1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 88 enum fib_event_type event_type, u32 dst, 89 int dst_len, struct fib_info *fi, 90 u8 tos, u8 type, u32 tb_id) 91 { 92 struct fib_entry_notifier_info info = { 93 .dst = dst, 94 .dst_len = dst_len, 95 .fi = fi, 96 .tos = tos, 97 .type = type, 98 .tb_id = tb_id, 99 }; 100 return call_fib_notifier(nb, net, event_type, &info.info); 101 } 102 103 static int call_fib_entry_notifiers(struct net *net, 104 enum fib_event_type event_type, u32 dst, 105 int dst_len, struct fib_info *fi, 106 u8 tos, u8 type, u32 tb_id) 107 { 108 struct fib_entry_notifier_info info = { 109 .dst = dst, 110 .dst_len = dst_len, 111 .fi = fi, 112 .tos = tos, 113 .type = type, 114 .tb_id = tb_id, 115 }; 116 return call_fib_notifiers(net, event_type, &info.info); 117 } 118 119 #define MAX_STAT_DEPTH 32 120 121 #define KEYLENGTH (8*sizeof(t_key)) 122 #define KEY_MAX ((t_key)~0) 123 124 typedef unsigned int t_key; 125 126 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 127 #define IS_TNODE(n) ((n)->bits) 128 #define IS_LEAF(n) (!(n)->bits) 129 130 struct key_vector { 131 t_key key; 132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 134 unsigned char slen; 135 union { 136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 137 struct hlist_head leaf; 138 /* This array is valid if (pos | bits) > 0 (TNODE) */ 139 struct key_vector __rcu *tnode[0]; 140 }; 141 }; 142 143 struct tnode { 144 struct rcu_head rcu; 145 t_key empty_children; /* KEYLENGTH bits needed */ 146 t_key full_children; /* KEYLENGTH bits needed */ 147 struct key_vector __rcu *parent; 148 struct key_vector kv[1]; 149 #define tn_bits kv[0].bits 150 }; 151 152 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 153 #define LEAF_SIZE TNODE_SIZE(1) 154 155 #ifdef CONFIG_IP_FIB_TRIE_STATS 156 struct trie_use_stats { 157 unsigned int gets; 158 unsigned int backtrack; 159 unsigned int semantic_match_passed; 160 unsigned int semantic_match_miss; 161 unsigned int null_node_hit; 162 unsigned int resize_node_skipped; 163 }; 164 #endif 165 166 struct trie_stat { 167 unsigned int totdepth; 168 unsigned int maxdepth; 169 unsigned int tnodes; 170 unsigned int leaves; 171 unsigned int nullpointers; 172 unsigned int prefixes; 173 unsigned int nodesizes[MAX_STAT_DEPTH]; 174 }; 175 176 struct trie { 177 struct key_vector kv[1]; 178 #ifdef CONFIG_IP_FIB_TRIE_STATS 179 struct trie_use_stats __percpu *stats; 180 #endif 181 }; 182 183 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 184 static size_t tnode_free_size; 185 186 /* 187 * synchronize_rcu after call_rcu for that many pages; it should be especially 188 * useful before resizing the root node with PREEMPT_NONE configs; the value was 189 * obtained experimentally, aiming to avoid visible slowdown. 190 */ 191 static const int sync_pages = 128; 192 193 static struct kmem_cache *fn_alias_kmem __read_mostly; 194 static struct kmem_cache *trie_leaf_kmem __read_mostly; 195 196 static inline struct tnode *tn_info(struct key_vector *kv) 197 { 198 return container_of(kv, struct tnode, kv[0]); 199 } 200 201 /* caller must hold RTNL */ 202 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 203 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 204 205 /* caller must hold RCU read lock or RTNL */ 206 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 207 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 208 209 /* wrapper for rcu_assign_pointer */ 210 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 211 { 212 if (n) 213 rcu_assign_pointer(tn_info(n)->parent, tp); 214 } 215 216 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 217 218 /* This provides us with the number of children in this node, in the case of a 219 * leaf this will return 0 meaning none of the children are accessible. 220 */ 221 static inline unsigned long child_length(const struct key_vector *tn) 222 { 223 return (1ul << tn->bits) & ~(1ul); 224 } 225 226 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 227 228 static inline unsigned long get_index(t_key key, struct key_vector *kv) 229 { 230 unsigned long index = key ^ kv->key; 231 232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 233 return 0; 234 235 return index >> kv->pos; 236 } 237 238 /* To understand this stuff, an understanding of keys and all their bits is 239 * necessary. Every node in the trie has a key associated with it, but not 240 * all of the bits in that key are significant. 241 * 242 * Consider a node 'n' and its parent 'tp'. 243 * 244 * If n is a leaf, every bit in its key is significant. Its presence is 245 * necessitated by path compression, since during a tree traversal (when 246 * searching for a leaf - unless we are doing an insertion) we will completely 247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 248 * a potentially successful search, that we have indeed been walking the 249 * correct key path. 250 * 251 * Note that we can never "miss" the correct key in the tree if present by 252 * following the wrong path. Path compression ensures that segments of the key 253 * that are the same for all keys with a given prefix are skipped, but the 254 * skipped part *is* identical for each node in the subtrie below the skipped 255 * bit! trie_insert() in this implementation takes care of that. 256 * 257 * if n is an internal node - a 'tnode' here, the various parts of its key 258 * have many different meanings. 259 * 260 * Example: 261 * _________________________________________________________________ 262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 263 * ----------------------------------------------------------------- 264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 265 * 266 * _________________________________________________________________ 267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 268 * ----------------------------------------------------------------- 269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 270 * 271 * tp->pos = 22 272 * tp->bits = 3 273 * n->pos = 13 274 * n->bits = 4 275 * 276 * First, let's just ignore the bits that come before the parent tp, that is 277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 278 * point we do not use them for anything. 279 * 280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 281 * index into the parent's child array. That is, they will be used to find 282 * 'n' among tp's children. 283 * 284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 285 * for the node n. 286 * 287 * All the bits we have seen so far are significant to the node n. The rest 288 * of the bits are really not needed or indeed known in n->key. 289 * 290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 291 * n's child array, and will of course be different for each child. 292 * 293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 294 * at this point. 295 */ 296 297 static const int halve_threshold = 25; 298 static const int inflate_threshold = 50; 299 static const int halve_threshold_root = 15; 300 static const int inflate_threshold_root = 30; 301 302 static void __alias_free_mem(struct rcu_head *head) 303 { 304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 305 kmem_cache_free(fn_alias_kmem, fa); 306 } 307 308 static inline void alias_free_mem_rcu(struct fib_alias *fa) 309 { 310 call_rcu(&fa->rcu, __alias_free_mem); 311 } 312 313 #define TNODE_KMALLOC_MAX \ 314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 315 #define TNODE_VMALLOC_MAX \ 316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 317 318 static void __node_free_rcu(struct rcu_head *head) 319 { 320 struct tnode *n = container_of(head, struct tnode, rcu); 321 322 if (!n->tn_bits) 323 kmem_cache_free(trie_leaf_kmem, n); 324 else 325 kvfree(n); 326 } 327 328 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 329 330 static struct tnode *tnode_alloc(int bits) 331 { 332 size_t size; 333 334 /* verify bits is within bounds */ 335 if (bits > TNODE_VMALLOC_MAX) 336 return NULL; 337 338 /* determine size and verify it is non-zero and didn't overflow */ 339 size = TNODE_SIZE(1ul << bits); 340 341 if (size <= PAGE_SIZE) 342 return kzalloc(size, GFP_KERNEL); 343 else 344 return vzalloc(size); 345 } 346 347 static inline void empty_child_inc(struct key_vector *n) 348 { 349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 350 } 351 352 static inline void empty_child_dec(struct key_vector *n) 353 { 354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 355 } 356 357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 358 { 359 struct key_vector *l; 360 struct tnode *kv; 361 362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 363 if (!kv) 364 return NULL; 365 366 /* initialize key vector */ 367 l = kv->kv; 368 l->key = key; 369 l->pos = 0; 370 l->bits = 0; 371 l->slen = fa->fa_slen; 372 373 /* link leaf to fib alias */ 374 INIT_HLIST_HEAD(&l->leaf); 375 hlist_add_head(&fa->fa_list, &l->leaf); 376 377 return l; 378 } 379 380 static struct key_vector *tnode_new(t_key key, int pos, int bits) 381 { 382 unsigned int shift = pos + bits; 383 struct key_vector *tn; 384 struct tnode *tnode; 385 386 /* verify bits and pos their msb bits clear and values are valid */ 387 BUG_ON(!bits || (shift > KEYLENGTH)); 388 389 tnode = tnode_alloc(bits); 390 if (!tnode) 391 return NULL; 392 393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 394 sizeof(struct key_vector *) << bits); 395 396 if (bits == KEYLENGTH) 397 tnode->full_children = 1; 398 else 399 tnode->empty_children = 1ul << bits; 400 401 tn = tnode->kv; 402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 403 tn->pos = pos; 404 tn->bits = bits; 405 tn->slen = pos; 406 407 return tn; 408 } 409 410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 411 * and no bits are skipped. See discussion in dyntree paper p. 6 412 */ 413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 414 { 415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 416 } 417 418 /* Add a child at position i overwriting the old value. 419 * Update the value of full_children and empty_children. 420 */ 421 static void put_child(struct key_vector *tn, unsigned long i, 422 struct key_vector *n) 423 { 424 struct key_vector *chi = get_child(tn, i); 425 int isfull, wasfull; 426 427 BUG_ON(i >= child_length(tn)); 428 429 /* update emptyChildren, overflow into fullChildren */ 430 if (!n && chi) 431 empty_child_inc(tn); 432 if (n && !chi) 433 empty_child_dec(tn); 434 435 /* update fullChildren */ 436 wasfull = tnode_full(tn, chi); 437 isfull = tnode_full(tn, n); 438 439 if (wasfull && !isfull) 440 tn_info(tn)->full_children--; 441 else if (!wasfull && isfull) 442 tn_info(tn)->full_children++; 443 444 if (n && (tn->slen < n->slen)) 445 tn->slen = n->slen; 446 447 rcu_assign_pointer(tn->tnode[i], n); 448 } 449 450 static void update_children(struct key_vector *tn) 451 { 452 unsigned long i; 453 454 /* update all of the child parent pointers */ 455 for (i = child_length(tn); i;) { 456 struct key_vector *inode = get_child(tn, --i); 457 458 if (!inode) 459 continue; 460 461 /* Either update the children of a tnode that 462 * already belongs to us or update the child 463 * to point to ourselves. 464 */ 465 if (node_parent(inode) == tn) 466 update_children(inode); 467 else 468 node_set_parent(inode, tn); 469 } 470 } 471 472 static inline void put_child_root(struct key_vector *tp, t_key key, 473 struct key_vector *n) 474 { 475 if (IS_TRIE(tp)) 476 rcu_assign_pointer(tp->tnode[0], n); 477 else 478 put_child(tp, get_index(key, tp), n); 479 } 480 481 static inline void tnode_free_init(struct key_vector *tn) 482 { 483 tn_info(tn)->rcu.next = NULL; 484 } 485 486 static inline void tnode_free_append(struct key_vector *tn, 487 struct key_vector *n) 488 { 489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 490 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 491 } 492 493 static void tnode_free(struct key_vector *tn) 494 { 495 struct callback_head *head = &tn_info(tn)->rcu; 496 497 while (head) { 498 head = head->next; 499 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 500 node_free(tn); 501 502 tn = container_of(head, struct tnode, rcu)->kv; 503 } 504 505 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 506 tnode_free_size = 0; 507 synchronize_rcu(); 508 } 509 } 510 511 static struct key_vector *replace(struct trie *t, 512 struct key_vector *oldtnode, 513 struct key_vector *tn) 514 { 515 struct key_vector *tp = node_parent(oldtnode); 516 unsigned long i; 517 518 /* setup the parent pointer out of and back into this node */ 519 NODE_INIT_PARENT(tn, tp); 520 put_child_root(tp, tn->key, tn); 521 522 /* update all of the child parent pointers */ 523 update_children(tn); 524 525 /* all pointers should be clean so we are done */ 526 tnode_free(oldtnode); 527 528 /* resize children now that oldtnode is freed */ 529 for (i = child_length(tn); i;) { 530 struct key_vector *inode = get_child(tn, --i); 531 532 /* resize child node */ 533 if (tnode_full(tn, inode)) 534 tn = resize(t, inode); 535 } 536 537 return tp; 538 } 539 540 static struct key_vector *inflate(struct trie *t, 541 struct key_vector *oldtnode) 542 { 543 struct key_vector *tn; 544 unsigned long i; 545 t_key m; 546 547 pr_debug("In inflate\n"); 548 549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 550 if (!tn) 551 goto notnode; 552 553 /* prepare oldtnode to be freed */ 554 tnode_free_init(oldtnode); 555 556 /* Assemble all of the pointers in our cluster, in this case that 557 * represents all of the pointers out of our allocated nodes that 558 * point to existing tnodes and the links between our allocated 559 * nodes. 560 */ 561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 562 struct key_vector *inode = get_child(oldtnode, --i); 563 struct key_vector *node0, *node1; 564 unsigned long j, k; 565 566 /* An empty child */ 567 if (!inode) 568 continue; 569 570 /* A leaf or an internal node with skipped bits */ 571 if (!tnode_full(oldtnode, inode)) { 572 put_child(tn, get_index(inode->key, tn), inode); 573 continue; 574 } 575 576 /* drop the node in the old tnode free list */ 577 tnode_free_append(oldtnode, inode); 578 579 /* An internal node with two children */ 580 if (inode->bits == 1) { 581 put_child(tn, 2 * i + 1, get_child(inode, 1)); 582 put_child(tn, 2 * i, get_child(inode, 0)); 583 continue; 584 } 585 586 /* We will replace this node 'inode' with two new 587 * ones, 'node0' and 'node1', each with half of the 588 * original children. The two new nodes will have 589 * a position one bit further down the key and this 590 * means that the "significant" part of their keys 591 * (see the discussion near the top of this file) 592 * will differ by one bit, which will be "0" in 593 * node0's key and "1" in node1's key. Since we are 594 * moving the key position by one step, the bit that 595 * we are moving away from - the bit at position 596 * (tn->pos) - is the one that will differ between 597 * node0 and node1. So... we synthesize that bit in the 598 * two new keys. 599 */ 600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 601 if (!node1) 602 goto nomem; 603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 604 605 tnode_free_append(tn, node1); 606 if (!node0) 607 goto nomem; 608 tnode_free_append(tn, node0); 609 610 /* populate child pointers in new nodes */ 611 for (k = child_length(inode), j = k / 2; j;) { 612 put_child(node1, --j, get_child(inode, --k)); 613 put_child(node0, j, get_child(inode, j)); 614 put_child(node1, --j, get_child(inode, --k)); 615 put_child(node0, j, get_child(inode, j)); 616 } 617 618 /* link new nodes to parent */ 619 NODE_INIT_PARENT(node1, tn); 620 NODE_INIT_PARENT(node0, tn); 621 622 /* link parent to nodes */ 623 put_child(tn, 2 * i + 1, node1); 624 put_child(tn, 2 * i, node0); 625 } 626 627 /* setup the parent pointers into and out of this node */ 628 return replace(t, oldtnode, tn); 629 nomem: 630 /* all pointers should be clean so we are done */ 631 tnode_free(tn); 632 notnode: 633 return NULL; 634 } 635 636 static struct key_vector *halve(struct trie *t, 637 struct key_vector *oldtnode) 638 { 639 struct key_vector *tn; 640 unsigned long i; 641 642 pr_debug("In halve\n"); 643 644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 645 if (!tn) 646 goto notnode; 647 648 /* prepare oldtnode to be freed */ 649 tnode_free_init(oldtnode); 650 651 /* Assemble all of the pointers in our cluster, in this case that 652 * represents all of the pointers out of our allocated nodes that 653 * point to existing tnodes and the links between our allocated 654 * nodes. 655 */ 656 for (i = child_length(oldtnode); i;) { 657 struct key_vector *node1 = get_child(oldtnode, --i); 658 struct key_vector *node0 = get_child(oldtnode, --i); 659 struct key_vector *inode; 660 661 /* At least one of the children is empty */ 662 if (!node1 || !node0) { 663 put_child(tn, i / 2, node1 ? : node0); 664 continue; 665 } 666 667 /* Two nonempty children */ 668 inode = tnode_new(node0->key, oldtnode->pos, 1); 669 if (!inode) 670 goto nomem; 671 tnode_free_append(tn, inode); 672 673 /* initialize pointers out of node */ 674 put_child(inode, 1, node1); 675 put_child(inode, 0, node0); 676 NODE_INIT_PARENT(inode, tn); 677 678 /* link parent to node */ 679 put_child(tn, i / 2, inode); 680 } 681 682 /* setup the parent pointers into and out of this node */ 683 return replace(t, oldtnode, tn); 684 nomem: 685 /* all pointers should be clean so we are done */ 686 tnode_free(tn); 687 notnode: 688 return NULL; 689 } 690 691 static struct key_vector *collapse(struct trie *t, 692 struct key_vector *oldtnode) 693 { 694 struct key_vector *n, *tp; 695 unsigned long i; 696 697 /* scan the tnode looking for that one child that might still exist */ 698 for (n = NULL, i = child_length(oldtnode); !n && i;) 699 n = get_child(oldtnode, --i); 700 701 /* compress one level */ 702 tp = node_parent(oldtnode); 703 put_child_root(tp, oldtnode->key, n); 704 node_set_parent(n, tp); 705 706 /* drop dead node */ 707 node_free(oldtnode); 708 709 return tp; 710 } 711 712 static unsigned char update_suffix(struct key_vector *tn) 713 { 714 unsigned char slen = tn->pos; 715 unsigned long stride, i; 716 unsigned char slen_max; 717 718 /* only vector 0 can have a suffix length greater than or equal to 719 * tn->pos + tn->bits, the second highest node will have a suffix 720 * length at most of tn->pos + tn->bits - 1 721 */ 722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 723 724 /* search though the list of children looking for nodes that might 725 * have a suffix greater than the one we currently have. This is 726 * why we start with a stride of 2 since a stride of 1 would 727 * represent the nodes with suffix length equal to tn->pos 728 */ 729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 730 struct key_vector *n = get_child(tn, i); 731 732 if (!n || (n->slen <= slen)) 733 continue; 734 735 /* update stride and slen based on new value */ 736 stride <<= (n->slen - slen); 737 slen = n->slen; 738 i &= ~(stride - 1); 739 740 /* stop searching if we have hit the maximum possible value */ 741 if (slen >= slen_max) 742 break; 743 } 744 745 tn->slen = slen; 746 747 return slen; 748 } 749 750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 751 * the Helsinki University of Technology and Matti Tikkanen of Nokia 752 * Telecommunications, page 6: 753 * "A node is doubled if the ratio of non-empty children to all 754 * children in the *doubled* node is at least 'high'." 755 * 756 * 'high' in this instance is the variable 'inflate_threshold'. It 757 * is expressed as a percentage, so we multiply it with 758 * child_length() and instead of multiplying by 2 (since the 759 * child array will be doubled by inflate()) and multiplying 760 * the left-hand side by 100 (to handle the percentage thing) we 761 * multiply the left-hand side by 50. 762 * 763 * The left-hand side may look a bit weird: child_length(tn) 764 * - tn->empty_children is of course the number of non-null children 765 * in the current node. tn->full_children is the number of "full" 766 * children, that is non-null tnodes with a skip value of 0. 767 * All of those will be doubled in the resulting inflated tnode, so 768 * we just count them one extra time here. 769 * 770 * A clearer way to write this would be: 771 * 772 * to_be_doubled = tn->full_children; 773 * not_to_be_doubled = child_length(tn) - tn->empty_children - 774 * tn->full_children; 775 * 776 * new_child_length = child_length(tn) * 2; 777 * 778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 779 * new_child_length; 780 * if (new_fill_factor >= inflate_threshold) 781 * 782 * ...and so on, tho it would mess up the while () loop. 783 * 784 * anyway, 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 786 * inflate_threshold 787 * 788 * avoid a division: 789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 790 * inflate_threshold * new_child_length 791 * 792 * expand not_to_be_doubled and to_be_doubled, and shorten: 793 * 100 * (child_length(tn) - tn->empty_children + 794 * tn->full_children) >= inflate_threshold * new_child_length 795 * 796 * expand new_child_length: 797 * 100 * (child_length(tn) - tn->empty_children + 798 * tn->full_children) >= 799 * inflate_threshold * child_length(tn) * 2 800 * 801 * shorten again: 802 * 50 * (tn->full_children + child_length(tn) - 803 * tn->empty_children) >= inflate_threshold * 804 * child_length(tn) 805 * 806 */ 807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 808 { 809 unsigned long used = child_length(tn); 810 unsigned long threshold = used; 811 812 /* Keep root node larger */ 813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 814 used -= tn_info(tn)->empty_children; 815 used += tn_info(tn)->full_children; 816 817 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 818 819 return (used > 1) && tn->pos && ((50 * used) >= threshold); 820 } 821 822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 823 { 824 unsigned long used = child_length(tn); 825 unsigned long threshold = used; 826 827 /* Keep root node larger */ 828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 829 used -= tn_info(tn)->empty_children; 830 831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 832 833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 834 } 835 836 static inline bool should_collapse(struct key_vector *tn) 837 { 838 unsigned long used = child_length(tn); 839 840 used -= tn_info(tn)->empty_children; 841 842 /* account for bits == KEYLENGTH case */ 843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 844 used -= KEY_MAX; 845 846 /* One child or none, time to drop us from the trie */ 847 return used < 2; 848 } 849 850 #define MAX_WORK 10 851 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 852 { 853 #ifdef CONFIG_IP_FIB_TRIE_STATS 854 struct trie_use_stats __percpu *stats = t->stats; 855 #endif 856 struct key_vector *tp = node_parent(tn); 857 unsigned long cindex = get_index(tn->key, tp); 858 int max_work = MAX_WORK; 859 860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 861 tn, inflate_threshold, halve_threshold); 862 863 /* track the tnode via the pointer from the parent instead of 864 * doing it ourselves. This way we can let RCU fully do its 865 * thing without us interfering 866 */ 867 BUG_ON(tn != get_child(tp, cindex)); 868 869 /* Double as long as the resulting node has a number of 870 * nonempty nodes that are above the threshold. 871 */ 872 while (should_inflate(tp, tn) && max_work) { 873 tp = inflate(t, tn); 874 if (!tp) { 875 #ifdef CONFIG_IP_FIB_TRIE_STATS 876 this_cpu_inc(stats->resize_node_skipped); 877 #endif 878 break; 879 } 880 881 max_work--; 882 tn = get_child(tp, cindex); 883 } 884 885 /* update parent in case inflate failed */ 886 tp = node_parent(tn); 887 888 /* Return if at least one inflate is run */ 889 if (max_work != MAX_WORK) 890 return tp; 891 892 /* Halve as long as the number of empty children in this 893 * node is above threshold. 894 */ 895 while (should_halve(tp, tn) && max_work) { 896 tp = halve(t, tn); 897 if (!tp) { 898 #ifdef CONFIG_IP_FIB_TRIE_STATS 899 this_cpu_inc(stats->resize_node_skipped); 900 #endif 901 break; 902 } 903 904 max_work--; 905 tn = get_child(tp, cindex); 906 } 907 908 /* Only one child remains */ 909 if (should_collapse(tn)) 910 return collapse(t, tn); 911 912 /* update parent in case halve failed */ 913 return node_parent(tn); 914 } 915 916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 917 { 918 unsigned char node_slen = tn->slen; 919 920 while ((node_slen > tn->pos) && (node_slen > slen)) { 921 slen = update_suffix(tn); 922 if (node_slen == slen) 923 break; 924 925 tn = node_parent(tn); 926 node_slen = tn->slen; 927 } 928 } 929 930 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 931 { 932 while (tn->slen < slen) { 933 tn->slen = slen; 934 tn = node_parent(tn); 935 } 936 } 937 938 /* rcu_read_lock needs to be hold by caller from readside */ 939 static struct key_vector *fib_find_node(struct trie *t, 940 struct key_vector **tp, u32 key) 941 { 942 struct key_vector *pn, *n = t->kv; 943 unsigned long index = 0; 944 945 do { 946 pn = n; 947 n = get_child_rcu(n, index); 948 949 if (!n) 950 break; 951 952 index = get_cindex(key, n); 953 954 /* This bit of code is a bit tricky but it combines multiple 955 * checks into a single check. The prefix consists of the 956 * prefix plus zeros for the bits in the cindex. The index 957 * is the difference between the key and this value. From 958 * this we can actually derive several pieces of data. 959 * if (index >= (1ul << bits)) 960 * we have a mismatch in skip bits and failed 961 * else 962 * we know the value is cindex 963 * 964 * This check is safe even if bits == KEYLENGTH due to the 965 * fact that we can only allocate a node with 32 bits if a 966 * long is greater than 32 bits. 967 */ 968 if (index >= (1ul << n->bits)) { 969 n = NULL; 970 break; 971 } 972 973 /* keep searching until we find a perfect match leaf or NULL */ 974 } while (IS_TNODE(n)); 975 976 *tp = pn; 977 978 return n; 979 } 980 981 /* Return the first fib alias matching TOS with 982 * priority less than or equal to PRIO. 983 */ 984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 985 u8 tos, u32 prio, u32 tb_id) 986 { 987 struct fib_alias *fa; 988 989 if (!fah) 990 return NULL; 991 992 hlist_for_each_entry(fa, fah, fa_list) { 993 if (fa->fa_slen < slen) 994 continue; 995 if (fa->fa_slen != slen) 996 break; 997 if (fa->tb_id > tb_id) 998 continue; 999 if (fa->tb_id != tb_id) 1000 break; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1011 { 1012 while (!IS_TRIE(tn)) 1013 tn = resize(t, tn); 1014 } 1015 1016 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1017 struct fib_alias *new, t_key key) 1018 { 1019 struct key_vector *n, *l; 1020 1021 l = leaf_new(key, new); 1022 if (!l) 1023 goto noleaf; 1024 1025 /* retrieve child from parent node */ 1026 n = get_child(tp, get_index(key, tp)); 1027 1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1029 * 1030 * Add a new tnode here 1031 * first tnode need some special handling 1032 * leaves us in position for handling as case 3 1033 */ 1034 if (n) { 1035 struct key_vector *tn; 1036 1037 tn = tnode_new(key, __fls(key ^ n->key), 1); 1038 if (!tn) 1039 goto notnode; 1040 1041 /* initialize routes out of node */ 1042 NODE_INIT_PARENT(tn, tp); 1043 put_child(tn, get_index(key, tn) ^ 1, n); 1044 1045 /* start adding routes into the node */ 1046 put_child_root(tp, key, tn); 1047 node_set_parent(n, tn); 1048 1049 /* parent now has a NULL spot where the leaf can go */ 1050 tp = tn; 1051 } 1052 1053 /* Case 3: n is NULL, and will just insert a new leaf */ 1054 node_push_suffix(tp, new->fa_slen); 1055 NODE_INIT_PARENT(l, tp); 1056 put_child_root(tp, key, l); 1057 trie_rebalance(t, tp); 1058 1059 return 0; 1060 notnode: 1061 node_free(l); 1062 noleaf: 1063 return -ENOMEM; 1064 } 1065 1066 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1067 struct key_vector *l, struct fib_alias *new, 1068 struct fib_alias *fa, t_key key) 1069 { 1070 if (!l) 1071 return fib_insert_node(t, tp, new, key); 1072 1073 if (fa) { 1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1075 } else { 1076 struct fib_alias *last; 1077 1078 hlist_for_each_entry(last, &l->leaf, fa_list) { 1079 if (new->fa_slen < last->fa_slen) 1080 break; 1081 if ((new->fa_slen == last->fa_slen) && 1082 (new->tb_id > last->tb_id)) 1083 break; 1084 fa = last; 1085 } 1086 1087 if (fa) 1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1089 else 1090 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1091 } 1092 1093 /* if we added to the tail node then we need to update slen */ 1094 if (l->slen < new->fa_slen) { 1095 l->slen = new->fa_slen; 1096 node_push_suffix(tp, new->fa_slen); 1097 } 1098 1099 return 0; 1100 } 1101 1102 /* Caller must hold RTNL. */ 1103 int fib_table_insert(struct net *net, struct fib_table *tb, 1104 struct fib_config *cfg) 1105 { 1106 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1107 struct trie *t = (struct trie *)tb->tb_data; 1108 struct fib_alias *fa, *new_fa; 1109 struct key_vector *l, *tp; 1110 u16 nlflags = NLM_F_EXCL; 1111 struct fib_info *fi; 1112 u8 plen = cfg->fc_dst_len; 1113 u8 slen = KEYLENGTH - plen; 1114 u8 tos = cfg->fc_tos; 1115 u32 key; 1116 int err; 1117 1118 if (plen > KEYLENGTH) 1119 return -EINVAL; 1120 1121 key = ntohl(cfg->fc_dst); 1122 1123 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1124 1125 if ((plen < KEYLENGTH) && (key << plen)) 1126 return -EINVAL; 1127 1128 fi = fib_create_info(cfg); 1129 if (IS_ERR(fi)) { 1130 err = PTR_ERR(fi); 1131 goto err; 1132 } 1133 1134 l = fib_find_node(t, &tp, key); 1135 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1136 tb->tb_id) : NULL; 1137 1138 /* Now fa, if non-NULL, points to the first fib alias 1139 * with the same keys [prefix,tos,priority], if such key already 1140 * exists or to the node before which we will insert new one. 1141 * 1142 * If fa is NULL, we will need to allocate a new one and 1143 * insert to the tail of the section matching the suffix length 1144 * of the new alias. 1145 */ 1146 1147 if (fa && fa->fa_tos == tos && 1148 fa->fa_info->fib_priority == fi->fib_priority) { 1149 struct fib_alias *fa_first, *fa_match; 1150 1151 err = -EEXIST; 1152 if (cfg->fc_nlflags & NLM_F_EXCL) 1153 goto out; 1154 1155 nlflags &= ~NLM_F_EXCL; 1156 1157 /* We have 2 goals: 1158 * 1. Find exact match for type, scope, fib_info to avoid 1159 * duplicate routes 1160 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1161 */ 1162 fa_match = NULL; 1163 fa_first = fa; 1164 hlist_for_each_entry_from(fa, fa_list) { 1165 if ((fa->fa_slen != slen) || 1166 (fa->tb_id != tb->tb_id) || 1167 (fa->fa_tos != tos)) 1168 break; 1169 if (fa->fa_info->fib_priority != fi->fib_priority) 1170 break; 1171 if (fa->fa_type == cfg->fc_type && 1172 fa->fa_info == fi) { 1173 fa_match = fa; 1174 break; 1175 } 1176 } 1177 1178 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1179 struct fib_info *fi_drop; 1180 u8 state; 1181 1182 nlflags |= NLM_F_REPLACE; 1183 fa = fa_first; 1184 if (fa_match) { 1185 if (fa == fa_match) 1186 err = 0; 1187 goto out; 1188 } 1189 err = -ENOBUFS; 1190 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1191 if (!new_fa) 1192 goto out; 1193 1194 fi_drop = fa->fa_info; 1195 new_fa->fa_tos = fa->fa_tos; 1196 new_fa->fa_info = fi; 1197 new_fa->fa_type = cfg->fc_type; 1198 state = fa->fa_state; 1199 new_fa->fa_state = state & ~FA_S_ACCESSED; 1200 new_fa->fa_slen = fa->fa_slen; 1201 new_fa->tb_id = tb->tb_id; 1202 new_fa->fa_default = -1; 1203 1204 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1205 key, plen, fi, 1206 new_fa->fa_tos, cfg->fc_type, 1207 tb->tb_id); 1208 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1209 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1210 1211 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1212 1213 alias_free_mem_rcu(fa); 1214 1215 fib_release_info(fi_drop); 1216 if (state & FA_S_ACCESSED) 1217 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1218 1219 goto succeeded; 1220 } 1221 /* Error if we find a perfect match which 1222 * uses the same scope, type, and nexthop 1223 * information. 1224 */ 1225 if (fa_match) 1226 goto out; 1227 1228 if (cfg->fc_nlflags & NLM_F_APPEND) { 1229 event = FIB_EVENT_ENTRY_APPEND; 1230 nlflags |= NLM_F_APPEND; 1231 } else { 1232 fa = fa_first; 1233 } 1234 } 1235 err = -ENOENT; 1236 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1237 goto out; 1238 1239 nlflags |= NLM_F_CREATE; 1240 err = -ENOBUFS; 1241 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1242 if (!new_fa) 1243 goto out; 1244 1245 new_fa->fa_info = fi; 1246 new_fa->fa_tos = tos; 1247 new_fa->fa_type = cfg->fc_type; 1248 new_fa->fa_state = 0; 1249 new_fa->fa_slen = slen; 1250 new_fa->tb_id = tb->tb_id; 1251 new_fa->fa_default = -1; 1252 1253 /* Insert new entry to the list. */ 1254 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1255 if (err) 1256 goto out_free_new_fa; 1257 1258 if (!plen) 1259 tb->tb_num_default++; 1260 1261 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1262 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type, 1263 tb->tb_id); 1264 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1265 &cfg->fc_nlinfo, nlflags); 1266 succeeded: 1267 return 0; 1268 1269 out_free_new_fa: 1270 kmem_cache_free(fn_alias_kmem, new_fa); 1271 out: 1272 fib_release_info(fi); 1273 err: 1274 return err; 1275 } 1276 1277 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1278 { 1279 t_key prefix = n->key; 1280 1281 return (key ^ prefix) & (prefix | -prefix); 1282 } 1283 1284 /* should be called with rcu_read_lock */ 1285 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1286 struct fib_result *res, int fib_flags) 1287 { 1288 struct trie *t = (struct trie *) tb->tb_data; 1289 #ifdef CONFIG_IP_FIB_TRIE_STATS 1290 struct trie_use_stats __percpu *stats = t->stats; 1291 #endif 1292 const t_key key = ntohl(flp->daddr); 1293 struct key_vector *n, *pn; 1294 struct fib_alias *fa; 1295 unsigned long index; 1296 t_key cindex; 1297 1298 trace_fib_table_lookup(tb->tb_id, flp); 1299 1300 pn = t->kv; 1301 cindex = 0; 1302 1303 n = get_child_rcu(pn, cindex); 1304 if (!n) 1305 return -EAGAIN; 1306 1307 #ifdef CONFIG_IP_FIB_TRIE_STATS 1308 this_cpu_inc(stats->gets); 1309 #endif 1310 1311 /* Step 1: Travel to the longest prefix match in the trie */ 1312 for (;;) { 1313 index = get_cindex(key, n); 1314 1315 /* This bit of code is a bit tricky but it combines multiple 1316 * checks into a single check. The prefix consists of the 1317 * prefix plus zeros for the "bits" in the prefix. The index 1318 * is the difference between the key and this value. From 1319 * this we can actually derive several pieces of data. 1320 * if (index >= (1ul << bits)) 1321 * we have a mismatch in skip bits and failed 1322 * else 1323 * we know the value is cindex 1324 * 1325 * This check is safe even if bits == KEYLENGTH due to the 1326 * fact that we can only allocate a node with 32 bits if a 1327 * long is greater than 32 bits. 1328 */ 1329 if (index >= (1ul << n->bits)) 1330 break; 1331 1332 /* we have found a leaf. Prefixes have already been compared */ 1333 if (IS_LEAF(n)) 1334 goto found; 1335 1336 /* only record pn and cindex if we are going to be chopping 1337 * bits later. Otherwise we are just wasting cycles. 1338 */ 1339 if (n->slen > n->pos) { 1340 pn = n; 1341 cindex = index; 1342 } 1343 1344 n = get_child_rcu(n, index); 1345 if (unlikely(!n)) 1346 goto backtrace; 1347 } 1348 1349 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1350 for (;;) { 1351 /* record the pointer where our next node pointer is stored */ 1352 struct key_vector __rcu **cptr = n->tnode; 1353 1354 /* This test verifies that none of the bits that differ 1355 * between the key and the prefix exist in the region of 1356 * the lsb and higher in the prefix. 1357 */ 1358 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1359 goto backtrace; 1360 1361 /* exit out and process leaf */ 1362 if (unlikely(IS_LEAF(n))) 1363 break; 1364 1365 /* Don't bother recording parent info. Since we are in 1366 * prefix match mode we will have to come back to wherever 1367 * we started this traversal anyway 1368 */ 1369 1370 while ((n = rcu_dereference(*cptr)) == NULL) { 1371 backtrace: 1372 #ifdef CONFIG_IP_FIB_TRIE_STATS 1373 if (!n) 1374 this_cpu_inc(stats->null_node_hit); 1375 #endif 1376 /* If we are at cindex 0 there are no more bits for 1377 * us to strip at this level so we must ascend back 1378 * up one level to see if there are any more bits to 1379 * be stripped there. 1380 */ 1381 while (!cindex) { 1382 t_key pkey = pn->key; 1383 1384 /* If we don't have a parent then there is 1385 * nothing for us to do as we do not have any 1386 * further nodes to parse. 1387 */ 1388 if (IS_TRIE(pn)) 1389 return -EAGAIN; 1390 #ifdef CONFIG_IP_FIB_TRIE_STATS 1391 this_cpu_inc(stats->backtrack); 1392 #endif 1393 /* Get Child's index */ 1394 pn = node_parent_rcu(pn); 1395 cindex = get_index(pkey, pn); 1396 } 1397 1398 /* strip the least significant bit from the cindex */ 1399 cindex &= cindex - 1; 1400 1401 /* grab pointer for next child node */ 1402 cptr = &pn->tnode[cindex]; 1403 } 1404 } 1405 1406 found: 1407 /* this line carries forward the xor from earlier in the function */ 1408 index = key ^ n->key; 1409 1410 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1411 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1412 struct fib_info *fi = fa->fa_info; 1413 int nhsel, err; 1414 1415 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1416 if (index >= (1ul << fa->fa_slen)) 1417 continue; 1418 } 1419 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1420 continue; 1421 if (fi->fib_dead) 1422 continue; 1423 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1424 continue; 1425 fib_alias_accessed(fa); 1426 err = fib_props[fa->fa_type].error; 1427 if (unlikely(err < 0)) { 1428 #ifdef CONFIG_IP_FIB_TRIE_STATS 1429 this_cpu_inc(stats->semantic_match_passed); 1430 #endif 1431 return err; 1432 } 1433 if (fi->fib_flags & RTNH_F_DEAD) 1434 continue; 1435 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1436 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1437 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1438 1439 if (nh->nh_flags & RTNH_F_DEAD) 1440 continue; 1441 if (in_dev && 1442 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1443 nh->nh_flags & RTNH_F_LINKDOWN && 1444 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1445 continue; 1446 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1447 if (flp->flowi4_oif && 1448 flp->flowi4_oif != nh->nh_oif) 1449 continue; 1450 } 1451 1452 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1453 atomic_inc(&fi->fib_clntref); 1454 1455 res->prefixlen = KEYLENGTH - fa->fa_slen; 1456 res->nh_sel = nhsel; 1457 res->type = fa->fa_type; 1458 res->scope = fi->fib_scope; 1459 res->fi = fi; 1460 res->table = tb; 1461 res->fa_head = &n->leaf; 1462 #ifdef CONFIG_IP_FIB_TRIE_STATS 1463 this_cpu_inc(stats->semantic_match_passed); 1464 #endif 1465 trace_fib_table_lookup_nh(nh); 1466 1467 return err; 1468 } 1469 } 1470 #ifdef CONFIG_IP_FIB_TRIE_STATS 1471 this_cpu_inc(stats->semantic_match_miss); 1472 #endif 1473 goto backtrace; 1474 } 1475 EXPORT_SYMBOL_GPL(fib_table_lookup); 1476 1477 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1478 struct key_vector *l, struct fib_alias *old) 1479 { 1480 /* record the location of the previous list_info entry */ 1481 struct hlist_node **pprev = old->fa_list.pprev; 1482 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1483 1484 /* remove the fib_alias from the list */ 1485 hlist_del_rcu(&old->fa_list); 1486 1487 /* if we emptied the list this leaf will be freed and we can sort 1488 * out parent suffix lengths as a part of trie_rebalance 1489 */ 1490 if (hlist_empty(&l->leaf)) { 1491 if (tp->slen == l->slen) 1492 node_pull_suffix(tp, tp->pos); 1493 put_child_root(tp, l->key, NULL); 1494 node_free(l); 1495 trie_rebalance(t, tp); 1496 return; 1497 } 1498 1499 /* only access fa if it is pointing at the last valid hlist_node */ 1500 if (*pprev) 1501 return; 1502 1503 /* update the trie with the latest suffix length */ 1504 l->slen = fa->fa_slen; 1505 node_pull_suffix(tp, fa->fa_slen); 1506 } 1507 1508 /* Caller must hold RTNL. */ 1509 int fib_table_delete(struct net *net, struct fib_table *tb, 1510 struct fib_config *cfg) 1511 { 1512 struct trie *t = (struct trie *) tb->tb_data; 1513 struct fib_alias *fa, *fa_to_delete; 1514 struct key_vector *l, *tp; 1515 u8 plen = cfg->fc_dst_len; 1516 u8 slen = KEYLENGTH - plen; 1517 u8 tos = cfg->fc_tos; 1518 u32 key; 1519 1520 if (plen > KEYLENGTH) 1521 return -EINVAL; 1522 1523 key = ntohl(cfg->fc_dst); 1524 1525 if ((plen < KEYLENGTH) && (key << plen)) 1526 return -EINVAL; 1527 1528 l = fib_find_node(t, &tp, key); 1529 if (!l) 1530 return -ESRCH; 1531 1532 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1533 if (!fa) 1534 return -ESRCH; 1535 1536 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1537 1538 fa_to_delete = NULL; 1539 hlist_for_each_entry_from(fa, fa_list) { 1540 struct fib_info *fi = fa->fa_info; 1541 1542 if ((fa->fa_slen != slen) || 1543 (fa->tb_id != tb->tb_id) || 1544 (fa->fa_tos != tos)) 1545 break; 1546 1547 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1548 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1549 fa->fa_info->fib_scope == cfg->fc_scope) && 1550 (!cfg->fc_prefsrc || 1551 fi->fib_prefsrc == cfg->fc_prefsrc) && 1552 (!cfg->fc_protocol || 1553 fi->fib_protocol == cfg->fc_protocol) && 1554 fib_nh_match(cfg, fi) == 0) { 1555 fa_to_delete = fa; 1556 break; 1557 } 1558 } 1559 1560 if (!fa_to_delete) 1561 return -ESRCH; 1562 1563 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1564 fa_to_delete->fa_info, tos, 1565 fa_to_delete->fa_type, tb->tb_id); 1566 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1567 &cfg->fc_nlinfo, 0); 1568 1569 if (!plen) 1570 tb->tb_num_default--; 1571 1572 fib_remove_alias(t, tp, l, fa_to_delete); 1573 1574 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1575 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1576 1577 fib_release_info(fa_to_delete->fa_info); 1578 alias_free_mem_rcu(fa_to_delete); 1579 return 0; 1580 } 1581 1582 /* Scan for the next leaf starting at the provided key value */ 1583 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1584 { 1585 struct key_vector *pn, *n = *tn; 1586 unsigned long cindex; 1587 1588 /* this loop is meant to try and find the key in the trie */ 1589 do { 1590 /* record parent and next child index */ 1591 pn = n; 1592 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1593 1594 if (cindex >> pn->bits) 1595 break; 1596 1597 /* descend into the next child */ 1598 n = get_child_rcu(pn, cindex++); 1599 if (!n) 1600 break; 1601 1602 /* guarantee forward progress on the keys */ 1603 if (IS_LEAF(n) && (n->key >= key)) 1604 goto found; 1605 } while (IS_TNODE(n)); 1606 1607 /* this loop will search for the next leaf with a greater key */ 1608 while (!IS_TRIE(pn)) { 1609 /* if we exhausted the parent node we will need to climb */ 1610 if (cindex >= (1ul << pn->bits)) { 1611 t_key pkey = pn->key; 1612 1613 pn = node_parent_rcu(pn); 1614 cindex = get_index(pkey, pn) + 1; 1615 continue; 1616 } 1617 1618 /* grab the next available node */ 1619 n = get_child_rcu(pn, cindex++); 1620 if (!n) 1621 continue; 1622 1623 /* no need to compare keys since we bumped the index */ 1624 if (IS_LEAF(n)) 1625 goto found; 1626 1627 /* Rescan start scanning in new node */ 1628 pn = n; 1629 cindex = 0; 1630 } 1631 1632 *tn = pn; 1633 return NULL; /* Root of trie */ 1634 found: 1635 /* if we are at the limit for keys just return NULL for the tnode */ 1636 *tn = pn; 1637 return n; 1638 } 1639 1640 static void fib_trie_free(struct fib_table *tb) 1641 { 1642 struct trie *t = (struct trie *)tb->tb_data; 1643 struct key_vector *pn = t->kv; 1644 unsigned long cindex = 1; 1645 struct hlist_node *tmp; 1646 struct fib_alias *fa; 1647 1648 /* walk trie in reverse order and free everything */ 1649 for (;;) { 1650 struct key_vector *n; 1651 1652 if (!(cindex--)) { 1653 t_key pkey = pn->key; 1654 1655 if (IS_TRIE(pn)) 1656 break; 1657 1658 n = pn; 1659 pn = node_parent(pn); 1660 1661 /* drop emptied tnode */ 1662 put_child_root(pn, n->key, NULL); 1663 node_free(n); 1664 1665 cindex = get_index(pkey, pn); 1666 1667 continue; 1668 } 1669 1670 /* grab the next available node */ 1671 n = get_child(pn, cindex); 1672 if (!n) 1673 continue; 1674 1675 if (IS_TNODE(n)) { 1676 /* record pn and cindex for leaf walking */ 1677 pn = n; 1678 cindex = 1ul << n->bits; 1679 1680 continue; 1681 } 1682 1683 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1684 hlist_del_rcu(&fa->fa_list); 1685 alias_free_mem_rcu(fa); 1686 } 1687 1688 put_child_root(pn, n->key, NULL); 1689 node_free(n); 1690 } 1691 1692 #ifdef CONFIG_IP_FIB_TRIE_STATS 1693 free_percpu(t->stats); 1694 #endif 1695 kfree(tb); 1696 } 1697 1698 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1699 { 1700 struct trie *ot = (struct trie *)oldtb->tb_data; 1701 struct key_vector *l, *tp = ot->kv; 1702 struct fib_table *local_tb; 1703 struct fib_alias *fa; 1704 struct trie *lt; 1705 t_key key = 0; 1706 1707 if (oldtb->tb_data == oldtb->__data) 1708 return oldtb; 1709 1710 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1711 if (!local_tb) 1712 return NULL; 1713 1714 lt = (struct trie *)local_tb->tb_data; 1715 1716 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1717 struct key_vector *local_l = NULL, *local_tp; 1718 1719 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1720 struct fib_alias *new_fa; 1721 1722 if (local_tb->tb_id != fa->tb_id) 1723 continue; 1724 1725 /* clone fa for new local table */ 1726 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1727 if (!new_fa) 1728 goto out; 1729 1730 memcpy(new_fa, fa, sizeof(*fa)); 1731 1732 /* insert clone into table */ 1733 if (!local_l) 1734 local_l = fib_find_node(lt, &local_tp, l->key); 1735 1736 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1737 NULL, l->key)) { 1738 kmem_cache_free(fn_alias_kmem, new_fa); 1739 goto out; 1740 } 1741 } 1742 1743 /* stop loop if key wrapped back to 0 */ 1744 key = l->key + 1; 1745 if (key < l->key) 1746 break; 1747 } 1748 1749 return local_tb; 1750 out: 1751 fib_trie_free(local_tb); 1752 1753 return NULL; 1754 } 1755 1756 /* Caller must hold RTNL */ 1757 void fib_table_flush_external(struct fib_table *tb) 1758 { 1759 struct trie *t = (struct trie *)tb->tb_data; 1760 struct key_vector *pn = t->kv; 1761 unsigned long cindex = 1; 1762 struct hlist_node *tmp; 1763 struct fib_alias *fa; 1764 1765 /* walk trie in reverse order */ 1766 for (;;) { 1767 unsigned char slen = 0; 1768 struct key_vector *n; 1769 1770 if (!(cindex--)) { 1771 t_key pkey = pn->key; 1772 1773 /* cannot resize the trie vector */ 1774 if (IS_TRIE(pn)) 1775 break; 1776 1777 /* update the suffix to address pulled leaves */ 1778 if (pn->slen > pn->pos) 1779 update_suffix(pn); 1780 1781 /* resize completed node */ 1782 pn = resize(t, pn); 1783 cindex = get_index(pkey, pn); 1784 1785 continue; 1786 } 1787 1788 /* grab the next available node */ 1789 n = get_child(pn, cindex); 1790 if (!n) 1791 continue; 1792 1793 if (IS_TNODE(n)) { 1794 /* record pn and cindex for leaf walking */ 1795 pn = n; 1796 cindex = 1ul << n->bits; 1797 1798 continue; 1799 } 1800 1801 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1802 /* if alias was cloned to local then we just 1803 * need to remove the local copy from main 1804 */ 1805 if (tb->tb_id != fa->tb_id) { 1806 hlist_del_rcu(&fa->fa_list); 1807 alias_free_mem_rcu(fa); 1808 continue; 1809 } 1810 1811 /* record local slen */ 1812 slen = fa->fa_slen; 1813 } 1814 1815 /* update leaf slen */ 1816 n->slen = slen; 1817 1818 if (hlist_empty(&n->leaf)) { 1819 put_child_root(pn, n->key, NULL); 1820 node_free(n); 1821 } 1822 } 1823 } 1824 1825 /* Caller must hold RTNL. */ 1826 int fib_table_flush(struct net *net, struct fib_table *tb) 1827 { 1828 struct trie *t = (struct trie *)tb->tb_data; 1829 struct key_vector *pn = t->kv; 1830 unsigned long cindex = 1; 1831 struct hlist_node *tmp; 1832 struct fib_alias *fa; 1833 int found = 0; 1834 1835 /* walk trie in reverse order */ 1836 for (;;) { 1837 unsigned char slen = 0; 1838 struct key_vector *n; 1839 1840 if (!(cindex--)) { 1841 t_key pkey = pn->key; 1842 1843 /* cannot resize the trie vector */ 1844 if (IS_TRIE(pn)) 1845 break; 1846 1847 /* update the suffix to address pulled leaves */ 1848 if (pn->slen > pn->pos) 1849 update_suffix(pn); 1850 1851 /* resize completed node */ 1852 pn = resize(t, pn); 1853 cindex = get_index(pkey, pn); 1854 1855 continue; 1856 } 1857 1858 /* grab the next available node */ 1859 n = get_child(pn, cindex); 1860 if (!n) 1861 continue; 1862 1863 if (IS_TNODE(n)) { 1864 /* record pn and cindex for leaf walking */ 1865 pn = n; 1866 cindex = 1ul << n->bits; 1867 1868 continue; 1869 } 1870 1871 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1872 struct fib_info *fi = fa->fa_info; 1873 1874 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1875 tb->tb_id != fa->tb_id) { 1876 slen = fa->fa_slen; 1877 continue; 1878 } 1879 1880 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1881 n->key, 1882 KEYLENGTH - fa->fa_slen, 1883 fi, fa->fa_tos, fa->fa_type, 1884 tb->tb_id); 1885 hlist_del_rcu(&fa->fa_list); 1886 fib_release_info(fa->fa_info); 1887 alias_free_mem_rcu(fa); 1888 found++; 1889 } 1890 1891 /* update leaf slen */ 1892 n->slen = slen; 1893 1894 if (hlist_empty(&n->leaf)) { 1895 put_child_root(pn, n->key, NULL); 1896 node_free(n); 1897 } 1898 } 1899 1900 pr_debug("trie_flush found=%d\n", found); 1901 return found; 1902 } 1903 1904 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1905 struct fib_table *tb, struct notifier_block *nb) 1906 { 1907 struct fib_alias *fa; 1908 1909 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1910 struct fib_info *fi = fa->fa_info; 1911 1912 if (!fi) 1913 continue; 1914 1915 /* local and main table can share the same trie, 1916 * so don't notify twice for the same entry. 1917 */ 1918 if (tb->tb_id != fa->tb_id) 1919 continue; 1920 1921 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1922 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, 1923 fa->fa_type, fa->tb_id); 1924 } 1925 } 1926 1927 static void fib_table_notify(struct net *net, struct fib_table *tb, 1928 struct notifier_block *nb) 1929 { 1930 struct trie *t = (struct trie *)tb->tb_data; 1931 struct key_vector *l, *tp = t->kv; 1932 t_key key = 0; 1933 1934 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1935 fib_leaf_notify(net, l, tb, nb); 1936 1937 key = l->key + 1; 1938 /* stop in case of wrap around */ 1939 if (key < l->key) 1940 break; 1941 } 1942 } 1943 1944 void fib_notify(struct net *net, struct notifier_block *nb) 1945 { 1946 unsigned int h; 1947 1948 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1949 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1950 struct fib_table *tb; 1951 1952 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1953 fib_table_notify(net, tb, nb); 1954 } 1955 } 1956 1957 static void __trie_free_rcu(struct rcu_head *head) 1958 { 1959 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1960 #ifdef CONFIG_IP_FIB_TRIE_STATS 1961 struct trie *t = (struct trie *)tb->tb_data; 1962 1963 if (tb->tb_data == tb->__data) 1964 free_percpu(t->stats); 1965 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1966 kfree(tb); 1967 } 1968 1969 void fib_free_table(struct fib_table *tb) 1970 { 1971 call_rcu(&tb->rcu, __trie_free_rcu); 1972 } 1973 1974 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1975 struct sk_buff *skb, struct netlink_callback *cb) 1976 { 1977 __be32 xkey = htonl(l->key); 1978 struct fib_alias *fa; 1979 int i, s_i; 1980 1981 s_i = cb->args[4]; 1982 i = 0; 1983 1984 /* rcu_read_lock is hold by caller */ 1985 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1986 int err; 1987 1988 if (i < s_i) { 1989 i++; 1990 continue; 1991 } 1992 1993 if (tb->tb_id != fa->tb_id) { 1994 i++; 1995 continue; 1996 } 1997 1998 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1999 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2000 tb->tb_id, fa->fa_type, 2001 xkey, KEYLENGTH - fa->fa_slen, 2002 fa->fa_tos, fa->fa_info, NLM_F_MULTI); 2003 if (err < 0) { 2004 cb->args[4] = i; 2005 return err; 2006 } 2007 i++; 2008 } 2009 2010 cb->args[4] = i; 2011 return skb->len; 2012 } 2013 2014 /* rcu_read_lock needs to be hold by caller from readside */ 2015 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2016 struct netlink_callback *cb) 2017 { 2018 struct trie *t = (struct trie *)tb->tb_data; 2019 struct key_vector *l, *tp = t->kv; 2020 /* Dump starting at last key. 2021 * Note: 0.0.0.0/0 (ie default) is first key. 2022 */ 2023 int count = cb->args[2]; 2024 t_key key = cb->args[3]; 2025 2026 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2027 int err; 2028 2029 err = fn_trie_dump_leaf(l, tb, skb, cb); 2030 if (err < 0) { 2031 cb->args[3] = key; 2032 cb->args[2] = count; 2033 return err; 2034 } 2035 2036 ++count; 2037 key = l->key + 1; 2038 2039 memset(&cb->args[4], 0, 2040 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2041 2042 /* stop loop if key wrapped back to 0 */ 2043 if (key < l->key) 2044 break; 2045 } 2046 2047 cb->args[3] = key; 2048 cb->args[2] = count; 2049 2050 return skb->len; 2051 } 2052 2053 void __init fib_trie_init(void) 2054 { 2055 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2056 sizeof(struct fib_alias), 2057 0, SLAB_PANIC, NULL); 2058 2059 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2060 LEAF_SIZE, 2061 0, SLAB_PANIC, NULL); 2062 } 2063 2064 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2065 { 2066 struct fib_table *tb; 2067 struct trie *t; 2068 size_t sz = sizeof(*tb); 2069 2070 if (!alias) 2071 sz += sizeof(struct trie); 2072 2073 tb = kzalloc(sz, GFP_KERNEL); 2074 if (!tb) 2075 return NULL; 2076 2077 tb->tb_id = id; 2078 tb->tb_num_default = 0; 2079 tb->tb_data = (alias ? alias->__data : tb->__data); 2080 2081 if (alias) 2082 return tb; 2083 2084 t = (struct trie *) tb->tb_data; 2085 t->kv[0].pos = KEYLENGTH; 2086 t->kv[0].slen = KEYLENGTH; 2087 #ifdef CONFIG_IP_FIB_TRIE_STATS 2088 t->stats = alloc_percpu(struct trie_use_stats); 2089 if (!t->stats) { 2090 kfree(tb); 2091 tb = NULL; 2092 } 2093 #endif 2094 2095 return tb; 2096 } 2097 2098 #ifdef CONFIG_PROC_FS 2099 /* Depth first Trie walk iterator */ 2100 struct fib_trie_iter { 2101 struct seq_net_private p; 2102 struct fib_table *tb; 2103 struct key_vector *tnode; 2104 unsigned int index; 2105 unsigned int depth; 2106 }; 2107 2108 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2109 { 2110 unsigned long cindex = iter->index; 2111 struct key_vector *pn = iter->tnode; 2112 t_key pkey; 2113 2114 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2115 iter->tnode, iter->index, iter->depth); 2116 2117 while (!IS_TRIE(pn)) { 2118 while (cindex < child_length(pn)) { 2119 struct key_vector *n = get_child_rcu(pn, cindex++); 2120 2121 if (!n) 2122 continue; 2123 2124 if (IS_LEAF(n)) { 2125 iter->tnode = pn; 2126 iter->index = cindex; 2127 } else { 2128 /* push down one level */ 2129 iter->tnode = n; 2130 iter->index = 0; 2131 ++iter->depth; 2132 } 2133 2134 return n; 2135 } 2136 2137 /* Current node exhausted, pop back up */ 2138 pkey = pn->key; 2139 pn = node_parent_rcu(pn); 2140 cindex = get_index(pkey, pn) + 1; 2141 --iter->depth; 2142 } 2143 2144 /* record root node so further searches know we are done */ 2145 iter->tnode = pn; 2146 iter->index = 0; 2147 2148 return NULL; 2149 } 2150 2151 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2152 struct trie *t) 2153 { 2154 struct key_vector *n, *pn; 2155 2156 if (!t) 2157 return NULL; 2158 2159 pn = t->kv; 2160 n = rcu_dereference(pn->tnode[0]); 2161 if (!n) 2162 return NULL; 2163 2164 if (IS_TNODE(n)) { 2165 iter->tnode = n; 2166 iter->index = 0; 2167 iter->depth = 1; 2168 } else { 2169 iter->tnode = pn; 2170 iter->index = 0; 2171 iter->depth = 0; 2172 } 2173 2174 return n; 2175 } 2176 2177 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2178 { 2179 struct key_vector *n; 2180 struct fib_trie_iter iter; 2181 2182 memset(s, 0, sizeof(*s)); 2183 2184 rcu_read_lock(); 2185 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2186 if (IS_LEAF(n)) { 2187 struct fib_alias *fa; 2188 2189 s->leaves++; 2190 s->totdepth += iter.depth; 2191 if (iter.depth > s->maxdepth) 2192 s->maxdepth = iter.depth; 2193 2194 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2195 ++s->prefixes; 2196 } else { 2197 s->tnodes++; 2198 if (n->bits < MAX_STAT_DEPTH) 2199 s->nodesizes[n->bits]++; 2200 s->nullpointers += tn_info(n)->empty_children; 2201 } 2202 } 2203 rcu_read_unlock(); 2204 } 2205 2206 /* 2207 * This outputs /proc/net/fib_triestats 2208 */ 2209 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2210 { 2211 unsigned int i, max, pointers, bytes, avdepth; 2212 2213 if (stat->leaves) 2214 avdepth = stat->totdepth*100 / stat->leaves; 2215 else 2216 avdepth = 0; 2217 2218 seq_printf(seq, "\tAver depth: %u.%02d\n", 2219 avdepth / 100, avdepth % 100); 2220 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2221 2222 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2223 bytes = LEAF_SIZE * stat->leaves; 2224 2225 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2226 bytes += sizeof(struct fib_alias) * stat->prefixes; 2227 2228 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2229 bytes += TNODE_SIZE(0) * stat->tnodes; 2230 2231 max = MAX_STAT_DEPTH; 2232 while (max > 0 && stat->nodesizes[max-1] == 0) 2233 max--; 2234 2235 pointers = 0; 2236 for (i = 1; i < max; i++) 2237 if (stat->nodesizes[i] != 0) { 2238 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2239 pointers += (1<<i) * stat->nodesizes[i]; 2240 } 2241 seq_putc(seq, '\n'); 2242 seq_printf(seq, "\tPointers: %u\n", pointers); 2243 2244 bytes += sizeof(struct key_vector *) * pointers; 2245 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2246 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2247 } 2248 2249 #ifdef CONFIG_IP_FIB_TRIE_STATS 2250 static void trie_show_usage(struct seq_file *seq, 2251 const struct trie_use_stats __percpu *stats) 2252 { 2253 struct trie_use_stats s = { 0 }; 2254 int cpu; 2255 2256 /* loop through all of the CPUs and gather up the stats */ 2257 for_each_possible_cpu(cpu) { 2258 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2259 2260 s.gets += pcpu->gets; 2261 s.backtrack += pcpu->backtrack; 2262 s.semantic_match_passed += pcpu->semantic_match_passed; 2263 s.semantic_match_miss += pcpu->semantic_match_miss; 2264 s.null_node_hit += pcpu->null_node_hit; 2265 s.resize_node_skipped += pcpu->resize_node_skipped; 2266 } 2267 2268 seq_printf(seq, "\nCounters:\n---------\n"); 2269 seq_printf(seq, "gets = %u\n", s.gets); 2270 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2271 seq_printf(seq, "semantic match passed = %u\n", 2272 s.semantic_match_passed); 2273 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2274 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2275 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2276 } 2277 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2278 2279 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2280 { 2281 if (tb->tb_id == RT_TABLE_LOCAL) 2282 seq_puts(seq, "Local:\n"); 2283 else if (tb->tb_id == RT_TABLE_MAIN) 2284 seq_puts(seq, "Main:\n"); 2285 else 2286 seq_printf(seq, "Id %d:\n", tb->tb_id); 2287 } 2288 2289 2290 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2291 { 2292 struct net *net = (struct net *)seq->private; 2293 unsigned int h; 2294 2295 seq_printf(seq, 2296 "Basic info: size of leaf:" 2297 " %zd bytes, size of tnode: %zd bytes.\n", 2298 LEAF_SIZE, TNODE_SIZE(0)); 2299 2300 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2301 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2302 struct fib_table *tb; 2303 2304 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2305 struct trie *t = (struct trie *) tb->tb_data; 2306 struct trie_stat stat; 2307 2308 if (!t) 2309 continue; 2310 2311 fib_table_print(seq, tb); 2312 2313 trie_collect_stats(t, &stat); 2314 trie_show_stats(seq, &stat); 2315 #ifdef CONFIG_IP_FIB_TRIE_STATS 2316 trie_show_usage(seq, t->stats); 2317 #endif 2318 } 2319 } 2320 2321 return 0; 2322 } 2323 2324 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2325 { 2326 return single_open_net(inode, file, fib_triestat_seq_show); 2327 } 2328 2329 static const struct file_operations fib_triestat_fops = { 2330 .owner = THIS_MODULE, 2331 .open = fib_triestat_seq_open, 2332 .read = seq_read, 2333 .llseek = seq_lseek, 2334 .release = single_release_net, 2335 }; 2336 2337 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2338 { 2339 struct fib_trie_iter *iter = seq->private; 2340 struct net *net = seq_file_net(seq); 2341 loff_t idx = 0; 2342 unsigned int h; 2343 2344 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2345 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2346 struct fib_table *tb; 2347 2348 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2349 struct key_vector *n; 2350 2351 for (n = fib_trie_get_first(iter, 2352 (struct trie *) tb->tb_data); 2353 n; n = fib_trie_get_next(iter)) 2354 if (pos == idx++) { 2355 iter->tb = tb; 2356 return n; 2357 } 2358 } 2359 } 2360 2361 return NULL; 2362 } 2363 2364 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2365 __acquires(RCU) 2366 { 2367 rcu_read_lock(); 2368 return fib_trie_get_idx(seq, *pos); 2369 } 2370 2371 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2372 { 2373 struct fib_trie_iter *iter = seq->private; 2374 struct net *net = seq_file_net(seq); 2375 struct fib_table *tb = iter->tb; 2376 struct hlist_node *tb_node; 2377 unsigned int h; 2378 struct key_vector *n; 2379 2380 ++*pos; 2381 /* next node in same table */ 2382 n = fib_trie_get_next(iter); 2383 if (n) 2384 return n; 2385 2386 /* walk rest of this hash chain */ 2387 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2388 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2389 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2390 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2391 if (n) 2392 goto found; 2393 } 2394 2395 /* new hash chain */ 2396 while (++h < FIB_TABLE_HASHSZ) { 2397 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2398 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2399 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2400 if (n) 2401 goto found; 2402 } 2403 } 2404 return NULL; 2405 2406 found: 2407 iter->tb = tb; 2408 return n; 2409 } 2410 2411 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2412 __releases(RCU) 2413 { 2414 rcu_read_unlock(); 2415 } 2416 2417 static void seq_indent(struct seq_file *seq, int n) 2418 { 2419 while (n-- > 0) 2420 seq_puts(seq, " "); 2421 } 2422 2423 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2424 { 2425 switch (s) { 2426 case RT_SCOPE_UNIVERSE: return "universe"; 2427 case RT_SCOPE_SITE: return "site"; 2428 case RT_SCOPE_LINK: return "link"; 2429 case RT_SCOPE_HOST: return "host"; 2430 case RT_SCOPE_NOWHERE: return "nowhere"; 2431 default: 2432 snprintf(buf, len, "scope=%d", s); 2433 return buf; 2434 } 2435 } 2436 2437 static const char *const rtn_type_names[__RTN_MAX] = { 2438 [RTN_UNSPEC] = "UNSPEC", 2439 [RTN_UNICAST] = "UNICAST", 2440 [RTN_LOCAL] = "LOCAL", 2441 [RTN_BROADCAST] = "BROADCAST", 2442 [RTN_ANYCAST] = "ANYCAST", 2443 [RTN_MULTICAST] = "MULTICAST", 2444 [RTN_BLACKHOLE] = "BLACKHOLE", 2445 [RTN_UNREACHABLE] = "UNREACHABLE", 2446 [RTN_PROHIBIT] = "PROHIBIT", 2447 [RTN_THROW] = "THROW", 2448 [RTN_NAT] = "NAT", 2449 [RTN_XRESOLVE] = "XRESOLVE", 2450 }; 2451 2452 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2453 { 2454 if (t < __RTN_MAX && rtn_type_names[t]) 2455 return rtn_type_names[t]; 2456 snprintf(buf, len, "type %u", t); 2457 return buf; 2458 } 2459 2460 /* Pretty print the trie */ 2461 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2462 { 2463 const struct fib_trie_iter *iter = seq->private; 2464 struct key_vector *n = v; 2465 2466 if (IS_TRIE(node_parent_rcu(n))) 2467 fib_table_print(seq, iter->tb); 2468 2469 if (IS_TNODE(n)) { 2470 __be32 prf = htonl(n->key); 2471 2472 seq_indent(seq, iter->depth-1); 2473 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2474 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2475 tn_info(n)->full_children, 2476 tn_info(n)->empty_children); 2477 } else { 2478 __be32 val = htonl(n->key); 2479 struct fib_alias *fa; 2480 2481 seq_indent(seq, iter->depth); 2482 seq_printf(seq, " |-- %pI4\n", &val); 2483 2484 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2485 char buf1[32], buf2[32]; 2486 2487 seq_indent(seq, iter->depth + 1); 2488 seq_printf(seq, " /%zu %s %s", 2489 KEYLENGTH - fa->fa_slen, 2490 rtn_scope(buf1, sizeof(buf1), 2491 fa->fa_info->fib_scope), 2492 rtn_type(buf2, sizeof(buf2), 2493 fa->fa_type)); 2494 if (fa->fa_tos) 2495 seq_printf(seq, " tos=%d", fa->fa_tos); 2496 seq_putc(seq, '\n'); 2497 } 2498 } 2499 2500 return 0; 2501 } 2502 2503 static const struct seq_operations fib_trie_seq_ops = { 2504 .start = fib_trie_seq_start, 2505 .next = fib_trie_seq_next, 2506 .stop = fib_trie_seq_stop, 2507 .show = fib_trie_seq_show, 2508 }; 2509 2510 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2511 { 2512 return seq_open_net(inode, file, &fib_trie_seq_ops, 2513 sizeof(struct fib_trie_iter)); 2514 } 2515 2516 static const struct file_operations fib_trie_fops = { 2517 .owner = THIS_MODULE, 2518 .open = fib_trie_seq_open, 2519 .read = seq_read, 2520 .llseek = seq_lseek, 2521 .release = seq_release_net, 2522 }; 2523 2524 struct fib_route_iter { 2525 struct seq_net_private p; 2526 struct fib_table *main_tb; 2527 struct key_vector *tnode; 2528 loff_t pos; 2529 t_key key; 2530 }; 2531 2532 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2533 loff_t pos) 2534 { 2535 struct key_vector *l, **tp = &iter->tnode; 2536 t_key key; 2537 2538 /* use cached location of previously found key */ 2539 if (iter->pos > 0 && pos >= iter->pos) { 2540 key = iter->key; 2541 } else { 2542 iter->pos = 1; 2543 key = 0; 2544 } 2545 2546 pos -= iter->pos; 2547 2548 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2549 key = l->key + 1; 2550 iter->pos++; 2551 l = NULL; 2552 2553 /* handle unlikely case of a key wrap */ 2554 if (!key) 2555 break; 2556 } 2557 2558 if (l) 2559 iter->key = l->key; /* remember it */ 2560 else 2561 iter->pos = 0; /* forget it */ 2562 2563 return l; 2564 } 2565 2566 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2567 __acquires(RCU) 2568 { 2569 struct fib_route_iter *iter = seq->private; 2570 struct fib_table *tb; 2571 struct trie *t; 2572 2573 rcu_read_lock(); 2574 2575 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2576 if (!tb) 2577 return NULL; 2578 2579 iter->main_tb = tb; 2580 t = (struct trie *)tb->tb_data; 2581 iter->tnode = t->kv; 2582 2583 if (*pos != 0) 2584 return fib_route_get_idx(iter, *pos); 2585 2586 iter->pos = 0; 2587 iter->key = KEY_MAX; 2588 2589 return SEQ_START_TOKEN; 2590 } 2591 2592 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2593 { 2594 struct fib_route_iter *iter = seq->private; 2595 struct key_vector *l = NULL; 2596 t_key key = iter->key + 1; 2597 2598 ++*pos; 2599 2600 /* only allow key of 0 for start of sequence */ 2601 if ((v == SEQ_START_TOKEN) || key) 2602 l = leaf_walk_rcu(&iter->tnode, key); 2603 2604 if (l) { 2605 iter->key = l->key; 2606 iter->pos++; 2607 } else { 2608 iter->pos = 0; 2609 } 2610 2611 return l; 2612 } 2613 2614 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2615 __releases(RCU) 2616 { 2617 rcu_read_unlock(); 2618 } 2619 2620 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2621 { 2622 unsigned int flags = 0; 2623 2624 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2625 flags = RTF_REJECT; 2626 if (fi && fi->fib_nh->nh_gw) 2627 flags |= RTF_GATEWAY; 2628 if (mask == htonl(0xFFFFFFFF)) 2629 flags |= RTF_HOST; 2630 flags |= RTF_UP; 2631 return flags; 2632 } 2633 2634 /* 2635 * This outputs /proc/net/route. 2636 * The format of the file is not supposed to be changed 2637 * and needs to be same as fib_hash output to avoid breaking 2638 * legacy utilities 2639 */ 2640 static int fib_route_seq_show(struct seq_file *seq, void *v) 2641 { 2642 struct fib_route_iter *iter = seq->private; 2643 struct fib_table *tb = iter->main_tb; 2644 struct fib_alias *fa; 2645 struct key_vector *l = v; 2646 __be32 prefix; 2647 2648 if (v == SEQ_START_TOKEN) { 2649 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2650 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2651 "\tWindow\tIRTT"); 2652 return 0; 2653 } 2654 2655 prefix = htonl(l->key); 2656 2657 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2658 const struct fib_info *fi = fa->fa_info; 2659 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2660 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2661 2662 if ((fa->fa_type == RTN_BROADCAST) || 2663 (fa->fa_type == RTN_MULTICAST)) 2664 continue; 2665 2666 if (fa->tb_id != tb->tb_id) 2667 continue; 2668 2669 seq_setwidth(seq, 127); 2670 2671 if (fi) 2672 seq_printf(seq, 2673 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2674 "%d\t%08X\t%d\t%u\t%u", 2675 fi->fib_dev ? fi->fib_dev->name : "*", 2676 prefix, 2677 fi->fib_nh->nh_gw, flags, 0, 0, 2678 fi->fib_priority, 2679 mask, 2680 (fi->fib_advmss ? 2681 fi->fib_advmss + 40 : 0), 2682 fi->fib_window, 2683 fi->fib_rtt >> 3); 2684 else 2685 seq_printf(seq, 2686 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2687 "%d\t%08X\t%d\t%u\t%u", 2688 prefix, 0, flags, 0, 0, 0, 2689 mask, 0, 0, 0); 2690 2691 seq_pad(seq, '\n'); 2692 } 2693 2694 return 0; 2695 } 2696 2697 static const struct seq_operations fib_route_seq_ops = { 2698 .start = fib_route_seq_start, 2699 .next = fib_route_seq_next, 2700 .stop = fib_route_seq_stop, 2701 .show = fib_route_seq_show, 2702 }; 2703 2704 static int fib_route_seq_open(struct inode *inode, struct file *file) 2705 { 2706 return seq_open_net(inode, file, &fib_route_seq_ops, 2707 sizeof(struct fib_route_iter)); 2708 } 2709 2710 static const struct file_operations fib_route_fops = { 2711 .owner = THIS_MODULE, 2712 .open = fib_route_seq_open, 2713 .read = seq_read, 2714 .llseek = seq_lseek, 2715 .release = seq_release_net, 2716 }; 2717 2718 int __net_init fib_proc_init(struct net *net) 2719 { 2720 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2721 goto out1; 2722 2723 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2724 &fib_triestat_fops)) 2725 goto out2; 2726 2727 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2728 goto out3; 2729 2730 return 0; 2731 2732 out3: 2733 remove_proc_entry("fib_triestat", net->proc_net); 2734 out2: 2735 remove_proc_entry("fib_trie", net->proc_net); 2736 out1: 2737 return -ENOMEM; 2738 } 2739 2740 void __net_exit fib_proc_exit(struct net *net) 2741 { 2742 remove_proc_entry("fib_trie", net->proc_net); 2743 remove_proc_entry("fib_triestat", net->proc_net); 2744 remove_proc_entry("route", net->proc_net); 2745 } 2746 2747 #endif /* CONFIG_PROC_FS */ 2748