1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <net/net_namespace.h> 76 #include <net/ip.h> 77 #include <net/protocol.h> 78 #include <net/route.h> 79 #include <net/tcp.h> 80 #include <net/sock.h> 81 #include <net/ip_fib.h> 82 #include "fib_lookup.h" 83 84 #define MAX_STAT_DEPTH 32 85 86 #define KEYLENGTH (8*sizeof(t_key)) 87 88 typedef unsigned int t_key; 89 90 #define T_TNODE 0 91 #define T_LEAF 1 92 #define NODE_TYPE_MASK 0x1UL 93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 94 95 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 96 #define IS_LEAF(n) (n->parent & T_LEAF) 97 98 struct rt_trie_node { 99 unsigned long parent; 100 t_key key; 101 }; 102 103 struct leaf { 104 unsigned long parent; 105 t_key key; 106 struct hlist_head list; 107 struct rcu_head rcu; 108 }; 109 110 struct leaf_info { 111 struct hlist_node hlist; 112 int plen; 113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 114 struct list_head falh; 115 struct rcu_head rcu; 116 }; 117 118 struct tnode { 119 unsigned long parent; 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned int full_children; /* KEYLENGTH bits needed */ 124 unsigned int empty_children; /* KEYLENGTH bits needed */ 125 union { 126 struct rcu_head rcu; 127 struct tnode *tnode_free; 128 }; 129 struct rt_trie_node __rcu *child[0]; 130 }; 131 132 #ifdef CONFIG_IP_FIB_TRIE_STATS 133 struct trie_use_stats { 134 unsigned int gets; 135 unsigned int backtrack; 136 unsigned int semantic_match_passed; 137 unsigned int semantic_match_miss; 138 unsigned int null_node_hit; 139 unsigned int resize_node_skipped; 140 }; 141 #endif 142 143 struct trie_stat { 144 unsigned int totdepth; 145 unsigned int maxdepth; 146 unsigned int tnodes; 147 unsigned int leaves; 148 unsigned int nullpointers; 149 unsigned int prefixes; 150 unsigned int nodesizes[MAX_STAT_DEPTH]; 151 }; 152 153 struct trie { 154 struct rt_trie_node __rcu *trie; 155 #ifdef CONFIG_IP_FIB_TRIE_STATS 156 struct trie_use_stats stats; 157 #endif 158 }; 159 160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 161 int wasfull); 162 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 163 static struct tnode *inflate(struct trie *t, struct tnode *tn); 164 static struct tnode *halve(struct trie *t, struct tnode *tn); 165 /* tnodes to free after resize(); protected by RTNL */ 166 static struct tnode *tnode_free_head; 167 static size_t tnode_free_size; 168 169 /* 170 * synchronize_rcu after call_rcu for that many pages; it should be especially 171 * useful before resizing the root node with PREEMPT_NONE configs; the value was 172 * obtained experimentally, aiming to avoid visible slowdown. 173 */ 174 static const int sync_pages = 128; 175 176 static struct kmem_cache *fn_alias_kmem __read_mostly; 177 static struct kmem_cache *trie_leaf_kmem __read_mostly; 178 179 /* 180 * caller must hold RTNL 181 */ 182 static inline struct tnode *node_parent(const struct rt_trie_node *node) 183 { 184 unsigned long parent; 185 186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 187 188 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 189 } 190 191 /* 192 * caller must hold RCU read lock or RTNL 193 */ 194 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 195 { 196 unsigned long parent; 197 198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 199 lockdep_rtnl_is_held()); 200 201 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 202 } 203 204 /* Same as rcu_assign_pointer 205 * but that macro() assumes that value is a pointer. 206 */ 207 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 208 { 209 smp_wmb(); 210 node->parent = (unsigned long)ptr | NODE_TYPE(node); 211 } 212 213 /* 214 * caller must hold RTNL 215 */ 216 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 217 { 218 BUG_ON(i >= 1U << tn->bits); 219 220 return rtnl_dereference(tn->child[i]); 221 } 222 223 /* 224 * caller must hold RCU read lock or RTNL 225 */ 226 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 227 { 228 BUG_ON(i >= 1U << tn->bits); 229 230 return rcu_dereference_rtnl(tn->child[i]); 231 } 232 233 static inline int tnode_child_length(const struct tnode *tn) 234 { 235 return 1 << tn->bits; 236 } 237 238 static inline t_key mask_pfx(t_key k, unsigned int l) 239 { 240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 241 } 242 243 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 244 { 245 if (offset < KEYLENGTH) 246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 247 else 248 return 0; 249 } 250 251 static inline int tkey_equals(t_key a, t_key b) 252 { 253 return a == b; 254 } 255 256 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 257 { 258 if (bits == 0 || offset >= KEYLENGTH) 259 return 1; 260 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 262 } 263 264 static inline int tkey_mismatch(t_key a, int offset, t_key b) 265 { 266 t_key diff = a ^ b; 267 int i = offset; 268 269 if (!diff) 270 return 0; 271 while ((diff << i) >> (KEYLENGTH-1) == 0) 272 i++; 273 return i; 274 } 275 276 /* 277 To understand this stuff, an understanding of keys and all their bits is 278 necessary. Every node in the trie has a key associated with it, but not 279 all of the bits in that key are significant. 280 281 Consider a node 'n' and its parent 'tp'. 282 283 If n is a leaf, every bit in its key is significant. Its presence is 284 necessitated by path compression, since during a tree traversal (when 285 searching for a leaf - unless we are doing an insertion) we will completely 286 ignore all skipped bits we encounter. Thus we need to verify, at the end of 287 a potentially successful search, that we have indeed been walking the 288 correct key path. 289 290 Note that we can never "miss" the correct key in the tree if present by 291 following the wrong path. Path compression ensures that segments of the key 292 that are the same for all keys with a given prefix are skipped, but the 293 skipped part *is* identical for each node in the subtrie below the skipped 294 bit! trie_insert() in this implementation takes care of that - note the 295 call to tkey_sub_equals() in trie_insert(). 296 297 if n is an internal node - a 'tnode' here, the various parts of its key 298 have many different meanings. 299 300 Example: 301 _________________________________________________________________ 302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 303 ----------------------------------------------------------------- 304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 305 306 _________________________________________________________________ 307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 308 ----------------------------------------------------------------- 309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 310 311 tp->pos = 7 312 tp->bits = 3 313 n->pos = 15 314 n->bits = 4 315 316 First, let's just ignore the bits that come before the parent tp, that is 317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 318 not use them for anything. 319 320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 321 index into the parent's child array. That is, they will be used to find 322 'n' among tp's children. 323 324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 325 for the node n. 326 327 All the bits we have seen so far are significant to the node n. The rest 328 of the bits are really not needed or indeed known in n->key. 329 330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 331 n's child array, and will of course be different for each child. 332 333 334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 335 at this point. 336 337 */ 338 339 static inline void check_tnode(const struct tnode *tn) 340 { 341 WARN_ON(tn && tn->pos+tn->bits > 32); 342 } 343 344 static const int halve_threshold = 25; 345 static const int inflate_threshold = 50; 346 static const int halve_threshold_root = 15; 347 static const int inflate_threshold_root = 30; 348 349 static void __alias_free_mem(struct rcu_head *head) 350 { 351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 352 kmem_cache_free(fn_alias_kmem, fa); 353 } 354 355 static inline void alias_free_mem_rcu(struct fib_alias *fa) 356 { 357 call_rcu(&fa->rcu, __alias_free_mem); 358 } 359 360 static void __leaf_free_rcu(struct rcu_head *head) 361 { 362 struct leaf *l = container_of(head, struct leaf, rcu); 363 kmem_cache_free(trie_leaf_kmem, l); 364 } 365 366 static inline void free_leaf(struct leaf *l) 367 { 368 call_rcu(&l->rcu, __leaf_free_rcu); 369 } 370 371 static inline void free_leaf_info(struct leaf_info *leaf) 372 { 373 kfree_rcu(leaf, rcu); 374 } 375 376 static struct tnode *tnode_alloc(size_t size) 377 { 378 if (size <= PAGE_SIZE) 379 return kzalloc(size, GFP_KERNEL); 380 else 381 return vzalloc(size); 382 } 383 384 static void __tnode_free_rcu(struct rcu_head *head) 385 { 386 struct tnode *tn = container_of(head, struct tnode, rcu); 387 size_t size = sizeof(struct tnode) + 388 (sizeof(struct rt_trie_node *) << tn->bits); 389 390 if (size <= PAGE_SIZE) 391 kfree(tn); 392 else 393 vfree(tn); 394 } 395 396 static inline void tnode_free(struct tnode *tn) 397 { 398 if (IS_LEAF(tn)) 399 free_leaf((struct leaf *) tn); 400 else 401 call_rcu(&tn->rcu, __tnode_free_rcu); 402 } 403 404 static void tnode_free_safe(struct tnode *tn) 405 { 406 BUG_ON(IS_LEAF(tn)); 407 tn->tnode_free = tnode_free_head; 408 tnode_free_head = tn; 409 tnode_free_size += sizeof(struct tnode) + 410 (sizeof(struct rt_trie_node *) << tn->bits); 411 } 412 413 static void tnode_free_flush(void) 414 { 415 struct tnode *tn; 416 417 while ((tn = tnode_free_head)) { 418 tnode_free_head = tn->tnode_free; 419 tn->tnode_free = NULL; 420 tnode_free(tn); 421 } 422 423 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 424 tnode_free_size = 0; 425 synchronize_rcu(); 426 } 427 } 428 429 static struct leaf *leaf_new(void) 430 { 431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 432 if (l) { 433 l->parent = T_LEAF; 434 INIT_HLIST_HEAD(&l->list); 435 } 436 return l; 437 } 438 439 static struct leaf_info *leaf_info_new(int plen) 440 { 441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 442 if (li) { 443 li->plen = plen; 444 li->mask_plen = ntohl(inet_make_mask(plen)); 445 INIT_LIST_HEAD(&li->falh); 446 } 447 return li; 448 } 449 450 static struct tnode *tnode_new(t_key key, int pos, int bits) 451 { 452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 453 struct tnode *tn = tnode_alloc(sz); 454 455 if (tn) { 456 tn->parent = T_TNODE; 457 tn->pos = pos; 458 tn->bits = bits; 459 tn->key = key; 460 tn->full_children = 0; 461 tn->empty_children = 1<<bits; 462 } 463 464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 465 sizeof(struct rt_trie_node *) << bits); 466 return tn; 467 } 468 469 /* 470 * Check whether a tnode 'n' is "full", i.e. it is an internal node 471 * and no bits are skipped. See discussion in dyntree paper p. 6 472 */ 473 474 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 475 { 476 if (n == NULL || IS_LEAF(n)) 477 return 0; 478 479 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 480 } 481 482 static inline void put_child(struct tnode *tn, int i, 483 struct rt_trie_node *n) 484 { 485 tnode_put_child_reorg(tn, i, n, -1); 486 } 487 488 /* 489 * Add a child at position i overwriting the old value. 490 * Update the value of full_children and empty_children. 491 */ 492 493 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 494 int wasfull) 495 { 496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 497 int isfull; 498 499 BUG_ON(i >= 1<<tn->bits); 500 501 /* update emptyChildren */ 502 if (n == NULL && chi != NULL) 503 tn->empty_children++; 504 else if (n != NULL && chi == NULL) 505 tn->empty_children--; 506 507 /* update fullChildren */ 508 if (wasfull == -1) 509 wasfull = tnode_full(tn, chi); 510 511 isfull = tnode_full(tn, n); 512 if (wasfull && !isfull) 513 tn->full_children--; 514 else if (!wasfull && isfull) 515 tn->full_children++; 516 517 if (n) 518 node_set_parent(n, tn); 519 520 rcu_assign_pointer(tn->child[i], n); 521 } 522 523 #define MAX_WORK 10 524 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 525 { 526 int i; 527 struct tnode *old_tn; 528 int inflate_threshold_use; 529 int halve_threshold_use; 530 int max_work; 531 532 if (!tn) 533 return NULL; 534 535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 536 tn, inflate_threshold, halve_threshold); 537 538 /* No children */ 539 if (tn->empty_children == tnode_child_length(tn)) { 540 tnode_free_safe(tn); 541 return NULL; 542 } 543 /* One child */ 544 if (tn->empty_children == tnode_child_length(tn) - 1) 545 goto one_child; 546 /* 547 * Double as long as the resulting node has a number of 548 * nonempty nodes that are above the threshold. 549 */ 550 551 /* 552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 553 * the Helsinki University of Technology and Matti Tikkanen of Nokia 554 * Telecommunications, page 6: 555 * "A node is doubled if the ratio of non-empty children to all 556 * children in the *doubled* node is at least 'high'." 557 * 558 * 'high' in this instance is the variable 'inflate_threshold'. It 559 * is expressed as a percentage, so we multiply it with 560 * tnode_child_length() and instead of multiplying by 2 (since the 561 * child array will be doubled by inflate()) and multiplying 562 * the left-hand side by 100 (to handle the percentage thing) we 563 * multiply the left-hand side by 50. 564 * 565 * The left-hand side may look a bit weird: tnode_child_length(tn) 566 * - tn->empty_children is of course the number of non-null children 567 * in the current node. tn->full_children is the number of "full" 568 * children, that is non-null tnodes with a skip value of 0. 569 * All of those will be doubled in the resulting inflated tnode, so 570 * we just count them one extra time here. 571 * 572 * A clearer way to write this would be: 573 * 574 * to_be_doubled = tn->full_children; 575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 576 * tn->full_children; 577 * 578 * new_child_length = tnode_child_length(tn) * 2; 579 * 580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 581 * new_child_length; 582 * if (new_fill_factor >= inflate_threshold) 583 * 584 * ...and so on, tho it would mess up the while () loop. 585 * 586 * anyway, 587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 588 * inflate_threshold 589 * 590 * avoid a division: 591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 592 * inflate_threshold * new_child_length 593 * 594 * expand not_to_be_doubled and to_be_doubled, and shorten: 595 * 100 * (tnode_child_length(tn) - tn->empty_children + 596 * tn->full_children) >= inflate_threshold * new_child_length 597 * 598 * expand new_child_length: 599 * 100 * (tnode_child_length(tn) - tn->empty_children + 600 * tn->full_children) >= 601 * inflate_threshold * tnode_child_length(tn) * 2 602 * 603 * shorten again: 604 * 50 * (tn->full_children + tnode_child_length(tn) - 605 * tn->empty_children) >= inflate_threshold * 606 * tnode_child_length(tn) 607 * 608 */ 609 610 check_tnode(tn); 611 612 /* Keep root node larger */ 613 614 if (!node_parent((struct rt_trie_node *)tn)) { 615 inflate_threshold_use = inflate_threshold_root; 616 halve_threshold_use = halve_threshold_root; 617 } else { 618 inflate_threshold_use = inflate_threshold; 619 halve_threshold_use = halve_threshold; 620 } 621 622 max_work = MAX_WORK; 623 while ((tn->full_children > 0 && max_work-- && 624 50 * (tn->full_children + tnode_child_length(tn) 625 - tn->empty_children) 626 >= inflate_threshold_use * tnode_child_length(tn))) { 627 628 old_tn = tn; 629 tn = inflate(t, tn); 630 631 if (IS_ERR(tn)) { 632 tn = old_tn; 633 #ifdef CONFIG_IP_FIB_TRIE_STATS 634 t->stats.resize_node_skipped++; 635 #endif 636 break; 637 } 638 } 639 640 check_tnode(tn); 641 642 /* Return if at least one inflate is run */ 643 if (max_work != MAX_WORK) 644 return (struct rt_trie_node *) tn; 645 646 /* 647 * Halve as long as the number of empty children in this 648 * node is above threshold. 649 */ 650 651 max_work = MAX_WORK; 652 while (tn->bits > 1 && max_work-- && 653 100 * (tnode_child_length(tn) - tn->empty_children) < 654 halve_threshold_use * tnode_child_length(tn)) { 655 656 old_tn = tn; 657 tn = halve(t, tn); 658 if (IS_ERR(tn)) { 659 tn = old_tn; 660 #ifdef CONFIG_IP_FIB_TRIE_STATS 661 t->stats.resize_node_skipped++; 662 #endif 663 break; 664 } 665 } 666 667 668 /* Only one child remains */ 669 if (tn->empty_children == tnode_child_length(tn) - 1) { 670 one_child: 671 for (i = 0; i < tnode_child_length(tn); i++) { 672 struct rt_trie_node *n; 673 674 n = rtnl_dereference(tn->child[i]); 675 if (!n) 676 continue; 677 678 /* compress one level */ 679 680 node_set_parent(n, NULL); 681 tnode_free_safe(tn); 682 return n; 683 } 684 } 685 return (struct rt_trie_node *) tn; 686 } 687 688 689 static void tnode_clean_free(struct tnode *tn) 690 { 691 int i; 692 struct tnode *tofree; 693 694 for (i = 0; i < tnode_child_length(tn); i++) { 695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 696 if (tofree) 697 tnode_free(tofree); 698 } 699 tnode_free(tn); 700 } 701 702 static struct tnode *inflate(struct trie *t, struct tnode *tn) 703 { 704 struct tnode *oldtnode = tn; 705 int olen = tnode_child_length(tn); 706 int i; 707 708 pr_debug("In inflate\n"); 709 710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 711 712 if (!tn) 713 return ERR_PTR(-ENOMEM); 714 715 /* 716 * Preallocate and store tnodes before the actual work so we 717 * don't get into an inconsistent state if memory allocation 718 * fails. In case of failure we return the oldnode and inflate 719 * of tnode is ignored. 720 */ 721 722 for (i = 0; i < olen; i++) { 723 struct tnode *inode; 724 725 inode = (struct tnode *) tnode_get_child(oldtnode, i); 726 if (inode && 727 IS_TNODE(inode) && 728 inode->pos == oldtnode->pos + oldtnode->bits && 729 inode->bits > 1) { 730 struct tnode *left, *right; 731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 732 733 left = tnode_new(inode->key&(~m), inode->pos + 1, 734 inode->bits - 1); 735 if (!left) 736 goto nomem; 737 738 right = tnode_new(inode->key|m, inode->pos + 1, 739 inode->bits - 1); 740 741 if (!right) { 742 tnode_free(left); 743 goto nomem; 744 } 745 746 put_child(tn, 2*i, (struct rt_trie_node *) left); 747 put_child(tn, 2*i+1, (struct rt_trie_node *) right); 748 } 749 } 750 751 for (i = 0; i < olen; i++) { 752 struct tnode *inode; 753 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 754 struct tnode *left, *right; 755 int size, j; 756 757 /* An empty child */ 758 if (node == NULL) 759 continue; 760 761 /* A leaf or an internal node with skipped bits */ 762 763 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 764 tn->pos + tn->bits - 1) { 765 if (tkey_extract_bits(node->key, 766 oldtnode->pos + oldtnode->bits, 767 1) == 0) 768 put_child(tn, 2*i, node); 769 else 770 put_child(tn, 2*i+1, node); 771 continue; 772 } 773 774 /* An internal node with two children */ 775 inode = (struct tnode *) node; 776 777 if (inode->bits == 1) { 778 put_child(tn, 2*i, rtnl_dereference(inode->child[0])); 779 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); 780 781 tnode_free_safe(inode); 782 continue; 783 } 784 785 /* An internal node with more than two children */ 786 787 /* We will replace this node 'inode' with two new 788 * ones, 'left' and 'right', each with half of the 789 * original children. The two new nodes will have 790 * a position one bit further down the key and this 791 * means that the "significant" part of their keys 792 * (see the discussion near the top of this file) 793 * will differ by one bit, which will be "0" in 794 * left's key and "1" in right's key. Since we are 795 * moving the key position by one step, the bit that 796 * we are moving away from - the bit at position 797 * (inode->pos) - is the one that will differ between 798 * left and right. So... we synthesize that bit in the 799 * two new keys. 800 * The mask 'm' below will be a single "one" bit at 801 * the position (inode->pos) 802 */ 803 804 /* Use the old key, but set the new significant 805 * bit to zero. 806 */ 807 808 left = (struct tnode *) tnode_get_child(tn, 2*i); 809 put_child(tn, 2*i, NULL); 810 811 BUG_ON(!left); 812 813 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 814 put_child(tn, 2*i+1, NULL); 815 816 BUG_ON(!right); 817 818 size = tnode_child_length(left); 819 for (j = 0; j < size; j++) { 820 put_child(left, j, rtnl_dereference(inode->child[j])); 821 put_child(right, j, rtnl_dereference(inode->child[j + size])); 822 } 823 put_child(tn, 2*i, resize(t, left)); 824 put_child(tn, 2*i+1, resize(t, right)); 825 826 tnode_free_safe(inode); 827 } 828 tnode_free_safe(oldtnode); 829 return tn; 830 nomem: 831 tnode_clean_free(tn); 832 return ERR_PTR(-ENOMEM); 833 } 834 835 static struct tnode *halve(struct trie *t, struct tnode *tn) 836 { 837 struct tnode *oldtnode = tn; 838 struct rt_trie_node *left, *right; 839 int i; 840 int olen = tnode_child_length(tn); 841 842 pr_debug("In halve\n"); 843 844 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 845 846 if (!tn) 847 return ERR_PTR(-ENOMEM); 848 849 /* 850 * Preallocate and store tnodes before the actual work so we 851 * don't get into an inconsistent state if memory allocation 852 * fails. In case of failure we return the oldnode and halve 853 * of tnode is ignored. 854 */ 855 856 for (i = 0; i < olen; i += 2) { 857 left = tnode_get_child(oldtnode, i); 858 right = tnode_get_child(oldtnode, i+1); 859 860 /* Two nonempty children */ 861 if (left && right) { 862 struct tnode *newn; 863 864 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 865 866 if (!newn) 867 goto nomem; 868 869 put_child(tn, i/2, (struct rt_trie_node *)newn); 870 } 871 872 } 873 874 for (i = 0; i < olen; i += 2) { 875 struct tnode *newBinNode; 876 877 left = tnode_get_child(oldtnode, i); 878 right = tnode_get_child(oldtnode, i+1); 879 880 /* At least one of the children is empty */ 881 if (left == NULL) { 882 if (right == NULL) /* Both are empty */ 883 continue; 884 put_child(tn, i/2, right); 885 continue; 886 } 887 888 if (right == NULL) { 889 put_child(tn, i/2, left); 890 continue; 891 } 892 893 /* Two nonempty children */ 894 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 895 put_child(tn, i/2, NULL); 896 put_child(newBinNode, 0, left); 897 put_child(newBinNode, 1, right); 898 put_child(tn, i/2, resize(t, newBinNode)); 899 } 900 tnode_free_safe(oldtnode); 901 return tn; 902 nomem: 903 tnode_clean_free(tn); 904 return ERR_PTR(-ENOMEM); 905 } 906 907 /* readside must use rcu_read_lock currently dump routines 908 via get_fa_head and dump */ 909 910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 911 { 912 struct hlist_head *head = &l->list; 913 struct leaf_info *li; 914 915 hlist_for_each_entry_rcu(li, head, hlist) 916 if (li->plen == plen) 917 return li; 918 919 return NULL; 920 } 921 922 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 923 { 924 struct leaf_info *li = find_leaf_info(l, plen); 925 926 if (!li) 927 return NULL; 928 929 return &li->falh; 930 } 931 932 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 933 { 934 struct leaf_info *li = NULL, *last = NULL; 935 936 if (hlist_empty(head)) { 937 hlist_add_head_rcu(&new->hlist, head); 938 } else { 939 hlist_for_each_entry(li, head, hlist) { 940 if (new->plen > li->plen) 941 break; 942 943 last = li; 944 } 945 if (last) 946 hlist_add_after_rcu(&last->hlist, &new->hlist); 947 else 948 hlist_add_before_rcu(&new->hlist, &li->hlist); 949 } 950 } 951 952 /* rcu_read_lock needs to be hold by caller from readside */ 953 954 static struct leaf * 955 fib_find_node(struct trie *t, u32 key) 956 { 957 int pos; 958 struct tnode *tn; 959 struct rt_trie_node *n; 960 961 pos = 0; 962 n = rcu_dereference_rtnl(t->trie); 963 964 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 965 tn = (struct tnode *) n; 966 967 check_tnode(tn); 968 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 970 pos = tn->pos + tn->bits; 971 n = tnode_get_child_rcu(tn, 972 tkey_extract_bits(key, 973 tn->pos, 974 tn->bits)); 975 } else 976 break; 977 } 978 /* Case we have found a leaf. Compare prefixes */ 979 980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 981 return (struct leaf *)n; 982 983 return NULL; 984 } 985 986 static void trie_rebalance(struct trie *t, struct tnode *tn) 987 { 988 int wasfull; 989 t_key cindex, key; 990 struct tnode *tp; 991 992 key = tn->key; 993 994 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 995 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 996 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 997 tn = (struct tnode *)resize(t, tn); 998 999 tnode_put_child_reorg(tp, cindex, 1000 (struct rt_trie_node *)tn, wasfull); 1001 1002 tp = node_parent((struct rt_trie_node *) tn); 1003 if (!tp) 1004 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1005 1006 tnode_free_flush(); 1007 if (!tp) 1008 break; 1009 tn = tp; 1010 } 1011 1012 /* Handle last (top) tnode */ 1013 if (IS_TNODE(tn)) 1014 tn = (struct tnode *)resize(t, tn); 1015 1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1017 tnode_free_flush(); 1018 } 1019 1020 /* only used from updater-side */ 1021 1022 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1023 { 1024 int pos, newpos; 1025 struct tnode *tp = NULL, *tn = NULL; 1026 struct rt_trie_node *n; 1027 struct leaf *l; 1028 int missbit; 1029 struct list_head *fa_head = NULL; 1030 struct leaf_info *li; 1031 t_key cindex; 1032 1033 pos = 0; 1034 n = rtnl_dereference(t->trie); 1035 1036 /* If we point to NULL, stop. Either the tree is empty and we should 1037 * just put a new leaf in if, or we have reached an empty child slot, 1038 * and we should just put our new leaf in that. 1039 * If we point to a T_TNODE, check if it matches our key. Note that 1040 * a T_TNODE might be skipping any number of bits - its 'pos' need 1041 * not be the parent's 'pos'+'bits'! 1042 * 1043 * If it does match the current key, get pos/bits from it, extract 1044 * the index from our key, push the T_TNODE and walk the tree. 1045 * 1046 * If it doesn't, we have to replace it with a new T_TNODE. 1047 * 1048 * If we point to a T_LEAF, it might or might not have the same key 1049 * as we do. If it does, just change the value, update the T_LEAF's 1050 * value, and return it. 1051 * If it doesn't, we need to replace it with a T_TNODE. 1052 */ 1053 1054 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1055 tn = (struct tnode *) n; 1056 1057 check_tnode(tn); 1058 1059 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1060 tp = tn; 1061 pos = tn->pos + tn->bits; 1062 n = tnode_get_child(tn, 1063 tkey_extract_bits(key, 1064 tn->pos, 1065 tn->bits)); 1066 1067 BUG_ON(n && node_parent(n) != tn); 1068 } else 1069 break; 1070 } 1071 1072 /* 1073 * n ----> NULL, LEAF or TNODE 1074 * 1075 * tp is n's (parent) ----> NULL or TNODE 1076 */ 1077 1078 BUG_ON(tp && IS_LEAF(tp)); 1079 1080 /* Case 1: n is a leaf. Compare prefixes */ 1081 1082 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1083 l = (struct leaf *) n; 1084 li = leaf_info_new(plen); 1085 1086 if (!li) 1087 return NULL; 1088 1089 fa_head = &li->falh; 1090 insert_leaf_info(&l->list, li); 1091 goto done; 1092 } 1093 l = leaf_new(); 1094 1095 if (!l) 1096 return NULL; 1097 1098 l->key = key; 1099 li = leaf_info_new(plen); 1100 1101 if (!li) { 1102 free_leaf(l); 1103 return NULL; 1104 } 1105 1106 fa_head = &li->falh; 1107 insert_leaf_info(&l->list, li); 1108 1109 if (t->trie && n == NULL) { 1110 /* Case 2: n is NULL, and will just insert a new leaf */ 1111 1112 node_set_parent((struct rt_trie_node *)l, tp); 1113 1114 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1115 put_child(tp, cindex, (struct rt_trie_node *)l); 1116 } else { 1117 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1118 /* 1119 * Add a new tnode here 1120 * first tnode need some special handling 1121 */ 1122 1123 if (tp) 1124 pos = tp->pos+tp->bits; 1125 else 1126 pos = 0; 1127 1128 if (n) { 1129 newpos = tkey_mismatch(key, pos, n->key); 1130 tn = tnode_new(n->key, newpos, 1); 1131 } else { 1132 newpos = 0; 1133 tn = tnode_new(key, newpos, 1); /* First tnode */ 1134 } 1135 1136 if (!tn) { 1137 free_leaf_info(li); 1138 free_leaf(l); 1139 return NULL; 1140 } 1141 1142 node_set_parent((struct rt_trie_node *)tn, tp); 1143 1144 missbit = tkey_extract_bits(key, newpos, 1); 1145 put_child(tn, missbit, (struct rt_trie_node *)l); 1146 put_child(tn, 1-missbit, n); 1147 1148 if (tp) { 1149 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1150 put_child(tp, cindex, (struct rt_trie_node *)tn); 1151 } else { 1152 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1153 tp = tn; 1154 } 1155 } 1156 1157 if (tp && tp->pos + tp->bits > 32) 1158 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1159 tp, tp->pos, tp->bits, key, plen); 1160 1161 /* Rebalance the trie */ 1162 1163 trie_rebalance(t, tp); 1164 done: 1165 return fa_head; 1166 } 1167 1168 /* 1169 * Caller must hold RTNL. 1170 */ 1171 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1172 { 1173 struct trie *t = (struct trie *) tb->tb_data; 1174 struct fib_alias *fa, *new_fa; 1175 struct list_head *fa_head = NULL; 1176 struct fib_info *fi; 1177 int plen = cfg->fc_dst_len; 1178 u8 tos = cfg->fc_tos; 1179 u32 key, mask; 1180 int err; 1181 struct leaf *l; 1182 1183 if (plen > 32) 1184 return -EINVAL; 1185 1186 key = ntohl(cfg->fc_dst); 1187 1188 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1189 1190 mask = ntohl(inet_make_mask(plen)); 1191 1192 if (key & ~mask) 1193 return -EINVAL; 1194 1195 key = key & mask; 1196 1197 fi = fib_create_info(cfg); 1198 if (IS_ERR(fi)) { 1199 err = PTR_ERR(fi); 1200 goto err; 1201 } 1202 1203 l = fib_find_node(t, key); 1204 fa = NULL; 1205 1206 if (l) { 1207 fa_head = get_fa_head(l, plen); 1208 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1209 } 1210 1211 /* Now fa, if non-NULL, points to the first fib alias 1212 * with the same keys [prefix,tos,priority], if such key already 1213 * exists or to the node before which we will insert new one. 1214 * 1215 * If fa is NULL, we will need to allocate a new one and 1216 * insert to the head of f. 1217 * 1218 * If f is NULL, no fib node matched the destination key 1219 * and we need to allocate a new one of those as well. 1220 */ 1221 1222 if (fa && fa->fa_tos == tos && 1223 fa->fa_info->fib_priority == fi->fib_priority) { 1224 struct fib_alias *fa_first, *fa_match; 1225 1226 err = -EEXIST; 1227 if (cfg->fc_nlflags & NLM_F_EXCL) 1228 goto out; 1229 1230 /* We have 2 goals: 1231 * 1. Find exact match for type, scope, fib_info to avoid 1232 * duplicate routes 1233 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1234 */ 1235 fa_match = NULL; 1236 fa_first = fa; 1237 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1238 list_for_each_entry_continue(fa, fa_head, fa_list) { 1239 if (fa->fa_tos != tos) 1240 break; 1241 if (fa->fa_info->fib_priority != fi->fib_priority) 1242 break; 1243 if (fa->fa_type == cfg->fc_type && 1244 fa->fa_info == fi) { 1245 fa_match = fa; 1246 break; 1247 } 1248 } 1249 1250 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1251 struct fib_info *fi_drop; 1252 u8 state; 1253 1254 fa = fa_first; 1255 if (fa_match) { 1256 if (fa == fa_match) 1257 err = 0; 1258 goto out; 1259 } 1260 err = -ENOBUFS; 1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1262 if (new_fa == NULL) 1263 goto out; 1264 1265 fi_drop = fa->fa_info; 1266 new_fa->fa_tos = fa->fa_tos; 1267 new_fa->fa_info = fi; 1268 new_fa->fa_type = cfg->fc_type; 1269 state = fa->fa_state; 1270 new_fa->fa_state = state & ~FA_S_ACCESSED; 1271 1272 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1273 alias_free_mem_rcu(fa); 1274 1275 fib_release_info(fi_drop); 1276 if (state & FA_S_ACCESSED) 1277 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1278 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1279 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1280 1281 goto succeeded; 1282 } 1283 /* Error if we find a perfect match which 1284 * uses the same scope, type, and nexthop 1285 * information. 1286 */ 1287 if (fa_match) 1288 goto out; 1289 1290 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1291 fa = fa_first; 1292 } 1293 err = -ENOENT; 1294 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1295 goto out; 1296 1297 err = -ENOBUFS; 1298 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1299 if (new_fa == NULL) 1300 goto out; 1301 1302 new_fa->fa_info = fi; 1303 new_fa->fa_tos = tos; 1304 new_fa->fa_type = cfg->fc_type; 1305 new_fa->fa_state = 0; 1306 /* 1307 * Insert new entry to the list. 1308 */ 1309 1310 if (!fa_head) { 1311 fa_head = fib_insert_node(t, key, plen); 1312 if (unlikely(!fa_head)) { 1313 err = -ENOMEM; 1314 goto out_free_new_fa; 1315 } 1316 } 1317 1318 if (!plen) 1319 tb->tb_num_default++; 1320 1321 list_add_tail_rcu(&new_fa->fa_list, 1322 (fa ? &fa->fa_list : fa_head)); 1323 1324 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1325 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1326 &cfg->fc_nlinfo, 0); 1327 succeeded: 1328 return 0; 1329 1330 out_free_new_fa: 1331 kmem_cache_free(fn_alias_kmem, new_fa); 1332 out: 1333 fib_release_info(fi); 1334 err: 1335 return err; 1336 } 1337 1338 /* should be called with rcu_read_lock */ 1339 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1340 t_key key, const struct flowi4 *flp, 1341 struct fib_result *res, int fib_flags) 1342 { 1343 struct leaf_info *li; 1344 struct hlist_head *hhead = &l->list; 1345 1346 hlist_for_each_entry_rcu(li, hhead, hlist) { 1347 struct fib_alias *fa; 1348 1349 if (l->key != (key & li->mask_plen)) 1350 continue; 1351 1352 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1353 struct fib_info *fi = fa->fa_info; 1354 int nhsel, err; 1355 1356 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1357 continue; 1358 if (fi->fib_dead) 1359 continue; 1360 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1361 continue; 1362 fib_alias_accessed(fa); 1363 err = fib_props[fa->fa_type].error; 1364 if (err) { 1365 #ifdef CONFIG_IP_FIB_TRIE_STATS 1366 t->stats.semantic_match_passed++; 1367 #endif 1368 return err; 1369 } 1370 if (fi->fib_flags & RTNH_F_DEAD) 1371 continue; 1372 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1373 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1374 1375 if (nh->nh_flags & RTNH_F_DEAD) 1376 continue; 1377 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1378 continue; 1379 1380 #ifdef CONFIG_IP_FIB_TRIE_STATS 1381 t->stats.semantic_match_passed++; 1382 #endif 1383 res->prefixlen = li->plen; 1384 res->nh_sel = nhsel; 1385 res->type = fa->fa_type; 1386 res->scope = fa->fa_info->fib_scope; 1387 res->fi = fi; 1388 res->table = tb; 1389 res->fa_head = &li->falh; 1390 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1391 atomic_inc(&fi->fib_clntref); 1392 return 0; 1393 } 1394 } 1395 1396 #ifdef CONFIG_IP_FIB_TRIE_STATS 1397 t->stats.semantic_match_miss++; 1398 #endif 1399 } 1400 1401 return 1; 1402 } 1403 1404 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1405 struct fib_result *res, int fib_flags) 1406 { 1407 struct trie *t = (struct trie *) tb->tb_data; 1408 int ret; 1409 struct rt_trie_node *n; 1410 struct tnode *pn; 1411 unsigned int pos, bits; 1412 t_key key = ntohl(flp->daddr); 1413 unsigned int chopped_off; 1414 t_key cindex = 0; 1415 unsigned int current_prefix_length = KEYLENGTH; 1416 struct tnode *cn; 1417 t_key pref_mismatch; 1418 1419 rcu_read_lock(); 1420 1421 n = rcu_dereference(t->trie); 1422 if (!n) 1423 goto failed; 1424 1425 #ifdef CONFIG_IP_FIB_TRIE_STATS 1426 t->stats.gets++; 1427 #endif 1428 1429 /* Just a leaf? */ 1430 if (IS_LEAF(n)) { 1431 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1432 goto found; 1433 } 1434 1435 pn = (struct tnode *) n; 1436 chopped_off = 0; 1437 1438 while (pn) { 1439 pos = pn->pos; 1440 bits = pn->bits; 1441 1442 if (!chopped_off) 1443 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1444 pos, bits); 1445 1446 n = tnode_get_child_rcu(pn, cindex); 1447 1448 if (n == NULL) { 1449 #ifdef CONFIG_IP_FIB_TRIE_STATS 1450 t->stats.null_node_hit++; 1451 #endif 1452 goto backtrace; 1453 } 1454 1455 if (IS_LEAF(n)) { 1456 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1457 if (ret > 0) 1458 goto backtrace; 1459 goto found; 1460 } 1461 1462 cn = (struct tnode *)n; 1463 1464 /* 1465 * It's a tnode, and we can do some extra checks here if we 1466 * like, to avoid descending into a dead-end branch. 1467 * This tnode is in the parent's child array at index 1468 * key[p_pos..p_pos+p_bits] but potentially with some bits 1469 * chopped off, so in reality the index may be just a 1470 * subprefix, padded with zero at the end. 1471 * We can also take a look at any skipped bits in this 1472 * tnode - everything up to p_pos is supposed to be ok, 1473 * and the non-chopped bits of the index (se previous 1474 * paragraph) are also guaranteed ok, but the rest is 1475 * considered unknown. 1476 * 1477 * The skipped bits are key[pos+bits..cn->pos]. 1478 */ 1479 1480 /* If current_prefix_length < pos+bits, we are already doing 1481 * actual prefix matching, which means everything from 1482 * pos+(bits-chopped_off) onward must be zero along some 1483 * branch of this subtree - otherwise there is *no* valid 1484 * prefix present. Here we can only check the skipped 1485 * bits. Remember, since we have already indexed into the 1486 * parent's child array, we know that the bits we chopped of 1487 * *are* zero. 1488 */ 1489 1490 /* NOTA BENE: Checking only skipped bits 1491 for the new node here */ 1492 1493 if (current_prefix_length < pos+bits) { 1494 if (tkey_extract_bits(cn->key, current_prefix_length, 1495 cn->pos - current_prefix_length) 1496 || !(cn->child[0])) 1497 goto backtrace; 1498 } 1499 1500 /* 1501 * If chopped_off=0, the index is fully validated and we 1502 * only need to look at the skipped bits for this, the new, 1503 * tnode. What we actually want to do is to find out if 1504 * these skipped bits match our key perfectly, or if we will 1505 * have to count on finding a matching prefix further down, 1506 * because if we do, we would like to have some way of 1507 * verifying the existence of such a prefix at this point. 1508 */ 1509 1510 /* The only thing we can do at this point is to verify that 1511 * any such matching prefix can indeed be a prefix to our 1512 * key, and if the bits in the node we are inspecting that 1513 * do not match our key are not ZERO, this cannot be true. 1514 * Thus, find out where there is a mismatch (before cn->pos) 1515 * and verify that all the mismatching bits are zero in the 1516 * new tnode's key. 1517 */ 1518 1519 /* 1520 * Note: We aren't very concerned about the piece of 1521 * the key that precede pn->pos+pn->bits, since these 1522 * have already been checked. The bits after cn->pos 1523 * aren't checked since these are by definition 1524 * "unknown" at this point. Thus, what we want to see 1525 * is if we are about to enter the "prefix matching" 1526 * state, and in that case verify that the skipped 1527 * bits that will prevail throughout this subtree are 1528 * zero, as they have to be if we are to find a 1529 * matching prefix. 1530 */ 1531 1532 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1533 1534 /* 1535 * In short: If skipped bits in this node do not match 1536 * the search key, enter the "prefix matching" 1537 * state.directly. 1538 */ 1539 if (pref_mismatch) { 1540 /* fls(x) = __fls(x) + 1 */ 1541 int mp = KEYLENGTH - __fls(pref_mismatch) - 1; 1542 1543 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1544 goto backtrace; 1545 1546 if (current_prefix_length >= cn->pos) 1547 current_prefix_length = mp; 1548 } 1549 1550 pn = (struct tnode *)n; /* Descend */ 1551 chopped_off = 0; 1552 continue; 1553 1554 backtrace: 1555 chopped_off++; 1556 1557 /* As zero don't change the child key (cindex) */ 1558 while ((chopped_off <= pn->bits) 1559 && !(cindex & (1<<(chopped_off-1)))) 1560 chopped_off++; 1561 1562 /* Decrease current_... with bits chopped off */ 1563 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1564 current_prefix_length = pn->pos + pn->bits 1565 - chopped_off; 1566 1567 /* 1568 * Either we do the actual chop off according or if we have 1569 * chopped off all bits in this tnode walk up to our parent. 1570 */ 1571 1572 if (chopped_off <= pn->bits) { 1573 cindex &= ~(1 << (chopped_off-1)); 1574 } else { 1575 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1576 if (!parent) 1577 goto failed; 1578 1579 /* Get Child's index */ 1580 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1581 pn = parent; 1582 chopped_off = 0; 1583 1584 #ifdef CONFIG_IP_FIB_TRIE_STATS 1585 t->stats.backtrack++; 1586 #endif 1587 goto backtrace; 1588 } 1589 } 1590 failed: 1591 ret = 1; 1592 found: 1593 rcu_read_unlock(); 1594 return ret; 1595 } 1596 EXPORT_SYMBOL_GPL(fib_table_lookup); 1597 1598 /* 1599 * Remove the leaf and return parent. 1600 */ 1601 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1602 { 1603 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1604 1605 pr_debug("entering trie_leaf_remove(%p)\n", l); 1606 1607 if (tp) { 1608 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1609 put_child(tp, cindex, NULL); 1610 trie_rebalance(t, tp); 1611 } else 1612 RCU_INIT_POINTER(t->trie, NULL); 1613 1614 free_leaf(l); 1615 } 1616 1617 /* 1618 * Caller must hold RTNL. 1619 */ 1620 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1621 { 1622 struct trie *t = (struct trie *) tb->tb_data; 1623 u32 key, mask; 1624 int plen = cfg->fc_dst_len; 1625 u8 tos = cfg->fc_tos; 1626 struct fib_alias *fa, *fa_to_delete; 1627 struct list_head *fa_head; 1628 struct leaf *l; 1629 struct leaf_info *li; 1630 1631 if (plen > 32) 1632 return -EINVAL; 1633 1634 key = ntohl(cfg->fc_dst); 1635 mask = ntohl(inet_make_mask(plen)); 1636 1637 if (key & ~mask) 1638 return -EINVAL; 1639 1640 key = key & mask; 1641 l = fib_find_node(t, key); 1642 1643 if (!l) 1644 return -ESRCH; 1645 1646 li = find_leaf_info(l, plen); 1647 1648 if (!li) 1649 return -ESRCH; 1650 1651 fa_head = &li->falh; 1652 fa = fib_find_alias(fa_head, tos, 0); 1653 1654 if (!fa) 1655 return -ESRCH; 1656 1657 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1658 1659 fa_to_delete = NULL; 1660 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1661 list_for_each_entry_continue(fa, fa_head, fa_list) { 1662 struct fib_info *fi = fa->fa_info; 1663 1664 if (fa->fa_tos != tos) 1665 break; 1666 1667 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1668 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1669 fa->fa_info->fib_scope == cfg->fc_scope) && 1670 (!cfg->fc_prefsrc || 1671 fi->fib_prefsrc == cfg->fc_prefsrc) && 1672 (!cfg->fc_protocol || 1673 fi->fib_protocol == cfg->fc_protocol) && 1674 fib_nh_match(cfg, fi) == 0) { 1675 fa_to_delete = fa; 1676 break; 1677 } 1678 } 1679 1680 if (!fa_to_delete) 1681 return -ESRCH; 1682 1683 fa = fa_to_delete; 1684 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1685 &cfg->fc_nlinfo, 0); 1686 1687 list_del_rcu(&fa->fa_list); 1688 1689 if (!plen) 1690 tb->tb_num_default--; 1691 1692 if (list_empty(fa_head)) { 1693 hlist_del_rcu(&li->hlist); 1694 free_leaf_info(li); 1695 } 1696 1697 if (hlist_empty(&l->list)) 1698 trie_leaf_remove(t, l); 1699 1700 if (fa->fa_state & FA_S_ACCESSED) 1701 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1702 1703 fib_release_info(fa->fa_info); 1704 alias_free_mem_rcu(fa); 1705 return 0; 1706 } 1707 1708 static int trie_flush_list(struct list_head *head) 1709 { 1710 struct fib_alias *fa, *fa_node; 1711 int found = 0; 1712 1713 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1714 struct fib_info *fi = fa->fa_info; 1715 1716 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1717 list_del_rcu(&fa->fa_list); 1718 fib_release_info(fa->fa_info); 1719 alias_free_mem_rcu(fa); 1720 found++; 1721 } 1722 } 1723 return found; 1724 } 1725 1726 static int trie_flush_leaf(struct leaf *l) 1727 { 1728 int found = 0; 1729 struct hlist_head *lih = &l->list; 1730 struct hlist_node *tmp; 1731 struct leaf_info *li = NULL; 1732 1733 hlist_for_each_entry_safe(li, tmp, lih, hlist) { 1734 found += trie_flush_list(&li->falh); 1735 1736 if (list_empty(&li->falh)) { 1737 hlist_del_rcu(&li->hlist); 1738 free_leaf_info(li); 1739 } 1740 } 1741 return found; 1742 } 1743 1744 /* 1745 * Scan for the next right leaf starting at node p->child[idx] 1746 * Since we have back pointer, no recursion necessary. 1747 */ 1748 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1749 { 1750 do { 1751 t_key idx; 1752 1753 if (c) 1754 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1755 else 1756 idx = 0; 1757 1758 while (idx < 1u << p->bits) { 1759 c = tnode_get_child_rcu(p, idx++); 1760 if (!c) 1761 continue; 1762 1763 if (IS_LEAF(c)) 1764 return (struct leaf *) c; 1765 1766 /* Rescan start scanning in new node */ 1767 p = (struct tnode *) c; 1768 idx = 0; 1769 } 1770 1771 /* Node empty, walk back up to parent */ 1772 c = (struct rt_trie_node *) p; 1773 } while ((p = node_parent_rcu(c)) != NULL); 1774 1775 return NULL; /* Root of trie */ 1776 } 1777 1778 static struct leaf *trie_firstleaf(struct trie *t) 1779 { 1780 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1781 1782 if (!n) 1783 return NULL; 1784 1785 if (IS_LEAF(n)) /* trie is just a leaf */ 1786 return (struct leaf *) n; 1787 1788 return leaf_walk_rcu(n, NULL); 1789 } 1790 1791 static struct leaf *trie_nextleaf(struct leaf *l) 1792 { 1793 struct rt_trie_node *c = (struct rt_trie_node *) l; 1794 struct tnode *p = node_parent_rcu(c); 1795 1796 if (!p) 1797 return NULL; /* trie with just one leaf */ 1798 1799 return leaf_walk_rcu(p, c); 1800 } 1801 1802 static struct leaf *trie_leafindex(struct trie *t, int index) 1803 { 1804 struct leaf *l = trie_firstleaf(t); 1805 1806 while (l && index-- > 0) 1807 l = trie_nextleaf(l); 1808 1809 return l; 1810 } 1811 1812 1813 /* 1814 * Caller must hold RTNL. 1815 */ 1816 int fib_table_flush(struct fib_table *tb) 1817 { 1818 struct trie *t = (struct trie *) tb->tb_data; 1819 struct leaf *l, *ll = NULL; 1820 int found = 0; 1821 1822 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1823 found += trie_flush_leaf(l); 1824 1825 if (ll && hlist_empty(&ll->list)) 1826 trie_leaf_remove(t, ll); 1827 ll = l; 1828 } 1829 1830 if (ll && hlist_empty(&ll->list)) 1831 trie_leaf_remove(t, ll); 1832 1833 pr_debug("trie_flush found=%d\n", found); 1834 return found; 1835 } 1836 1837 void fib_free_table(struct fib_table *tb) 1838 { 1839 kfree(tb); 1840 } 1841 1842 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1843 struct fib_table *tb, 1844 struct sk_buff *skb, struct netlink_callback *cb) 1845 { 1846 int i, s_i; 1847 struct fib_alias *fa; 1848 __be32 xkey = htonl(key); 1849 1850 s_i = cb->args[5]; 1851 i = 0; 1852 1853 /* rcu_read_lock is hold by caller */ 1854 1855 list_for_each_entry_rcu(fa, fah, fa_list) { 1856 if (i < s_i) { 1857 i++; 1858 continue; 1859 } 1860 1861 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1862 cb->nlh->nlmsg_seq, 1863 RTM_NEWROUTE, 1864 tb->tb_id, 1865 fa->fa_type, 1866 xkey, 1867 plen, 1868 fa->fa_tos, 1869 fa->fa_info, NLM_F_MULTI) < 0) { 1870 cb->args[5] = i; 1871 return -1; 1872 } 1873 i++; 1874 } 1875 cb->args[5] = i; 1876 return skb->len; 1877 } 1878 1879 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1880 struct sk_buff *skb, struct netlink_callback *cb) 1881 { 1882 struct leaf_info *li; 1883 int i, s_i; 1884 1885 s_i = cb->args[4]; 1886 i = 0; 1887 1888 /* rcu_read_lock is hold by caller */ 1889 hlist_for_each_entry_rcu(li, &l->list, hlist) { 1890 if (i < s_i) { 1891 i++; 1892 continue; 1893 } 1894 1895 if (i > s_i) 1896 cb->args[5] = 0; 1897 1898 if (list_empty(&li->falh)) 1899 continue; 1900 1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1902 cb->args[4] = i; 1903 return -1; 1904 } 1905 i++; 1906 } 1907 1908 cb->args[4] = i; 1909 return skb->len; 1910 } 1911 1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1913 struct netlink_callback *cb) 1914 { 1915 struct leaf *l; 1916 struct trie *t = (struct trie *) tb->tb_data; 1917 t_key key = cb->args[2]; 1918 int count = cb->args[3]; 1919 1920 rcu_read_lock(); 1921 /* Dump starting at last key. 1922 * Note: 0.0.0.0/0 (ie default) is first key. 1923 */ 1924 if (count == 0) 1925 l = trie_firstleaf(t); 1926 else { 1927 /* Normally, continue from last key, but if that is missing 1928 * fallback to using slow rescan 1929 */ 1930 l = fib_find_node(t, key); 1931 if (!l) 1932 l = trie_leafindex(t, count); 1933 } 1934 1935 while (l) { 1936 cb->args[2] = l->key; 1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1938 cb->args[3] = count; 1939 rcu_read_unlock(); 1940 return -1; 1941 } 1942 1943 ++count; 1944 l = trie_nextleaf(l); 1945 memset(&cb->args[4], 0, 1946 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1947 } 1948 cb->args[3] = count; 1949 rcu_read_unlock(); 1950 1951 return skb->len; 1952 } 1953 1954 void __init fib_trie_init(void) 1955 { 1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1957 sizeof(struct fib_alias), 1958 0, SLAB_PANIC, NULL); 1959 1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1961 max(sizeof(struct leaf), 1962 sizeof(struct leaf_info)), 1963 0, SLAB_PANIC, NULL); 1964 } 1965 1966 1967 struct fib_table *fib_trie_table(u32 id) 1968 { 1969 struct fib_table *tb; 1970 struct trie *t; 1971 1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1973 GFP_KERNEL); 1974 if (tb == NULL) 1975 return NULL; 1976 1977 tb->tb_id = id; 1978 tb->tb_default = -1; 1979 tb->tb_num_default = 0; 1980 1981 t = (struct trie *) tb->tb_data; 1982 memset(t, 0, sizeof(*t)); 1983 1984 return tb; 1985 } 1986 1987 #ifdef CONFIG_PROC_FS 1988 /* Depth first Trie walk iterator */ 1989 struct fib_trie_iter { 1990 struct seq_net_private p; 1991 struct fib_table *tb; 1992 struct tnode *tnode; 1993 unsigned int index; 1994 unsigned int depth; 1995 }; 1996 1997 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 1998 { 1999 struct tnode *tn = iter->tnode; 2000 unsigned int cindex = iter->index; 2001 struct tnode *p; 2002 2003 /* A single entry routing table */ 2004 if (!tn) 2005 return NULL; 2006 2007 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2008 iter->tnode, iter->index, iter->depth); 2009 rescan: 2010 while (cindex < (1<<tn->bits)) { 2011 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2012 2013 if (n) { 2014 if (IS_LEAF(n)) { 2015 iter->tnode = tn; 2016 iter->index = cindex + 1; 2017 } else { 2018 /* push down one level */ 2019 iter->tnode = (struct tnode *) n; 2020 iter->index = 0; 2021 ++iter->depth; 2022 } 2023 return n; 2024 } 2025 2026 ++cindex; 2027 } 2028 2029 /* Current node exhausted, pop back up */ 2030 p = node_parent_rcu((struct rt_trie_node *)tn); 2031 if (p) { 2032 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2033 tn = p; 2034 --iter->depth; 2035 goto rescan; 2036 } 2037 2038 /* got root? */ 2039 return NULL; 2040 } 2041 2042 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2043 struct trie *t) 2044 { 2045 struct rt_trie_node *n; 2046 2047 if (!t) 2048 return NULL; 2049 2050 n = rcu_dereference(t->trie); 2051 if (!n) 2052 return NULL; 2053 2054 if (IS_TNODE(n)) { 2055 iter->tnode = (struct tnode *) n; 2056 iter->index = 0; 2057 iter->depth = 1; 2058 } else { 2059 iter->tnode = NULL; 2060 iter->index = 0; 2061 iter->depth = 0; 2062 } 2063 2064 return n; 2065 } 2066 2067 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2068 { 2069 struct rt_trie_node *n; 2070 struct fib_trie_iter iter; 2071 2072 memset(s, 0, sizeof(*s)); 2073 2074 rcu_read_lock(); 2075 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2076 if (IS_LEAF(n)) { 2077 struct leaf *l = (struct leaf *)n; 2078 struct leaf_info *li; 2079 2080 s->leaves++; 2081 s->totdepth += iter.depth; 2082 if (iter.depth > s->maxdepth) 2083 s->maxdepth = iter.depth; 2084 2085 hlist_for_each_entry_rcu(li, &l->list, hlist) 2086 ++s->prefixes; 2087 } else { 2088 const struct tnode *tn = (const struct tnode *) n; 2089 int i; 2090 2091 s->tnodes++; 2092 if (tn->bits < MAX_STAT_DEPTH) 2093 s->nodesizes[tn->bits]++; 2094 2095 for (i = 0; i < (1<<tn->bits); i++) 2096 if (!tn->child[i]) 2097 s->nullpointers++; 2098 } 2099 } 2100 rcu_read_unlock(); 2101 } 2102 2103 /* 2104 * This outputs /proc/net/fib_triestats 2105 */ 2106 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2107 { 2108 unsigned int i, max, pointers, bytes, avdepth; 2109 2110 if (stat->leaves) 2111 avdepth = stat->totdepth*100 / stat->leaves; 2112 else 2113 avdepth = 0; 2114 2115 seq_printf(seq, "\tAver depth: %u.%02d\n", 2116 avdepth / 100, avdepth % 100); 2117 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2118 2119 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2120 bytes = sizeof(struct leaf) * stat->leaves; 2121 2122 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2123 bytes += sizeof(struct leaf_info) * stat->prefixes; 2124 2125 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2126 bytes += sizeof(struct tnode) * stat->tnodes; 2127 2128 max = MAX_STAT_DEPTH; 2129 while (max > 0 && stat->nodesizes[max-1] == 0) 2130 max--; 2131 2132 pointers = 0; 2133 for (i = 1; i < max; i++) 2134 if (stat->nodesizes[i] != 0) { 2135 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2136 pointers += (1<<i) * stat->nodesizes[i]; 2137 } 2138 seq_putc(seq, '\n'); 2139 seq_printf(seq, "\tPointers: %u\n", pointers); 2140 2141 bytes += sizeof(struct rt_trie_node *) * pointers; 2142 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2143 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2144 } 2145 2146 #ifdef CONFIG_IP_FIB_TRIE_STATS 2147 static void trie_show_usage(struct seq_file *seq, 2148 const struct trie_use_stats *stats) 2149 { 2150 seq_printf(seq, "\nCounters:\n---------\n"); 2151 seq_printf(seq, "gets = %u\n", stats->gets); 2152 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2153 seq_printf(seq, "semantic match passed = %u\n", 2154 stats->semantic_match_passed); 2155 seq_printf(seq, "semantic match miss = %u\n", 2156 stats->semantic_match_miss); 2157 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2158 seq_printf(seq, "skipped node resize = %u\n\n", 2159 stats->resize_node_skipped); 2160 } 2161 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2162 2163 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2164 { 2165 if (tb->tb_id == RT_TABLE_LOCAL) 2166 seq_puts(seq, "Local:\n"); 2167 else if (tb->tb_id == RT_TABLE_MAIN) 2168 seq_puts(seq, "Main:\n"); 2169 else 2170 seq_printf(seq, "Id %d:\n", tb->tb_id); 2171 } 2172 2173 2174 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2175 { 2176 struct net *net = (struct net *)seq->private; 2177 unsigned int h; 2178 2179 seq_printf(seq, 2180 "Basic info: size of leaf:" 2181 " %Zd bytes, size of tnode: %Zd bytes.\n", 2182 sizeof(struct leaf), sizeof(struct tnode)); 2183 2184 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2185 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2186 struct fib_table *tb; 2187 2188 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2189 struct trie *t = (struct trie *) tb->tb_data; 2190 struct trie_stat stat; 2191 2192 if (!t) 2193 continue; 2194 2195 fib_table_print(seq, tb); 2196 2197 trie_collect_stats(t, &stat); 2198 trie_show_stats(seq, &stat); 2199 #ifdef CONFIG_IP_FIB_TRIE_STATS 2200 trie_show_usage(seq, &t->stats); 2201 #endif 2202 } 2203 } 2204 2205 return 0; 2206 } 2207 2208 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2209 { 2210 return single_open_net(inode, file, fib_triestat_seq_show); 2211 } 2212 2213 static const struct file_operations fib_triestat_fops = { 2214 .owner = THIS_MODULE, 2215 .open = fib_triestat_seq_open, 2216 .read = seq_read, 2217 .llseek = seq_lseek, 2218 .release = single_release_net, 2219 }; 2220 2221 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2222 { 2223 struct fib_trie_iter *iter = seq->private; 2224 struct net *net = seq_file_net(seq); 2225 loff_t idx = 0; 2226 unsigned int h; 2227 2228 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2229 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2230 struct fib_table *tb; 2231 2232 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2233 struct rt_trie_node *n; 2234 2235 for (n = fib_trie_get_first(iter, 2236 (struct trie *) tb->tb_data); 2237 n; n = fib_trie_get_next(iter)) 2238 if (pos == idx++) { 2239 iter->tb = tb; 2240 return n; 2241 } 2242 } 2243 } 2244 2245 return NULL; 2246 } 2247 2248 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2249 __acquires(RCU) 2250 { 2251 rcu_read_lock(); 2252 return fib_trie_get_idx(seq, *pos); 2253 } 2254 2255 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2256 { 2257 struct fib_trie_iter *iter = seq->private; 2258 struct net *net = seq_file_net(seq); 2259 struct fib_table *tb = iter->tb; 2260 struct hlist_node *tb_node; 2261 unsigned int h; 2262 struct rt_trie_node *n; 2263 2264 ++*pos; 2265 /* next node in same table */ 2266 n = fib_trie_get_next(iter); 2267 if (n) 2268 return n; 2269 2270 /* walk rest of this hash chain */ 2271 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2272 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2273 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2274 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2275 if (n) 2276 goto found; 2277 } 2278 2279 /* new hash chain */ 2280 while (++h < FIB_TABLE_HASHSZ) { 2281 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2282 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2283 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2284 if (n) 2285 goto found; 2286 } 2287 } 2288 return NULL; 2289 2290 found: 2291 iter->tb = tb; 2292 return n; 2293 } 2294 2295 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2296 __releases(RCU) 2297 { 2298 rcu_read_unlock(); 2299 } 2300 2301 static void seq_indent(struct seq_file *seq, int n) 2302 { 2303 while (n-- > 0) 2304 seq_puts(seq, " "); 2305 } 2306 2307 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2308 { 2309 switch (s) { 2310 case RT_SCOPE_UNIVERSE: return "universe"; 2311 case RT_SCOPE_SITE: return "site"; 2312 case RT_SCOPE_LINK: return "link"; 2313 case RT_SCOPE_HOST: return "host"; 2314 case RT_SCOPE_NOWHERE: return "nowhere"; 2315 default: 2316 snprintf(buf, len, "scope=%d", s); 2317 return buf; 2318 } 2319 } 2320 2321 static const char *const rtn_type_names[__RTN_MAX] = { 2322 [RTN_UNSPEC] = "UNSPEC", 2323 [RTN_UNICAST] = "UNICAST", 2324 [RTN_LOCAL] = "LOCAL", 2325 [RTN_BROADCAST] = "BROADCAST", 2326 [RTN_ANYCAST] = "ANYCAST", 2327 [RTN_MULTICAST] = "MULTICAST", 2328 [RTN_BLACKHOLE] = "BLACKHOLE", 2329 [RTN_UNREACHABLE] = "UNREACHABLE", 2330 [RTN_PROHIBIT] = "PROHIBIT", 2331 [RTN_THROW] = "THROW", 2332 [RTN_NAT] = "NAT", 2333 [RTN_XRESOLVE] = "XRESOLVE", 2334 }; 2335 2336 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2337 { 2338 if (t < __RTN_MAX && rtn_type_names[t]) 2339 return rtn_type_names[t]; 2340 snprintf(buf, len, "type %u", t); 2341 return buf; 2342 } 2343 2344 /* Pretty print the trie */ 2345 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2346 { 2347 const struct fib_trie_iter *iter = seq->private; 2348 struct rt_trie_node *n = v; 2349 2350 if (!node_parent_rcu(n)) 2351 fib_table_print(seq, iter->tb); 2352 2353 if (IS_TNODE(n)) { 2354 struct tnode *tn = (struct tnode *) n; 2355 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2356 2357 seq_indent(seq, iter->depth-1); 2358 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2359 &prf, tn->pos, tn->bits, tn->full_children, 2360 tn->empty_children); 2361 2362 } else { 2363 struct leaf *l = (struct leaf *) n; 2364 struct leaf_info *li; 2365 __be32 val = htonl(l->key); 2366 2367 seq_indent(seq, iter->depth); 2368 seq_printf(seq, " |-- %pI4\n", &val); 2369 2370 hlist_for_each_entry_rcu(li, &l->list, hlist) { 2371 struct fib_alias *fa; 2372 2373 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2374 char buf1[32], buf2[32]; 2375 2376 seq_indent(seq, iter->depth+1); 2377 seq_printf(seq, " /%d %s %s", li->plen, 2378 rtn_scope(buf1, sizeof(buf1), 2379 fa->fa_info->fib_scope), 2380 rtn_type(buf2, sizeof(buf2), 2381 fa->fa_type)); 2382 if (fa->fa_tos) 2383 seq_printf(seq, " tos=%d", fa->fa_tos); 2384 seq_putc(seq, '\n'); 2385 } 2386 } 2387 } 2388 2389 return 0; 2390 } 2391 2392 static const struct seq_operations fib_trie_seq_ops = { 2393 .start = fib_trie_seq_start, 2394 .next = fib_trie_seq_next, 2395 .stop = fib_trie_seq_stop, 2396 .show = fib_trie_seq_show, 2397 }; 2398 2399 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2400 { 2401 return seq_open_net(inode, file, &fib_trie_seq_ops, 2402 sizeof(struct fib_trie_iter)); 2403 } 2404 2405 static const struct file_operations fib_trie_fops = { 2406 .owner = THIS_MODULE, 2407 .open = fib_trie_seq_open, 2408 .read = seq_read, 2409 .llseek = seq_lseek, 2410 .release = seq_release_net, 2411 }; 2412 2413 struct fib_route_iter { 2414 struct seq_net_private p; 2415 struct trie *main_trie; 2416 loff_t pos; 2417 t_key key; 2418 }; 2419 2420 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2421 { 2422 struct leaf *l = NULL; 2423 struct trie *t = iter->main_trie; 2424 2425 /* use cache location of last found key */ 2426 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2427 pos -= iter->pos; 2428 else { 2429 iter->pos = 0; 2430 l = trie_firstleaf(t); 2431 } 2432 2433 while (l && pos-- > 0) { 2434 iter->pos++; 2435 l = trie_nextleaf(l); 2436 } 2437 2438 if (l) 2439 iter->key = pos; /* remember it */ 2440 else 2441 iter->pos = 0; /* forget it */ 2442 2443 return l; 2444 } 2445 2446 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2447 __acquires(RCU) 2448 { 2449 struct fib_route_iter *iter = seq->private; 2450 struct fib_table *tb; 2451 2452 rcu_read_lock(); 2453 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2454 if (!tb) 2455 return NULL; 2456 2457 iter->main_trie = (struct trie *) tb->tb_data; 2458 if (*pos == 0) 2459 return SEQ_START_TOKEN; 2460 else 2461 return fib_route_get_idx(iter, *pos - 1); 2462 } 2463 2464 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2465 { 2466 struct fib_route_iter *iter = seq->private; 2467 struct leaf *l = v; 2468 2469 ++*pos; 2470 if (v == SEQ_START_TOKEN) { 2471 iter->pos = 0; 2472 l = trie_firstleaf(iter->main_trie); 2473 } else { 2474 iter->pos++; 2475 l = trie_nextleaf(l); 2476 } 2477 2478 if (l) 2479 iter->key = l->key; 2480 else 2481 iter->pos = 0; 2482 return l; 2483 } 2484 2485 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2486 __releases(RCU) 2487 { 2488 rcu_read_unlock(); 2489 } 2490 2491 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2492 { 2493 unsigned int flags = 0; 2494 2495 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2496 flags = RTF_REJECT; 2497 if (fi && fi->fib_nh->nh_gw) 2498 flags |= RTF_GATEWAY; 2499 if (mask == htonl(0xFFFFFFFF)) 2500 flags |= RTF_HOST; 2501 flags |= RTF_UP; 2502 return flags; 2503 } 2504 2505 /* 2506 * This outputs /proc/net/route. 2507 * The format of the file is not supposed to be changed 2508 * and needs to be same as fib_hash output to avoid breaking 2509 * legacy utilities 2510 */ 2511 static int fib_route_seq_show(struct seq_file *seq, void *v) 2512 { 2513 struct leaf *l = v; 2514 struct leaf_info *li; 2515 2516 if (v == SEQ_START_TOKEN) { 2517 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2518 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2519 "\tWindow\tIRTT"); 2520 return 0; 2521 } 2522 2523 hlist_for_each_entry_rcu(li, &l->list, hlist) { 2524 struct fib_alias *fa; 2525 __be32 mask, prefix; 2526 2527 mask = inet_make_mask(li->plen); 2528 prefix = htonl(l->key); 2529 2530 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2531 const struct fib_info *fi = fa->fa_info; 2532 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2533 int len; 2534 2535 if (fa->fa_type == RTN_BROADCAST 2536 || fa->fa_type == RTN_MULTICAST) 2537 continue; 2538 2539 if (fi) 2540 seq_printf(seq, 2541 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2542 "%d\t%08X\t%d\t%u\t%u%n", 2543 fi->fib_dev ? fi->fib_dev->name : "*", 2544 prefix, 2545 fi->fib_nh->nh_gw, flags, 0, 0, 2546 fi->fib_priority, 2547 mask, 2548 (fi->fib_advmss ? 2549 fi->fib_advmss + 40 : 0), 2550 fi->fib_window, 2551 fi->fib_rtt >> 3, &len); 2552 else 2553 seq_printf(seq, 2554 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2555 "%d\t%08X\t%d\t%u\t%u%n", 2556 prefix, 0, flags, 0, 0, 0, 2557 mask, 0, 0, 0, &len); 2558 2559 seq_printf(seq, "%*s\n", 127 - len, ""); 2560 } 2561 } 2562 2563 return 0; 2564 } 2565 2566 static const struct seq_operations fib_route_seq_ops = { 2567 .start = fib_route_seq_start, 2568 .next = fib_route_seq_next, 2569 .stop = fib_route_seq_stop, 2570 .show = fib_route_seq_show, 2571 }; 2572 2573 static int fib_route_seq_open(struct inode *inode, struct file *file) 2574 { 2575 return seq_open_net(inode, file, &fib_route_seq_ops, 2576 sizeof(struct fib_route_iter)); 2577 } 2578 2579 static const struct file_operations fib_route_fops = { 2580 .owner = THIS_MODULE, 2581 .open = fib_route_seq_open, 2582 .read = seq_read, 2583 .llseek = seq_lseek, 2584 .release = seq_release_net, 2585 }; 2586 2587 int __net_init fib_proc_init(struct net *net) 2588 { 2589 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2590 goto out1; 2591 2592 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2593 &fib_triestat_fops)) 2594 goto out2; 2595 2596 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2597 goto out3; 2598 2599 return 0; 2600 2601 out3: 2602 remove_proc_entry("fib_triestat", net->proc_net); 2603 out2: 2604 remove_proc_entry("fib_trie", net->proc_net); 2605 out1: 2606 return -ENOMEM; 2607 } 2608 2609 void __net_exit fib_proc_exit(struct net *net) 2610 { 2611 remove_proc_entry("fib_trie", net->proc_net); 2612 remove_proc_entry("fib_triestat", net->proc_net); 2613 remove_proc_entry("route", net->proc_net); 2614 } 2615 2616 #endif /* CONFIG_PROC_FS */ 2617