1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 88 enum fib_event_type event_type, u32 dst, 89 int dst_len, struct fib_info *fi, 90 u8 tos, u8 type, u32 tb_id) 91 { 92 struct fib_entry_notifier_info info = { 93 .dst = dst, 94 .dst_len = dst_len, 95 .fi = fi, 96 .tos = tos, 97 .type = type, 98 .tb_id = tb_id, 99 }; 100 return call_fib_notifier(nb, net, event_type, &info.info); 101 } 102 103 static int call_fib_entry_notifiers(struct net *net, 104 enum fib_event_type event_type, u32 dst, 105 int dst_len, struct fib_info *fi, 106 u8 tos, u8 type, u32 tb_id) 107 { 108 struct fib_entry_notifier_info info = { 109 .dst = dst, 110 .dst_len = dst_len, 111 .fi = fi, 112 .tos = tos, 113 .type = type, 114 .tb_id = tb_id, 115 }; 116 return call_fib_notifiers(net, event_type, &info.info); 117 } 118 119 #define MAX_STAT_DEPTH 32 120 121 #define KEYLENGTH (8*sizeof(t_key)) 122 #define KEY_MAX ((t_key)~0) 123 124 typedef unsigned int t_key; 125 126 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 127 #define IS_TNODE(n) ((n)->bits) 128 #define IS_LEAF(n) (!(n)->bits) 129 130 struct key_vector { 131 t_key key; 132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 134 unsigned char slen; 135 union { 136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 137 struct hlist_head leaf; 138 /* This array is valid if (pos | bits) > 0 (TNODE) */ 139 struct key_vector __rcu *tnode[0]; 140 }; 141 }; 142 143 struct tnode { 144 struct rcu_head rcu; 145 t_key empty_children; /* KEYLENGTH bits needed */ 146 t_key full_children; /* KEYLENGTH bits needed */ 147 struct key_vector __rcu *parent; 148 struct key_vector kv[1]; 149 #define tn_bits kv[0].bits 150 }; 151 152 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 153 #define LEAF_SIZE TNODE_SIZE(1) 154 155 #ifdef CONFIG_IP_FIB_TRIE_STATS 156 struct trie_use_stats { 157 unsigned int gets; 158 unsigned int backtrack; 159 unsigned int semantic_match_passed; 160 unsigned int semantic_match_miss; 161 unsigned int null_node_hit; 162 unsigned int resize_node_skipped; 163 }; 164 #endif 165 166 struct trie_stat { 167 unsigned int totdepth; 168 unsigned int maxdepth; 169 unsigned int tnodes; 170 unsigned int leaves; 171 unsigned int nullpointers; 172 unsigned int prefixes; 173 unsigned int nodesizes[MAX_STAT_DEPTH]; 174 }; 175 176 struct trie { 177 struct key_vector kv[1]; 178 #ifdef CONFIG_IP_FIB_TRIE_STATS 179 struct trie_use_stats __percpu *stats; 180 #endif 181 }; 182 183 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 184 static size_t tnode_free_size; 185 186 /* 187 * synchronize_rcu after call_rcu for that many pages; it should be especially 188 * useful before resizing the root node with PREEMPT_NONE configs; the value was 189 * obtained experimentally, aiming to avoid visible slowdown. 190 */ 191 static const int sync_pages = 128; 192 193 static struct kmem_cache *fn_alias_kmem __read_mostly; 194 static struct kmem_cache *trie_leaf_kmem __read_mostly; 195 196 static inline struct tnode *tn_info(struct key_vector *kv) 197 { 198 return container_of(kv, struct tnode, kv[0]); 199 } 200 201 /* caller must hold RTNL */ 202 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 203 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 204 205 /* caller must hold RCU read lock or RTNL */ 206 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 207 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 208 209 /* wrapper for rcu_assign_pointer */ 210 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 211 { 212 if (n) 213 rcu_assign_pointer(tn_info(n)->parent, tp); 214 } 215 216 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 217 218 /* This provides us with the number of children in this node, in the case of a 219 * leaf this will return 0 meaning none of the children are accessible. 220 */ 221 static inline unsigned long child_length(const struct key_vector *tn) 222 { 223 return (1ul << tn->bits) & ~(1ul); 224 } 225 226 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 227 228 static inline unsigned long get_index(t_key key, struct key_vector *kv) 229 { 230 unsigned long index = key ^ kv->key; 231 232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 233 return 0; 234 235 return index >> kv->pos; 236 } 237 238 /* To understand this stuff, an understanding of keys and all their bits is 239 * necessary. Every node in the trie has a key associated with it, but not 240 * all of the bits in that key are significant. 241 * 242 * Consider a node 'n' and its parent 'tp'. 243 * 244 * If n is a leaf, every bit in its key is significant. Its presence is 245 * necessitated by path compression, since during a tree traversal (when 246 * searching for a leaf - unless we are doing an insertion) we will completely 247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 248 * a potentially successful search, that we have indeed been walking the 249 * correct key path. 250 * 251 * Note that we can never "miss" the correct key in the tree if present by 252 * following the wrong path. Path compression ensures that segments of the key 253 * that are the same for all keys with a given prefix are skipped, but the 254 * skipped part *is* identical for each node in the subtrie below the skipped 255 * bit! trie_insert() in this implementation takes care of that. 256 * 257 * if n is an internal node - a 'tnode' here, the various parts of its key 258 * have many different meanings. 259 * 260 * Example: 261 * _________________________________________________________________ 262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 263 * ----------------------------------------------------------------- 264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 265 * 266 * _________________________________________________________________ 267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 268 * ----------------------------------------------------------------- 269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 270 * 271 * tp->pos = 22 272 * tp->bits = 3 273 * n->pos = 13 274 * n->bits = 4 275 * 276 * First, let's just ignore the bits that come before the parent tp, that is 277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 278 * point we do not use them for anything. 279 * 280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 281 * index into the parent's child array. That is, they will be used to find 282 * 'n' among tp's children. 283 * 284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 285 * for the node n. 286 * 287 * All the bits we have seen so far are significant to the node n. The rest 288 * of the bits are really not needed or indeed known in n->key. 289 * 290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 291 * n's child array, and will of course be different for each child. 292 * 293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 294 * at this point. 295 */ 296 297 static const int halve_threshold = 25; 298 static const int inflate_threshold = 50; 299 static const int halve_threshold_root = 15; 300 static const int inflate_threshold_root = 30; 301 302 static void __alias_free_mem(struct rcu_head *head) 303 { 304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 305 kmem_cache_free(fn_alias_kmem, fa); 306 } 307 308 static inline void alias_free_mem_rcu(struct fib_alias *fa) 309 { 310 call_rcu(&fa->rcu, __alias_free_mem); 311 } 312 313 #define TNODE_KMALLOC_MAX \ 314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 315 #define TNODE_VMALLOC_MAX \ 316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 317 318 static void __node_free_rcu(struct rcu_head *head) 319 { 320 struct tnode *n = container_of(head, struct tnode, rcu); 321 322 if (!n->tn_bits) 323 kmem_cache_free(trie_leaf_kmem, n); 324 else 325 kvfree(n); 326 } 327 328 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 329 330 static struct tnode *tnode_alloc(int bits) 331 { 332 size_t size; 333 334 /* verify bits is within bounds */ 335 if (bits > TNODE_VMALLOC_MAX) 336 return NULL; 337 338 /* determine size and verify it is non-zero and didn't overflow */ 339 size = TNODE_SIZE(1ul << bits); 340 341 if (size <= PAGE_SIZE) 342 return kzalloc(size, GFP_KERNEL); 343 else 344 return vzalloc(size); 345 } 346 347 static inline void empty_child_inc(struct key_vector *n) 348 { 349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 350 } 351 352 static inline void empty_child_dec(struct key_vector *n) 353 { 354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 355 } 356 357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 358 { 359 struct key_vector *l; 360 struct tnode *kv; 361 362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 363 if (!kv) 364 return NULL; 365 366 /* initialize key vector */ 367 l = kv->kv; 368 l->key = key; 369 l->pos = 0; 370 l->bits = 0; 371 l->slen = fa->fa_slen; 372 373 /* link leaf to fib alias */ 374 INIT_HLIST_HEAD(&l->leaf); 375 hlist_add_head(&fa->fa_list, &l->leaf); 376 377 return l; 378 } 379 380 static struct key_vector *tnode_new(t_key key, int pos, int bits) 381 { 382 unsigned int shift = pos + bits; 383 struct key_vector *tn; 384 struct tnode *tnode; 385 386 /* verify bits and pos their msb bits clear and values are valid */ 387 BUG_ON(!bits || (shift > KEYLENGTH)); 388 389 tnode = tnode_alloc(bits); 390 if (!tnode) 391 return NULL; 392 393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 394 sizeof(struct key_vector *) << bits); 395 396 if (bits == KEYLENGTH) 397 tnode->full_children = 1; 398 else 399 tnode->empty_children = 1ul << bits; 400 401 tn = tnode->kv; 402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 403 tn->pos = pos; 404 tn->bits = bits; 405 tn->slen = pos; 406 407 return tn; 408 } 409 410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 411 * and no bits are skipped. See discussion in dyntree paper p. 6 412 */ 413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 414 { 415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 416 } 417 418 /* Add a child at position i overwriting the old value. 419 * Update the value of full_children and empty_children. 420 */ 421 static void put_child(struct key_vector *tn, unsigned long i, 422 struct key_vector *n) 423 { 424 struct key_vector *chi = get_child(tn, i); 425 int isfull, wasfull; 426 427 BUG_ON(i >= child_length(tn)); 428 429 /* update emptyChildren, overflow into fullChildren */ 430 if (!n && chi) 431 empty_child_inc(tn); 432 if (n && !chi) 433 empty_child_dec(tn); 434 435 /* update fullChildren */ 436 wasfull = tnode_full(tn, chi); 437 isfull = tnode_full(tn, n); 438 439 if (wasfull && !isfull) 440 tn_info(tn)->full_children--; 441 else if (!wasfull && isfull) 442 tn_info(tn)->full_children++; 443 444 if (n && (tn->slen < n->slen)) 445 tn->slen = n->slen; 446 447 rcu_assign_pointer(tn->tnode[i], n); 448 } 449 450 static void update_children(struct key_vector *tn) 451 { 452 unsigned long i; 453 454 /* update all of the child parent pointers */ 455 for (i = child_length(tn); i;) { 456 struct key_vector *inode = get_child(tn, --i); 457 458 if (!inode) 459 continue; 460 461 /* Either update the children of a tnode that 462 * already belongs to us or update the child 463 * to point to ourselves. 464 */ 465 if (node_parent(inode) == tn) 466 update_children(inode); 467 else 468 node_set_parent(inode, tn); 469 } 470 } 471 472 static inline void put_child_root(struct key_vector *tp, t_key key, 473 struct key_vector *n) 474 { 475 if (IS_TRIE(tp)) 476 rcu_assign_pointer(tp->tnode[0], n); 477 else 478 put_child(tp, get_index(key, tp), n); 479 } 480 481 static inline void tnode_free_init(struct key_vector *tn) 482 { 483 tn_info(tn)->rcu.next = NULL; 484 } 485 486 static inline void tnode_free_append(struct key_vector *tn, 487 struct key_vector *n) 488 { 489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 490 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 491 } 492 493 static void tnode_free(struct key_vector *tn) 494 { 495 struct callback_head *head = &tn_info(tn)->rcu; 496 497 while (head) { 498 head = head->next; 499 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 500 node_free(tn); 501 502 tn = container_of(head, struct tnode, rcu)->kv; 503 } 504 505 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 506 tnode_free_size = 0; 507 synchronize_rcu(); 508 } 509 } 510 511 static struct key_vector *replace(struct trie *t, 512 struct key_vector *oldtnode, 513 struct key_vector *tn) 514 { 515 struct key_vector *tp = node_parent(oldtnode); 516 unsigned long i; 517 518 /* setup the parent pointer out of and back into this node */ 519 NODE_INIT_PARENT(tn, tp); 520 put_child_root(tp, tn->key, tn); 521 522 /* update all of the child parent pointers */ 523 update_children(tn); 524 525 /* all pointers should be clean so we are done */ 526 tnode_free(oldtnode); 527 528 /* resize children now that oldtnode is freed */ 529 for (i = child_length(tn); i;) { 530 struct key_vector *inode = get_child(tn, --i); 531 532 /* resize child node */ 533 if (tnode_full(tn, inode)) 534 tn = resize(t, inode); 535 } 536 537 return tp; 538 } 539 540 static struct key_vector *inflate(struct trie *t, 541 struct key_vector *oldtnode) 542 { 543 struct key_vector *tn; 544 unsigned long i; 545 t_key m; 546 547 pr_debug("In inflate\n"); 548 549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 550 if (!tn) 551 goto notnode; 552 553 /* prepare oldtnode to be freed */ 554 tnode_free_init(oldtnode); 555 556 /* Assemble all of the pointers in our cluster, in this case that 557 * represents all of the pointers out of our allocated nodes that 558 * point to existing tnodes and the links between our allocated 559 * nodes. 560 */ 561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 562 struct key_vector *inode = get_child(oldtnode, --i); 563 struct key_vector *node0, *node1; 564 unsigned long j, k; 565 566 /* An empty child */ 567 if (!inode) 568 continue; 569 570 /* A leaf or an internal node with skipped bits */ 571 if (!tnode_full(oldtnode, inode)) { 572 put_child(tn, get_index(inode->key, tn), inode); 573 continue; 574 } 575 576 /* drop the node in the old tnode free list */ 577 tnode_free_append(oldtnode, inode); 578 579 /* An internal node with two children */ 580 if (inode->bits == 1) { 581 put_child(tn, 2 * i + 1, get_child(inode, 1)); 582 put_child(tn, 2 * i, get_child(inode, 0)); 583 continue; 584 } 585 586 /* We will replace this node 'inode' with two new 587 * ones, 'node0' and 'node1', each with half of the 588 * original children. The two new nodes will have 589 * a position one bit further down the key and this 590 * means that the "significant" part of their keys 591 * (see the discussion near the top of this file) 592 * will differ by one bit, which will be "0" in 593 * node0's key and "1" in node1's key. Since we are 594 * moving the key position by one step, the bit that 595 * we are moving away from - the bit at position 596 * (tn->pos) - is the one that will differ between 597 * node0 and node1. So... we synthesize that bit in the 598 * two new keys. 599 */ 600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 601 if (!node1) 602 goto nomem; 603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 604 605 tnode_free_append(tn, node1); 606 if (!node0) 607 goto nomem; 608 tnode_free_append(tn, node0); 609 610 /* populate child pointers in new nodes */ 611 for (k = child_length(inode), j = k / 2; j;) { 612 put_child(node1, --j, get_child(inode, --k)); 613 put_child(node0, j, get_child(inode, j)); 614 put_child(node1, --j, get_child(inode, --k)); 615 put_child(node0, j, get_child(inode, j)); 616 } 617 618 /* link new nodes to parent */ 619 NODE_INIT_PARENT(node1, tn); 620 NODE_INIT_PARENT(node0, tn); 621 622 /* link parent to nodes */ 623 put_child(tn, 2 * i + 1, node1); 624 put_child(tn, 2 * i, node0); 625 } 626 627 /* setup the parent pointers into and out of this node */ 628 return replace(t, oldtnode, tn); 629 nomem: 630 /* all pointers should be clean so we are done */ 631 tnode_free(tn); 632 notnode: 633 return NULL; 634 } 635 636 static struct key_vector *halve(struct trie *t, 637 struct key_vector *oldtnode) 638 { 639 struct key_vector *tn; 640 unsigned long i; 641 642 pr_debug("In halve\n"); 643 644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 645 if (!tn) 646 goto notnode; 647 648 /* prepare oldtnode to be freed */ 649 tnode_free_init(oldtnode); 650 651 /* Assemble all of the pointers in our cluster, in this case that 652 * represents all of the pointers out of our allocated nodes that 653 * point to existing tnodes and the links between our allocated 654 * nodes. 655 */ 656 for (i = child_length(oldtnode); i;) { 657 struct key_vector *node1 = get_child(oldtnode, --i); 658 struct key_vector *node0 = get_child(oldtnode, --i); 659 struct key_vector *inode; 660 661 /* At least one of the children is empty */ 662 if (!node1 || !node0) { 663 put_child(tn, i / 2, node1 ? : node0); 664 continue; 665 } 666 667 /* Two nonempty children */ 668 inode = tnode_new(node0->key, oldtnode->pos, 1); 669 if (!inode) 670 goto nomem; 671 tnode_free_append(tn, inode); 672 673 /* initialize pointers out of node */ 674 put_child(inode, 1, node1); 675 put_child(inode, 0, node0); 676 NODE_INIT_PARENT(inode, tn); 677 678 /* link parent to node */ 679 put_child(tn, i / 2, inode); 680 } 681 682 /* setup the parent pointers into and out of this node */ 683 return replace(t, oldtnode, tn); 684 nomem: 685 /* all pointers should be clean so we are done */ 686 tnode_free(tn); 687 notnode: 688 return NULL; 689 } 690 691 static struct key_vector *collapse(struct trie *t, 692 struct key_vector *oldtnode) 693 { 694 struct key_vector *n, *tp; 695 unsigned long i; 696 697 /* scan the tnode looking for that one child that might still exist */ 698 for (n = NULL, i = child_length(oldtnode); !n && i;) 699 n = get_child(oldtnode, --i); 700 701 /* compress one level */ 702 tp = node_parent(oldtnode); 703 put_child_root(tp, oldtnode->key, n); 704 node_set_parent(n, tp); 705 706 /* drop dead node */ 707 node_free(oldtnode); 708 709 return tp; 710 } 711 712 static unsigned char update_suffix(struct key_vector *tn) 713 { 714 unsigned char slen = tn->pos; 715 unsigned long stride, i; 716 unsigned char slen_max; 717 718 /* only vector 0 can have a suffix length greater than or equal to 719 * tn->pos + tn->bits, the second highest node will have a suffix 720 * length at most of tn->pos + tn->bits - 1 721 */ 722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 723 724 /* search though the list of children looking for nodes that might 725 * have a suffix greater than the one we currently have. This is 726 * why we start with a stride of 2 since a stride of 1 would 727 * represent the nodes with suffix length equal to tn->pos 728 */ 729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 730 struct key_vector *n = get_child(tn, i); 731 732 if (!n || (n->slen <= slen)) 733 continue; 734 735 /* update stride and slen based on new value */ 736 stride <<= (n->slen - slen); 737 slen = n->slen; 738 i &= ~(stride - 1); 739 740 /* stop searching if we have hit the maximum possible value */ 741 if (slen >= slen_max) 742 break; 743 } 744 745 tn->slen = slen; 746 747 return slen; 748 } 749 750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 751 * the Helsinki University of Technology and Matti Tikkanen of Nokia 752 * Telecommunications, page 6: 753 * "A node is doubled if the ratio of non-empty children to all 754 * children in the *doubled* node is at least 'high'." 755 * 756 * 'high' in this instance is the variable 'inflate_threshold'. It 757 * is expressed as a percentage, so we multiply it with 758 * child_length() and instead of multiplying by 2 (since the 759 * child array will be doubled by inflate()) and multiplying 760 * the left-hand side by 100 (to handle the percentage thing) we 761 * multiply the left-hand side by 50. 762 * 763 * The left-hand side may look a bit weird: child_length(tn) 764 * - tn->empty_children is of course the number of non-null children 765 * in the current node. tn->full_children is the number of "full" 766 * children, that is non-null tnodes with a skip value of 0. 767 * All of those will be doubled in the resulting inflated tnode, so 768 * we just count them one extra time here. 769 * 770 * A clearer way to write this would be: 771 * 772 * to_be_doubled = tn->full_children; 773 * not_to_be_doubled = child_length(tn) - tn->empty_children - 774 * tn->full_children; 775 * 776 * new_child_length = child_length(tn) * 2; 777 * 778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 779 * new_child_length; 780 * if (new_fill_factor >= inflate_threshold) 781 * 782 * ...and so on, tho it would mess up the while () loop. 783 * 784 * anyway, 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 786 * inflate_threshold 787 * 788 * avoid a division: 789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 790 * inflate_threshold * new_child_length 791 * 792 * expand not_to_be_doubled and to_be_doubled, and shorten: 793 * 100 * (child_length(tn) - tn->empty_children + 794 * tn->full_children) >= inflate_threshold * new_child_length 795 * 796 * expand new_child_length: 797 * 100 * (child_length(tn) - tn->empty_children + 798 * tn->full_children) >= 799 * inflate_threshold * child_length(tn) * 2 800 * 801 * shorten again: 802 * 50 * (tn->full_children + child_length(tn) - 803 * tn->empty_children) >= inflate_threshold * 804 * child_length(tn) 805 * 806 */ 807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 808 { 809 unsigned long used = child_length(tn); 810 unsigned long threshold = used; 811 812 /* Keep root node larger */ 813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 814 used -= tn_info(tn)->empty_children; 815 used += tn_info(tn)->full_children; 816 817 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 818 819 return (used > 1) && tn->pos && ((50 * used) >= threshold); 820 } 821 822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 823 { 824 unsigned long used = child_length(tn); 825 unsigned long threshold = used; 826 827 /* Keep root node larger */ 828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 829 used -= tn_info(tn)->empty_children; 830 831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 832 833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 834 } 835 836 static inline bool should_collapse(struct key_vector *tn) 837 { 838 unsigned long used = child_length(tn); 839 840 used -= tn_info(tn)->empty_children; 841 842 /* account for bits == KEYLENGTH case */ 843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 844 used -= KEY_MAX; 845 846 /* One child or none, time to drop us from the trie */ 847 return used < 2; 848 } 849 850 #define MAX_WORK 10 851 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 852 { 853 #ifdef CONFIG_IP_FIB_TRIE_STATS 854 struct trie_use_stats __percpu *stats = t->stats; 855 #endif 856 struct key_vector *tp = node_parent(tn); 857 unsigned long cindex = get_index(tn->key, tp); 858 int max_work = MAX_WORK; 859 860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 861 tn, inflate_threshold, halve_threshold); 862 863 /* track the tnode via the pointer from the parent instead of 864 * doing it ourselves. This way we can let RCU fully do its 865 * thing without us interfering 866 */ 867 BUG_ON(tn != get_child(tp, cindex)); 868 869 /* Double as long as the resulting node has a number of 870 * nonempty nodes that are above the threshold. 871 */ 872 while (should_inflate(tp, tn) && max_work) { 873 tp = inflate(t, tn); 874 if (!tp) { 875 #ifdef CONFIG_IP_FIB_TRIE_STATS 876 this_cpu_inc(stats->resize_node_skipped); 877 #endif 878 break; 879 } 880 881 max_work--; 882 tn = get_child(tp, cindex); 883 } 884 885 /* update parent in case inflate failed */ 886 tp = node_parent(tn); 887 888 /* Return if at least one inflate is run */ 889 if (max_work != MAX_WORK) 890 return tp; 891 892 /* Halve as long as the number of empty children in this 893 * node is above threshold. 894 */ 895 while (should_halve(tp, tn) && max_work) { 896 tp = halve(t, tn); 897 if (!tp) { 898 #ifdef CONFIG_IP_FIB_TRIE_STATS 899 this_cpu_inc(stats->resize_node_skipped); 900 #endif 901 break; 902 } 903 904 max_work--; 905 tn = get_child(tp, cindex); 906 } 907 908 /* Only one child remains */ 909 if (should_collapse(tn)) 910 return collapse(t, tn); 911 912 /* update parent in case halve failed */ 913 return node_parent(tn); 914 } 915 916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 917 { 918 unsigned char node_slen = tn->slen; 919 920 while ((node_slen > tn->pos) && (node_slen > slen)) { 921 slen = update_suffix(tn); 922 if (node_slen == slen) 923 break; 924 925 tn = node_parent(tn); 926 node_slen = tn->slen; 927 } 928 } 929 930 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 931 { 932 while (tn->slen < slen) { 933 tn->slen = slen; 934 tn = node_parent(tn); 935 } 936 } 937 938 /* rcu_read_lock needs to be hold by caller from readside */ 939 static struct key_vector *fib_find_node(struct trie *t, 940 struct key_vector **tp, u32 key) 941 { 942 struct key_vector *pn, *n = t->kv; 943 unsigned long index = 0; 944 945 do { 946 pn = n; 947 n = get_child_rcu(n, index); 948 949 if (!n) 950 break; 951 952 index = get_cindex(key, n); 953 954 /* This bit of code is a bit tricky but it combines multiple 955 * checks into a single check. The prefix consists of the 956 * prefix plus zeros for the bits in the cindex. The index 957 * is the difference between the key and this value. From 958 * this we can actually derive several pieces of data. 959 * if (index >= (1ul << bits)) 960 * we have a mismatch in skip bits and failed 961 * else 962 * we know the value is cindex 963 * 964 * This check is safe even if bits == KEYLENGTH due to the 965 * fact that we can only allocate a node with 32 bits if a 966 * long is greater than 32 bits. 967 */ 968 if (index >= (1ul << n->bits)) { 969 n = NULL; 970 break; 971 } 972 973 /* keep searching until we find a perfect match leaf or NULL */ 974 } while (IS_TNODE(n)); 975 976 *tp = pn; 977 978 return n; 979 } 980 981 /* Return the first fib alias matching TOS with 982 * priority less than or equal to PRIO. 983 */ 984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 985 u8 tos, u32 prio, u32 tb_id) 986 { 987 struct fib_alias *fa; 988 989 if (!fah) 990 return NULL; 991 992 hlist_for_each_entry(fa, fah, fa_list) { 993 if (fa->fa_slen < slen) 994 continue; 995 if (fa->fa_slen != slen) 996 break; 997 if (fa->tb_id > tb_id) 998 continue; 999 if (fa->tb_id != tb_id) 1000 break; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1011 { 1012 while (!IS_TRIE(tn)) 1013 tn = resize(t, tn); 1014 } 1015 1016 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1017 struct fib_alias *new, t_key key) 1018 { 1019 struct key_vector *n, *l; 1020 1021 l = leaf_new(key, new); 1022 if (!l) 1023 goto noleaf; 1024 1025 /* retrieve child from parent node */ 1026 n = get_child(tp, get_index(key, tp)); 1027 1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1029 * 1030 * Add a new tnode here 1031 * first tnode need some special handling 1032 * leaves us in position for handling as case 3 1033 */ 1034 if (n) { 1035 struct key_vector *tn; 1036 1037 tn = tnode_new(key, __fls(key ^ n->key), 1); 1038 if (!tn) 1039 goto notnode; 1040 1041 /* initialize routes out of node */ 1042 NODE_INIT_PARENT(tn, tp); 1043 put_child(tn, get_index(key, tn) ^ 1, n); 1044 1045 /* start adding routes into the node */ 1046 put_child_root(tp, key, tn); 1047 node_set_parent(n, tn); 1048 1049 /* parent now has a NULL spot where the leaf can go */ 1050 tp = tn; 1051 } 1052 1053 /* Case 3: n is NULL, and will just insert a new leaf */ 1054 node_push_suffix(tp, new->fa_slen); 1055 NODE_INIT_PARENT(l, tp); 1056 put_child_root(tp, key, l); 1057 trie_rebalance(t, tp); 1058 1059 return 0; 1060 notnode: 1061 node_free(l); 1062 noleaf: 1063 return -ENOMEM; 1064 } 1065 1066 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1067 struct key_vector *l, struct fib_alias *new, 1068 struct fib_alias *fa, t_key key) 1069 { 1070 if (!l) 1071 return fib_insert_node(t, tp, new, key); 1072 1073 if (fa) { 1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1075 } else { 1076 struct fib_alias *last; 1077 1078 hlist_for_each_entry(last, &l->leaf, fa_list) { 1079 if (new->fa_slen < last->fa_slen) 1080 break; 1081 if ((new->fa_slen == last->fa_slen) && 1082 (new->tb_id > last->tb_id)) 1083 break; 1084 fa = last; 1085 } 1086 1087 if (fa) 1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1089 else 1090 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1091 } 1092 1093 /* if we added to the tail node then we need to update slen */ 1094 if (l->slen < new->fa_slen) { 1095 l->slen = new->fa_slen; 1096 node_push_suffix(tp, new->fa_slen); 1097 } 1098 1099 return 0; 1100 } 1101 1102 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1103 { 1104 if (plen > KEYLENGTH) { 1105 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1106 return false; 1107 } 1108 1109 if ((plen < KEYLENGTH) && (key << plen)) { 1110 NL_SET_ERR_MSG(extack, 1111 "Invalid prefix for given prefix length"); 1112 return false; 1113 } 1114 1115 return true; 1116 } 1117 1118 /* Caller must hold RTNL. */ 1119 int fib_table_insert(struct net *net, struct fib_table *tb, 1120 struct fib_config *cfg, struct netlink_ext_ack *extack) 1121 { 1122 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1123 struct trie *t = (struct trie *)tb->tb_data; 1124 struct fib_alias *fa, *new_fa; 1125 struct key_vector *l, *tp; 1126 u16 nlflags = NLM_F_EXCL; 1127 struct fib_info *fi; 1128 u8 plen = cfg->fc_dst_len; 1129 u8 slen = KEYLENGTH - plen; 1130 u8 tos = cfg->fc_tos; 1131 u32 key; 1132 int err; 1133 1134 key = ntohl(cfg->fc_dst); 1135 1136 if (!fib_valid_key_len(key, plen, extack)) 1137 return -EINVAL; 1138 1139 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1140 1141 fi = fib_create_info(cfg, extack); 1142 if (IS_ERR(fi)) { 1143 err = PTR_ERR(fi); 1144 goto err; 1145 } 1146 1147 l = fib_find_node(t, &tp, key); 1148 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1149 tb->tb_id) : NULL; 1150 1151 /* Now fa, if non-NULL, points to the first fib alias 1152 * with the same keys [prefix,tos,priority], if such key already 1153 * exists or to the node before which we will insert new one. 1154 * 1155 * If fa is NULL, we will need to allocate a new one and 1156 * insert to the tail of the section matching the suffix length 1157 * of the new alias. 1158 */ 1159 1160 if (fa && fa->fa_tos == tos && 1161 fa->fa_info->fib_priority == fi->fib_priority) { 1162 struct fib_alias *fa_first, *fa_match; 1163 1164 err = -EEXIST; 1165 if (cfg->fc_nlflags & NLM_F_EXCL) 1166 goto out; 1167 1168 nlflags &= ~NLM_F_EXCL; 1169 1170 /* We have 2 goals: 1171 * 1. Find exact match for type, scope, fib_info to avoid 1172 * duplicate routes 1173 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1174 */ 1175 fa_match = NULL; 1176 fa_first = fa; 1177 hlist_for_each_entry_from(fa, fa_list) { 1178 if ((fa->fa_slen != slen) || 1179 (fa->tb_id != tb->tb_id) || 1180 (fa->fa_tos != tos)) 1181 break; 1182 if (fa->fa_info->fib_priority != fi->fib_priority) 1183 break; 1184 if (fa->fa_type == cfg->fc_type && 1185 fa->fa_info == fi) { 1186 fa_match = fa; 1187 break; 1188 } 1189 } 1190 1191 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1192 struct fib_info *fi_drop; 1193 u8 state; 1194 1195 nlflags |= NLM_F_REPLACE; 1196 fa = fa_first; 1197 if (fa_match) { 1198 if (fa == fa_match) 1199 err = 0; 1200 goto out; 1201 } 1202 err = -ENOBUFS; 1203 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1204 if (!new_fa) 1205 goto out; 1206 1207 fi_drop = fa->fa_info; 1208 new_fa->fa_tos = fa->fa_tos; 1209 new_fa->fa_info = fi; 1210 new_fa->fa_type = cfg->fc_type; 1211 state = fa->fa_state; 1212 new_fa->fa_state = state & ~FA_S_ACCESSED; 1213 new_fa->fa_slen = fa->fa_slen; 1214 new_fa->tb_id = tb->tb_id; 1215 new_fa->fa_default = -1; 1216 1217 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1218 key, plen, fi, 1219 new_fa->fa_tos, cfg->fc_type, 1220 tb->tb_id); 1221 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1222 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1223 1224 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1225 1226 alias_free_mem_rcu(fa); 1227 1228 fib_release_info(fi_drop); 1229 if (state & FA_S_ACCESSED) 1230 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1231 1232 goto succeeded; 1233 } 1234 /* Error if we find a perfect match which 1235 * uses the same scope, type, and nexthop 1236 * information. 1237 */ 1238 if (fa_match) 1239 goto out; 1240 1241 if (cfg->fc_nlflags & NLM_F_APPEND) { 1242 event = FIB_EVENT_ENTRY_APPEND; 1243 nlflags |= NLM_F_APPEND; 1244 } else { 1245 fa = fa_first; 1246 } 1247 } 1248 err = -ENOENT; 1249 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1250 goto out; 1251 1252 nlflags |= NLM_F_CREATE; 1253 err = -ENOBUFS; 1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1255 if (!new_fa) 1256 goto out; 1257 1258 new_fa->fa_info = fi; 1259 new_fa->fa_tos = tos; 1260 new_fa->fa_type = cfg->fc_type; 1261 new_fa->fa_state = 0; 1262 new_fa->fa_slen = slen; 1263 new_fa->tb_id = tb->tb_id; 1264 new_fa->fa_default = -1; 1265 1266 /* Insert new entry to the list. */ 1267 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1268 if (err) 1269 goto out_free_new_fa; 1270 1271 if (!plen) 1272 tb->tb_num_default++; 1273 1274 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1275 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type, 1276 tb->tb_id); 1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1278 &cfg->fc_nlinfo, nlflags); 1279 succeeded: 1280 return 0; 1281 1282 out_free_new_fa: 1283 kmem_cache_free(fn_alias_kmem, new_fa); 1284 out: 1285 fib_release_info(fi); 1286 err: 1287 return err; 1288 } 1289 1290 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1291 { 1292 t_key prefix = n->key; 1293 1294 return (key ^ prefix) & (prefix | -prefix); 1295 } 1296 1297 /* should be called with rcu_read_lock */ 1298 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1299 struct fib_result *res, int fib_flags) 1300 { 1301 struct trie *t = (struct trie *) tb->tb_data; 1302 #ifdef CONFIG_IP_FIB_TRIE_STATS 1303 struct trie_use_stats __percpu *stats = t->stats; 1304 #endif 1305 const t_key key = ntohl(flp->daddr); 1306 struct key_vector *n, *pn; 1307 struct fib_alias *fa; 1308 unsigned long index; 1309 t_key cindex; 1310 1311 trace_fib_table_lookup(tb->tb_id, flp); 1312 1313 pn = t->kv; 1314 cindex = 0; 1315 1316 n = get_child_rcu(pn, cindex); 1317 if (!n) 1318 return -EAGAIN; 1319 1320 #ifdef CONFIG_IP_FIB_TRIE_STATS 1321 this_cpu_inc(stats->gets); 1322 #endif 1323 1324 /* Step 1: Travel to the longest prefix match in the trie */ 1325 for (;;) { 1326 index = get_cindex(key, n); 1327 1328 /* This bit of code is a bit tricky but it combines multiple 1329 * checks into a single check. The prefix consists of the 1330 * prefix plus zeros for the "bits" in the prefix. The index 1331 * is the difference between the key and this value. From 1332 * this we can actually derive several pieces of data. 1333 * if (index >= (1ul << bits)) 1334 * we have a mismatch in skip bits and failed 1335 * else 1336 * we know the value is cindex 1337 * 1338 * This check is safe even if bits == KEYLENGTH due to the 1339 * fact that we can only allocate a node with 32 bits if a 1340 * long is greater than 32 bits. 1341 */ 1342 if (index >= (1ul << n->bits)) 1343 break; 1344 1345 /* we have found a leaf. Prefixes have already been compared */ 1346 if (IS_LEAF(n)) 1347 goto found; 1348 1349 /* only record pn and cindex if we are going to be chopping 1350 * bits later. Otherwise we are just wasting cycles. 1351 */ 1352 if (n->slen > n->pos) { 1353 pn = n; 1354 cindex = index; 1355 } 1356 1357 n = get_child_rcu(n, index); 1358 if (unlikely(!n)) 1359 goto backtrace; 1360 } 1361 1362 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1363 for (;;) { 1364 /* record the pointer where our next node pointer is stored */ 1365 struct key_vector __rcu **cptr = n->tnode; 1366 1367 /* This test verifies that none of the bits that differ 1368 * between the key and the prefix exist in the region of 1369 * the lsb and higher in the prefix. 1370 */ 1371 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1372 goto backtrace; 1373 1374 /* exit out and process leaf */ 1375 if (unlikely(IS_LEAF(n))) 1376 break; 1377 1378 /* Don't bother recording parent info. Since we are in 1379 * prefix match mode we will have to come back to wherever 1380 * we started this traversal anyway 1381 */ 1382 1383 while ((n = rcu_dereference(*cptr)) == NULL) { 1384 backtrace: 1385 #ifdef CONFIG_IP_FIB_TRIE_STATS 1386 if (!n) 1387 this_cpu_inc(stats->null_node_hit); 1388 #endif 1389 /* If we are at cindex 0 there are no more bits for 1390 * us to strip at this level so we must ascend back 1391 * up one level to see if there are any more bits to 1392 * be stripped there. 1393 */ 1394 while (!cindex) { 1395 t_key pkey = pn->key; 1396 1397 /* If we don't have a parent then there is 1398 * nothing for us to do as we do not have any 1399 * further nodes to parse. 1400 */ 1401 if (IS_TRIE(pn)) 1402 return -EAGAIN; 1403 #ifdef CONFIG_IP_FIB_TRIE_STATS 1404 this_cpu_inc(stats->backtrack); 1405 #endif 1406 /* Get Child's index */ 1407 pn = node_parent_rcu(pn); 1408 cindex = get_index(pkey, pn); 1409 } 1410 1411 /* strip the least significant bit from the cindex */ 1412 cindex &= cindex - 1; 1413 1414 /* grab pointer for next child node */ 1415 cptr = &pn->tnode[cindex]; 1416 } 1417 } 1418 1419 found: 1420 /* this line carries forward the xor from earlier in the function */ 1421 index = key ^ n->key; 1422 1423 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1424 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1425 struct fib_info *fi = fa->fa_info; 1426 int nhsel, err; 1427 1428 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1429 if (index >= (1ul << fa->fa_slen)) 1430 continue; 1431 } 1432 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1433 continue; 1434 if (fi->fib_dead) 1435 continue; 1436 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1437 continue; 1438 fib_alias_accessed(fa); 1439 err = fib_props[fa->fa_type].error; 1440 if (unlikely(err < 0)) { 1441 #ifdef CONFIG_IP_FIB_TRIE_STATS 1442 this_cpu_inc(stats->semantic_match_passed); 1443 #endif 1444 return err; 1445 } 1446 if (fi->fib_flags & RTNH_F_DEAD) 1447 continue; 1448 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1449 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1450 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1451 1452 if (nh->nh_flags & RTNH_F_DEAD) 1453 continue; 1454 if (in_dev && 1455 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1456 nh->nh_flags & RTNH_F_LINKDOWN && 1457 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1458 continue; 1459 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1460 if (flp->flowi4_oif && 1461 flp->flowi4_oif != nh->nh_oif) 1462 continue; 1463 } 1464 1465 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1466 refcount_inc(&fi->fib_clntref); 1467 1468 res->prefix = htonl(n->key); 1469 res->prefixlen = KEYLENGTH - fa->fa_slen; 1470 res->nh_sel = nhsel; 1471 res->type = fa->fa_type; 1472 res->scope = fi->fib_scope; 1473 res->fi = fi; 1474 res->table = tb; 1475 res->fa_head = &n->leaf; 1476 #ifdef CONFIG_IP_FIB_TRIE_STATS 1477 this_cpu_inc(stats->semantic_match_passed); 1478 #endif 1479 trace_fib_table_lookup_nh(nh); 1480 1481 return err; 1482 } 1483 } 1484 #ifdef CONFIG_IP_FIB_TRIE_STATS 1485 this_cpu_inc(stats->semantic_match_miss); 1486 #endif 1487 goto backtrace; 1488 } 1489 EXPORT_SYMBOL_GPL(fib_table_lookup); 1490 1491 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1492 struct key_vector *l, struct fib_alias *old) 1493 { 1494 /* record the location of the previous list_info entry */ 1495 struct hlist_node **pprev = old->fa_list.pprev; 1496 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1497 1498 /* remove the fib_alias from the list */ 1499 hlist_del_rcu(&old->fa_list); 1500 1501 /* if we emptied the list this leaf will be freed and we can sort 1502 * out parent suffix lengths as a part of trie_rebalance 1503 */ 1504 if (hlist_empty(&l->leaf)) { 1505 if (tp->slen == l->slen) 1506 node_pull_suffix(tp, tp->pos); 1507 put_child_root(tp, l->key, NULL); 1508 node_free(l); 1509 trie_rebalance(t, tp); 1510 return; 1511 } 1512 1513 /* only access fa if it is pointing at the last valid hlist_node */ 1514 if (*pprev) 1515 return; 1516 1517 /* update the trie with the latest suffix length */ 1518 l->slen = fa->fa_slen; 1519 node_pull_suffix(tp, fa->fa_slen); 1520 } 1521 1522 /* Caller must hold RTNL. */ 1523 int fib_table_delete(struct net *net, struct fib_table *tb, 1524 struct fib_config *cfg, struct netlink_ext_ack *extack) 1525 { 1526 struct trie *t = (struct trie *) tb->tb_data; 1527 struct fib_alias *fa, *fa_to_delete; 1528 struct key_vector *l, *tp; 1529 u8 plen = cfg->fc_dst_len; 1530 u8 slen = KEYLENGTH - plen; 1531 u8 tos = cfg->fc_tos; 1532 u32 key; 1533 1534 key = ntohl(cfg->fc_dst); 1535 1536 if (!fib_valid_key_len(key, plen, extack)) 1537 return -EINVAL; 1538 1539 l = fib_find_node(t, &tp, key); 1540 if (!l) 1541 return -ESRCH; 1542 1543 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1544 if (!fa) 1545 return -ESRCH; 1546 1547 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1548 1549 fa_to_delete = NULL; 1550 hlist_for_each_entry_from(fa, fa_list) { 1551 struct fib_info *fi = fa->fa_info; 1552 1553 if ((fa->fa_slen != slen) || 1554 (fa->tb_id != tb->tb_id) || 1555 (fa->fa_tos != tos)) 1556 break; 1557 1558 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1559 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1560 fa->fa_info->fib_scope == cfg->fc_scope) && 1561 (!cfg->fc_prefsrc || 1562 fi->fib_prefsrc == cfg->fc_prefsrc) && 1563 (!cfg->fc_protocol || 1564 fi->fib_protocol == cfg->fc_protocol) && 1565 fib_nh_match(cfg, fi, extack) == 0) { 1566 fa_to_delete = fa; 1567 break; 1568 } 1569 } 1570 1571 if (!fa_to_delete) 1572 return -ESRCH; 1573 1574 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1575 fa_to_delete->fa_info, tos, 1576 fa_to_delete->fa_type, tb->tb_id); 1577 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1578 &cfg->fc_nlinfo, 0); 1579 1580 if (!plen) 1581 tb->tb_num_default--; 1582 1583 fib_remove_alias(t, tp, l, fa_to_delete); 1584 1585 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1586 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1587 1588 fib_release_info(fa_to_delete->fa_info); 1589 alias_free_mem_rcu(fa_to_delete); 1590 return 0; 1591 } 1592 1593 /* Scan for the next leaf starting at the provided key value */ 1594 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1595 { 1596 struct key_vector *pn, *n = *tn; 1597 unsigned long cindex; 1598 1599 /* this loop is meant to try and find the key in the trie */ 1600 do { 1601 /* record parent and next child index */ 1602 pn = n; 1603 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1604 1605 if (cindex >> pn->bits) 1606 break; 1607 1608 /* descend into the next child */ 1609 n = get_child_rcu(pn, cindex++); 1610 if (!n) 1611 break; 1612 1613 /* guarantee forward progress on the keys */ 1614 if (IS_LEAF(n) && (n->key >= key)) 1615 goto found; 1616 } while (IS_TNODE(n)); 1617 1618 /* this loop will search for the next leaf with a greater key */ 1619 while (!IS_TRIE(pn)) { 1620 /* if we exhausted the parent node we will need to climb */ 1621 if (cindex >= (1ul << pn->bits)) { 1622 t_key pkey = pn->key; 1623 1624 pn = node_parent_rcu(pn); 1625 cindex = get_index(pkey, pn) + 1; 1626 continue; 1627 } 1628 1629 /* grab the next available node */ 1630 n = get_child_rcu(pn, cindex++); 1631 if (!n) 1632 continue; 1633 1634 /* no need to compare keys since we bumped the index */ 1635 if (IS_LEAF(n)) 1636 goto found; 1637 1638 /* Rescan start scanning in new node */ 1639 pn = n; 1640 cindex = 0; 1641 } 1642 1643 *tn = pn; 1644 return NULL; /* Root of trie */ 1645 found: 1646 /* if we are at the limit for keys just return NULL for the tnode */ 1647 *tn = pn; 1648 return n; 1649 } 1650 1651 static void fib_trie_free(struct fib_table *tb) 1652 { 1653 struct trie *t = (struct trie *)tb->tb_data; 1654 struct key_vector *pn = t->kv; 1655 unsigned long cindex = 1; 1656 struct hlist_node *tmp; 1657 struct fib_alias *fa; 1658 1659 /* walk trie in reverse order and free everything */ 1660 for (;;) { 1661 struct key_vector *n; 1662 1663 if (!(cindex--)) { 1664 t_key pkey = pn->key; 1665 1666 if (IS_TRIE(pn)) 1667 break; 1668 1669 n = pn; 1670 pn = node_parent(pn); 1671 1672 /* drop emptied tnode */ 1673 put_child_root(pn, n->key, NULL); 1674 node_free(n); 1675 1676 cindex = get_index(pkey, pn); 1677 1678 continue; 1679 } 1680 1681 /* grab the next available node */ 1682 n = get_child(pn, cindex); 1683 if (!n) 1684 continue; 1685 1686 if (IS_TNODE(n)) { 1687 /* record pn and cindex for leaf walking */ 1688 pn = n; 1689 cindex = 1ul << n->bits; 1690 1691 continue; 1692 } 1693 1694 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1695 hlist_del_rcu(&fa->fa_list); 1696 alias_free_mem_rcu(fa); 1697 } 1698 1699 put_child_root(pn, n->key, NULL); 1700 node_free(n); 1701 } 1702 1703 #ifdef CONFIG_IP_FIB_TRIE_STATS 1704 free_percpu(t->stats); 1705 #endif 1706 kfree(tb); 1707 } 1708 1709 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1710 { 1711 struct trie *ot = (struct trie *)oldtb->tb_data; 1712 struct key_vector *l, *tp = ot->kv; 1713 struct fib_table *local_tb; 1714 struct fib_alias *fa; 1715 struct trie *lt; 1716 t_key key = 0; 1717 1718 if (oldtb->tb_data == oldtb->__data) 1719 return oldtb; 1720 1721 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1722 if (!local_tb) 1723 return NULL; 1724 1725 lt = (struct trie *)local_tb->tb_data; 1726 1727 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1728 struct key_vector *local_l = NULL, *local_tp; 1729 1730 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1731 struct fib_alias *new_fa; 1732 1733 if (local_tb->tb_id != fa->tb_id) 1734 continue; 1735 1736 /* clone fa for new local table */ 1737 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1738 if (!new_fa) 1739 goto out; 1740 1741 memcpy(new_fa, fa, sizeof(*fa)); 1742 1743 /* insert clone into table */ 1744 if (!local_l) 1745 local_l = fib_find_node(lt, &local_tp, l->key); 1746 1747 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1748 NULL, l->key)) { 1749 kmem_cache_free(fn_alias_kmem, new_fa); 1750 goto out; 1751 } 1752 } 1753 1754 /* stop loop if key wrapped back to 0 */ 1755 key = l->key + 1; 1756 if (key < l->key) 1757 break; 1758 } 1759 1760 return local_tb; 1761 out: 1762 fib_trie_free(local_tb); 1763 1764 return NULL; 1765 } 1766 1767 /* Caller must hold RTNL */ 1768 void fib_table_flush_external(struct fib_table *tb) 1769 { 1770 struct trie *t = (struct trie *)tb->tb_data; 1771 struct key_vector *pn = t->kv; 1772 unsigned long cindex = 1; 1773 struct hlist_node *tmp; 1774 struct fib_alias *fa; 1775 1776 /* walk trie in reverse order */ 1777 for (;;) { 1778 unsigned char slen = 0; 1779 struct key_vector *n; 1780 1781 if (!(cindex--)) { 1782 t_key pkey = pn->key; 1783 1784 /* cannot resize the trie vector */ 1785 if (IS_TRIE(pn)) 1786 break; 1787 1788 /* update the suffix to address pulled leaves */ 1789 if (pn->slen > pn->pos) 1790 update_suffix(pn); 1791 1792 /* resize completed node */ 1793 pn = resize(t, pn); 1794 cindex = get_index(pkey, pn); 1795 1796 continue; 1797 } 1798 1799 /* grab the next available node */ 1800 n = get_child(pn, cindex); 1801 if (!n) 1802 continue; 1803 1804 if (IS_TNODE(n)) { 1805 /* record pn and cindex for leaf walking */ 1806 pn = n; 1807 cindex = 1ul << n->bits; 1808 1809 continue; 1810 } 1811 1812 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1813 /* if alias was cloned to local then we just 1814 * need to remove the local copy from main 1815 */ 1816 if (tb->tb_id != fa->tb_id) { 1817 hlist_del_rcu(&fa->fa_list); 1818 alias_free_mem_rcu(fa); 1819 continue; 1820 } 1821 1822 /* record local slen */ 1823 slen = fa->fa_slen; 1824 } 1825 1826 /* update leaf slen */ 1827 n->slen = slen; 1828 1829 if (hlist_empty(&n->leaf)) { 1830 put_child_root(pn, n->key, NULL); 1831 node_free(n); 1832 } 1833 } 1834 } 1835 1836 /* Caller must hold RTNL. */ 1837 int fib_table_flush(struct net *net, struct fib_table *tb) 1838 { 1839 struct trie *t = (struct trie *)tb->tb_data; 1840 struct key_vector *pn = t->kv; 1841 unsigned long cindex = 1; 1842 struct hlist_node *tmp; 1843 struct fib_alias *fa; 1844 int found = 0; 1845 1846 /* walk trie in reverse order */ 1847 for (;;) { 1848 unsigned char slen = 0; 1849 struct key_vector *n; 1850 1851 if (!(cindex--)) { 1852 t_key pkey = pn->key; 1853 1854 /* cannot resize the trie vector */ 1855 if (IS_TRIE(pn)) 1856 break; 1857 1858 /* update the suffix to address pulled leaves */ 1859 if (pn->slen > pn->pos) 1860 update_suffix(pn); 1861 1862 /* resize completed node */ 1863 pn = resize(t, pn); 1864 cindex = get_index(pkey, pn); 1865 1866 continue; 1867 } 1868 1869 /* grab the next available node */ 1870 n = get_child(pn, cindex); 1871 if (!n) 1872 continue; 1873 1874 if (IS_TNODE(n)) { 1875 /* record pn and cindex for leaf walking */ 1876 pn = n; 1877 cindex = 1ul << n->bits; 1878 1879 continue; 1880 } 1881 1882 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1883 struct fib_info *fi = fa->fa_info; 1884 1885 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1886 tb->tb_id != fa->tb_id) { 1887 slen = fa->fa_slen; 1888 continue; 1889 } 1890 1891 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1892 n->key, 1893 KEYLENGTH - fa->fa_slen, 1894 fi, fa->fa_tos, fa->fa_type, 1895 tb->tb_id); 1896 hlist_del_rcu(&fa->fa_list); 1897 fib_release_info(fa->fa_info); 1898 alias_free_mem_rcu(fa); 1899 found++; 1900 } 1901 1902 /* update leaf slen */ 1903 n->slen = slen; 1904 1905 if (hlist_empty(&n->leaf)) { 1906 put_child_root(pn, n->key, NULL); 1907 node_free(n); 1908 } 1909 } 1910 1911 pr_debug("trie_flush found=%d\n", found); 1912 return found; 1913 } 1914 1915 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1916 struct fib_table *tb, struct notifier_block *nb) 1917 { 1918 struct fib_alias *fa; 1919 1920 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1921 struct fib_info *fi = fa->fa_info; 1922 1923 if (!fi) 1924 continue; 1925 1926 /* local and main table can share the same trie, 1927 * so don't notify twice for the same entry. 1928 */ 1929 if (tb->tb_id != fa->tb_id) 1930 continue; 1931 1932 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1933 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, 1934 fa->fa_type, fa->tb_id); 1935 } 1936 } 1937 1938 static void fib_table_notify(struct net *net, struct fib_table *tb, 1939 struct notifier_block *nb) 1940 { 1941 struct trie *t = (struct trie *)tb->tb_data; 1942 struct key_vector *l, *tp = t->kv; 1943 t_key key = 0; 1944 1945 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1946 fib_leaf_notify(net, l, tb, nb); 1947 1948 key = l->key + 1; 1949 /* stop in case of wrap around */ 1950 if (key < l->key) 1951 break; 1952 } 1953 } 1954 1955 void fib_notify(struct net *net, struct notifier_block *nb) 1956 { 1957 unsigned int h; 1958 1959 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1960 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1961 struct fib_table *tb; 1962 1963 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1964 fib_table_notify(net, tb, nb); 1965 } 1966 } 1967 1968 static void __trie_free_rcu(struct rcu_head *head) 1969 { 1970 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1971 #ifdef CONFIG_IP_FIB_TRIE_STATS 1972 struct trie *t = (struct trie *)tb->tb_data; 1973 1974 if (tb->tb_data == tb->__data) 1975 free_percpu(t->stats); 1976 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1977 kfree(tb); 1978 } 1979 1980 void fib_free_table(struct fib_table *tb) 1981 { 1982 call_rcu(&tb->rcu, __trie_free_rcu); 1983 } 1984 1985 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1986 struct sk_buff *skb, struct netlink_callback *cb) 1987 { 1988 __be32 xkey = htonl(l->key); 1989 struct fib_alias *fa; 1990 int i, s_i; 1991 1992 s_i = cb->args[4]; 1993 i = 0; 1994 1995 /* rcu_read_lock is hold by caller */ 1996 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1997 int err; 1998 1999 if (i < s_i) { 2000 i++; 2001 continue; 2002 } 2003 2004 if (tb->tb_id != fa->tb_id) { 2005 i++; 2006 continue; 2007 } 2008 2009 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2010 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2011 tb->tb_id, fa->fa_type, 2012 xkey, KEYLENGTH - fa->fa_slen, 2013 fa->fa_tos, fa->fa_info, NLM_F_MULTI); 2014 if (err < 0) { 2015 cb->args[4] = i; 2016 return err; 2017 } 2018 i++; 2019 } 2020 2021 cb->args[4] = i; 2022 return skb->len; 2023 } 2024 2025 /* rcu_read_lock needs to be hold by caller from readside */ 2026 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2027 struct netlink_callback *cb) 2028 { 2029 struct trie *t = (struct trie *)tb->tb_data; 2030 struct key_vector *l, *tp = t->kv; 2031 /* Dump starting at last key. 2032 * Note: 0.0.0.0/0 (ie default) is first key. 2033 */ 2034 int count = cb->args[2]; 2035 t_key key = cb->args[3]; 2036 2037 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2038 int err; 2039 2040 err = fn_trie_dump_leaf(l, tb, skb, cb); 2041 if (err < 0) { 2042 cb->args[3] = key; 2043 cb->args[2] = count; 2044 return err; 2045 } 2046 2047 ++count; 2048 key = l->key + 1; 2049 2050 memset(&cb->args[4], 0, 2051 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2052 2053 /* stop loop if key wrapped back to 0 */ 2054 if (key < l->key) 2055 break; 2056 } 2057 2058 cb->args[3] = key; 2059 cb->args[2] = count; 2060 2061 return skb->len; 2062 } 2063 2064 void __init fib_trie_init(void) 2065 { 2066 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2067 sizeof(struct fib_alias), 2068 0, SLAB_PANIC, NULL); 2069 2070 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2071 LEAF_SIZE, 2072 0, SLAB_PANIC, NULL); 2073 } 2074 2075 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2076 { 2077 struct fib_table *tb; 2078 struct trie *t; 2079 size_t sz = sizeof(*tb); 2080 2081 if (!alias) 2082 sz += sizeof(struct trie); 2083 2084 tb = kzalloc(sz, GFP_KERNEL); 2085 if (!tb) 2086 return NULL; 2087 2088 tb->tb_id = id; 2089 tb->tb_num_default = 0; 2090 tb->tb_data = (alias ? alias->__data : tb->__data); 2091 2092 if (alias) 2093 return tb; 2094 2095 t = (struct trie *) tb->tb_data; 2096 t->kv[0].pos = KEYLENGTH; 2097 t->kv[0].slen = KEYLENGTH; 2098 #ifdef CONFIG_IP_FIB_TRIE_STATS 2099 t->stats = alloc_percpu(struct trie_use_stats); 2100 if (!t->stats) { 2101 kfree(tb); 2102 tb = NULL; 2103 } 2104 #endif 2105 2106 return tb; 2107 } 2108 2109 #ifdef CONFIG_PROC_FS 2110 /* Depth first Trie walk iterator */ 2111 struct fib_trie_iter { 2112 struct seq_net_private p; 2113 struct fib_table *tb; 2114 struct key_vector *tnode; 2115 unsigned int index; 2116 unsigned int depth; 2117 }; 2118 2119 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2120 { 2121 unsigned long cindex = iter->index; 2122 struct key_vector *pn = iter->tnode; 2123 t_key pkey; 2124 2125 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2126 iter->tnode, iter->index, iter->depth); 2127 2128 while (!IS_TRIE(pn)) { 2129 while (cindex < child_length(pn)) { 2130 struct key_vector *n = get_child_rcu(pn, cindex++); 2131 2132 if (!n) 2133 continue; 2134 2135 if (IS_LEAF(n)) { 2136 iter->tnode = pn; 2137 iter->index = cindex; 2138 } else { 2139 /* push down one level */ 2140 iter->tnode = n; 2141 iter->index = 0; 2142 ++iter->depth; 2143 } 2144 2145 return n; 2146 } 2147 2148 /* Current node exhausted, pop back up */ 2149 pkey = pn->key; 2150 pn = node_parent_rcu(pn); 2151 cindex = get_index(pkey, pn) + 1; 2152 --iter->depth; 2153 } 2154 2155 /* record root node so further searches know we are done */ 2156 iter->tnode = pn; 2157 iter->index = 0; 2158 2159 return NULL; 2160 } 2161 2162 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2163 struct trie *t) 2164 { 2165 struct key_vector *n, *pn; 2166 2167 if (!t) 2168 return NULL; 2169 2170 pn = t->kv; 2171 n = rcu_dereference(pn->tnode[0]); 2172 if (!n) 2173 return NULL; 2174 2175 if (IS_TNODE(n)) { 2176 iter->tnode = n; 2177 iter->index = 0; 2178 iter->depth = 1; 2179 } else { 2180 iter->tnode = pn; 2181 iter->index = 0; 2182 iter->depth = 0; 2183 } 2184 2185 return n; 2186 } 2187 2188 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2189 { 2190 struct key_vector *n; 2191 struct fib_trie_iter iter; 2192 2193 memset(s, 0, sizeof(*s)); 2194 2195 rcu_read_lock(); 2196 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2197 if (IS_LEAF(n)) { 2198 struct fib_alias *fa; 2199 2200 s->leaves++; 2201 s->totdepth += iter.depth; 2202 if (iter.depth > s->maxdepth) 2203 s->maxdepth = iter.depth; 2204 2205 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2206 ++s->prefixes; 2207 } else { 2208 s->tnodes++; 2209 if (n->bits < MAX_STAT_DEPTH) 2210 s->nodesizes[n->bits]++; 2211 s->nullpointers += tn_info(n)->empty_children; 2212 } 2213 } 2214 rcu_read_unlock(); 2215 } 2216 2217 /* 2218 * This outputs /proc/net/fib_triestats 2219 */ 2220 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2221 { 2222 unsigned int i, max, pointers, bytes, avdepth; 2223 2224 if (stat->leaves) 2225 avdepth = stat->totdepth*100 / stat->leaves; 2226 else 2227 avdepth = 0; 2228 2229 seq_printf(seq, "\tAver depth: %u.%02d\n", 2230 avdepth / 100, avdepth % 100); 2231 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2232 2233 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2234 bytes = LEAF_SIZE * stat->leaves; 2235 2236 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2237 bytes += sizeof(struct fib_alias) * stat->prefixes; 2238 2239 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2240 bytes += TNODE_SIZE(0) * stat->tnodes; 2241 2242 max = MAX_STAT_DEPTH; 2243 while (max > 0 && stat->nodesizes[max-1] == 0) 2244 max--; 2245 2246 pointers = 0; 2247 for (i = 1; i < max; i++) 2248 if (stat->nodesizes[i] != 0) { 2249 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2250 pointers += (1<<i) * stat->nodesizes[i]; 2251 } 2252 seq_putc(seq, '\n'); 2253 seq_printf(seq, "\tPointers: %u\n", pointers); 2254 2255 bytes += sizeof(struct key_vector *) * pointers; 2256 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2257 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2258 } 2259 2260 #ifdef CONFIG_IP_FIB_TRIE_STATS 2261 static void trie_show_usage(struct seq_file *seq, 2262 const struct trie_use_stats __percpu *stats) 2263 { 2264 struct trie_use_stats s = { 0 }; 2265 int cpu; 2266 2267 /* loop through all of the CPUs and gather up the stats */ 2268 for_each_possible_cpu(cpu) { 2269 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2270 2271 s.gets += pcpu->gets; 2272 s.backtrack += pcpu->backtrack; 2273 s.semantic_match_passed += pcpu->semantic_match_passed; 2274 s.semantic_match_miss += pcpu->semantic_match_miss; 2275 s.null_node_hit += pcpu->null_node_hit; 2276 s.resize_node_skipped += pcpu->resize_node_skipped; 2277 } 2278 2279 seq_printf(seq, "\nCounters:\n---------\n"); 2280 seq_printf(seq, "gets = %u\n", s.gets); 2281 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2282 seq_printf(seq, "semantic match passed = %u\n", 2283 s.semantic_match_passed); 2284 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2285 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2286 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2287 } 2288 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2289 2290 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2291 { 2292 if (tb->tb_id == RT_TABLE_LOCAL) 2293 seq_puts(seq, "Local:\n"); 2294 else if (tb->tb_id == RT_TABLE_MAIN) 2295 seq_puts(seq, "Main:\n"); 2296 else 2297 seq_printf(seq, "Id %d:\n", tb->tb_id); 2298 } 2299 2300 2301 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2302 { 2303 struct net *net = (struct net *)seq->private; 2304 unsigned int h; 2305 2306 seq_printf(seq, 2307 "Basic info: size of leaf:" 2308 " %zd bytes, size of tnode: %zd bytes.\n", 2309 LEAF_SIZE, TNODE_SIZE(0)); 2310 2311 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2312 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2313 struct fib_table *tb; 2314 2315 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2316 struct trie *t = (struct trie *) tb->tb_data; 2317 struct trie_stat stat; 2318 2319 if (!t) 2320 continue; 2321 2322 fib_table_print(seq, tb); 2323 2324 trie_collect_stats(t, &stat); 2325 trie_show_stats(seq, &stat); 2326 #ifdef CONFIG_IP_FIB_TRIE_STATS 2327 trie_show_usage(seq, t->stats); 2328 #endif 2329 } 2330 } 2331 2332 return 0; 2333 } 2334 2335 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2336 { 2337 return single_open_net(inode, file, fib_triestat_seq_show); 2338 } 2339 2340 static const struct file_operations fib_triestat_fops = { 2341 .owner = THIS_MODULE, 2342 .open = fib_triestat_seq_open, 2343 .read = seq_read, 2344 .llseek = seq_lseek, 2345 .release = single_release_net, 2346 }; 2347 2348 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2349 { 2350 struct fib_trie_iter *iter = seq->private; 2351 struct net *net = seq_file_net(seq); 2352 loff_t idx = 0; 2353 unsigned int h; 2354 2355 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2356 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2357 struct fib_table *tb; 2358 2359 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2360 struct key_vector *n; 2361 2362 for (n = fib_trie_get_first(iter, 2363 (struct trie *) tb->tb_data); 2364 n; n = fib_trie_get_next(iter)) 2365 if (pos == idx++) { 2366 iter->tb = tb; 2367 return n; 2368 } 2369 } 2370 } 2371 2372 return NULL; 2373 } 2374 2375 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2376 __acquires(RCU) 2377 { 2378 rcu_read_lock(); 2379 return fib_trie_get_idx(seq, *pos); 2380 } 2381 2382 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2383 { 2384 struct fib_trie_iter *iter = seq->private; 2385 struct net *net = seq_file_net(seq); 2386 struct fib_table *tb = iter->tb; 2387 struct hlist_node *tb_node; 2388 unsigned int h; 2389 struct key_vector *n; 2390 2391 ++*pos; 2392 /* next node in same table */ 2393 n = fib_trie_get_next(iter); 2394 if (n) 2395 return n; 2396 2397 /* walk rest of this hash chain */ 2398 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2399 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2400 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2401 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2402 if (n) 2403 goto found; 2404 } 2405 2406 /* new hash chain */ 2407 while (++h < FIB_TABLE_HASHSZ) { 2408 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2409 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2410 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2411 if (n) 2412 goto found; 2413 } 2414 } 2415 return NULL; 2416 2417 found: 2418 iter->tb = tb; 2419 return n; 2420 } 2421 2422 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2423 __releases(RCU) 2424 { 2425 rcu_read_unlock(); 2426 } 2427 2428 static void seq_indent(struct seq_file *seq, int n) 2429 { 2430 while (n-- > 0) 2431 seq_puts(seq, " "); 2432 } 2433 2434 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2435 { 2436 switch (s) { 2437 case RT_SCOPE_UNIVERSE: return "universe"; 2438 case RT_SCOPE_SITE: return "site"; 2439 case RT_SCOPE_LINK: return "link"; 2440 case RT_SCOPE_HOST: return "host"; 2441 case RT_SCOPE_NOWHERE: return "nowhere"; 2442 default: 2443 snprintf(buf, len, "scope=%d", s); 2444 return buf; 2445 } 2446 } 2447 2448 static const char *const rtn_type_names[__RTN_MAX] = { 2449 [RTN_UNSPEC] = "UNSPEC", 2450 [RTN_UNICAST] = "UNICAST", 2451 [RTN_LOCAL] = "LOCAL", 2452 [RTN_BROADCAST] = "BROADCAST", 2453 [RTN_ANYCAST] = "ANYCAST", 2454 [RTN_MULTICAST] = "MULTICAST", 2455 [RTN_BLACKHOLE] = "BLACKHOLE", 2456 [RTN_UNREACHABLE] = "UNREACHABLE", 2457 [RTN_PROHIBIT] = "PROHIBIT", 2458 [RTN_THROW] = "THROW", 2459 [RTN_NAT] = "NAT", 2460 [RTN_XRESOLVE] = "XRESOLVE", 2461 }; 2462 2463 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2464 { 2465 if (t < __RTN_MAX && rtn_type_names[t]) 2466 return rtn_type_names[t]; 2467 snprintf(buf, len, "type %u", t); 2468 return buf; 2469 } 2470 2471 /* Pretty print the trie */ 2472 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2473 { 2474 const struct fib_trie_iter *iter = seq->private; 2475 struct key_vector *n = v; 2476 2477 if (IS_TRIE(node_parent_rcu(n))) 2478 fib_table_print(seq, iter->tb); 2479 2480 if (IS_TNODE(n)) { 2481 __be32 prf = htonl(n->key); 2482 2483 seq_indent(seq, iter->depth-1); 2484 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2485 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2486 tn_info(n)->full_children, 2487 tn_info(n)->empty_children); 2488 } else { 2489 __be32 val = htonl(n->key); 2490 struct fib_alias *fa; 2491 2492 seq_indent(seq, iter->depth); 2493 seq_printf(seq, " |-- %pI4\n", &val); 2494 2495 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2496 char buf1[32], buf2[32]; 2497 2498 seq_indent(seq, iter->depth + 1); 2499 seq_printf(seq, " /%zu %s %s", 2500 KEYLENGTH - fa->fa_slen, 2501 rtn_scope(buf1, sizeof(buf1), 2502 fa->fa_info->fib_scope), 2503 rtn_type(buf2, sizeof(buf2), 2504 fa->fa_type)); 2505 if (fa->fa_tos) 2506 seq_printf(seq, " tos=%d", fa->fa_tos); 2507 seq_putc(seq, '\n'); 2508 } 2509 } 2510 2511 return 0; 2512 } 2513 2514 static const struct seq_operations fib_trie_seq_ops = { 2515 .start = fib_trie_seq_start, 2516 .next = fib_trie_seq_next, 2517 .stop = fib_trie_seq_stop, 2518 .show = fib_trie_seq_show, 2519 }; 2520 2521 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2522 { 2523 return seq_open_net(inode, file, &fib_trie_seq_ops, 2524 sizeof(struct fib_trie_iter)); 2525 } 2526 2527 static const struct file_operations fib_trie_fops = { 2528 .owner = THIS_MODULE, 2529 .open = fib_trie_seq_open, 2530 .read = seq_read, 2531 .llseek = seq_lseek, 2532 .release = seq_release_net, 2533 }; 2534 2535 struct fib_route_iter { 2536 struct seq_net_private p; 2537 struct fib_table *main_tb; 2538 struct key_vector *tnode; 2539 loff_t pos; 2540 t_key key; 2541 }; 2542 2543 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2544 loff_t pos) 2545 { 2546 struct key_vector *l, **tp = &iter->tnode; 2547 t_key key; 2548 2549 /* use cached location of previously found key */ 2550 if (iter->pos > 0 && pos >= iter->pos) { 2551 key = iter->key; 2552 } else { 2553 iter->pos = 1; 2554 key = 0; 2555 } 2556 2557 pos -= iter->pos; 2558 2559 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2560 key = l->key + 1; 2561 iter->pos++; 2562 l = NULL; 2563 2564 /* handle unlikely case of a key wrap */ 2565 if (!key) 2566 break; 2567 } 2568 2569 if (l) 2570 iter->key = l->key; /* remember it */ 2571 else 2572 iter->pos = 0; /* forget it */ 2573 2574 return l; 2575 } 2576 2577 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2578 __acquires(RCU) 2579 { 2580 struct fib_route_iter *iter = seq->private; 2581 struct fib_table *tb; 2582 struct trie *t; 2583 2584 rcu_read_lock(); 2585 2586 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2587 if (!tb) 2588 return NULL; 2589 2590 iter->main_tb = tb; 2591 t = (struct trie *)tb->tb_data; 2592 iter->tnode = t->kv; 2593 2594 if (*pos != 0) 2595 return fib_route_get_idx(iter, *pos); 2596 2597 iter->pos = 0; 2598 iter->key = KEY_MAX; 2599 2600 return SEQ_START_TOKEN; 2601 } 2602 2603 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2604 { 2605 struct fib_route_iter *iter = seq->private; 2606 struct key_vector *l = NULL; 2607 t_key key = iter->key + 1; 2608 2609 ++*pos; 2610 2611 /* only allow key of 0 for start of sequence */ 2612 if ((v == SEQ_START_TOKEN) || key) 2613 l = leaf_walk_rcu(&iter->tnode, key); 2614 2615 if (l) { 2616 iter->key = l->key; 2617 iter->pos++; 2618 } else { 2619 iter->pos = 0; 2620 } 2621 2622 return l; 2623 } 2624 2625 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2626 __releases(RCU) 2627 { 2628 rcu_read_unlock(); 2629 } 2630 2631 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2632 { 2633 unsigned int flags = 0; 2634 2635 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2636 flags = RTF_REJECT; 2637 if (fi && fi->fib_nh->nh_gw) 2638 flags |= RTF_GATEWAY; 2639 if (mask == htonl(0xFFFFFFFF)) 2640 flags |= RTF_HOST; 2641 flags |= RTF_UP; 2642 return flags; 2643 } 2644 2645 /* 2646 * This outputs /proc/net/route. 2647 * The format of the file is not supposed to be changed 2648 * and needs to be same as fib_hash output to avoid breaking 2649 * legacy utilities 2650 */ 2651 static int fib_route_seq_show(struct seq_file *seq, void *v) 2652 { 2653 struct fib_route_iter *iter = seq->private; 2654 struct fib_table *tb = iter->main_tb; 2655 struct fib_alias *fa; 2656 struct key_vector *l = v; 2657 __be32 prefix; 2658 2659 if (v == SEQ_START_TOKEN) { 2660 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2661 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2662 "\tWindow\tIRTT"); 2663 return 0; 2664 } 2665 2666 prefix = htonl(l->key); 2667 2668 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2669 const struct fib_info *fi = fa->fa_info; 2670 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2671 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2672 2673 if ((fa->fa_type == RTN_BROADCAST) || 2674 (fa->fa_type == RTN_MULTICAST)) 2675 continue; 2676 2677 if (fa->tb_id != tb->tb_id) 2678 continue; 2679 2680 seq_setwidth(seq, 127); 2681 2682 if (fi) 2683 seq_printf(seq, 2684 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2685 "%d\t%08X\t%d\t%u\t%u", 2686 fi->fib_dev ? fi->fib_dev->name : "*", 2687 prefix, 2688 fi->fib_nh->nh_gw, flags, 0, 0, 2689 fi->fib_priority, 2690 mask, 2691 (fi->fib_advmss ? 2692 fi->fib_advmss + 40 : 0), 2693 fi->fib_window, 2694 fi->fib_rtt >> 3); 2695 else 2696 seq_printf(seq, 2697 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2698 "%d\t%08X\t%d\t%u\t%u", 2699 prefix, 0, flags, 0, 0, 0, 2700 mask, 0, 0, 0); 2701 2702 seq_pad(seq, '\n'); 2703 } 2704 2705 return 0; 2706 } 2707 2708 static const struct seq_operations fib_route_seq_ops = { 2709 .start = fib_route_seq_start, 2710 .next = fib_route_seq_next, 2711 .stop = fib_route_seq_stop, 2712 .show = fib_route_seq_show, 2713 }; 2714 2715 static int fib_route_seq_open(struct inode *inode, struct file *file) 2716 { 2717 return seq_open_net(inode, file, &fib_route_seq_ops, 2718 sizeof(struct fib_route_iter)); 2719 } 2720 2721 static const struct file_operations fib_route_fops = { 2722 .owner = THIS_MODULE, 2723 .open = fib_route_seq_open, 2724 .read = seq_read, 2725 .llseek = seq_lseek, 2726 .release = seq_release_net, 2727 }; 2728 2729 int __net_init fib_proc_init(struct net *net) 2730 { 2731 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2732 goto out1; 2733 2734 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2735 &fib_triestat_fops)) 2736 goto out2; 2737 2738 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2739 goto out3; 2740 2741 return 0; 2742 2743 out3: 2744 remove_proc_entry("fib_triestat", net->proc_net); 2745 out2: 2746 remove_proc_entry("fib_trie", net->proc_net); 2747 out1: 2748 return -ENOMEM; 2749 } 2750 2751 void __net_exit fib_proc_exit(struct net *net) 2752 { 2753 remove_proc_entry("fib_trie", net->proc_net); 2754 remove_proc_entry("fib_triestat", net->proc_net); 2755 remove_proc_entry("route", net->proc_net); 2756 } 2757 2758 #endif /* CONFIG_PROC_FS */ 2759