xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 565d76cb)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally descibed in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83 
84 #define MAX_STAT_DEPTH 32
85 
86 #define KEYLENGTH (8*sizeof(t_key))
87 
88 typedef unsigned int t_key;
89 
90 #define T_TNODE 0
91 #define T_LEAF  1
92 #define NODE_TYPE_MASK	0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97 
98 struct rt_trie_node {
99 	unsigned long parent;
100 	t_key key;
101 };
102 
103 struct leaf {
104 	unsigned long parent;
105 	t_key key;
106 	struct hlist_head list;
107 	struct rcu_head rcu;
108 };
109 
110 struct leaf_info {
111 	struct hlist_node hlist;
112 	struct rcu_head rcu;
113 	int plen;
114 	struct list_head falh;
115 };
116 
117 struct tnode {
118 	unsigned long parent;
119 	t_key key;
120 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
121 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned int full_children;	/* KEYLENGTH bits needed */
123 	unsigned int empty_children;	/* KEYLENGTH bits needed */
124 	union {
125 		struct rcu_head rcu;
126 		struct work_struct work;
127 		struct tnode *tnode_free;
128 	};
129 	struct rt_trie_node *child[0];
130 };
131 
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 	unsigned int gets;
135 	unsigned int backtrack;
136 	unsigned int semantic_match_passed;
137 	unsigned int semantic_match_miss;
138 	unsigned int null_node_hit;
139 	unsigned int resize_node_skipped;
140 };
141 #endif
142 
143 struct trie_stat {
144 	unsigned int totdepth;
145 	unsigned int maxdepth;
146 	unsigned int tnodes;
147 	unsigned int leaves;
148 	unsigned int nullpointers;
149 	unsigned int prefixes;
150 	unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152 
153 struct trie {
154 	struct rt_trie_node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 	struct trie_use_stats stats;
157 #endif
158 };
159 
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 				  int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169 
170 /*
171  * synchronize_rcu after call_rcu for that many pages; it should be especially
172  * useful before resizing the root node with PREEMPT_NONE configs; the value was
173  * obtained experimentally, aiming to avoid visible slowdown.
174  */
175 static const int sync_pages = 128;
176 
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179 
180 static inline struct tnode *node_parent(struct rt_trie_node *node)
181 {
182 	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184 
185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
186 {
187 	struct tnode *ret = node_parent(node);
188 
189 	return rcu_dereference_rtnl(ret);
190 }
191 
192 /* Same as rcu_assign_pointer
193  * but that macro() assumes that value is a pointer.
194  */
195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
196 {
197 	smp_wmb();
198 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200 
201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 	BUG_ON(i >= 1U << tn->bits);
204 
205 	return tn->child[i];
206 }
207 
208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 	struct rt_trie_node *ret = tnode_get_child(tn, i);
211 
212 	return rcu_dereference_rtnl(ret);
213 }
214 
215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 	return 1 << tn->bits;
218 }
219 
220 static inline t_key mask_pfx(t_key k, unsigned int l)
221 {
222 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224 
225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
226 {
227 	if (offset < KEYLENGTH)
228 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 	else
230 		return 0;
231 }
232 
233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 	return a == b;
236 }
237 
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 	if (bits == 0 || offset >= KEYLENGTH)
241 		return 1;
242 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245 
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 	t_key diff = a ^ b;
249 	int i = offset;
250 
251 	if (!diff)
252 		return 0;
253 	while ((diff << i) >> (KEYLENGTH-1) == 0)
254 		i++;
255 	return i;
256 }
257 
258 /*
259   To understand this stuff, an understanding of keys and all their bits is
260   necessary. Every node in the trie has a key associated with it, but not
261   all of the bits in that key are significant.
262 
263   Consider a node 'n' and its parent 'tp'.
264 
265   If n is a leaf, every bit in its key is significant. Its presence is
266   necessitated by path compression, since during a tree traversal (when
267   searching for a leaf - unless we are doing an insertion) we will completely
268   ignore all skipped bits we encounter. Thus we need to verify, at the end of
269   a potentially successful search, that we have indeed been walking the
270   correct key path.
271 
272   Note that we can never "miss" the correct key in the tree if present by
273   following the wrong path. Path compression ensures that segments of the key
274   that are the same for all keys with a given prefix are skipped, but the
275   skipped part *is* identical for each node in the subtrie below the skipped
276   bit! trie_insert() in this implementation takes care of that - note the
277   call to tkey_sub_equals() in trie_insert().
278 
279   if n is an internal node - a 'tnode' here, the various parts of its key
280   have many different meanings.
281 
282   Example:
283   _________________________________________________________________
284   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285   -----------------------------------------------------------------
286     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
287 
288   _________________________________________________________________
289   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290   -----------------------------------------------------------------
291    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
292 
293   tp->pos = 7
294   tp->bits = 3
295   n->pos = 15
296   n->bits = 4
297 
298   First, let's just ignore the bits that come before the parent tp, that is
299   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300   not use them for anything.
301 
302   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303   index into the parent's child array. That is, they will be used to find
304   'n' among tp's children.
305 
306   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307   for the node n.
308 
309   All the bits we have seen so far are significant to the node n. The rest
310   of the bits are really not needed or indeed known in n->key.
311 
312   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313   n's child array, and will of course be different for each child.
314 
315 
316   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317   at this point.
318 
319 */
320 
321 static inline void check_tnode(const struct tnode *tn)
322 {
323 	WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325 
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330 
331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 	kmem_cache_free(fn_alias_kmem, fa);
335 }
336 
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 	call_rcu(&fa->rcu, __alias_free_mem);
340 }
341 
342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 	struct leaf *l = container_of(head, struct leaf, rcu);
345 	kmem_cache_free(trie_leaf_kmem, l);
346 }
347 
348 static inline void free_leaf(struct leaf *l)
349 {
350 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352 
353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 	kfree(container_of(head, struct leaf_info, rcu));
356 }
357 
358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362 
363 static struct tnode *tnode_alloc(size_t size)
364 {
365 	if (size <= PAGE_SIZE)
366 		return kzalloc(size, GFP_KERNEL);
367 	else
368 		return vzalloc(size);
369 }
370 
371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 	struct tnode *tn = container_of(arg, struct tnode, work);
374 	vfree(tn);
375 }
376 
377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 	struct tnode *tn = container_of(head, struct tnode, rcu);
380 	size_t size = sizeof(struct tnode) +
381 		      (sizeof(struct rt_trie_node *) << tn->bits);
382 
383 	if (size <= PAGE_SIZE)
384 		kfree(tn);
385 	else {
386 		INIT_WORK(&tn->work, __tnode_vfree);
387 		schedule_work(&tn->work);
388 	}
389 }
390 
391 static inline void tnode_free(struct tnode *tn)
392 {
393 	if (IS_LEAF(tn))
394 		free_leaf((struct leaf *) tn);
395 	else
396 		call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398 
399 static void tnode_free_safe(struct tnode *tn)
400 {
401 	BUG_ON(IS_LEAF(tn));
402 	tn->tnode_free = tnode_free_head;
403 	tnode_free_head = tn;
404 	tnode_free_size += sizeof(struct tnode) +
405 			   (sizeof(struct rt_trie_node *) << tn->bits);
406 }
407 
408 static void tnode_free_flush(void)
409 {
410 	struct tnode *tn;
411 
412 	while ((tn = tnode_free_head)) {
413 		tnode_free_head = tn->tnode_free;
414 		tn->tnode_free = NULL;
415 		tnode_free(tn);
416 	}
417 
418 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 		tnode_free_size = 0;
420 		synchronize_rcu();
421 	}
422 }
423 
424 static struct leaf *leaf_new(void)
425 {
426 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 	if (l) {
428 		l->parent = T_LEAF;
429 		INIT_HLIST_HEAD(&l->list);
430 	}
431 	return l;
432 }
433 
434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
437 	if (li) {
438 		li->plen = plen;
439 		INIT_LIST_HEAD(&li->falh);
440 	}
441 	return li;
442 }
443 
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
447 	struct tnode *tn = tnode_alloc(sz);
448 
449 	if (tn) {
450 		tn->parent = T_TNODE;
451 		tn->pos = pos;
452 		tn->bits = bits;
453 		tn->key = key;
454 		tn->full_children = 0;
455 		tn->empty_children = 1<<bits;
456 	}
457 
458 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 		 sizeof(struct rt_trie_node) << bits);
460 	return tn;
461 }
462 
463 /*
464  * Check whether a tnode 'n' is "full", i.e. it is an internal node
465  * and no bits are skipped. See discussion in dyntree paper p. 6
466  */
467 
468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
469 {
470 	if (n == NULL || IS_LEAF(n))
471 		return 0;
472 
473 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475 
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 			     struct rt_trie_node *n)
478 {
479 	tnode_put_child_reorg(tn, i, n, -1);
480 }
481 
482  /*
483   * Add a child at position i overwriting the old value.
484   * Update the value of full_children and empty_children.
485   */
486 
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
488 				  int wasfull)
489 {
490 	struct rt_trie_node *chi = tn->child[i];
491 	int isfull;
492 
493 	BUG_ON(i >= 1<<tn->bits);
494 
495 	/* update emptyChildren */
496 	if (n == NULL && chi != NULL)
497 		tn->empty_children++;
498 	else if (n != NULL && chi == NULL)
499 		tn->empty_children--;
500 
501 	/* update fullChildren */
502 	if (wasfull == -1)
503 		wasfull = tnode_full(tn, chi);
504 
505 	isfull = tnode_full(tn, n);
506 	if (wasfull && !isfull)
507 		tn->full_children--;
508 	else if (!wasfull && isfull)
509 		tn->full_children++;
510 
511 	if (n)
512 		node_set_parent(n, tn);
513 
514 	rcu_assign_pointer(tn->child[i], n);
515 }
516 
517 #define MAX_WORK 10
518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
519 {
520 	int i;
521 	struct tnode *old_tn;
522 	int inflate_threshold_use;
523 	int halve_threshold_use;
524 	int max_work;
525 
526 	if (!tn)
527 		return NULL;
528 
529 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 		 tn, inflate_threshold, halve_threshold);
531 
532 	/* No children */
533 	if (tn->empty_children == tnode_child_length(tn)) {
534 		tnode_free_safe(tn);
535 		return NULL;
536 	}
537 	/* One child */
538 	if (tn->empty_children == tnode_child_length(tn) - 1)
539 		goto one_child;
540 	/*
541 	 * Double as long as the resulting node has a number of
542 	 * nonempty nodes that are above the threshold.
543 	 */
544 
545 	/*
546 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 	 * Telecommunications, page 6:
549 	 * "A node is doubled if the ratio of non-empty children to all
550 	 * children in the *doubled* node is at least 'high'."
551 	 *
552 	 * 'high' in this instance is the variable 'inflate_threshold'. It
553 	 * is expressed as a percentage, so we multiply it with
554 	 * tnode_child_length() and instead of multiplying by 2 (since the
555 	 * child array will be doubled by inflate()) and multiplying
556 	 * the left-hand side by 100 (to handle the percentage thing) we
557 	 * multiply the left-hand side by 50.
558 	 *
559 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 	 * - tn->empty_children is of course the number of non-null children
561 	 * in the current node. tn->full_children is the number of "full"
562 	 * children, that is non-null tnodes with a skip value of 0.
563 	 * All of those will be doubled in the resulting inflated tnode, so
564 	 * we just count them one extra time here.
565 	 *
566 	 * A clearer way to write this would be:
567 	 *
568 	 * to_be_doubled = tn->full_children;
569 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 	 *     tn->full_children;
571 	 *
572 	 * new_child_length = tnode_child_length(tn) * 2;
573 	 *
574 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 	 *      new_child_length;
576 	 * if (new_fill_factor >= inflate_threshold)
577 	 *
578 	 * ...and so on, tho it would mess up the while () loop.
579 	 *
580 	 * anyway,
581 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 	 *      inflate_threshold
583 	 *
584 	 * avoid a division:
585 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 	 *      inflate_threshold * new_child_length
587 	 *
588 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 	 *    tn->full_children) >= inflate_threshold * new_child_length
591 	 *
592 	 * expand new_child_length:
593 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 	 *    tn->full_children) >=
595 	 *      inflate_threshold * tnode_child_length(tn) * 2
596 	 *
597 	 * shorten again:
598 	 * 50 * (tn->full_children + tnode_child_length(tn) -
599 	 *    tn->empty_children) >= inflate_threshold *
600 	 *    tnode_child_length(tn)
601 	 *
602 	 */
603 
604 	check_tnode(tn);
605 
606 	/* Keep root node larger  */
607 
608 	if (!node_parent((struct rt_trie_node *)tn)) {
609 		inflate_threshold_use = inflate_threshold_root;
610 		halve_threshold_use = halve_threshold_root;
611 	} else {
612 		inflate_threshold_use = inflate_threshold;
613 		halve_threshold_use = halve_threshold;
614 	}
615 
616 	max_work = MAX_WORK;
617 	while ((tn->full_children > 0 &&  max_work-- &&
618 		50 * (tn->full_children + tnode_child_length(tn)
619 		      - tn->empty_children)
620 		>= inflate_threshold_use * tnode_child_length(tn))) {
621 
622 		old_tn = tn;
623 		tn = inflate(t, tn);
624 
625 		if (IS_ERR(tn)) {
626 			tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 			t->stats.resize_node_skipped++;
629 #endif
630 			break;
631 		}
632 	}
633 
634 	check_tnode(tn);
635 
636 	/* Return if at least one inflate is run */
637 	if (max_work != MAX_WORK)
638 		return (struct rt_trie_node *) tn;
639 
640 	/*
641 	 * Halve as long as the number of empty children in this
642 	 * node is above threshold.
643 	 */
644 
645 	max_work = MAX_WORK;
646 	while (tn->bits > 1 &&  max_work-- &&
647 	       100 * (tnode_child_length(tn) - tn->empty_children) <
648 	       halve_threshold_use * tnode_child_length(tn)) {
649 
650 		old_tn = tn;
651 		tn = halve(t, tn);
652 		if (IS_ERR(tn)) {
653 			tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 			t->stats.resize_node_skipped++;
656 #endif
657 			break;
658 		}
659 	}
660 
661 
662 	/* Only one child remains */
663 	if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 		for (i = 0; i < tnode_child_length(tn); i++) {
666 			struct rt_trie_node *n;
667 
668 			n = tn->child[i];
669 			if (!n)
670 				continue;
671 
672 			/* compress one level */
673 
674 			node_set_parent(n, NULL);
675 			tnode_free_safe(tn);
676 			return n;
677 		}
678 	}
679 	return (struct rt_trie_node *) tn;
680 }
681 
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 	struct tnode *oldtnode = tn;
685 	int olen = tnode_child_length(tn);
686 	int i;
687 
688 	pr_debug("In inflate\n");
689 
690 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691 
692 	if (!tn)
693 		return ERR_PTR(-ENOMEM);
694 
695 	/*
696 	 * Preallocate and store tnodes before the actual work so we
697 	 * don't get into an inconsistent state if memory allocation
698 	 * fails. In case of failure we return the oldnode and  inflate
699 	 * of tnode is ignored.
700 	 */
701 
702 	for (i = 0; i < olen; i++) {
703 		struct tnode *inode;
704 
705 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 		if (inode &&
707 		    IS_TNODE(inode) &&
708 		    inode->pos == oldtnode->pos + oldtnode->bits &&
709 		    inode->bits > 1) {
710 			struct tnode *left, *right;
711 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712 
713 			left = tnode_new(inode->key&(~m), inode->pos + 1,
714 					 inode->bits - 1);
715 			if (!left)
716 				goto nomem;
717 
718 			right = tnode_new(inode->key|m, inode->pos + 1,
719 					  inode->bits - 1);
720 
721 			if (!right) {
722 				tnode_free(left);
723 				goto nomem;
724 			}
725 
726 			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
728 		}
729 	}
730 
731 	for (i = 0; i < olen; i++) {
732 		struct tnode *inode;
733 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
734 		struct tnode *left, *right;
735 		int size, j;
736 
737 		/* An empty child */
738 		if (node == NULL)
739 			continue;
740 
741 		/* A leaf or an internal node with skipped bits */
742 
743 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 		   tn->pos + tn->bits - 1) {
745 			if (tkey_extract_bits(node->key,
746 					      oldtnode->pos + oldtnode->bits,
747 					      1) == 0)
748 				put_child(t, tn, 2*i, node);
749 			else
750 				put_child(t, tn, 2*i+1, node);
751 			continue;
752 		}
753 
754 		/* An internal node with two children */
755 		inode = (struct tnode *) node;
756 
757 		if (inode->bits == 1) {
758 			put_child(t, tn, 2*i, inode->child[0]);
759 			put_child(t, tn, 2*i+1, inode->child[1]);
760 
761 			tnode_free_safe(inode);
762 			continue;
763 		}
764 
765 		/* An internal node with more than two children */
766 
767 		/* We will replace this node 'inode' with two new
768 		 * ones, 'left' and 'right', each with half of the
769 		 * original children. The two new nodes will have
770 		 * a position one bit further down the key and this
771 		 * means that the "significant" part of their keys
772 		 * (see the discussion near the top of this file)
773 		 * will differ by one bit, which will be "0" in
774 		 * left's key and "1" in right's key. Since we are
775 		 * moving the key position by one step, the bit that
776 		 * we are moving away from - the bit at position
777 		 * (inode->pos) - is the one that will differ between
778 		 * left and right. So... we synthesize that bit in the
779 		 * two  new keys.
780 		 * The mask 'm' below will be a single "one" bit at
781 		 * the position (inode->pos)
782 		 */
783 
784 		/* Use the old key, but set the new significant
785 		 *   bit to zero.
786 		 */
787 
788 		left = (struct tnode *) tnode_get_child(tn, 2*i);
789 		put_child(t, tn, 2*i, NULL);
790 
791 		BUG_ON(!left);
792 
793 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 		put_child(t, tn, 2*i+1, NULL);
795 
796 		BUG_ON(!right);
797 
798 		size = tnode_child_length(left);
799 		for (j = 0; j < size; j++) {
800 			put_child(t, left, j, inode->child[j]);
801 			put_child(t, right, j, inode->child[j + size]);
802 		}
803 		put_child(t, tn, 2*i, resize(t, left));
804 		put_child(t, tn, 2*i+1, resize(t, right));
805 
806 		tnode_free_safe(inode);
807 	}
808 	tnode_free_safe(oldtnode);
809 	return tn;
810 nomem:
811 	{
812 		int size = tnode_child_length(tn);
813 		int j;
814 
815 		for (j = 0; j < size; j++)
816 			if (tn->child[j])
817 				tnode_free((struct tnode *)tn->child[j]);
818 
819 		tnode_free(tn);
820 
821 		return ERR_PTR(-ENOMEM);
822 	}
823 }
824 
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 	struct tnode *oldtnode = tn;
828 	struct rt_trie_node *left, *right;
829 	int i;
830 	int olen = tnode_child_length(tn);
831 
832 	pr_debug("In halve\n");
833 
834 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835 
836 	if (!tn)
837 		return ERR_PTR(-ENOMEM);
838 
839 	/*
840 	 * Preallocate and store tnodes before the actual work so we
841 	 * don't get into an inconsistent state if memory allocation
842 	 * fails. In case of failure we return the oldnode and halve
843 	 * of tnode is ignored.
844 	 */
845 
846 	for (i = 0; i < olen; i += 2) {
847 		left = tnode_get_child(oldtnode, i);
848 		right = tnode_get_child(oldtnode, i+1);
849 
850 		/* Two nonempty children */
851 		if (left && right) {
852 			struct tnode *newn;
853 
854 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855 
856 			if (!newn)
857 				goto nomem;
858 
859 			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
860 		}
861 
862 	}
863 
864 	for (i = 0; i < olen; i += 2) {
865 		struct tnode *newBinNode;
866 
867 		left = tnode_get_child(oldtnode, i);
868 		right = tnode_get_child(oldtnode, i+1);
869 
870 		/* At least one of the children is empty */
871 		if (left == NULL) {
872 			if (right == NULL)    /* Both are empty */
873 				continue;
874 			put_child(t, tn, i/2, right);
875 			continue;
876 		}
877 
878 		if (right == NULL) {
879 			put_child(t, tn, i/2, left);
880 			continue;
881 		}
882 
883 		/* Two nonempty children */
884 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 		put_child(t, tn, i/2, NULL);
886 		put_child(t, newBinNode, 0, left);
887 		put_child(t, newBinNode, 1, right);
888 		put_child(t, tn, i/2, resize(t, newBinNode));
889 	}
890 	tnode_free_safe(oldtnode);
891 	return tn;
892 nomem:
893 	{
894 		int size = tnode_child_length(tn);
895 		int j;
896 
897 		for (j = 0; j < size; j++)
898 			if (tn->child[j])
899 				tnode_free((struct tnode *)tn->child[j]);
900 
901 		tnode_free(tn);
902 
903 		return ERR_PTR(-ENOMEM);
904 	}
905 }
906 
907 /* readside must use rcu_read_lock currently dump routines
908  via get_fa_head and dump */
909 
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 	struct hlist_head *head = &l->list;
913 	struct hlist_node *node;
914 	struct leaf_info *li;
915 
916 	hlist_for_each_entry_rcu(li, node, head, hlist)
917 		if (li->plen == plen)
918 			return li;
919 
920 	return NULL;
921 }
922 
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 	struct leaf_info *li = find_leaf_info(l, plen);
926 
927 	if (!li)
928 		return NULL;
929 
930 	return &li->falh;
931 }
932 
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 	struct leaf_info *li = NULL, *last = NULL;
936 	struct hlist_node *node;
937 
938 	if (hlist_empty(head)) {
939 		hlist_add_head_rcu(&new->hlist, head);
940 	} else {
941 		hlist_for_each_entry(li, node, head, hlist) {
942 			if (new->plen > li->plen)
943 				break;
944 
945 			last = li;
946 		}
947 		if (last)
948 			hlist_add_after_rcu(&last->hlist, &new->hlist);
949 		else
950 			hlist_add_before_rcu(&new->hlist, &li->hlist);
951 	}
952 }
953 
954 /* rcu_read_lock needs to be hold by caller from readside */
955 
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
958 {
959 	int pos;
960 	struct tnode *tn;
961 	struct rt_trie_node *n;
962 
963 	pos = 0;
964 	n = rcu_dereference_rtnl(t->trie);
965 
966 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
967 		tn = (struct tnode *) n;
968 
969 		check_tnode(tn);
970 
971 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 			pos = tn->pos + tn->bits;
973 			n = tnode_get_child_rcu(tn,
974 						tkey_extract_bits(key,
975 								  tn->pos,
976 								  tn->bits));
977 		} else
978 			break;
979 	}
980 	/* Case we have found a leaf. Compare prefixes */
981 
982 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 		return (struct leaf *)n;
984 
985 	return NULL;
986 }
987 
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
989 {
990 	int wasfull;
991 	t_key cindex, key;
992 	struct tnode *tp;
993 
994 	key = tn->key;
995 
996 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
997 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000 
1001 		tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 				      (struct rt_trie_node *)tn, wasfull);
1003 
1004 		tp = node_parent((struct rt_trie_node *) tn);
1005 		if (!tp)
1006 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1007 
1008 		tnode_free_flush();
1009 		if (!tp)
1010 			break;
1011 		tn = tp;
1012 	}
1013 
1014 	/* Handle last (top) tnode */
1015 	if (IS_TNODE(tn))
1016 		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017 
1018 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019 	tnode_free_flush();
1020 }
1021 
1022 /* only used from updater-side */
1023 
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1025 {
1026 	int pos, newpos;
1027 	struct tnode *tp = NULL, *tn = NULL;
1028 	struct rt_trie_node *n;
1029 	struct leaf *l;
1030 	int missbit;
1031 	struct list_head *fa_head = NULL;
1032 	struct leaf_info *li;
1033 	t_key cindex;
1034 
1035 	pos = 0;
1036 	n = t->trie;
1037 
1038 	/* If we point to NULL, stop. Either the tree is empty and we should
1039 	 * just put a new leaf in if, or we have reached an empty child slot,
1040 	 * and we should just put our new leaf in that.
1041 	 * If we point to a T_TNODE, check if it matches our key. Note that
1042 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 	 * not be the parent's 'pos'+'bits'!
1044 	 *
1045 	 * If it does match the current key, get pos/bits from it, extract
1046 	 * the index from our key, push the T_TNODE and walk the tree.
1047 	 *
1048 	 * If it doesn't, we have to replace it with a new T_TNODE.
1049 	 *
1050 	 * If we point to a T_LEAF, it might or might not have the same key
1051 	 * as we do. If it does, just change the value, update the T_LEAF's
1052 	 * value, and return it.
1053 	 * If it doesn't, we need to replace it with a T_TNODE.
1054 	 */
1055 
1056 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1057 		tn = (struct tnode *) n;
1058 
1059 		check_tnode(tn);
1060 
1061 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 			tp = tn;
1063 			pos = tn->pos + tn->bits;
1064 			n = tnode_get_child(tn,
1065 					    tkey_extract_bits(key,
1066 							      tn->pos,
1067 							      tn->bits));
1068 
1069 			BUG_ON(n && node_parent(n) != tn);
1070 		} else
1071 			break;
1072 	}
1073 
1074 	/*
1075 	 * n  ----> NULL, LEAF or TNODE
1076 	 *
1077 	 * tp is n's (parent) ----> NULL or TNODE
1078 	 */
1079 
1080 	BUG_ON(tp && IS_LEAF(tp));
1081 
1082 	/* Case 1: n is a leaf. Compare prefixes */
1083 
1084 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 		l = (struct leaf *) n;
1086 		li = leaf_info_new(plen);
1087 
1088 		if (!li)
1089 			return NULL;
1090 
1091 		fa_head = &li->falh;
1092 		insert_leaf_info(&l->list, li);
1093 		goto done;
1094 	}
1095 	l = leaf_new();
1096 
1097 	if (!l)
1098 		return NULL;
1099 
1100 	l->key = key;
1101 	li = leaf_info_new(plen);
1102 
1103 	if (!li) {
1104 		free_leaf(l);
1105 		return NULL;
1106 	}
1107 
1108 	fa_head = &li->falh;
1109 	insert_leaf_info(&l->list, li);
1110 
1111 	if (t->trie && n == NULL) {
1112 		/* Case 2: n is NULL, and will just insert a new leaf */
1113 
1114 		node_set_parent((struct rt_trie_node *)l, tp);
1115 
1116 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1118 	} else {
1119 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1120 		/*
1121 		 *  Add a new tnode here
1122 		 *  first tnode need some special handling
1123 		 */
1124 
1125 		if (tp)
1126 			pos = tp->pos+tp->bits;
1127 		else
1128 			pos = 0;
1129 
1130 		if (n) {
1131 			newpos = tkey_mismatch(key, pos, n->key);
1132 			tn = tnode_new(n->key, newpos, 1);
1133 		} else {
1134 			newpos = 0;
1135 			tn = tnode_new(key, newpos, 1); /* First tnode */
1136 		}
1137 
1138 		if (!tn) {
1139 			free_leaf_info(li);
1140 			free_leaf(l);
1141 			return NULL;
1142 		}
1143 
1144 		node_set_parent((struct rt_trie_node *)tn, tp);
1145 
1146 		missbit = tkey_extract_bits(key, newpos, 1);
1147 		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1148 		put_child(t, tn, 1-missbit, n);
1149 
1150 		if (tp) {
1151 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 			put_child(t, (struct tnode *)tp, cindex,
1153 				  (struct rt_trie_node *)tn);
1154 		} else {
1155 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1156 			tp = tn;
1157 		}
1158 	}
1159 
1160 	if (tp && tp->pos + tp->bits > 32)
1161 		pr_warning("fib_trie"
1162 			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 			   tp, tp->pos, tp->bits, key, plen);
1164 
1165 	/* Rebalance the trie */
1166 
1167 	trie_rebalance(t, tp);
1168 done:
1169 	return fa_head;
1170 }
1171 
1172 /*
1173  * Caller must hold RTNL.
1174  */
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1176 {
1177 	struct trie *t = (struct trie *) tb->tb_data;
1178 	struct fib_alias *fa, *new_fa;
1179 	struct list_head *fa_head = NULL;
1180 	struct fib_info *fi;
1181 	int plen = cfg->fc_dst_len;
1182 	u8 tos = cfg->fc_tos;
1183 	u32 key, mask;
1184 	int err;
1185 	struct leaf *l;
1186 
1187 	if (plen > 32)
1188 		return -EINVAL;
1189 
1190 	key = ntohl(cfg->fc_dst);
1191 
1192 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193 
1194 	mask = ntohl(inet_make_mask(plen));
1195 
1196 	if (key & ~mask)
1197 		return -EINVAL;
1198 
1199 	key = key & mask;
1200 
1201 	fi = fib_create_info(cfg);
1202 	if (IS_ERR(fi)) {
1203 		err = PTR_ERR(fi);
1204 		goto err;
1205 	}
1206 
1207 	l = fib_find_node(t, key);
1208 	fa = NULL;
1209 
1210 	if (l) {
1211 		fa_head = get_fa_head(l, plen);
1212 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 	}
1214 
1215 	/* Now fa, if non-NULL, points to the first fib alias
1216 	 * with the same keys [prefix,tos,priority], if such key already
1217 	 * exists or to the node before which we will insert new one.
1218 	 *
1219 	 * If fa is NULL, we will need to allocate a new one and
1220 	 * insert to the head of f.
1221 	 *
1222 	 * If f is NULL, no fib node matched the destination key
1223 	 * and we need to allocate a new one of those as well.
1224 	 */
1225 
1226 	if (fa && fa->fa_tos == tos &&
1227 	    fa->fa_info->fib_priority == fi->fib_priority) {
1228 		struct fib_alias *fa_first, *fa_match;
1229 
1230 		err = -EEXIST;
1231 		if (cfg->fc_nlflags & NLM_F_EXCL)
1232 			goto out;
1233 
1234 		/* We have 2 goals:
1235 		 * 1. Find exact match for type, scope, fib_info to avoid
1236 		 * duplicate routes
1237 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 		 */
1239 		fa_match = NULL;
1240 		fa_first = fa;
1241 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 			if (fa->fa_tos != tos)
1244 				break;
1245 			if (fa->fa_info->fib_priority != fi->fib_priority)
1246 				break;
1247 			if (fa->fa_type == cfg->fc_type &&
1248 			    fa->fa_scope == cfg->fc_scope &&
1249 			    fa->fa_info == fi) {
1250 				fa_match = fa;
1251 				break;
1252 			}
1253 		}
1254 
1255 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1256 			struct fib_info *fi_drop;
1257 			u8 state;
1258 
1259 			fa = fa_first;
1260 			if (fa_match) {
1261 				if (fa == fa_match)
1262 					err = 0;
1263 				goto out;
1264 			}
1265 			err = -ENOBUFS;
1266 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1267 			if (new_fa == NULL)
1268 				goto out;
1269 
1270 			fi_drop = fa->fa_info;
1271 			new_fa->fa_tos = fa->fa_tos;
1272 			new_fa->fa_info = fi;
1273 			new_fa->fa_type = cfg->fc_type;
1274 			new_fa->fa_scope = cfg->fc_scope;
1275 			state = fa->fa_state;
1276 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1277 
1278 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 			alias_free_mem_rcu(fa);
1280 
1281 			fib_release_info(fi_drop);
1282 			if (state & FA_S_ACCESSED)
1283 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1284 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1286 
1287 			goto succeeded;
1288 		}
1289 		/* Error if we find a perfect match which
1290 		 * uses the same scope, type, and nexthop
1291 		 * information.
1292 		 */
1293 		if (fa_match)
1294 			goto out;
1295 
1296 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1297 			fa = fa_first;
1298 	}
1299 	err = -ENOENT;
1300 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1301 		goto out;
1302 
1303 	err = -ENOBUFS;
1304 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1305 	if (new_fa == NULL)
1306 		goto out;
1307 
1308 	new_fa->fa_info = fi;
1309 	new_fa->fa_tos = tos;
1310 	new_fa->fa_type = cfg->fc_type;
1311 	new_fa->fa_scope = cfg->fc_scope;
1312 	new_fa->fa_state = 0;
1313 	/*
1314 	 * Insert new entry to the list.
1315 	 */
1316 
1317 	if (!fa_head) {
1318 		fa_head = fib_insert_node(t, key, plen);
1319 		if (unlikely(!fa_head)) {
1320 			err = -ENOMEM;
1321 			goto out_free_new_fa;
1322 		}
1323 	}
1324 
1325 	list_add_tail_rcu(&new_fa->fa_list,
1326 			  (fa ? &fa->fa_list : fa_head));
1327 
1328 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1329 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1330 		  &cfg->fc_nlinfo, 0);
1331 succeeded:
1332 	return 0;
1333 
1334 out_free_new_fa:
1335 	kmem_cache_free(fn_alias_kmem, new_fa);
1336 out:
1337 	fib_release_info(fi);
1338 err:
1339 	return err;
1340 }
1341 
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1344 		      t_key key,  const struct flowi4 *flp,
1345 		      struct fib_result *res, int fib_flags)
1346 {
1347 	struct leaf_info *li;
1348 	struct hlist_head *hhead = &l->list;
1349 	struct hlist_node *node;
1350 
1351 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1352 		struct fib_alias *fa;
1353 		int plen = li->plen;
1354 		__be32 mask = inet_make_mask(plen);
1355 
1356 		if (l->key != (key & ntohl(mask)))
1357 			continue;
1358 
1359 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1360 			struct fib_info *fi = fa->fa_info;
1361 			int nhsel, err;
1362 
1363 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1364 				continue;
1365 			if (fa->fa_scope < flp->flowi4_scope)
1366 				continue;
1367 			fib_alias_accessed(fa);
1368 			err = fib_props[fa->fa_type].error;
1369 			if (err) {
1370 #ifdef CONFIG_IP_FIB_TRIE_STATS
1371 				t->stats.semantic_match_miss++;
1372 #endif
1373 				return 1;
1374 			}
1375 			if (fi->fib_flags & RTNH_F_DEAD)
1376 				continue;
1377 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1378 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1379 
1380 				if (nh->nh_flags & RTNH_F_DEAD)
1381 					continue;
1382 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1383 					continue;
1384 
1385 #ifdef CONFIG_IP_FIB_TRIE_STATS
1386 				t->stats.semantic_match_passed++;
1387 #endif
1388 				res->prefixlen = plen;
1389 				res->nh_sel = nhsel;
1390 				res->type = fa->fa_type;
1391 				res->scope = fa->fa_scope;
1392 				res->fi = fi;
1393 				res->table = tb;
1394 				res->fa_head = &li->falh;
1395 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1396 					atomic_inc(&res->fi->fib_clntref);
1397 				return 0;
1398 			}
1399 		}
1400 
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 		t->stats.semantic_match_miss++;
1403 #endif
1404 	}
1405 
1406 	return 1;
1407 }
1408 
1409 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1410 		     struct fib_result *res, int fib_flags)
1411 {
1412 	struct trie *t = (struct trie *) tb->tb_data;
1413 	int ret;
1414 	struct rt_trie_node *n;
1415 	struct tnode *pn;
1416 	unsigned int pos, bits;
1417 	t_key key = ntohl(flp->daddr);
1418 	unsigned int chopped_off;
1419 	t_key cindex = 0;
1420 	unsigned int current_prefix_length = KEYLENGTH;
1421 	struct tnode *cn;
1422 	t_key pref_mismatch;
1423 
1424 	rcu_read_lock();
1425 
1426 	n = rcu_dereference(t->trie);
1427 	if (!n)
1428 		goto failed;
1429 
1430 #ifdef CONFIG_IP_FIB_TRIE_STATS
1431 	t->stats.gets++;
1432 #endif
1433 
1434 	/* Just a leaf? */
1435 	if (IS_LEAF(n)) {
1436 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1437 		goto found;
1438 	}
1439 
1440 	pn = (struct tnode *) n;
1441 	chopped_off = 0;
1442 
1443 	while (pn) {
1444 		pos = pn->pos;
1445 		bits = pn->bits;
1446 
1447 		if (!chopped_off)
1448 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1449 						   pos, bits);
1450 
1451 		n = tnode_get_child_rcu(pn, cindex);
1452 
1453 		if (n == NULL) {
1454 #ifdef CONFIG_IP_FIB_TRIE_STATS
1455 			t->stats.null_node_hit++;
1456 #endif
1457 			goto backtrace;
1458 		}
1459 
1460 		if (IS_LEAF(n)) {
1461 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1462 			if (ret > 0)
1463 				goto backtrace;
1464 			goto found;
1465 		}
1466 
1467 		cn = (struct tnode *)n;
1468 
1469 		/*
1470 		 * It's a tnode, and we can do some extra checks here if we
1471 		 * like, to avoid descending into a dead-end branch.
1472 		 * This tnode is in the parent's child array at index
1473 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1474 		 * chopped off, so in reality the index may be just a
1475 		 * subprefix, padded with zero at the end.
1476 		 * We can also take a look at any skipped bits in this
1477 		 * tnode - everything up to p_pos is supposed to be ok,
1478 		 * and the non-chopped bits of the index (se previous
1479 		 * paragraph) are also guaranteed ok, but the rest is
1480 		 * considered unknown.
1481 		 *
1482 		 * The skipped bits are key[pos+bits..cn->pos].
1483 		 */
1484 
1485 		/* If current_prefix_length < pos+bits, we are already doing
1486 		 * actual prefix  matching, which means everything from
1487 		 * pos+(bits-chopped_off) onward must be zero along some
1488 		 * branch of this subtree - otherwise there is *no* valid
1489 		 * prefix present. Here we can only check the skipped
1490 		 * bits. Remember, since we have already indexed into the
1491 		 * parent's child array, we know that the bits we chopped of
1492 		 * *are* zero.
1493 		 */
1494 
1495 		/* NOTA BENE: Checking only skipped bits
1496 		   for the new node here */
1497 
1498 		if (current_prefix_length < pos+bits) {
1499 			if (tkey_extract_bits(cn->key, current_prefix_length,
1500 						cn->pos - current_prefix_length)
1501 			    || !(cn->child[0]))
1502 				goto backtrace;
1503 		}
1504 
1505 		/*
1506 		 * If chopped_off=0, the index is fully validated and we
1507 		 * only need to look at the skipped bits for this, the new,
1508 		 * tnode. What we actually want to do is to find out if
1509 		 * these skipped bits match our key perfectly, or if we will
1510 		 * have to count on finding a matching prefix further down,
1511 		 * because if we do, we would like to have some way of
1512 		 * verifying the existence of such a prefix at this point.
1513 		 */
1514 
1515 		/* The only thing we can do at this point is to verify that
1516 		 * any such matching prefix can indeed be a prefix to our
1517 		 * key, and if the bits in the node we are inspecting that
1518 		 * do not match our key are not ZERO, this cannot be true.
1519 		 * Thus, find out where there is a mismatch (before cn->pos)
1520 		 * and verify that all the mismatching bits are zero in the
1521 		 * new tnode's key.
1522 		 */
1523 
1524 		/*
1525 		 * Note: We aren't very concerned about the piece of
1526 		 * the key that precede pn->pos+pn->bits, since these
1527 		 * have already been checked. The bits after cn->pos
1528 		 * aren't checked since these are by definition
1529 		 * "unknown" at this point. Thus, what we want to see
1530 		 * is if we are about to enter the "prefix matching"
1531 		 * state, and in that case verify that the skipped
1532 		 * bits that will prevail throughout this subtree are
1533 		 * zero, as they have to be if we are to find a
1534 		 * matching prefix.
1535 		 */
1536 
1537 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1538 
1539 		/*
1540 		 * In short: If skipped bits in this node do not match
1541 		 * the search key, enter the "prefix matching"
1542 		 * state.directly.
1543 		 */
1544 		if (pref_mismatch) {
1545 			int mp = KEYLENGTH - fls(pref_mismatch);
1546 
1547 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1548 				goto backtrace;
1549 
1550 			if (current_prefix_length >= cn->pos)
1551 				current_prefix_length = mp;
1552 		}
1553 
1554 		pn = (struct tnode *)n; /* Descend */
1555 		chopped_off = 0;
1556 		continue;
1557 
1558 backtrace:
1559 		chopped_off++;
1560 
1561 		/* As zero don't change the child key (cindex) */
1562 		while ((chopped_off <= pn->bits)
1563 		       && !(cindex & (1<<(chopped_off-1))))
1564 			chopped_off++;
1565 
1566 		/* Decrease current_... with bits chopped off */
1567 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1568 			current_prefix_length = pn->pos + pn->bits
1569 				- chopped_off;
1570 
1571 		/*
1572 		 * Either we do the actual chop off according or if we have
1573 		 * chopped off all bits in this tnode walk up to our parent.
1574 		 */
1575 
1576 		if (chopped_off <= pn->bits) {
1577 			cindex &= ~(1 << (chopped_off-1));
1578 		} else {
1579 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1580 			if (!parent)
1581 				goto failed;
1582 
1583 			/* Get Child's index */
1584 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1585 			pn = parent;
1586 			chopped_off = 0;
1587 
1588 #ifdef CONFIG_IP_FIB_TRIE_STATS
1589 			t->stats.backtrack++;
1590 #endif
1591 			goto backtrace;
1592 		}
1593 	}
1594 failed:
1595 	ret = 1;
1596 found:
1597 	rcu_read_unlock();
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Remove the leaf and return parent.
1603  */
1604 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1605 {
1606 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1607 
1608 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1609 
1610 	if (tp) {
1611 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1612 		put_child(t, (struct tnode *)tp, cindex, NULL);
1613 		trie_rebalance(t, tp);
1614 	} else
1615 		rcu_assign_pointer(t->trie, NULL);
1616 
1617 	free_leaf(l);
1618 }
1619 
1620 /*
1621  * Caller must hold RTNL.
1622  */
1623 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1624 {
1625 	struct trie *t = (struct trie *) tb->tb_data;
1626 	u32 key, mask;
1627 	int plen = cfg->fc_dst_len;
1628 	u8 tos = cfg->fc_tos;
1629 	struct fib_alias *fa, *fa_to_delete;
1630 	struct list_head *fa_head;
1631 	struct leaf *l;
1632 	struct leaf_info *li;
1633 
1634 	if (plen > 32)
1635 		return -EINVAL;
1636 
1637 	key = ntohl(cfg->fc_dst);
1638 	mask = ntohl(inet_make_mask(plen));
1639 
1640 	if (key & ~mask)
1641 		return -EINVAL;
1642 
1643 	key = key & mask;
1644 	l = fib_find_node(t, key);
1645 
1646 	if (!l)
1647 		return -ESRCH;
1648 
1649 	fa_head = get_fa_head(l, plen);
1650 	fa = fib_find_alias(fa_head, tos, 0);
1651 
1652 	if (!fa)
1653 		return -ESRCH;
1654 
1655 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1656 
1657 	fa_to_delete = NULL;
1658 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1659 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1660 		struct fib_info *fi = fa->fa_info;
1661 
1662 		if (fa->fa_tos != tos)
1663 			break;
1664 
1665 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1666 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1667 		     fa->fa_scope == cfg->fc_scope) &&
1668 		    (!cfg->fc_protocol ||
1669 		     fi->fib_protocol == cfg->fc_protocol) &&
1670 		    fib_nh_match(cfg, fi) == 0) {
1671 			fa_to_delete = fa;
1672 			break;
1673 		}
1674 	}
1675 
1676 	if (!fa_to_delete)
1677 		return -ESRCH;
1678 
1679 	fa = fa_to_delete;
1680 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1681 		  &cfg->fc_nlinfo, 0);
1682 
1683 	l = fib_find_node(t, key);
1684 	li = find_leaf_info(l, plen);
1685 
1686 	list_del_rcu(&fa->fa_list);
1687 
1688 	if (list_empty(fa_head)) {
1689 		hlist_del_rcu(&li->hlist);
1690 		free_leaf_info(li);
1691 	}
1692 
1693 	if (hlist_empty(&l->list))
1694 		trie_leaf_remove(t, l);
1695 
1696 	if (fa->fa_state & FA_S_ACCESSED)
1697 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1698 
1699 	fib_release_info(fa->fa_info);
1700 	alias_free_mem_rcu(fa);
1701 	return 0;
1702 }
1703 
1704 static int trie_flush_list(struct list_head *head)
1705 {
1706 	struct fib_alias *fa, *fa_node;
1707 	int found = 0;
1708 
1709 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1710 		struct fib_info *fi = fa->fa_info;
1711 
1712 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1713 			list_del_rcu(&fa->fa_list);
1714 			fib_release_info(fa->fa_info);
1715 			alias_free_mem_rcu(fa);
1716 			found++;
1717 		}
1718 	}
1719 	return found;
1720 }
1721 
1722 static int trie_flush_leaf(struct leaf *l)
1723 {
1724 	int found = 0;
1725 	struct hlist_head *lih = &l->list;
1726 	struct hlist_node *node, *tmp;
1727 	struct leaf_info *li = NULL;
1728 
1729 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1730 		found += trie_flush_list(&li->falh);
1731 
1732 		if (list_empty(&li->falh)) {
1733 			hlist_del_rcu(&li->hlist);
1734 			free_leaf_info(li);
1735 		}
1736 	}
1737 	return found;
1738 }
1739 
1740 /*
1741  * Scan for the next right leaf starting at node p->child[idx]
1742  * Since we have back pointer, no recursion necessary.
1743  */
1744 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1745 {
1746 	do {
1747 		t_key idx;
1748 
1749 		if (c)
1750 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1751 		else
1752 			idx = 0;
1753 
1754 		while (idx < 1u << p->bits) {
1755 			c = tnode_get_child_rcu(p, idx++);
1756 			if (!c)
1757 				continue;
1758 
1759 			if (IS_LEAF(c)) {
1760 				prefetch(p->child[idx]);
1761 				return (struct leaf *) c;
1762 			}
1763 
1764 			/* Rescan start scanning in new node */
1765 			p = (struct tnode *) c;
1766 			idx = 0;
1767 		}
1768 
1769 		/* Node empty, walk back up to parent */
1770 		c = (struct rt_trie_node *) p;
1771 	} while ((p = node_parent_rcu(c)) != NULL);
1772 
1773 	return NULL; /* Root of trie */
1774 }
1775 
1776 static struct leaf *trie_firstleaf(struct trie *t)
1777 {
1778 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1779 
1780 	if (!n)
1781 		return NULL;
1782 
1783 	if (IS_LEAF(n))          /* trie is just a leaf */
1784 		return (struct leaf *) n;
1785 
1786 	return leaf_walk_rcu(n, NULL);
1787 }
1788 
1789 static struct leaf *trie_nextleaf(struct leaf *l)
1790 {
1791 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1792 	struct tnode *p = node_parent_rcu(c);
1793 
1794 	if (!p)
1795 		return NULL;	/* trie with just one leaf */
1796 
1797 	return leaf_walk_rcu(p, c);
1798 }
1799 
1800 static struct leaf *trie_leafindex(struct trie *t, int index)
1801 {
1802 	struct leaf *l = trie_firstleaf(t);
1803 
1804 	while (l && index-- > 0)
1805 		l = trie_nextleaf(l);
1806 
1807 	return l;
1808 }
1809 
1810 
1811 /*
1812  * Caller must hold RTNL.
1813  */
1814 int fib_table_flush(struct fib_table *tb)
1815 {
1816 	struct trie *t = (struct trie *) tb->tb_data;
1817 	struct leaf *l, *ll = NULL;
1818 	int found = 0;
1819 
1820 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1821 		found += trie_flush_leaf(l);
1822 
1823 		if (ll && hlist_empty(&ll->list))
1824 			trie_leaf_remove(t, ll);
1825 		ll = l;
1826 	}
1827 
1828 	if (ll && hlist_empty(&ll->list))
1829 		trie_leaf_remove(t, ll);
1830 
1831 	pr_debug("trie_flush found=%d\n", found);
1832 	return found;
1833 }
1834 
1835 void fib_free_table(struct fib_table *tb)
1836 {
1837 	kfree(tb);
1838 }
1839 
1840 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1841 			   struct fib_table *tb,
1842 			   struct sk_buff *skb, struct netlink_callback *cb)
1843 {
1844 	int i, s_i;
1845 	struct fib_alias *fa;
1846 	__be32 xkey = htonl(key);
1847 
1848 	s_i = cb->args[5];
1849 	i = 0;
1850 
1851 	/* rcu_read_lock is hold by caller */
1852 
1853 	list_for_each_entry_rcu(fa, fah, fa_list) {
1854 		if (i < s_i) {
1855 			i++;
1856 			continue;
1857 		}
1858 
1859 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1860 				  cb->nlh->nlmsg_seq,
1861 				  RTM_NEWROUTE,
1862 				  tb->tb_id,
1863 				  fa->fa_type,
1864 				  fa->fa_scope,
1865 				  xkey,
1866 				  plen,
1867 				  fa->fa_tos,
1868 				  fa->fa_info, NLM_F_MULTI) < 0) {
1869 			cb->args[5] = i;
1870 			return -1;
1871 		}
1872 		i++;
1873 	}
1874 	cb->args[5] = i;
1875 	return skb->len;
1876 }
1877 
1878 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1879 			struct sk_buff *skb, struct netlink_callback *cb)
1880 {
1881 	struct leaf_info *li;
1882 	struct hlist_node *node;
1883 	int i, s_i;
1884 
1885 	s_i = cb->args[4];
1886 	i = 0;
1887 
1888 	/* rcu_read_lock is hold by caller */
1889 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1890 		if (i < s_i) {
1891 			i++;
1892 			continue;
1893 		}
1894 
1895 		if (i > s_i)
1896 			cb->args[5] = 0;
1897 
1898 		if (list_empty(&li->falh))
1899 			continue;
1900 
1901 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1902 			cb->args[4] = i;
1903 			return -1;
1904 		}
1905 		i++;
1906 	}
1907 
1908 	cb->args[4] = i;
1909 	return skb->len;
1910 }
1911 
1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1913 		   struct netlink_callback *cb)
1914 {
1915 	struct leaf *l;
1916 	struct trie *t = (struct trie *) tb->tb_data;
1917 	t_key key = cb->args[2];
1918 	int count = cb->args[3];
1919 
1920 	rcu_read_lock();
1921 	/* Dump starting at last key.
1922 	 * Note: 0.0.0.0/0 (ie default) is first key.
1923 	 */
1924 	if (count == 0)
1925 		l = trie_firstleaf(t);
1926 	else {
1927 		/* Normally, continue from last key, but if that is missing
1928 		 * fallback to using slow rescan
1929 		 */
1930 		l = fib_find_node(t, key);
1931 		if (!l)
1932 			l = trie_leafindex(t, count);
1933 	}
1934 
1935 	while (l) {
1936 		cb->args[2] = l->key;
1937 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1938 			cb->args[3] = count;
1939 			rcu_read_unlock();
1940 			return -1;
1941 		}
1942 
1943 		++count;
1944 		l = trie_nextleaf(l);
1945 		memset(&cb->args[4], 0,
1946 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1947 	}
1948 	cb->args[3] = count;
1949 	rcu_read_unlock();
1950 
1951 	return skb->len;
1952 }
1953 
1954 void __init fib_trie_init(void)
1955 {
1956 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 					  sizeof(struct fib_alias),
1958 					  0, SLAB_PANIC, NULL);
1959 
1960 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 					   max(sizeof(struct leaf),
1962 					       sizeof(struct leaf_info)),
1963 					   0, SLAB_PANIC, NULL);
1964 }
1965 
1966 
1967 struct fib_table *fib_trie_table(u32 id)
1968 {
1969 	struct fib_table *tb;
1970 	struct trie *t;
1971 
1972 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1973 		     GFP_KERNEL);
1974 	if (tb == NULL)
1975 		return NULL;
1976 
1977 	tb->tb_id = id;
1978 	tb->tb_default = -1;
1979 
1980 	t = (struct trie *) tb->tb_data;
1981 	memset(t, 0, sizeof(*t));
1982 
1983 	if (id == RT_TABLE_LOCAL)
1984 		pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1985 
1986 	return tb;
1987 }
1988 
1989 #ifdef CONFIG_PROC_FS
1990 /* Depth first Trie walk iterator */
1991 struct fib_trie_iter {
1992 	struct seq_net_private p;
1993 	struct fib_table *tb;
1994 	struct tnode *tnode;
1995 	unsigned int index;
1996 	unsigned int depth;
1997 };
1998 
1999 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2000 {
2001 	struct tnode *tn = iter->tnode;
2002 	unsigned int cindex = iter->index;
2003 	struct tnode *p;
2004 
2005 	/* A single entry routing table */
2006 	if (!tn)
2007 		return NULL;
2008 
2009 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2010 		 iter->tnode, iter->index, iter->depth);
2011 rescan:
2012 	while (cindex < (1<<tn->bits)) {
2013 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2014 
2015 		if (n) {
2016 			if (IS_LEAF(n)) {
2017 				iter->tnode = tn;
2018 				iter->index = cindex + 1;
2019 			} else {
2020 				/* push down one level */
2021 				iter->tnode = (struct tnode *) n;
2022 				iter->index = 0;
2023 				++iter->depth;
2024 			}
2025 			return n;
2026 		}
2027 
2028 		++cindex;
2029 	}
2030 
2031 	/* Current node exhausted, pop back up */
2032 	p = node_parent_rcu((struct rt_trie_node *)tn);
2033 	if (p) {
2034 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2035 		tn = p;
2036 		--iter->depth;
2037 		goto rescan;
2038 	}
2039 
2040 	/* got root? */
2041 	return NULL;
2042 }
2043 
2044 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2045 				       struct trie *t)
2046 {
2047 	struct rt_trie_node *n;
2048 
2049 	if (!t)
2050 		return NULL;
2051 
2052 	n = rcu_dereference(t->trie);
2053 	if (!n)
2054 		return NULL;
2055 
2056 	if (IS_TNODE(n)) {
2057 		iter->tnode = (struct tnode *) n;
2058 		iter->index = 0;
2059 		iter->depth = 1;
2060 	} else {
2061 		iter->tnode = NULL;
2062 		iter->index = 0;
2063 		iter->depth = 0;
2064 	}
2065 
2066 	return n;
2067 }
2068 
2069 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2070 {
2071 	struct rt_trie_node *n;
2072 	struct fib_trie_iter iter;
2073 
2074 	memset(s, 0, sizeof(*s));
2075 
2076 	rcu_read_lock();
2077 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2078 		if (IS_LEAF(n)) {
2079 			struct leaf *l = (struct leaf *)n;
2080 			struct leaf_info *li;
2081 			struct hlist_node *tmp;
2082 
2083 			s->leaves++;
2084 			s->totdepth += iter.depth;
2085 			if (iter.depth > s->maxdepth)
2086 				s->maxdepth = iter.depth;
2087 
2088 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2089 				++s->prefixes;
2090 		} else {
2091 			const struct tnode *tn = (const struct tnode *) n;
2092 			int i;
2093 
2094 			s->tnodes++;
2095 			if (tn->bits < MAX_STAT_DEPTH)
2096 				s->nodesizes[tn->bits]++;
2097 
2098 			for (i = 0; i < (1<<tn->bits); i++)
2099 				if (!tn->child[i])
2100 					s->nullpointers++;
2101 		}
2102 	}
2103 	rcu_read_unlock();
2104 }
2105 
2106 /*
2107  *	This outputs /proc/net/fib_triestats
2108  */
2109 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2110 {
2111 	unsigned int i, max, pointers, bytes, avdepth;
2112 
2113 	if (stat->leaves)
2114 		avdepth = stat->totdepth*100 / stat->leaves;
2115 	else
2116 		avdepth = 0;
2117 
2118 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2119 		   avdepth / 100, avdepth % 100);
2120 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2121 
2122 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2123 	bytes = sizeof(struct leaf) * stat->leaves;
2124 
2125 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2126 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2127 
2128 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2129 	bytes += sizeof(struct tnode) * stat->tnodes;
2130 
2131 	max = MAX_STAT_DEPTH;
2132 	while (max > 0 && stat->nodesizes[max-1] == 0)
2133 		max--;
2134 
2135 	pointers = 0;
2136 	for (i = 1; i <= max; i++)
2137 		if (stat->nodesizes[i] != 0) {
2138 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2139 			pointers += (1<<i) * stat->nodesizes[i];
2140 		}
2141 	seq_putc(seq, '\n');
2142 	seq_printf(seq, "\tPointers: %u\n", pointers);
2143 
2144 	bytes += sizeof(struct rt_trie_node *) * pointers;
2145 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2146 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2147 }
2148 
2149 #ifdef CONFIG_IP_FIB_TRIE_STATS
2150 static void trie_show_usage(struct seq_file *seq,
2151 			    const struct trie_use_stats *stats)
2152 {
2153 	seq_printf(seq, "\nCounters:\n---------\n");
2154 	seq_printf(seq, "gets = %u\n", stats->gets);
2155 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2156 	seq_printf(seq, "semantic match passed = %u\n",
2157 		   stats->semantic_match_passed);
2158 	seq_printf(seq, "semantic match miss = %u\n",
2159 		   stats->semantic_match_miss);
2160 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2161 	seq_printf(seq, "skipped node resize = %u\n\n",
2162 		   stats->resize_node_skipped);
2163 }
2164 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2165 
2166 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2167 {
2168 	if (tb->tb_id == RT_TABLE_LOCAL)
2169 		seq_puts(seq, "Local:\n");
2170 	else if (tb->tb_id == RT_TABLE_MAIN)
2171 		seq_puts(seq, "Main:\n");
2172 	else
2173 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2174 }
2175 
2176 
2177 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2178 {
2179 	struct net *net = (struct net *)seq->private;
2180 	unsigned int h;
2181 
2182 	seq_printf(seq,
2183 		   "Basic info: size of leaf:"
2184 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2185 		   sizeof(struct leaf), sizeof(struct tnode));
2186 
2187 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2188 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2189 		struct hlist_node *node;
2190 		struct fib_table *tb;
2191 
2192 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2193 			struct trie *t = (struct trie *) tb->tb_data;
2194 			struct trie_stat stat;
2195 
2196 			if (!t)
2197 				continue;
2198 
2199 			fib_table_print(seq, tb);
2200 
2201 			trie_collect_stats(t, &stat);
2202 			trie_show_stats(seq, &stat);
2203 #ifdef CONFIG_IP_FIB_TRIE_STATS
2204 			trie_show_usage(seq, &t->stats);
2205 #endif
2206 		}
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2213 {
2214 	return single_open_net(inode, file, fib_triestat_seq_show);
2215 }
2216 
2217 static const struct file_operations fib_triestat_fops = {
2218 	.owner	= THIS_MODULE,
2219 	.open	= fib_triestat_seq_open,
2220 	.read	= seq_read,
2221 	.llseek	= seq_lseek,
2222 	.release = single_release_net,
2223 };
2224 
2225 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2226 {
2227 	struct fib_trie_iter *iter = seq->private;
2228 	struct net *net = seq_file_net(seq);
2229 	loff_t idx = 0;
2230 	unsigned int h;
2231 
2232 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 		struct hlist_node *node;
2235 		struct fib_table *tb;
2236 
2237 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2238 			struct rt_trie_node *n;
2239 
2240 			for (n = fib_trie_get_first(iter,
2241 						    (struct trie *) tb->tb_data);
2242 			     n; n = fib_trie_get_next(iter))
2243 				if (pos == idx++) {
2244 					iter->tb = tb;
2245 					return n;
2246 				}
2247 		}
2248 	}
2249 
2250 	return NULL;
2251 }
2252 
2253 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2254 	__acquires(RCU)
2255 {
2256 	rcu_read_lock();
2257 	return fib_trie_get_idx(seq, *pos);
2258 }
2259 
2260 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2261 {
2262 	struct fib_trie_iter *iter = seq->private;
2263 	struct net *net = seq_file_net(seq);
2264 	struct fib_table *tb = iter->tb;
2265 	struct hlist_node *tb_node;
2266 	unsigned int h;
2267 	struct rt_trie_node *n;
2268 
2269 	++*pos;
2270 	/* next node in same table */
2271 	n = fib_trie_get_next(iter);
2272 	if (n)
2273 		return n;
2274 
2275 	/* walk rest of this hash chain */
2276 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2277 	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2278 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2279 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2280 		if (n)
2281 			goto found;
2282 	}
2283 
2284 	/* new hash chain */
2285 	while (++h < FIB_TABLE_HASHSZ) {
2286 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2287 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2288 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2289 			if (n)
2290 				goto found;
2291 		}
2292 	}
2293 	return NULL;
2294 
2295 found:
2296 	iter->tb = tb;
2297 	return n;
2298 }
2299 
2300 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2301 	__releases(RCU)
2302 {
2303 	rcu_read_unlock();
2304 }
2305 
2306 static void seq_indent(struct seq_file *seq, int n)
2307 {
2308 	while (n-- > 0)
2309 		seq_puts(seq, "   ");
2310 }
2311 
2312 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2313 {
2314 	switch (s) {
2315 	case RT_SCOPE_UNIVERSE: return "universe";
2316 	case RT_SCOPE_SITE:	return "site";
2317 	case RT_SCOPE_LINK:	return "link";
2318 	case RT_SCOPE_HOST:	return "host";
2319 	case RT_SCOPE_NOWHERE:	return "nowhere";
2320 	default:
2321 		snprintf(buf, len, "scope=%d", s);
2322 		return buf;
2323 	}
2324 }
2325 
2326 static const char *const rtn_type_names[__RTN_MAX] = {
2327 	[RTN_UNSPEC] = "UNSPEC",
2328 	[RTN_UNICAST] = "UNICAST",
2329 	[RTN_LOCAL] = "LOCAL",
2330 	[RTN_BROADCAST] = "BROADCAST",
2331 	[RTN_ANYCAST] = "ANYCAST",
2332 	[RTN_MULTICAST] = "MULTICAST",
2333 	[RTN_BLACKHOLE] = "BLACKHOLE",
2334 	[RTN_UNREACHABLE] = "UNREACHABLE",
2335 	[RTN_PROHIBIT] = "PROHIBIT",
2336 	[RTN_THROW] = "THROW",
2337 	[RTN_NAT] = "NAT",
2338 	[RTN_XRESOLVE] = "XRESOLVE",
2339 };
2340 
2341 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2342 {
2343 	if (t < __RTN_MAX && rtn_type_names[t])
2344 		return rtn_type_names[t];
2345 	snprintf(buf, len, "type %u", t);
2346 	return buf;
2347 }
2348 
2349 /* Pretty print the trie */
2350 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2351 {
2352 	const struct fib_trie_iter *iter = seq->private;
2353 	struct rt_trie_node *n = v;
2354 
2355 	if (!node_parent_rcu(n))
2356 		fib_table_print(seq, iter->tb);
2357 
2358 	if (IS_TNODE(n)) {
2359 		struct tnode *tn = (struct tnode *) n;
2360 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2361 
2362 		seq_indent(seq, iter->depth-1);
2363 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2364 			   &prf, tn->pos, tn->bits, tn->full_children,
2365 			   tn->empty_children);
2366 
2367 	} else {
2368 		struct leaf *l = (struct leaf *) n;
2369 		struct leaf_info *li;
2370 		struct hlist_node *node;
2371 		__be32 val = htonl(l->key);
2372 
2373 		seq_indent(seq, iter->depth);
2374 		seq_printf(seq, "  |-- %pI4\n", &val);
2375 
2376 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2377 			struct fib_alias *fa;
2378 
2379 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2380 				char buf1[32], buf2[32];
2381 
2382 				seq_indent(seq, iter->depth+1);
2383 				seq_printf(seq, "  /%d %s %s", li->plen,
2384 					   rtn_scope(buf1, sizeof(buf1),
2385 						     fa->fa_scope),
2386 					   rtn_type(buf2, sizeof(buf2),
2387 						    fa->fa_type));
2388 				if (fa->fa_tos)
2389 					seq_printf(seq, " tos=%d", fa->fa_tos);
2390 				seq_putc(seq, '\n');
2391 			}
2392 		}
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static const struct seq_operations fib_trie_seq_ops = {
2399 	.start  = fib_trie_seq_start,
2400 	.next   = fib_trie_seq_next,
2401 	.stop   = fib_trie_seq_stop,
2402 	.show   = fib_trie_seq_show,
2403 };
2404 
2405 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2406 {
2407 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2408 			    sizeof(struct fib_trie_iter));
2409 }
2410 
2411 static const struct file_operations fib_trie_fops = {
2412 	.owner  = THIS_MODULE,
2413 	.open   = fib_trie_seq_open,
2414 	.read   = seq_read,
2415 	.llseek = seq_lseek,
2416 	.release = seq_release_net,
2417 };
2418 
2419 struct fib_route_iter {
2420 	struct seq_net_private p;
2421 	struct trie *main_trie;
2422 	loff_t	pos;
2423 	t_key	key;
2424 };
2425 
2426 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2427 {
2428 	struct leaf *l = NULL;
2429 	struct trie *t = iter->main_trie;
2430 
2431 	/* use cache location of last found key */
2432 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2433 		pos -= iter->pos;
2434 	else {
2435 		iter->pos = 0;
2436 		l = trie_firstleaf(t);
2437 	}
2438 
2439 	while (l && pos-- > 0) {
2440 		iter->pos++;
2441 		l = trie_nextleaf(l);
2442 	}
2443 
2444 	if (l)
2445 		iter->key = pos;	/* remember it */
2446 	else
2447 		iter->pos = 0;		/* forget it */
2448 
2449 	return l;
2450 }
2451 
2452 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2453 	__acquires(RCU)
2454 {
2455 	struct fib_route_iter *iter = seq->private;
2456 	struct fib_table *tb;
2457 
2458 	rcu_read_lock();
2459 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2460 	if (!tb)
2461 		return NULL;
2462 
2463 	iter->main_trie = (struct trie *) tb->tb_data;
2464 	if (*pos == 0)
2465 		return SEQ_START_TOKEN;
2466 	else
2467 		return fib_route_get_idx(iter, *pos - 1);
2468 }
2469 
2470 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2471 {
2472 	struct fib_route_iter *iter = seq->private;
2473 	struct leaf *l = v;
2474 
2475 	++*pos;
2476 	if (v == SEQ_START_TOKEN) {
2477 		iter->pos = 0;
2478 		l = trie_firstleaf(iter->main_trie);
2479 	} else {
2480 		iter->pos++;
2481 		l = trie_nextleaf(l);
2482 	}
2483 
2484 	if (l)
2485 		iter->key = l->key;
2486 	else
2487 		iter->pos = 0;
2488 	return l;
2489 }
2490 
2491 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2492 	__releases(RCU)
2493 {
2494 	rcu_read_unlock();
2495 }
2496 
2497 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2498 {
2499 	unsigned int flags = 0;
2500 
2501 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2502 		flags = RTF_REJECT;
2503 	if (fi && fi->fib_nh->nh_gw)
2504 		flags |= RTF_GATEWAY;
2505 	if (mask == htonl(0xFFFFFFFF))
2506 		flags |= RTF_HOST;
2507 	flags |= RTF_UP;
2508 	return flags;
2509 }
2510 
2511 /*
2512  *	This outputs /proc/net/route.
2513  *	The format of the file is not supposed to be changed
2514  *	and needs to be same as fib_hash output to avoid breaking
2515  *	legacy utilities
2516  */
2517 static int fib_route_seq_show(struct seq_file *seq, void *v)
2518 {
2519 	struct leaf *l = v;
2520 	struct leaf_info *li;
2521 	struct hlist_node *node;
2522 
2523 	if (v == SEQ_START_TOKEN) {
2524 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2525 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2526 			   "\tWindow\tIRTT");
2527 		return 0;
2528 	}
2529 
2530 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2531 		struct fib_alias *fa;
2532 		__be32 mask, prefix;
2533 
2534 		mask = inet_make_mask(li->plen);
2535 		prefix = htonl(l->key);
2536 
2537 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2538 			const struct fib_info *fi = fa->fa_info;
2539 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2540 			int len;
2541 
2542 			if (fa->fa_type == RTN_BROADCAST
2543 			    || fa->fa_type == RTN_MULTICAST)
2544 				continue;
2545 
2546 			if (fi)
2547 				seq_printf(seq,
2548 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 					 "%d\t%08X\t%d\t%u\t%u%n",
2550 					 fi->fib_dev ? fi->fib_dev->name : "*",
2551 					 prefix,
2552 					 fi->fib_nh->nh_gw, flags, 0, 0,
2553 					 fi->fib_priority,
2554 					 mask,
2555 					 (fi->fib_advmss ?
2556 					  fi->fib_advmss + 40 : 0),
2557 					 fi->fib_window,
2558 					 fi->fib_rtt >> 3, &len);
2559 			else
2560 				seq_printf(seq,
2561 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 					 "%d\t%08X\t%d\t%u\t%u%n",
2563 					 prefix, 0, flags, 0, 0, 0,
2564 					 mask, 0, 0, 0, &len);
2565 
2566 			seq_printf(seq, "%*s\n", 127 - len, "");
2567 		}
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static const struct seq_operations fib_route_seq_ops = {
2574 	.start  = fib_route_seq_start,
2575 	.next   = fib_route_seq_next,
2576 	.stop   = fib_route_seq_stop,
2577 	.show   = fib_route_seq_show,
2578 };
2579 
2580 static int fib_route_seq_open(struct inode *inode, struct file *file)
2581 {
2582 	return seq_open_net(inode, file, &fib_route_seq_ops,
2583 			    sizeof(struct fib_route_iter));
2584 }
2585 
2586 static const struct file_operations fib_route_fops = {
2587 	.owner  = THIS_MODULE,
2588 	.open   = fib_route_seq_open,
2589 	.read   = seq_read,
2590 	.llseek = seq_lseek,
2591 	.release = seq_release_net,
2592 };
2593 
2594 int __net_init fib_proc_init(struct net *net)
2595 {
2596 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2597 		goto out1;
2598 
2599 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2600 				  &fib_triestat_fops))
2601 		goto out2;
2602 
2603 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2604 		goto out3;
2605 
2606 	return 0;
2607 
2608 out3:
2609 	proc_net_remove(net, "fib_triestat");
2610 out2:
2611 	proc_net_remove(net, "fib_trie");
2612 out1:
2613 	return -ENOMEM;
2614 }
2615 
2616 void __net_exit fib_proc_exit(struct net *net)
2617 {
2618 	proc_net_remove(net, "fib_trie");
2619 	proc_net_remove(net, "fib_triestat");
2620 	proc_net_remove(net, "route");
2621 }
2622 
2623 #endif /* CONFIG_PROC_FS */
2624