1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/skbuff.h> 56 #include <linux/netlink.h> 57 #include <linux/init.h> 58 #include <linux/list.h> 59 #include <linux/slab.h> 60 #include <linux/export.h> 61 #include <linux/vmalloc.h> 62 #include <linux/notifier.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <net/route.h> 67 #include <net/tcp.h> 68 #include <net/sock.h> 69 #include <net/ip_fib.h> 70 #include <net/fib_notifier.h> 71 #include <trace/events/fib.h> 72 #include "fib_lookup.h" 73 74 static int call_fib_entry_notifier(struct notifier_block *nb, 75 enum fib_event_type event_type, u32 dst, 76 int dst_len, struct fib_alias *fa, 77 struct netlink_ext_ack *extack) 78 { 79 struct fib_entry_notifier_info info = { 80 .info.extack = extack, 81 .dst = dst, 82 .dst_len = dst_len, 83 .fi = fa->fa_info, 84 .tos = fa->fa_tos, 85 .type = fa->fa_type, 86 .tb_id = fa->tb_id, 87 }; 88 return call_fib4_notifier(nb, event_type, &info.info); 89 } 90 91 static int call_fib_entry_notifiers(struct net *net, 92 enum fib_event_type event_type, u32 dst, 93 int dst_len, struct fib_alias *fa, 94 struct netlink_ext_ack *extack) 95 { 96 struct fib_entry_notifier_info info = { 97 .info.extack = extack, 98 .dst = dst, 99 .dst_len = dst_len, 100 .fi = fa->fa_info, 101 .tos = fa->fa_tos, 102 .type = fa->fa_type, 103 .tb_id = fa->tb_id, 104 }; 105 return call_fib4_notifiers(net, event_type, &info.info); 106 } 107 108 #define MAX_STAT_DEPTH 32 109 110 #define KEYLENGTH (8*sizeof(t_key)) 111 #define KEY_MAX ((t_key)~0) 112 113 typedef unsigned int t_key; 114 115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 116 #define IS_TNODE(n) ((n)->bits) 117 #define IS_LEAF(n) (!(n)->bits) 118 119 struct key_vector { 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char slen; 124 union { 125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 126 struct hlist_head leaf; 127 /* This array is valid if (pos | bits) > 0 (TNODE) */ 128 struct key_vector __rcu *tnode[0]; 129 }; 130 }; 131 132 struct tnode { 133 struct rcu_head rcu; 134 t_key empty_children; /* KEYLENGTH bits needed */ 135 t_key full_children; /* KEYLENGTH bits needed */ 136 struct key_vector __rcu *parent; 137 struct key_vector kv[1]; 138 #define tn_bits kv[0].bits 139 }; 140 141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 142 #define LEAF_SIZE TNODE_SIZE(1) 143 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats { 146 unsigned int gets; 147 unsigned int backtrack; 148 unsigned int semantic_match_passed; 149 unsigned int semantic_match_miss; 150 unsigned int null_node_hit; 151 unsigned int resize_node_skipped; 152 }; 153 #endif 154 155 struct trie_stat { 156 unsigned int totdepth; 157 unsigned int maxdepth; 158 unsigned int tnodes; 159 unsigned int leaves; 160 unsigned int nullpointers; 161 unsigned int prefixes; 162 unsigned int nodesizes[MAX_STAT_DEPTH]; 163 }; 164 165 struct trie { 166 struct key_vector kv[1]; 167 #ifdef CONFIG_IP_FIB_TRIE_STATS 168 struct trie_use_stats __percpu *stats; 169 #endif 170 }; 171 172 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 173 static unsigned int tnode_free_size; 174 175 /* 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 177 * especially useful before resizing the root node with PREEMPT_NONE configs; 178 * the value was obtained experimentally, aiming to avoid visible slowdown. 179 */ 180 unsigned int sysctl_fib_sync_mem = 512 * 1024; 181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 183 184 static struct kmem_cache *fn_alias_kmem __ro_after_init; 185 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 186 187 static inline struct tnode *tn_info(struct key_vector *kv) 188 { 189 return container_of(kv, struct tnode, kv[0]); 190 } 191 192 /* caller must hold RTNL */ 193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 195 196 /* caller must hold RCU read lock or RTNL */ 197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 199 200 /* wrapper for rcu_assign_pointer */ 201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 202 { 203 if (n) 204 rcu_assign_pointer(tn_info(n)->parent, tp); 205 } 206 207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 208 209 /* This provides us with the number of children in this node, in the case of a 210 * leaf this will return 0 meaning none of the children are accessible. 211 */ 212 static inline unsigned long child_length(const struct key_vector *tn) 213 { 214 return (1ul << tn->bits) & ~(1ul); 215 } 216 217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 218 219 static inline unsigned long get_index(t_key key, struct key_vector *kv) 220 { 221 unsigned long index = key ^ kv->key; 222 223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 224 return 0; 225 226 return index >> kv->pos; 227 } 228 229 /* To understand this stuff, an understanding of keys and all their bits is 230 * necessary. Every node in the trie has a key associated with it, but not 231 * all of the bits in that key are significant. 232 * 233 * Consider a node 'n' and its parent 'tp'. 234 * 235 * If n is a leaf, every bit in its key is significant. Its presence is 236 * necessitated by path compression, since during a tree traversal (when 237 * searching for a leaf - unless we are doing an insertion) we will completely 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 239 * a potentially successful search, that we have indeed been walking the 240 * correct key path. 241 * 242 * Note that we can never "miss" the correct key in the tree if present by 243 * following the wrong path. Path compression ensures that segments of the key 244 * that are the same for all keys with a given prefix are skipped, but the 245 * skipped part *is* identical for each node in the subtrie below the skipped 246 * bit! trie_insert() in this implementation takes care of that. 247 * 248 * if n is an internal node - a 'tnode' here, the various parts of its key 249 * have many different meanings. 250 * 251 * Example: 252 * _________________________________________________________________ 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 254 * ----------------------------------------------------------------- 255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 256 * 257 * _________________________________________________________________ 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 259 * ----------------------------------------------------------------- 260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 * 262 * tp->pos = 22 263 * tp->bits = 3 264 * n->pos = 13 265 * n->bits = 4 266 * 267 * First, let's just ignore the bits that come before the parent tp, that is 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 269 * point we do not use them for anything. 270 * 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 272 * index into the parent's child array. That is, they will be used to find 273 * 'n' among tp's children. 274 * 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 276 * for the node n. 277 * 278 * All the bits we have seen so far are significant to the node n. The rest 279 * of the bits are really not needed or indeed known in n->key. 280 * 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 282 * n's child array, and will of course be different for each child. 283 * 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 285 * at this point. 286 */ 287 288 static const int halve_threshold = 25; 289 static const int inflate_threshold = 50; 290 static const int halve_threshold_root = 15; 291 static const int inflate_threshold_root = 30; 292 293 static void __alias_free_mem(struct rcu_head *head) 294 { 295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 296 kmem_cache_free(fn_alias_kmem, fa); 297 } 298 299 static inline void alias_free_mem_rcu(struct fib_alias *fa) 300 { 301 call_rcu(&fa->rcu, __alias_free_mem); 302 } 303 304 #define TNODE_VMALLOC_MAX \ 305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 306 307 static void __node_free_rcu(struct rcu_head *head) 308 { 309 struct tnode *n = container_of(head, struct tnode, rcu); 310 311 if (!n->tn_bits) 312 kmem_cache_free(trie_leaf_kmem, n); 313 else 314 kvfree(n); 315 } 316 317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 318 319 static struct tnode *tnode_alloc(int bits) 320 { 321 size_t size; 322 323 /* verify bits is within bounds */ 324 if (bits > TNODE_VMALLOC_MAX) 325 return NULL; 326 327 /* determine size and verify it is non-zero and didn't overflow */ 328 size = TNODE_SIZE(1ul << bits); 329 330 if (size <= PAGE_SIZE) 331 return kzalloc(size, GFP_KERNEL); 332 else 333 return vzalloc(size); 334 } 335 336 static inline void empty_child_inc(struct key_vector *n) 337 { 338 tn_info(n)->empty_children++; 339 340 if (!tn_info(n)->empty_children) 341 tn_info(n)->full_children++; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 if (!tn_info(n)->empty_children) 347 tn_info(n)->full_children--; 348 349 tn_info(n)->empty_children--; 350 } 351 352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 353 { 354 struct key_vector *l; 355 struct tnode *kv; 356 357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 358 if (!kv) 359 return NULL; 360 361 /* initialize key vector */ 362 l = kv->kv; 363 l->key = key; 364 l->pos = 0; 365 l->bits = 0; 366 l->slen = fa->fa_slen; 367 368 /* link leaf to fib alias */ 369 INIT_HLIST_HEAD(&l->leaf); 370 hlist_add_head(&fa->fa_list, &l->leaf); 371 372 return l; 373 } 374 375 static struct key_vector *tnode_new(t_key key, int pos, int bits) 376 { 377 unsigned int shift = pos + bits; 378 struct key_vector *tn; 379 struct tnode *tnode; 380 381 /* verify bits and pos their msb bits clear and values are valid */ 382 BUG_ON(!bits || (shift > KEYLENGTH)); 383 384 tnode = tnode_alloc(bits); 385 if (!tnode) 386 return NULL; 387 388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 389 sizeof(struct key_vector *) << bits); 390 391 if (bits == KEYLENGTH) 392 tnode->full_children = 1; 393 else 394 tnode->empty_children = 1ul << bits; 395 396 tn = tnode->kv; 397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 398 tn->pos = pos; 399 tn->bits = bits; 400 tn->slen = pos; 401 402 return tn; 403 } 404 405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 406 * and no bits are skipped. See discussion in dyntree paper p. 6 407 */ 408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 409 { 410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 411 } 412 413 /* Add a child at position i overwriting the old value. 414 * Update the value of full_children and empty_children. 415 */ 416 static void put_child(struct key_vector *tn, unsigned long i, 417 struct key_vector *n) 418 { 419 struct key_vector *chi = get_child(tn, i); 420 int isfull, wasfull; 421 422 BUG_ON(i >= child_length(tn)); 423 424 /* update emptyChildren, overflow into fullChildren */ 425 if (!n && chi) 426 empty_child_inc(tn); 427 if (n && !chi) 428 empty_child_dec(tn); 429 430 /* update fullChildren */ 431 wasfull = tnode_full(tn, chi); 432 isfull = tnode_full(tn, n); 433 434 if (wasfull && !isfull) 435 tn_info(tn)->full_children--; 436 else if (!wasfull && isfull) 437 tn_info(tn)->full_children++; 438 439 if (n && (tn->slen < n->slen)) 440 tn->slen = n->slen; 441 442 rcu_assign_pointer(tn->tnode[i], n); 443 } 444 445 static void update_children(struct key_vector *tn) 446 { 447 unsigned long i; 448 449 /* update all of the child parent pointers */ 450 for (i = child_length(tn); i;) { 451 struct key_vector *inode = get_child(tn, --i); 452 453 if (!inode) 454 continue; 455 456 /* Either update the children of a tnode that 457 * already belongs to us or update the child 458 * to point to ourselves. 459 */ 460 if (node_parent(inode) == tn) 461 update_children(inode); 462 else 463 node_set_parent(inode, tn); 464 } 465 } 466 467 static inline void put_child_root(struct key_vector *tp, t_key key, 468 struct key_vector *n) 469 { 470 if (IS_TRIE(tp)) 471 rcu_assign_pointer(tp->tnode[0], n); 472 else 473 put_child(tp, get_index(key, tp), n); 474 } 475 476 static inline void tnode_free_init(struct key_vector *tn) 477 { 478 tn_info(tn)->rcu.next = NULL; 479 } 480 481 static inline void tnode_free_append(struct key_vector *tn, 482 struct key_vector *n) 483 { 484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 485 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 486 } 487 488 static void tnode_free(struct key_vector *tn) 489 { 490 struct callback_head *head = &tn_info(tn)->rcu; 491 492 while (head) { 493 head = head->next; 494 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 495 node_free(tn); 496 497 tn = container_of(head, struct tnode, rcu)->kv; 498 } 499 500 if (tnode_free_size >= sysctl_fib_sync_mem) { 501 tnode_free_size = 0; 502 synchronize_rcu(); 503 } 504 } 505 506 static struct key_vector *replace(struct trie *t, 507 struct key_vector *oldtnode, 508 struct key_vector *tn) 509 { 510 struct key_vector *tp = node_parent(oldtnode); 511 unsigned long i; 512 513 /* setup the parent pointer out of and back into this node */ 514 NODE_INIT_PARENT(tn, tp); 515 put_child_root(tp, tn->key, tn); 516 517 /* update all of the child parent pointers */ 518 update_children(tn); 519 520 /* all pointers should be clean so we are done */ 521 tnode_free(oldtnode); 522 523 /* resize children now that oldtnode is freed */ 524 for (i = child_length(tn); i;) { 525 struct key_vector *inode = get_child(tn, --i); 526 527 /* resize child node */ 528 if (tnode_full(tn, inode)) 529 tn = resize(t, inode); 530 } 531 532 return tp; 533 } 534 535 static struct key_vector *inflate(struct trie *t, 536 struct key_vector *oldtnode) 537 { 538 struct key_vector *tn; 539 unsigned long i; 540 t_key m; 541 542 pr_debug("In inflate\n"); 543 544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 545 if (!tn) 546 goto notnode; 547 548 /* prepare oldtnode to be freed */ 549 tnode_free_init(oldtnode); 550 551 /* Assemble all of the pointers in our cluster, in this case that 552 * represents all of the pointers out of our allocated nodes that 553 * point to existing tnodes and the links between our allocated 554 * nodes. 555 */ 556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 557 struct key_vector *inode = get_child(oldtnode, --i); 558 struct key_vector *node0, *node1; 559 unsigned long j, k; 560 561 /* An empty child */ 562 if (!inode) 563 continue; 564 565 /* A leaf or an internal node with skipped bits */ 566 if (!tnode_full(oldtnode, inode)) { 567 put_child(tn, get_index(inode->key, tn), inode); 568 continue; 569 } 570 571 /* drop the node in the old tnode free list */ 572 tnode_free_append(oldtnode, inode); 573 574 /* An internal node with two children */ 575 if (inode->bits == 1) { 576 put_child(tn, 2 * i + 1, get_child(inode, 1)); 577 put_child(tn, 2 * i, get_child(inode, 0)); 578 continue; 579 } 580 581 /* We will replace this node 'inode' with two new 582 * ones, 'node0' and 'node1', each with half of the 583 * original children. The two new nodes will have 584 * a position one bit further down the key and this 585 * means that the "significant" part of their keys 586 * (see the discussion near the top of this file) 587 * will differ by one bit, which will be "0" in 588 * node0's key and "1" in node1's key. Since we are 589 * moving the key position by one step, the bit that 590 * we are moving away from - the bit at position 591 * (tn->pos) - is the one that will differ between 592 * node0 and node1. So... we synthesize that bit in the 593 * two new keys. 594 */ 595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 596 if (!node1) 597 goto nomem; 598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 599 600 tnode_free_append(tn, node1); 601 if (!node0) 602 goto nomem; 603 tnode_free_append(tn, node0); 604 605 /* populate child pointers in new nodes */ 606 for (k = child_length(inode), j = k / 2; j;) { 607 put_child(node1, --j, get_child(inode, --k)); 608 put_child(node0, j, get_child(inode, j)); 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 } 612 613 /* link new nodes to parent */ 614 NODE_INIT_PARENT(node1, tn); 615 NODE_INIT_PARENT(node0, tn); 616 617 /* link parent to nodes */ 618 put_child(tn, 2 * i + 1, node1); 619 put_child(tn, 2 * i, node0); 620 } 621 622 /* setup the parent pointers into and out of this node */ 623 return replace(t, oldtnode, tn); 624 nomem: 625 /* all pointers should be clean so we are done */ 626 tnode_free(tn); 627 notnode: 628 return NULL; 629 } 630 631 static struct key_vector *halve(struct trie *t, 632 struct key_vector *oldtnode) 633 { 634 struct key_vector *tn; 635 unsigned long i; 636 637 pr_debug("In halve\n"); 638 639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 640 if (!tn) 641 goto notnode; 642 643 /* prepare oldtnode to be freed */ 644 tnode_free_init(oldtnode); 645 646 /* Assemble all of the pointers in our cluster, in this case that 647 * represents all of the pointers out of our allocated nodes that 648 * point to existing tnodes and the links between our allocated 649 * nodes. 650 */ 651 for (i = child_length(oldtnode); i;) { 652 struct key_vector *node1 = get_child(oldtnode, --i); 653 struct key_vector *node0 = get_child(oldtnode, --i); 654 struct key_vector *inode; 655 656 /* At least one of the children is empty */ 657 if (!node1 || !node0) { 658 put_child(tn, i / 2, node1 ? : node0); 659 continue; 660 } 661 662 /* Two nonempty children */ 663 inode = tnode_new(node0->key, oldtnode->pos, 1); 664 if (!inode) 665 goto nomem; 666 tnode_free_append(tn, inode); 667 668 /* initialize pointers out of node */ 669 put_child(inode, 1, node1); 670 put_child(inode, 0, node0); 671 NODE_INIT_PARENT(inode, tn); 672 673 /* link parent to node */ 674 put_child(tn, i / 2, inode); 675 } 676 677 /* setup the parent pointers into and out of this node */ 678 return replace(t, oldtnode, tn); 679 nomem: 680 /* all pointers should be clean so we are done */ 681 tnode_free(tn); 682 notnode: 683 return NULL; 684 } 685 686 static struct key_vector *collapse(struct trie *t, 687 struct key_vector *oldtnode) 688 { 689 struct key_vector *n, *tp; 690 unsigned long i; 691 692 /* scan the tnode looking for that one child that might still exist */ 693 for (n = NULL, i = child_length(oldtnode); !n && i;) 694 n = get_child(oldtnode, --i); 695 696 /* compress one level */ 697 tp = node_parent(oldtnode); 698 put_child_root(tp, oldtnode->key, n); 699 node_set_parent(n, tp); 700 701 /* drop dead node */ 702 node_free(oldtnode); 703 704 return tp; 705 } 706 707 static unsigned char update_suffix(struct key_vector *tn) 708 { 709 unsigned char slen = tn->pos; 710 unsigned long stride, i; 711 unsigned char slen_max; 712 713 /* only vector 0 can have a suffix length greater than or equal to 714 * tn->pos + tn->bits, the second highest node will have a suffix 715 * length at most of tn->pos + tn->bits - 1 716 */ 717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 718 719 /* search though the list of children looking for nodes that might 720 * have a suffix greater than the one we currently have. This is 721 * why we start with a stride of 2 since a stride of 1 would 722 * represent the nodes with suffix length equal to tn->pos 723 */ 724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 725 struct key_vector *n = get_child(tn, i); 726 727 if (!n || (n->slen <= slen)) 728 continue; 729 730 /* update stride and slen based on new value */ 731 stride <<= (n->slen - slen); 732 slen = n->slen; 733 i &= ~(stride - 1); 734 735 /* stop searching if we have hit the maximum possible value */ 736 if (slen >= slen_max) 737 break; 738 } 739 740 tn->slen = slen; 741 742 return slen; 743 } 744 745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia 747 * Telecommunications, page 6: 748 * "A node is doubled if the ratio of non-empty children to all 749 * children in the *doubled* node is at least 'high'." 750 * 751 * 'high' in this instance is the variable 'inflate_threshold'. It 752 * is expressed as a percentage, so we multiply it with 753 * child_length() and instead of multiplying by 2 (since the 754 * child array will be doubled by inflate()) and multiplying 755 * the left-hand side by 100 (to handle the percentage thing) we 756 * multiply the left-hand side by 50. 757 * 758 * The left-hand side may look a bit weird: child_length(tn) 759 * - tn->empty_children is of course the number of non-null children 760 * in the current node. tn->full_children is the number of "full" 761 * children, that is non-null tnodes with a skip value of 0. 762 * All of those will be doubled in the resulting inflated tnode, so 763 * we just count them one extra time here. 764 * 765 * A clearer way to write this would be: 766 * 767 * to_be_doubled = tn->full_children; 768 * not_to_be_doubled = child_length(tn) - tn->empty_children - 769 * tn->full_children; 770 * 771 * new_child_length = child_length(tn) * 2; 772 * 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 774 * new_child_length; 775 * if (new_fill_factor >= inflate_threshold) 776 * 777 * ...and so on, tho it would mess up the while () loop. 778 * 779 * anyway, 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 781 * inflate_threshold 782 * 783 * avoid a division: 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 785 * inflate_threshold * new_child_length 786 * 787 * expand not_to_be_doubled and to_be_doubled, and shorten: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= inflate_threshold * new_child_length 790 * 791 * expand new_child_length: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= 794 * inflate_threshold * child_length(tn) * 2 795 * 796 * shorten again: 797 * 50 * (tn->full_children + child_length(tn) - 798 * tn->empty_children) >= inflate_threshold * 799 * child_length(tn) 800 * 801 */ 802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 803 { 804 unsigned long used = child_length(tn); 805 unsigned long threshold = used; 806 807 /* Keep root node larger */ 808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 809 used -= tn_info(tn)->empty_children; 810 used += tn_info(tn)->full_children; 811 812 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 813 814 return (used > 1) && tn->pos && ((50 * used) >= threshold); 815 } 816 817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 818 { 819 unsigned long used = child_length(tn); 820 unsigned long threshold = used; 821 822 /* Keep root node larger */ 823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 824 used -= tn_info(tn)->empty_children; 825 826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 827 828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 829 } 830 831 static inline bool should_collapse(struct key_vector *tn) 832 { 833 unsigned long used = child_length(tn); 834 835 used -= tn_info(tn)->empty_children; 836 837 /* account for bits == KEYLENGTH case */ 838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 839 used -= KEY_MAX; 840 841 /* One child or none, time to drop us from the trie */ 842 return used < 2; 843 } 844 845 #define MAX_WORK 10 846 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 847 { 848 #ifdef CONFIG_IP_FIB_TRIE_STATS 849 struct trie_use_stats __percpu *stats = t->stats; 850 #endif 851 struct key_vector *tp = node_parent(tn); 852 unsigned long cindex = get_index(tn->key, tp); 853 int max_work = MAX_WORK; 854 855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 856 tn, inflate_threshold, halve_threshold); 857 858 /* track the tnode via the pointer from the parent instead of 859 * doing it ourselves. This way we can let RCU fully do its 860 * thing without us interfering 861 */ 862 BUG_ON(tn != get_child(tp, cindex)); 863 864 /* Double as long as the resulting node has a number of 865 * nonempty nodes that are above the threshold. 866 */ 867 while (should_inflate(tp, tn) && max_work) { 868 tp = inflate(t, tn); 869 if (!tp) { 870 #ifdef CONFIG_IP_FIB_TRIE_STATS 871 this_cpu_inc(stats->resize_node_skipped); 872 #endif 873 break; 874 } 875 876 max_work--; 877 tn = get_child(tp, cindex); 878 } 879 880 /* update parent in case inflate failed */ 881 tp = node_parent(tn); 882 883 /* Return if at least one inflate is run */ 884 if (max_work != MAX_WORK) 885 return tp; 886 887 /* Halve as long as the number of empty children in this 888 * node is above threshold. 889 */ 890 while (should_halve(tp, tn) && max_work) { 891 tp = halve(t, tn); 892 if (!tp) { 893 #ifdef CONFIG_IP_FIB_TRIE_STATS 894 this_cpu_inc(stats->resize_node_skipped); 895 #endif 896 break; 897 } 898 899 max_work--; 900 tn = get_child(tp, cindex); 901 } 902 903 /* Only one child remains */ 904 if (should_collapse(tn)) 905 return collapse(t, tn); 906 907 /* update parent in case halve failed */ 908 return node_parent(tn); 909 } 910 911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 912 { 913 unsigned char node_slen = tn->slen; 914 915 while ((node_slen > tn->pos) && (node_slen > slen)) { 916 slen = update_suffix(tn); 917 if (node_slen == slen) 918 break; 919 920 tn = node_parent(tn); 921 node_slen = tn->slen; 922 } 923 } 924 925 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 926 { 927 while (tn->slen < slen) { 928 tn->slen = slen; 929 tn = node_parent(tn); 930 } 931 } 932 933 /* rcu_read_lock needs to be hold by caller from readside */ 934 static struct key_vector *fib_find_node(struct trie *t, 935 struct key_vector **tp, u32 key) 936 { 937 struct key_vector *pn, *n = t->kv; 938 unsigned long index = 0; 939 940 do { 941 pn = n; 942 n = get_child_rcu(n, index); 943 944 if (!n) 945 break; 946 947 index = get_cindex(key, n); 948 949 /* This bit of code is a bit tricky but it combines multiple 950 * checks into a single check. The prefix consists of the 951 * prefix plus zeros for the bits in the cindex. The index 952 * is the difference between the key and this value. From 953 * this we can actually derive several pieces of data. 954 * if (index >= (1ul << bits)) 955 * we have a mismatch in skip bits and failed 956 * else 957 * we know the value is cindex 958 * 959 * This check is safe even if bits == KEYLENGTH due to the 960 * fact that we can only allocate a node with 32 bits if a 961 * long is greater than 32 bits. 962 */ 963 if (index >= (1ul << n->bits)) { 964 n = NULL; 965 break; 966 } 967 968 /* keep searching until we find a perfect match leaf or NULL */ 969 } while (IS_TNODE(n)); 970 971 *tp = pn; 972 973 return n; 974 } 975 976 /* Return the first fib alias matching TOS with 977 * priority less than or equal to PRIO. 978 * If 'find_first' is set, return the first matching 979 * fib alias, regardless of TOS and priority. 980 */ 981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 982 u8 tos, u32 prio, u32 tb_id, 983 bool find_first) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 struct fib_alias *fa_match; 1041 struct sk_buff *skb; 1042 int err; 1043 1044 rcu_read_lock(); 1045 1046 fa_match = fib_find_matching_alias(net, fri); 1047 if (!fa_match) 1048 goto out; 1049 1050 if (fa_match->offload == fri->offload && fa_match->trap == fri->trap && 1051 fa_match->offload_failed == fri->offload_failed) 1052 goto out; 1053 1054 fa_match->offload = fri->offload; 1055 fa_match->trap = fri->trap; 1056 1057 /* 2 means send notifications only if offload_failed was changed. */ 1058 if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 && 1059 fa_match->offload_failed == fri->offload_failed) 1060 goto out; 1061 1062 fa_match->offload_failed = fri->offload_failed; 1063 1064 if (!net->ipv4.sysctl_fib_notify_on_flag_change) 1065 goto out; 1066 1067 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1068 if (!skb) { 1069 err = -ENOBUFS; 1070 goto errout; 1071 } 1072 1073 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1074 if (err < 0) { 1075 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1076 WARN_ON(err == -EMSGSIZE); 1077 kfree_skb(skb); 1078 goto errout; 1079 } 1080 1081 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1082 goto out; 1083 1084 errout: 1085 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1086 out: 1087 rcu_read_unlock(); 1088 } 1089 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1090 1091 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1092 { 1093 while (!IS_TRIE(tn)) 1094 tn = resize(t, tn); 1095 } 1096 1097 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1098 struct fib_alias *new, t_key key) 1099 { 1100 struct key_vector *n, *l; 1101 1102 l = leaf_new(key, new); 1103 if (!l) 1104 goto noleaf; 1105 1106 /* retrieve child from parent node */ 1107 n = get_child(tp, get_index(key, tp)); 1108 1109 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1110 * 1111 * Add a new tnode here 1112 * first tnode need some special handling 1113 * leaves us in position for handling as case 3 1114 */ 1115 if (n) { 1116 struct key_vector *tn; 1117 1118 tn = tnode_new(key, __fls(key ^ n->key), 1); 1119 if (!tn) 1120 goto notnode; 1121 1122 /* initialize routes out of node */ 1123 NODE_INIT_PARENT(tn, tp); 1124 put_child(tn, get_index(key, tn) ^ 1, n); 1125 1126 /* start adding routes into the node */ 1127 put_child_root(tp, key, tn); 1128 node_set_parent(n, tn); 1129 1130 /* parent now has a NULL spot where the leaf can go */ 1131 tp = tn; 1132 } 1133 1134 /* Case 3: n is NULL, and will just insert a new leaf */ 1135 node_push_suffix(tp, new->fa_slen); 1136 NODE_INIT_PARENT(l, tp); 1137 put_child_root(tp, key, l); 1138 trie_rebalance(t, tp); 1139 1140 return 0; 1141 notnode: 1142 node_free(l); 1143 noleaf: 1144 return -ENOMEM; 1145 } 1146 1147 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1148 struct key_vector *l, struct fib_alias *new, 1149 struct fib_alias *fa, t_key key) 1150 { 1151 if (!l) 1152 return fib_insert_node(t, tp, new, key); 1153 1154 if (fa) { 1155 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1156 } else { 1157 struct fib_alias *last; 1158 1159 hlist_for_each_entry(last, &l->leaf, fa_list) { 1160 if (new->fa_slen < last->fa_slen) 1161 break; 1162 if ((new->fa_slen == last->fa_slen) && 1163 (new->tb_id > last->tb_id)) 1164 break; 1165 fa = last; 1166 } 1167 1168 if (fa) 1169 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1170 else 1171 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1172 } 1173 1174 /* if we added to the tail node then we need to update slen */ 1175 if (l->slen < new->fa_slen) { 1176 l->slen = new->fa_slen; 1177 node_push_suffix(tp, new->fa_slen); 1178 } 1179 1180 return 0; 1181 } 1182 1183 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1184 { 1185 if (plen > KEYLENGTH) { 1186 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1187 return false; 1188 } 1189 1190 if ((plen < KEYLENGTH) && (key << plen)) { 1191 NL_SET_ERR_MSG(extack, 1192 "Invalid prefix for given prefix length"); 1193 return false; 1194 } 1195 1196 return true; 1197 } 1198 1199 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1200 struct key_vector *l, struct fib_alias *old); 1201 1202 /* Caller must hold RTNL. */ 1203 int fib_table_insert(struct net *net, struct fib_table *tb, 1204 struct fib_config *cfg, struct netlink_ext_ack *extack) 1205 { 1206 struct trie *t = (struct trie *)tb->tb_data; 1207 struct fib_alias *fa, *new_fa; 1208 struct key_vector *l, *tp; 1209 u16 nlflags = NLM_F_EXCL; 1210 struct fib_info *fi; 1211 u8 plen = cfg->fc_dst_len; 1212 u8 slen = KEYLENGTH - plen; 1213 u8 tos = cfg->fc_tos; 1214 u32 key; 1215 int err; 1216 1217 key = ntohl(cfg->fc_dst); 1218 1219 if (!fib_valid_key_len(key, plen, extack)) 1220 return -EINVAL; 1221 1222 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1223 1224 fi = fib_create_info(cfg, extack); 1225 if (IS_ERR(fi)) { 1226 err = PTR_ERR(fi); 1227 goto err; 1228 } 1229 1230 l = fib_find_node(t, &tp, key); 1231 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1232 tb->tb_id, false) : NULL; 1233 1234 /* Now fa, if non-NULL, points to the first fib alias 1235 * with the same keys [prefix,tos,priority], if such key already 1236 * exists or to the node before which we will insert new one. 1237 * 1238 * If fa is NULL, we will need to allocate a new one and 1239 * insert to the tail of the section matching the suffix length 1240 * of the new alias. 1241 */ 1242 1243 if (fa && fa->fa_tos == tos && 1244 fa->fa_info->fib_priority == fi->fib_priority) { 1245 struct fib_alias *fa_first, *fa_match; 1246 1247 err = -EEXIST; 1248 if (cfg->fc_nlflags & NLM_F_EXCL) 1249 goto out; 1250 1251 nlflags &= ~NLM_F_EXCL; 1252 1253 /* We have 2 goals: 1254 * 1. Find exact match for type, scope, fib_info to avoid 1255 * duplicate routes 1256 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1257 */ 1258 fa_match = NULL; 1259 fa_first = fa; 1260 hlist_for_each_entry_from(fa, fa_list) { 1261 if ((fa->fa_slen != slen) || 1262 (fa->tb_id != tb->tb_id) || 1263 (fa->fa_tos != tos)) 1264 break; 1265 if (fa->fa_info->fib_priority != fi->fib_priority) 1266 break; 1267 if (fa->fa_type == cfg->fc_type && 1268 fa->fa_info == fi) { 1269 fa_match = fa; 1270 break; 1271 } 1272 } 1273 1274 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1275 struct fib_info *fi_drop; 1276 u8 state; 1277 1278 nlflags |= NLM_F_REPLACE; 1279 fa = fa_first; 1280 if (fa_match) { 1281 if (fa == fa_match) 1282 err = 0; 1283 goto out; 1284 } 1285 err = -ENOBUFS; 1286 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1287 if (!new_fa) 1288 goto out; 1289 1290 fi_drop = fa->fa_info; 1291 new_fa->fa_tos = fa->fa_tos; 1292 new_fa->fa_info = fi; 1293 new_fa->fa_type = cfg->fc_type; 1294 state = fa->fa_state; 1295 new_fa->fa_state = state & ~FA_S_ACCESSED; 1296 new_fa->fa_slen = fa->fa_slen; 1297 new_fa->tb_id = tb->tb_id; 1298 new_fa->fa_default = -1; 1299 new_fa->offload = 0; 1300 new_fa->trap = 0; 1301 new_fa->offload_failed = 0; 1302 1303 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1304 1305 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1306 tb->tb_id, true) == new_fa) { 1307 enum fib_event_type fib_event; 1308 1309 fib_event = FIB_EVENT_ENTRY_REPLACE; 1310 err = call_fib_entry_notifiers(net, fib_event, 1311 key, plen, 1312 new_fa, extack); 1313 if (err) { 1314 hlist_replace_rcu(&new_fa->fa_list, 1315 &fa->fa_list); 1316 goto out_free_new_fa; 1317 } 1318 } 1319 1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1321 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1322 1323 alias_free_mem_rcu(fa); 1324 1325 fib_release_info(fi_drop); 1326 if (state & FA_S_ACCESSED) 1327 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1328 1329 goto succeeded; 1330 } 1331 /* Error if we find a perfect match which 1332 * uses the same scope, type, and nexthop 1333 * information. 1334 */ 1335 if (fa_match) 1336 goto out; 1337 1338 if (cfg->fc_nlflags & NLM_F_APPEND) 1339 nlflags |= NLM_F_APPEND; 1340 else 1341 fa = fa_first; 1342 } 1343 err = -ENOENT; 1344 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1345 goto out; 1346 1347 nlflags |= NLM_F_CREATE; 1348 err = -ENOBUFS; 1349 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1350 if (!new_fa) 1351 goto out; 1352 1353 new_fa->fa_info = fi; 1354 new_fa->fa_tos = tos; 1355 new_fa->fa_type = cfg->fc_type; 1356 new_fa->fa_state = 0; 1357 new_fa->fa_slen = slen; 1358 new_fa->tb_id = tb->tb_id; 1359 new_fa->fa_default = -1; 1360 new_fa->offload = 0; 1361 new_fa->trap = 0; 1362 new_fa->offload_failed = 0; 1363 1364 /* Insert new entry to the list. */ 1365 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1366 if (err) 1367 goto out_free_new_fa; 1368 1369 /* The alias was already inserted, so the node must exist. */ 1370 l = l ? l : fib_find_node(t, &tp, key); 1371 if (WARN_ON_ONCE(!l)) 1372 goto out_free_new_fa; 1373 1374 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1375 new_fa) { 1376 enum fib_event_type fib_event; 1377 1378 fib_event = FIB_EVENT_ENTRY_REPLACE; 1379 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1380 new_fa, extack); 1381 if (err) 1382 goto out_remove_new_fa; 1383 } 1384 1385 if (!plen) 1386 tb->tb_num_default++; 1387 1388 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1389 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1390 &cfg->fc_nlinfo, nlflags); 1391 succeeded: 1392 return 0; 1393 1394 out_remove_new_fa: 1395 fib_remove_alias(t, tp, l, new_fa); 1396 out_free_new_fa: 1397 kmem_cache_free(fn_alias_kmem, new_fa); 1398 out: 1399 fib_release_info(fi); 1400 err: 1401 return err; 1402 } 1403 1404 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1405 { 1406 t_key prefix = n->key; 1407 1408 return (key ^ prefix) & (prefix | -prefix); 1409 } 1410 1411 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1412 const struct flowi4 *flp) 1413 { 1414 if (nhc->nhc_flags & RTNH_F_DEAD) 1415 return false; 1416 1417 if (ip_ignore_linkdown(nhc->nhc_dev) && 1418 nhc->nhc_flags & RTNH_F_LINKDOWN && 1419 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1420 return false; 1421 1422 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1423 if (flp->flowi4_oif && 1424 flp->flowi4_oif != nhc->nhc_oif) 1425 return false; 1426 } 1427 1428 return true; 1429 } 1430 1431 /* should be called with rcu_read_lock */ 1432 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1433 struct fib_result *res, int fib_flags) 1434 { 1435 struct trie *t = (struct trie *) tb->tb_data; 1436 #ifdef CONFIG_IP_FIB_TRIE_STATS 1437 struct trie_use_stats __percpu *stats = t->stats; 1438 #endif 1439 const t_key key = ntohl(flp->daddr); 1440 struct key_vector *n, *pn; 1441 struct fib_alias *fa; 1442 unsigned long index; 1443 t_key cindex; 1444 1445 pn = t->kv; 1446 cindex = 0; 1447 1448 n = get_child_rcu(pn, cindex); 1449 if (!n) { 1450 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1451 return -EAGAIN; 1452 } 1453 1454 #ifdef CONFIG_IP_FIB_TRIE_STATS 1455 this_cpu_inc(stats->gets); 1456 #endif 1457 1458 /* Step 1: Travel to the longest prefix match in the trie */ 1459 for (;;) { 1460 index = get_cindex(key, n); 1461 1462 /* This bit of code is a bit tricky but it combines multiple 1463 * checks into a single check. The prefix consists of the 1464 * prefix plus zeros for the "bits" in the prefix. The index 1465 * is the difference between the key and this value. From 1466 * this we can actually derive several pieces of data. 1467 * if (index >= (1ul << bits)) 1468 * we have a mismatch in skip bits and failed 1469 * else 1470 * we know the value is cindex 1471 * 1472 * This check is safe even if bits == KEYLENGTH due to the 1473 * fact that we can only allocate a node with 32 bits if a 1474 * long is greater than 32 bits. 1475 */ 1476 if (index >= (1ul << n->bits)) 1477 break; 1478 1479 /* we have found a leaf. Prefixes have already been compared */ 1480 if (IS_LEAF(n)) 1481 goto found; 1482 1483 /* only record pn and cindex if we are going to be chopping 1484 * bits later. Otherwise we are just wasting cycles. 1485 */ 1486 if (n->slen > n->pos) { 1487 pn = n; 1488 cindex = index; 1489 } 1490 1491 n = get_child_rcu(n, index); 1492 if (unlikely(!n)) 1493 goto backtrace; 1494 } 1495 1496 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1497 for (;;) { 1498 /* record the pointer where our next node pointer is stored */ 1499 struct key_vector __rcu **cptr = n->tnode; 1500 1501 /* This test verifies that none of the bits that differ 1502 * between the key and the prefix exist in the region of 1503 * the lsb and higher in the prefix. 1504 */ 1505 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1506 goto backtrace; 1507 1508 /* exit out and process leaf */ 1509 if (unlikely(IS_LEAF(n))) 1510 break; 1511 1512 /* Don't bother recording parent info. Since we are in 1513 * prefix match mode we will have to come back to wherever 1514 * we started this traversal anyway 1515 */ 1516 1517 while ((n = rcu_dereference(*cptr)) == NULL) { 1518 backtrace: 1519 #ifdef CONFIG_IP_FIB_TRIE_STATS 1520 if (!n) 1521 this_cpu_inc(stats->null_node_hit); 1522 #endif 1523 /* If we are at cindex 0 there are no more bits for 1524 * us to strip at this level so we must ascend back 1525 * up one level to see if there are any more bits to 1526 * be stripped there. 1527 */ 1528 while (!cindex) { 1529 t_key pkey = pn->key; 1530 1531 /* If we don't have a parent then there is 1532 * nothing for us to do as we do not have any 1533 * further nodes to parse. 1534 */ 1535 if (IS_TRIE(pn)) { 1536 trace_fib_table_lookup(tb->tb_id, flp, 1537 NULL, -EAGAIN); 1538 return -EAGAIN; 1539 } 1540 #ifdef CONFIG_IP_FIB_TRIE_STATS 1541 this_cpu_inc(stats->backtrack); 1542 #endif 1543 /* Get Child's index */ 1544 pn = node_parent_rcu(pn); 1545 cindex = get_index(pkey, pn); 1546 } 1547 1548 /* strip the least significant bit from the cindex */ 1549 cindex &= cindex - 1; 1550 1551 /* grab pointer for next child node */ 1552 cptr = &pn->tnode[cindex]; 1553 } 1554 } 1555 1556 found: 1557 /* this line carries forward the xor from earlier in the function */ 1558 index = key ^ n->key; 1559 1560 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1561 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1562 struct fib_info *fi = fa->fa_info; 1563 struct fib_nh_common *nhc; 1564 int nhsel, err; 1565 1566 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1567 if (index >= (1ul << fa->fa_slen)) 1568 continue; 1569 } 1570 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1571 continue; 1572 if (fi->fib_dead) 1573 continue; 1574 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1575 continue; 1576 fib_alias_accessed(fa); 1577 err = fib_props[fa->fa_type].error; 1578 if (unlikely(err < 0)) { 1579 out_reject: 1580 #ifdef CONFIG_IP_FIB_TRIE_STATS 1581 this_cpu_inc(stats->semantic_match_passed); 1582 #endif 1583 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1584 return err; 1585 } 1586 if (fi->fib_flags & RTNH_F_DEAD) 1587 continue; 1588 1589 if (unlikely(fi->nh)) { 1590 if (nexthop_is_blackhole(fi->nh)) { 1591 err = fib_props[RTN_BLACKHOLE].error; 1592 goto out_reject; 1593 } 1594 1595 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1596 &nhsel); 1597 if (nhc) 1598 goto set_result; 1599 goto miss; 1600 } 1601 1602 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1603 nhc = fib_info_nhc(fi, nhsel); 1604 1605 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1606 continue; 1607 set_result: 1608 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1609 refcount_inc(&fi->fib_clntref); 1610 1611 res->prefix = htonl(n->key); 1612 res->prefixlen = KEYLENGTH - fa->fa_slen; 1613 res->nh_sel = nhsel; 1614 res->nhc = nhc; 1615 res->type = fa->fa_type; 1616 res->scope = fi->fib_scope; 1617 res->fi = fi; 1618 res->table = tb; 1619 res->fa_head = &n->leaf; 1620 #ifdef CONFIG_IP_FIB_TRIE_STATS 1621 this_cpu_inc(stats->semantic_match_passed); 1622 #endif 1623 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1624 1625 return err; 1626 } 1627 } 1628 miss: 1629 #ifdef CONFIG_IP_FIB_TRIE_STATS 1630 this_cpu_inc(stats->semantic_match_miss); 1631 #endif 1632 goto backtrace; 1633 } 1634 EXPORT_SYMBOL_GPL(fib_table_lookup); 1635 1636 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1637 struct key_vector *l, struct fib_alias *old) 1638 { 1639 /* record the location of the previous list_info entry */ 1640 struct hlist_node **pprev = old->fa_list.pprev; 1641 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1642 1643 /* remove the fib_alias from the list */ 1644 hlist_del_rcu(&old->fa_list); 1645 1646 /* if we emptied the list this leaf will be freed and we can sort 1647 * out parent suffix lengths as a part of trie_rebalance 1648 */ 1649 if (hlist_empty(&l->leaf)) { 1650 if (tp->slen == l->slen) 1651 node_pull_suffix(tp, tp->pos); 1652 put_child_root(tp, l->key, NULL); 1653 node_free(l); 1654 trie_rebalance(t, tp); 1655 return; 1656 } 1657 1658 /* only access fa if it is pointing at the last valid hlist_node */ 1659 if (*pprev) 1660 return; 1661 1662 /* update the trie with the latest suffix length */ 1663 l->slen = fa->fa_slen; 1664 node_pull_suffix(tp, fa->fa_slen); 1665 } 1666 1667 static void fib_notify_alias_delete(struct net *net, u32 key, 1668 struct hlist_head *fah, 1669 struct fib_alias *fa_to_delete, 1670 struct netlink_ext_ack *extack) 1671 { 1672 struct fib_alias *fa_next, *fa_to_notify; 1673 u32 tb_id = fa_to_delete->tb_id; 1674 u8 slen = fa_to_delete->fa_slen; 1675 enum fib_event_type fib_event; 1676 1677 /* Do not notify if we do not care about the route. */ 1678 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1679 return; 1680 1681 /* Determine if the route should be replaced by the next route in the 1682 * list. 1683 */ 1684 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1685 struct fib_alias, fa_list); 1686 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1687 fib_event = FIB_EVENT_ENTRY_REPLACE; 1688 fa_to_notify = fa_next; 1689 } else { 1690 fib_event = FIB_EVENT_ENTRY_DEL; 1691 fa_to_notify = fa_to_delete; 1692 } 1693 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1694 fa_to_notify, extack); 1695 } 1696 1697 /* Caller must hold RTNL. */ 1698 int fib_table_delete(struct net *net, struct fib_table *tb, 1699 struct fib_config *cfg, struct netlink_ext_ack *extack) 1700 { 1701 struct trie *t = (struct trie *) tb->tb_data; 1702 struct fib_alias *fa, *fa_to_delete; 1703 struct key_vector *l, *tp; 1704 u8 plen = cfg->fc_dst_len; 1705 u8 slen = KEYLENGTH - plen; 1706 u8 tos = cfg->fc_tos; 1707 u32 key; 1708 1709 key = ntohl(cfg->fc_dst); 1710 1711 if (!fib_valid_key_len(key, plen, extack)) 1712 return -EINVAL; 1713 1714 l = fib_find_node(t, &tp, key); 1715 if (!l) 1716 return -ESRCH; 1717 1718 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1719 if (!fa) 1720 return -ESRCH; 1721 1722 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1723 1724 fa_to_delete = NULL; 1725 hlist_for_each_entry_from(fa, fa_list) { 1726 struct fib_info *fi = fa->fa_info; 1727 1728 if ((fa->fa_slen != slen) || 1729 (fa->tb_id != tb->tb_id) || 1730 (fa->fa_tos != tos)) 1731 break; 1732 1733 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1734 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1735 fa->fa_info->fib_scope == cfg->fc_scope) && 1736 (!cfg->fc_prefsrc || 1737 fi->fib_prefsrc == cfg->fc_prefsrc) && 1738 (!cfg->fc_protocol || 1739 fi->fib_protocol == cfg->fc_protocol) && 1740 fib_nh_match(net, cfg, fi, extack) == 0 && 1741 fib_metrics_match(cfg, fi)) { 1742 fa_to_delete = fa; 1743 break; 1744 } 1745 } 1746 1747 if (!fa_to_delete) 1748 return -ESRCH; 1749 1750 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1751 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1752 &cfg->fc_nlinfo, 0); 1753 1754 if (!plen) 1755 tb->tb_num_default--; 1756 1757 fib_remove_alias(t, tp, l, fa_to_delete); 1758 1759 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1760 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1761 1762 fib_release_info(fa_to_delete->fa_info); 1763 alias_free_mem_rcu(fa_to_delete); 1764 return 0; 1765 } 1766 1767 /* Scan for the next leaf starting at the provided key value */ 1768 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1769 { 1770 struct key_vector *pn, *n = *tn; 1771 unsigned long cindex; 1772 1773 /* this loop is meant to try and find the key in the trie */ 1774 do { 1775 /* record parent and next child index */ 1776 pn = n; 1777 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1778 1779 if (cindex >> pn->bits) 1780 break; 1781 1782 /* descend into the next child */ 1783 n = get_child_rcu(pn, cindex++); 1784 if (!n) 1785 break; 1786 1787 /* guarantee forward progress on the keys */ 1788 if (IS_LEAF(n) && (n->key >= key)) 1789 goto found; 1790 } while (IS_TNODE(n)); 1791 1792 /* this loop will search for the next leaf with a greater key */ 1793 while (!IS_TRIE(pn)) { 1794 /* if we exhausted the parent node we will need to climb */ 1795 if (cindex >= (1ul << pn->bits)) { 1796 t_key pkey = pn->key; 1797 1798 pn = node_parent_rcu(pn); 1799 cindex = get_index(pkey, pn) + 1; 1800 continue; 1801 } 1802 1803 /* grab the next available node */ 1804 n = get_child_rcu(pn, cindex++); 1805 if (!n) 1806 continue; 1807 1808 /* no need to compare keys since we bumped the index */ 1809 if (IS_LEAF(n)) 1810 goto found; 1811 1812 /* Rescan start scanning in new node */ 1813 pn = n; 1814 cindex = 0; 1815 } 1816 1817 *tn = pn; 1818 return NULL; /* Root of trie */ 1819 found: 1820 /* if we are at the limit for keys just return NULL for the tnode */ 1821 *tn = pn; 1822 return n; 1823 } 1824 1825 static void fib_trie_free(struct fib_table *tb) 1826 { 1827 struct trie *t = (struct trie *)tb->tb_data; 1828 struct key_vector *pn = t->kv; 1829 unsigned long cindex = 1; 1830 struct hlist_node *tmp; 1831 struct fib_alias *fa; 1832 1833 /* walk trie in reverse order and free everything */ 1834 for (;;) { 1835 struct key_vector *n; 1836 1837 if (!(cindex--)) { 1838 t_key pkey = pn->key; 1839 1840 if (IS_TRIE(pn)) 1841 break; 1842 1843 n = pn; 1844 pn = node_parent(pn); 1845 1846 /* drop emptied tnode */ 1847 put_child_root(pn, n->key, NULL); 1848 node_free(n); 1849 1850 cindex = get_index(pkey, pn); 1851 1852 continue; 1853 } 1854 1855 /* grab the next available node */ 1856 n = get_child(pn, cindex); 1857 if (!n) 1858 continue; 1859 1860 if (IS_TNODE(n)) { 1861 /* record pn and cindex for leaf walking */ 1862 pn = n; 1863 cindex = 1ul << n->bits; 1864 1865 continue; 1866 } 1867 1868 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1869 hlist_del_rcu(&fa->fa_list); 1870 alias_free_mem_rcu(fa); 1871 } 1872 1873 put_child_root(pn, n->key, NULL); 1874 node_free(n); 1875 } 1876 1877 #ifdef CONFIG_IP_FIB_TRIE_STATS 1878 free_percpu(t->stats); 1879 #endif 1880 kfree(tb); 1881 } 1882 1883 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1884 { 1885 struct trie *ot = (struct trie *)oldtb->tb_data; 1886 struct key_vector *l, *tp = ot->kv; 1887 struct fib_table *local_tb; 1888 struct fib_alias *fa; 1889 struct trie *lt; 1890 t_key key = 0; 1891 1892 if (oldtb->tb_data == oldtb->__data) 1893 return oldtb; 1894 1895 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1896 if (!local_tb) 1897 return NULL; 1898 1899 lt = (struct trie *)local_tb->tb_data; 1900 1901 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1902 struct key_vector *local_l = NULL, *local_tp; 1903 1904 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1905 struct fib_alias *new_fa; 1906 1907 if (local_tb->tb_id != fa->tb_id) 1908 continue; 1909 1910 /* clone fa for new local table */ 1911 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1912 if (!new_fa) 1913 goto out; 1914 1915 memcpy(new_fa, fa, sizeof(*fa)); 1916 1917 /* insert clone into table */ 1918 if (!local_l) 1919 local_l = fib_find_node(lt, &local_tp, l->key); 1920 1921 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1922 NULL, l->key)) { 1923 kmem_cache_free(fn_alias_kmem, new_fa); 1924 goto out; 1925 } 1926 } 1927 1928 /* stop loop if key wrapped back to 0 */ 1929 key = l->key + 1; 1930 if (key < l->key) 1931 break; 1932 } 1933 1934 return local_tb; 1935 out: 1936 fib_trie_free(local_tb); 1937 1938 return NULL; 1939 } 1940 1941 /* Caller must hold RTNL */ 1942 void fib_table_flush_external(struct fib_table *tb) 1943 { 1944 struct trie *t = (struct trie *)tb->tb_data; 1945 struct key_vector *pn = t->kv; 1946 unsigned long cindex = 1; 1947 struct hlist_node *tmp; 1948 struct fib_alias *fa; 1949 1950 /* walk trie in reverse order */ 1951 for (;;) { 1952 unsigned char slen = 0; 1953 struct key_vector *n; 1954 1955 if (!(cindex--)) { 1956 t_key pkey = pn->key; 1957 1958 /* cannot resize the trie vector */ 1959 if (IS_TRIE(pn)) 1960 break; 1961 1962 /* update the suffix to address pulled leaves */ 1963 if (pn->slen > pn->pos) 1964 update_suffix(pn); 1965 1966 /* resize completed node */ 1967 pn = resize(t, pn); 1968 cindex = get_index(pkey, pn); 1969 1970 continue; 1971 } 1972 1973 /* grab the next available node */ 1974 n = get_child(pn, cindex); 1975 if (!n) 1976 continue; 1977 1978 if (IS_TNODE(n)) { 1979 /* record pn and cindex for leaf walking */ 1980 pn = n; 1981 cindex = 1ul << n->bits; 1982 1983 continue; 1984 } 1985 1986 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1987 /* if alias was cloned to local then we just 1988 * need to remove the local copy from main 1989 */ 1990 if (tb->tb_id != fa->tb_id) { 1991 hlist_del_rcu(&fa->fa_list); 1992 alias_free_mem_rcu(fa); 1993 continue; 1994 } 1995 1996 /* record local slen */ 1997 slen = fa->fa_slen; 1998 } 1999 2000 /* update leaf slen */ 2001 n->slen = slen; 2002 2003 if (hlist_empty(&n->leaf)) { 2004 put_child_root(pn, n->key, NULL); 2005 node_free(n); 2006 } 2007 } 2008 } 2009 2010 /* Caller must hold RTNL. */ 2011 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2012 { 2013 struct trie *t = (struct trie *)tb->tb_data; 2014 struct key_vector *pn = t->kv; 2015 unsigned long cindex = 1; 2016 struct hlist_node *tmp; 2017 struct fib_alias *fa; 2018 int found = 0; 2019 2020 /* walk trie in reverse order */ 2021 for (;;) { 2022 unsigned char slen = 0; 2023 struct key_vector *n; 2024 2025 if (!(cindex--)) { 2026 t_key pkey = pn->key; 2027 2028 /* cannot resize the trie vector */ 2029 if (IS_TRIE(pn)) 2030 break; 2031 2032 /* update the suffix to address pulled leaves */ 2033 if (pn->slen > pn->pos) 2034 update_suffix(pn); 2035 2036 /* resize completed node */ 2037 pn = resize(t, pn); 2038 cindex = get_index(pkey, pn); 2039 2040 continue; 2041 } 2042 2043 /* grab the next available node */ 2044 n = get_child(pn, cindex); 2045 if (!n) 2046 continue; 2047 2048 if (IS_TNODE(n)) { 2049 /* record pn and cindex for leaf walking */ 2050 pn = n; 2051 cindex = 1ul << n->bits; 2052 2053 continue; 2054 } 2055 2056 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2057 struct fib_info *fi = fa->fa_info; 2058 2059 if (!fi || tb->tb_id != fa->tb_id || 2060 (!(fi->fib_flags & RTNH_F_DEAD) && 2061 !fib_props[fa->fa_type].error)) { 2062 slen = fa->fa_slen; 2063 continue; 2064 } 2065 2066 /* Do not flush error routes if network namespace is 2067 * not being dismantled 2068 */ 2069 if (!flush_all && fib_props[fa->fa_type].error) { 2070 slen = fa->fa_slen; 2071 continue; 2072 } 2073 2074 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2075 NULL); 2076 hlist_del_rcu(&fa->fa_list); 2077 fib_release_info(fa->fa_info); 2078 alias_free_mem_rcu(fa); 2079 found++; 2080 } 2081 2082 /* update leaf slen */ 2083 n->slen = slen; 2084 2085 if (hlist_empty(&n->leaf)) { 2086 put_child_root(pn, n->key, NULL); 2087 node_free(n); 2088 } 2089 } 2090 2091 pr_debug("trie_flush found=%d\n", found); 2092 return found; 2093 } 2094 2095 /* derived from fib_trie_free */ 2096 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2097 struct nl_info *info) 2098 { 2099 struct trie *t = (struct trie *)tb->tb_data; 2100 struct key_vector *pn = t->kv; 2101 unsigned long cindex = 1; 2102 struct fib_alias *fa; 2103 2104 for (;;) { 2105 struct key_vector *n; 2106 2107 if (!(cindex--)) { 2108 t_key pkey = pn->key; 2109 2110 if (IS_TRIE(pn)) 2111 break; 2112 2113 pn = node_parent(pn); 2114 cindex = get_index(pkey, pn); 2115 continue; 2116 } 2117 2118 /* grab the next available node */ 2119 n = get_child(pn, cindex); 2120 if (!n) 2121 continue; 2122 2123 if (IS_TNODE(n)) { 2124 /* record pn and cindex for leaf walking */ 2125 pn = n; 2126 cindex = 1ul << n->bits; 2127 2128 continue; 2129 } 2130 2131 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2132 struct fib_info *fi = fa->fa_info; 2133 2134 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2135 continue; 2136 2137 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2138 KEYLENGTH - fa->fa_slen, tb->tb_id, 2139 info, NLM_F_REPLACE); 2140 } 2141 } 2142 } 2143 2144 void fib_info_notify_update(struct net *net, struct nl_info *info) 2145 { 2146 unsigned int h; 2147 2148 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2149 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2150 struct fib_table *tb; 2151 2152 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2153 lockdep_rtnl_is_held()) 2154 __fib_info_notify_update(net, tb, info); 2155 } 2156 } 2157 2158 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2159 struct notifier_block *nb, 2160 struct netlink_ext_ack *extack) 2161 { 2162 struct fib_alias *fa; 2163 int last_slen = -1; 2164 int err; 2165 2166 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2167 struct fib_info *fi = fa->fa_info; 2168 2169 if (!fi) 2170 continue; 2171 2172 /* local and main table can share the same trie, 2173 * so don't notify twice for the same entry. 2174 */ 2175 if (tb->tb_id != fa->tb_id) 2176 continue; 2177 2178 if (fa->fa_slen == last_slen) 2179 continue; 2180 2181 last_slen = fa->fa_slen; 2182 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2183 l->key, KEYLENGTH - fa->fa_slen, 2184 fa, extack); 2185 if (err) 2186 return err; 2187 } 2188 return 0; 2189 } 2190 2191 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2192 struct netlink_ext_ack *extack) 2193 { 2194 struct trie *t = (struct trie *)tb->tb_data; 2195 struct key_vector *l, *tp = t->kv; 2196 t_key key = 0; 2197 int err; 2198 2199 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2200 err = fib_leaf_notify(l, tb, nb, extack); 2201 if (err) 2202 return err; 2203 2204 key = l->key + 1; 2205 /* stop in case of wrap around */ 2206 if (key < l->key) 2207 break; 2208 } 2209 return 0; 2210 } 2211 2212 int fib_notify(struct net *net, struct notifier_block *nb, 2213 struct netlink_ext_ack *extack) 2214 { 2215 unsigned int h; 2216 int err; 2217 2218 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2219 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2220 struct fib_table *tb; 2221 2222 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2223 err = fib_table_notify(tb, nb, extack); 2224 if (err) 2225 return err; 2226 } 2227 } 2228 return 0; 2229 } 2230 2231 static void __trie_free_rcu(struct rcu_head *head) 2232 { 2233 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2234 #ifdef CONFIG_IP_FIB_TRIE_STATS 2235 struct trie *t = (struct trie *)tb->tb_data; 2236 2237 if (tb->tb_data == tb->__data) 2238 free_percpu(t->stats); 2239 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2240 kfree(tb); 2241 } 2242 2243 void fib_free_table(struct fib_table *tb) 2244 { 2245 call_rcu(&tb->rcu, __trie_free_rcu); 2246 } 2247 2248 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2249 struct sk_buff *skb, struct netlink_callback *cb, 2250 struct fib_dump_filter *filter) 2251 { 2252 unsigned int flags = NLM_F_MULTI; 2253 __be32 xkey = htonl(l->key); 2254 int i, s_i, i_fa, s_fa, err; 2255 struct fib_alias *fa; 2256 2257 if (filter->filter_set || 2258 !filter->dump_exceptions || !filter->dump_routes) 2259 flags |= NLM_F_DUMP_FILTERED; 2260 2261 s_i = cb->args[4]; 2262 s_fa = cb->args[5]; 2263 i = 0; 2264 2265 /* rcu_read_lock is hold by caller */ 2266 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2267 struct fib_info *fi = fa->fa_info; 2268 2269 if (i < s_i) 2270 goto next; 2271 2272 i_fa = 0; 2273 2274 if (tb->tb_id != fa->tb_id) 2275 goto next; 2276 2277 if (filter->filter_set) { 2278 if (filter->rt_type && fa->fa_type != filter->rt_type) 2279 goto next; 2280 2281 if ((filter->protocol && 2282 fi->fib_protocol != filter->protocol)) 2283 goto next; 2284 2285 if (filter->dev && 2286 !fib_info_nh_uses_dev(fi, filter->dev)) 2287 goto next; 2288 } 2289 2290 if (filter->dump_routes) { 2291 if (!s_fa) { 2292 struct fib_rt_info fri; 2293 2294 fri.fi = fi; 2295 fri.tb_id = tb->tb_id; 2296 fri.dst = xkey; 2297 fri.dst_len = KEYLENGTH - fa->fa_slen; 2298 fri.tos = fa->fa_tos; 2299 fri.type = fa->fa_type; 2300 fri.offload = fa->offload; 2301 fri.trap = fa->trap; 2302 fri.offload_failed = fa->offload_failed; 2303 err = fib_dump_info(skb, 2304 NETLINK_CB(cb->skb).portid, 2305 cb->nlh->nlmsg_seq, 2306 RTM_NEWROUTE, &fri, flags); 2307 if (err < 0) 2308 goto stop; 2309 } 2310 2311 i_fa++; 2312 } 2313 2314 if (filter->dump_exceptions) { 2315 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2316 &i_fa, s_fa, flags); 2317 if (err < 0) 2318 goto stop; 2319 } 2320 2321 next: 2322 i++; 2323 } 2324 2325 cb->args[4] = i; 2326 return skb->len; 2327 2328 stop: 2329 cb->args[4] = i; 2330 cb->args[5] = i_fa; 2331 return err; 2332 } 2333 2334 /* rcu_read_lock needs to be hold by caller from readside */ 2335 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2336 struct netlink_callback *cb, struct fib_dump_filter *filter) 2337 { 2338 struct trie *t = (struct trie *)tb->tb_data; 2339 struct key_vector *l, *tp = t->kv; 2340 /* Dump starting at last key. 2341 * Note: 0.0.0.0/0 (ie default) is first key. 2342 */ 2343 int count = cb->args[2]; 2344 t_key key = cb->args[3]; 2345 2346 /* First time here, count and key are both always 0. Count > 0 2347 * and key == 0 means the dump has wrapped around and we are done. 2348 */ 2349 if (count && !key) 2350 return skb->len; 2351 2352 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2353 int err; 2354 2355 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2356 if (err < 0) { 2357 cb->args[3] = key; 2358 cb->args[2] = count; 2359 return err; 2360 } 2361 2362 ++count; 2363 key = l->key + 1; 2364 2365 memset(&cb->args[4], 0, 2366 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2367 2368 /* stop loop if key wrapped back to 0 */ 2369 if (key < l->key) 2370 break; 2371 } 2372 2373 cb->args[3] = key; 2374 cb->args[2] = count; 2375 2376 return skb->len; 2377 } 2378 2379 void __init fib_trie_init(void) 2380 { 2381 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2382 sizeof(struct fib_alias), 2383 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2384 2385 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2386 LEAF_SIZE, 2387 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2388 } 2389 2390 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2391 { 2392 struct fib_table *tb; 2393 struct trie *t; 2394 size_t sz = sizeof(*tb); 2395 2396 if (!alias) 2397 sz += sizeof(struct trie); 2398 2399 tb = kzalloc(sz, GFP_KERNEL); 2400 if (!tb) 2401 return NULL; 2402 2403 tb->tb_id = id; 2404 tb->tb_num_default = 0; 2405 tb->tb_data = (alias ? alias->__data : tb->__data); 2406 2407 if (alias) 2408 return tb; 2409 2410 t = (struct trie *) tb->tb_data; 2411 t->kv[0].pos = KEYLENGTH; 2412 t->kv[0].slen = KEYLENGTH; 2413 #ifdef CONFIG_IP_FIB_TRIE_STATS 2414 t->stats = alloc_percpu(struct trie_use_stats); 2415 if (!t->stats) { 2416 kfree(tb); 2417 tb = NULL; 2418 } 2419 #endif 2420 2421 return tb; 2422 } 2423 2424 #ifdef CONFIG_PROC_FS 2425 /* Depth first Trie walk iterator */ 2426 struct fib_trie_iter { 2427 struct seq_net_private p; 2428 struct fib_table *tb; 2429 struct key_vector *tnode; 2430 unsigned int index; 2431 unsigned int depth; 2432 }; 2433 2434 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2435 { 2436 unsigned long cindex = iter->index; 2437 struct key_vector *pn = iter->tnode; 2438 t_key pkey; 2439 2440 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2441 iter->tnode, iter->index, iter->depth); 2442 2443 while (!IS_TRIE(pn)) { 2444 while (cindex < child_length(pn)) { 2445 struct key_vector *n = get_child_rcu(pn, cindex++); 2446 2447 if (!n) 2448 continue; 2449 2450 if (IS_LEAF(n)) { 2451 iter->tnode = pn; 2452 iter->index = cindex; 2453 } else { 2454 /* push down one level */ 2455 iter->tnode = n; 2456 iter->index = 0; 2457 ++iter->depth; 2458 } 2459 2460 return n; 2461 } 2462 2463 /* Current node exhausted, pop back up */ 2464 pkey = pn->key; 2465 pn = node_parent_rcu(pn); 2466 cindex = get_index(pkey, pn) + 1; 2467 --iter->depth; 2468 } 2469 2470 /* record root node so further searches know we are done */ 2471 iter->tnode = pn; 2472 iter->index = 0; 2473 2474 return NULL; 2475 } 2476 2477 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2478 struct trie *t) 2479 { 2480 struct key_vector *n, *pn; 2481 2482 if (!t) 2483 return NULL; 2484 2485 pn = t->kv; 2486 n = rcu_dereference(pn->tnode[0]); 2487 if (!n) 2488 return NULL; 2489 2490 if (IS_TNODE(n)) { 2491 iter->tnode = n; 2492 iter->index = 0; 2493 iter->depth = 1; 2494 } else { 2495 iter->tnode = pn; 2496 iter->index = 0; 2497 iter->depth = 0; 2498 } 2499 2500 return n; 2501 } 2502 2503 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2504 { 2505 struct key_vector *n; 2506 struct fib_trie_iter iter; 2507 2508 memset(s, 0, sizeof(*s)); 2509 2510 rcu_read_lock(); 2511 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2512 if (IS_LEAF(n)) { 2513 struct fib_alias *fa; 2514 2515 s->leaves++; 2516 s->totdepth += iter.depth; 2517 if (iter.depth > s->maxdepth) 2518 s->maxdepth = iter.depth; 2519 2520 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2521 ++s->prefixes; 2522 } else { 2523 s->tnodes++; 2524 if (n->bits < MAX_STAT_DEPTH) 2525 s->nodesizes[n->bits]++; 2526 s->nullpointers += tn_info(n)->empty_children; 2527 } 2528 } 2529 rcu_read_unlock(); 2530 } 2531 2532 /* 2533 * This outputs /proc/net/fib_triestats 2534 */ 2535 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2536 { 2537 unsigned int i, max, pointers, bytes, avdepth; 2538 2539 if (stat->leaves) 2540 avdepth = stat->totdepth*100 / stat->leaves; 2541 else 2542 avdepth = 0; 2543 2544 seq_printf(seq, "\tAver depth: %u.%02d\n", 2545 avdepth / 100, avdepth % 100); 2546 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2547 2548 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2549 bytes = LEAF_SIZE * stat->leaves; 2550 2551 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2552 bytes += sizeof(struct fib_alias) * stat->prefixes; 2553 2554 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2555 bytes += TNODE_SIZE(0) * stat->tnodes; 2556 2557 max = MAX_STAT_DEPTH; 2558 while (max > 0 && stat->nodesizes[max-1] == 0) 2559 max--; 2560 2561 pointers = 0; 2562 for (i = 1; i < max; i++) 2563 if (stat->nodesizes[i] != 0) { 2564 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2565 pointers += (1<<i) * stat->nodesizes[i]; 2566 } 2567 seq_putc(seq, '\n'); 2568 seq_printf(seq, "\tPointers: %u\n", pointers); 2569 2570 bytes += sizeof(struct key_vector *) * pointers; 2571 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2572 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2573 } 2574 2575 #ifdef CONFIG_IP_FIB_TRIE_STATS 2576 static void trie_show_usage(struct seq_file *seq, 2577 const struct trie_use_stats __percpu *stats) 2578 { 2579 struct trie_use_stats s = { 0 }; 2580 int cpu; 2581 2582 /* loop through all of the CPUs and gather up the stats */ 2583 for_each_possible_cpu(cpu) { 2584 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2585 2586 s.gets += pcpu->gets; 2587 s.backtrack += pcpu->backtrack; 2588 s.semantic_match_passed += pcpu->semantic_match_passed; 2589 s.semantic_match_miss += pcpu->semantic_match_miss; 2590 s.null_node_hit += pcpu->null_node_hit; 2591 s.resize_node_skipped += pcpu->resize_node_skipped; 2592 } 2593 2594 seq_printf(seq, "\nCounters:\n---------\n"); 2595 seq_printf(seq, "gets = %u\n", s.gets); 2596 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2597 seq_printf(seq, "semantic match passed = %u\n", 2598 s.semantic_match_passed); 2599 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2600 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2601 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2602 } 2603 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2604 2605 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2606 { 2607 if (tb->tb_id == RT_TABLE_LOCAL) 2608 seq_puts(seq, "Local:\n"); 2609 else if (tb->tb_id == RT_TABLE_MAIN) 2610 seq_puts(seq, "Main:\n"); 2611 else 2612 seq_printf(seq, "Id %d:\n", tb->tb_id); 2613 } 2614 2615 2616 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2617 { 2618 struct net *net = (struct net *)seq->private; 2619 unsigned int h; 2620 2621 seq_printf(seq, 2622 "Basic info: size of leaf:" 2623 " %zd bytes, size of tnode: %zd bytes.\n", 2624 LEAF_SIZE, TNODE_SIZE(0)); 2625 2626 rcu_read_lock(); 2627 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2628 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2629 struct fib_table *tb; 2630 2631 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2632 struct trie *t = (struct trie *) tb->tb_data; 2633 struct trie_stat stat; 2634 2635 if (!t) 2636 continue; 2637 2638 fib_table_print(seq, tb); 2639 2640 trie_collect_stats(t, &stat); 2641 trie_show_stats(seq, &stat); 2642 #ifdef CONFIG_IP_FIB_TRIE_STATS 2643 trie_show_usage(seq, t->stats); 2644 #endif 2645 } 2646 cond_resched_rcu(); 2647 } 2648 rcu_read_unlock(); 2649 2650 return 0; 2651 } 2652 2653 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2654 { 2655 struct fib_trie_iter *iter = seq->private; 2656 struct net *net = seq_file_net(seq); 2657 loff_t idx = 0; 2658 unsigned int h; 2659 2660 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2661 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2662 struct fib_table *tb; 2663 2664 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2665 struct key_vector *n; 2666 2667 for (n = fib_trie_get_first(iter, 2668 (struct trie *) tb->tb_data); 2669 n; n = fib_trie_get_next(iter)) 2670 if (pos == idx++) { 2671 iter->tb = tb; 2672 return n; 2673 } 2674 } 2675 } 2676 2677 return NULL; 2678 } 2679 2680 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2681 __acquires(RCU) 2682 { 2683 rcu_read_lock(); 2684 return fib_trie_get_idx(seq, *pos); 2685 } 2686 2687 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2688 { 2689 struct fib_trie_iter *iter = seq->private; 2690 struct net *net = seq_file_net(seq); 2691 struct fib_table *tb = iter->tb; 2692 struct hlist_node *tb_node; 2693 unsigned int h; 2694 struct key_vector *n; 2695 2696 ++*pos; 2697 /* next node in same table */ 2698 n = fib_trie_get_next(iter); 2699 if (n) 2700 return n; 2701 2702 /* walk rest of this hash chain */ 2703 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2704 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2705 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2706 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2707 if (n) 2708 goto found; 2709 } 2710 2711 /* new hash chain */ 2712 while (++h < FIB_TABLE_HASHSZ) { 2713 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2714 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2715 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2716 if (n) 2717 goto found; 2718 } 2719 } 2720 return NULL; 2721 2722 found: 2723 iter->tb = tb; 2724 return n; 2725 } 2726 2727 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2728 __releases(RCU) 2729 { 2730 rcu_read_unlock(); 2731 } 2732 2733 static void seq_indent(struct seq_file *seq, int n) 2734 { 2735 while (n-- > 0) 2736 seq_puts(seq, " "); 2737 } 2738 2739 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2740 { 2741 switch (s) { 2742 case RT_SCOPE_UNIVERSE: return "universe"; 2743 case RT_SCOPE_SITE: return "site"; 2744 case RT_SCOPE_LINK: return "link"; 2745 case RT_SCOPE_HOST: return "host"; 2746 case RT_SCOPE_NOWHERE: return "nowhere"; 2747 default: 2748 snprintf(buf, len, "scope=%d", s); 2749 return buf; 2750 } 2751 } 2752 2753 static const char *const rtn_type_names[__RTN_MAX] = { 2754 [RTN_UNSPEC] = "UNSPEC", 2755 [RTN_UNICAST] = "UNICAST", 2756 [RTN_LOCAL] = "LOCAL", 2757 [RTN_BROADCAST] = "BROADCAST", 2758 [RTN_ANYCAST] = "ANYCAST", 2759 [RTN_MULTICAST] = "MULTICAST", 2760 [RTN_BLACKHOLE] = "BLACKHOLE", 2761 [RTN_UNREACHABLE] = "UNREACHABLE", 2762 [RTN_PROHIBIT] = "PROHIBIT", 2763 [RTN_THROW] = "THROW", 2764 [RTN_NAT] = "NAT", 2765 [RTN_XRESOLVE] = "XRESOLVE", 2766 }; 2767 2768 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2769 { 2770 if (t < __RTN_MAX && rtn_type_names[t]) 2771 return rtn_type_names[t]; 2772 snprintf(buf, len, "type %u", t); 2773 return buf; 2774 } 2775 2776 /* Pretty print the trie */ 2777 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2778 { 2779 const struct fib_trie_iter *iter = seq->private; 2780 struct key_vector *n = v; 2781 2782 if (IS_TRIE(node_parent_rcu(n))) 2783 fib_table_print(seq, iter->tb); 2784 2785 if (IS_TNODE(n)) { 2786 __be32 prf = htonl(n->key); 2787 2788 seq_indent(seq, iter->depth-1); 2789 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2790 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2791 tn_info(n)->full_children, 2792 tn_info(n)->empty_children); 2793 } else { 2794 __be32 val = htonl(n->key); 2795 struct fib_alias *fa; 2796 2797 seq_indent(seq, iter->depth); 2798 seq_printf(seq, " |-- %pI4\n", &val); 2799 2800 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2801 char buf1[32], buf2[32]; 2802 2803 seq_indent(seq, iter->depth + 1); 2804 seq_printf(seq, " /%zu %s %s", 2805 KEYLENGTH - fa->fa_slen, 2806 rtn_scope(buf1, sizeof(buf1), 2807 fa->fa_info->fib_scope), 2808 rtn_type(buf2, sizeof(buf2), 2809 fa->fa_type)); 2810 if (fa->fa_tos) 2811 seq_printf(seq, " tos=%d", fa->fa_tos); 2812 seq_putc(seq, '\n'); 2813 } 2814 } 2815 2816 return 0; 2817 } 2818 2819 static const struct seq_operations fib_trie_seq_ops = { 2820 .start = fib_trie_seq_start, 2821 .next = fib_trie_seq_next, 2822 .stop = fib_trie_seq_stop, 2823 .show = fib_trie_seq_show, 2824 }; 2825 2826 struct fib_route_iter { 2827 struct seq_net_private p; 2828 struct fib_table *main_tb; 2829 struct key_vector *tnode; 2830 loff_t pos; 2831 t_key key; 2832 }; 2833 2834 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2835 loff_t pos) 2836 { 2837 struct key_vector *l, **tp = &iter->tnode; 2838 t_key key; 2839 2840 /* use cached location of previously found key */ 2841 if (iter->pos > 0 && pos >= iter->pos) { 2842 key = iter->key; 2843 } else { 2844 iter->pos = 1; 2845 key = 0; 2846 } 2847 2848 pos -= iter->pos; 2849 2850 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2851 key = l->key + 1; 2852 iter->pos++; 2853 l = NULL; 2854 2855 /* handle unlikely case of a key wrap */ 2856 if (!key) 2857 break; 2858 } 2859 2860 if (l) 2861 iter->key = l->key; /* remember it */ 2862 else 2863 iter->pos = 0; /* forget it */ 2864 2865 return l; 2866 } 2867 2868 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2869 __acquires(RCU) 2870 { 2871 struct fib_route_iter *iter = seq->private; 2872 struct fib_table *tb; 2873 struct trie *t; 2874 2875 rcu_read_lock(); 2876 2877 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2878 if (!tb) 2879 return NULL; 2880 2881 iter->main_tb = tb; 2882 t = (struct trie *)tb->tb_data; 2883 iter->tnode = t->kv; 2884 2885 if (*pos != 0) 2886 return fib_route_get_idx(iter, *pos); 2887 2888 iter->pos = 0; 2889 iter->key = KEY_MAX; 2890 2891 return SEQ_START_TOKEN; 2892 } 2893 2894 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2895 { 2896 struct fib_route_iter *iter = seq->private; 2897 struct key_vector *l = NULL; 2898 t_key key = iter->key + 1; 2899 2900 ++*pos; 2901 2902 /* only allow key of 0 for start of sequence */ 2903 if ((v == SEQ_START_TOKEN) || key) 2904 l = leaf_walk_rcu(&iter->tnode, key); 2905 2906 if (l) { 2907 iter->key = l->key; 2908 iter->pos++; 2909 } else { 2910 iter->pos = 0; 2911 } 2912 2913 return l; 2914 } 2915 2916 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2917 __releases(RCU) 2918 { 2919 rcu_read_unlock(); 2920 } 2921 2922 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2923 { 2924 unsigned int flags = 0; 2925 2926 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2927 flags = RTF_REJECT; 2928 if (fi) { 2929 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2930 2931 if (nhc->nhc_gw.ipv4) 2932 flags |= RTF_GATEWAY; 2933 } 2934 if (mask == htonl(0xFFFFFFFF)) 2935 flags |= RTF_HOST; 2936 flags |= RTF_UP; 2937 return flags; 2938 } 2939 2940 /* 2941 * This outputs /proc/net/route. 2942 * The format of the file is not supposed to be changed 2943 * and needs to be same as fib_hash output to avoid breaking 2944 * legacy utilities 2945 */ 2946 static int fib_route_seq_show(struct seq_file *seq, void *v) 2947 { 2948 struct fib_route_iter *iter = seq->private; 2949 struct fib_table *tb = iter->main_tb; 2950 struct fib_alias *fa; 2951 struct key_vector *l = v; 2952 __be32 prefix; 2953 2954 if (v == SEQ_START_TOKEN) { 2955 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2956 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2957 "\tWindow\tIRTT"); 2958 return 0; 2959 } 2960 2961 prefix = htonl(l->key); 2962 2963 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2964 struct fib_info *fi = fa->fa_info; 2965 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2966 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2967 2968 if ((fa->fa_type == RTN_BROADCAST) || 2969 (fa->fa_type == RTN_MULTICAST)) 2970 continue; 2971 2972 if (fa->tb_id != tb->tb_id) 2973 continue; 2974 2975 seq_setwidth(seq, 127); 2976 2977 if (fi) { 2978 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2979 __be32 gw = 0; 2980 2981 if (nhc->nhc_gw_family == AF_INET) 2982 gw = nhc->nhc_gw.ipv4; 2983 2984 seq_printf(seq, 2985 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2986 "%d\t%08X\t%d\t%u\t%u", 2987 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2988 prefix, gw, flags, 0, 0, 2989 fi->fib_priority, 2990 mask, 2991 (fi->fib_advmss ? 2992 fi->fib_advmss + 40 : 0), 2993 fi->fib_window, 2994 fi->fib_rtt >> 3); 2995 } else { 2996 seq_printf(seq, 2997 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2998 "%d\t%08X\t%d\t%u\t%u", 2999 prefix, 0, flags, 0, 0, 0, 3000 mask, 0, 0, 0); 3001 } 3002 seq_pad(seq, '\n'); 3003 } 3004 3005 return 0; 3006 } 3007 3008 static const struct seq_operations fib_route_seq_ops = { 3009 .start = fib_route_seq_start, 3010 .next = fib_route_seq_next, 3011 .stop = fib_route_seq_stop, 3012 .show = fib_route_seq_show, 3013 }; 3014 3015 int __net_init fib_proc_init(struct net *net) 3016 { 3017 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3018 sizeof(struct fib_trie_iter))) 3019 goto out1; 3020 3021 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3022 fib_triestat_seq_show, NULL)) 3023 goto out2; 3024 3025 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3026 sizeof(struct fib_route_iter))) 3027 goto out3; 3028 3029 return 0; 3030 3031 out3: 3032 remove_proc_entry("fib_triestat", net->proc_net); 3033 out2: 3034 remove_proc_entry("fib_trie", net->proc_net); 3035 out1: 3036 return -ENOMEM; 3037 } 3038 3039 void __net_exit fib_proc_exit(struct net *net) 3040 { 3041 remove_proc_entry("fib_trie", net->proc_net); 3042 remove_proc_entry("fib_triestat", net->proc_net); 3043 remove_proc_entry("route", net->proc_net); 3044 } 3045 3046 #endif /* CONFIG_PROC_FS */ 3047