2786  */
2787 static int fib_route_seq_show(struct seq_file *seq, void *v)
2788 {
2789 	struct fib_route_iter *iter = seq->private;
2790 	struct fib_table *tb = iter->main_tb;
2791 	struct fib_alias *fa;
2792 	struct key_vector *l = v;
2793 	__be32 prefix;
2794 
2795 	if (v == SEQ_START_TOKEN) {
2796 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2797 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2798 			   "\tWindow\tIRTT");
2799 		return 0;
2800 	}
2801 
2802 	prefix = htonl(l->key);
2803 
2804 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2805 		struct fib_info *fi = fa->fa_info;
2806 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2807 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2808 
2809 		if ((fa->fa_type == RTN_BROADCAST) ||
2810 		    (fa->fa_type == RTN_MULTICAST))
2811 			continue;
2812 
2813 		if (fa->tb_id != tb->tb_id)
2814 			continue;
2815 
2816 		seq_setwidth(seq, 127);
2817 
2818 		if (fi) {
2819 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2820 			__be32 gw = 0;
2821 
2822 			if (nhc->nhc_gw_family == AF_INET)
2823 				gw = nhc->nhc_gw.ipv4;
2824 
2825 			seq_printf(seq,
2826 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2827 				   "%d\t%08X\t%d\t%u\t%u",
2828 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2829 				   prefix, gw, flags, 0, 0,
2830 				   fi->fib_priority,
2831 				   mask,
2832 				   (fi->fib_advmss ?
2833 				    fi->fib_advmss + 40 : 0),
2834 				   fi->fib_window,
2835 				   fi->fib_rtt >> 3);
2836 		} else {
2837 			seq_printf(seq,
2838 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2839 				   "%d\t%08X\t%d\t%u\t%u",
2840 				   prefix, 0, flags, 0, 0, 0,
2841 				   mask, 0, 0, 0);
2842 		}
2843 		seq_pad(seq, '\n');
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 static const struct seq_operations fib_route_seq_ops = {
2850 	.start  = fib_route_seq_start,
2851 	.next   = fib_route_seq_next,
2852 	.stop   = fib_route_seq_stop,
2853 	.show   = fib_route_seq_show,
2854 };
2855 
2856 int __net_init fib_proc_init(struct net *net)
2857 {
2858 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2859 			sizeof(struct fib_trie_iter)))
2860 		goto out1;
2861 
2862 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2863 			fib_triestat_seq_show, NULL))
2864 		goto out2;
2865 
2866 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2867 			sizeof(struct fib_route_iter)))
2868 		goto out3;
2869 
2870 	return 0;
2871 
2872 out3:
2873 	remove_proc_entry("fib_triestat", net->proc_net);
2874 out2:
2875 	remove_proc_entry("fib_trie", net->proc_net);
2876 out1:
2877 	return -ENOMEM;
2878 }
2879 
2880 void __net_exit fib_proc_exit(struct net *net)
2881 {
2882 	remove_proc_entry("fib_trie", net->proc_net);
2883 	remove_proc_entry("fib_triestat", net->proc_net);
2884 	remove_proc_entry("route", net->proc_net);
2885 }
2886 
2887 #endif /* CONFIG_PROC_FS */
2888