1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally descibed in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <linux/slab.h> 75 #include <net/net_namespace.h> 76 #include <net/ip.h> 77 #include <net/protocol.h> 78 #include <net/route.h> 79 #include <net/tcp.h> 80 #include <net/sock.h> 81 #include <net/ip_fib.h> 82 #include "fib_lookup.h" 83 84 #define MAX_STAT_DEPTH 32 85 86 #define KEYLENGTH (8*sizeof(t_key)) 87 88 typedef unsigned int t_key; 89 90 #define T_TNODE 0 91 #define T_LEAF 1 92 #define NODE_TYPE_MASK 0x1UL 93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 94 95 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 96 #define IS_LEAF(n) (n->parent & T_LEAF) 97 98 struct rt_trie_node { 99 unsigned long parent; 100 t_key key; 101 }; 102 103 struct leaf { 104 unsigned long parent; 105 t_key key; 106 struct hlist_head list; 107 struct rcu_head rcu; 108 }; 109 110 struct leaf_info { 111 struct hlist_node hlist; 112 struct rcu_head rcu; 113 int plen; 114 struct list_head falh; 115 }; 116 117 struct tnode { 118 unsigned long parent; 119 t_key key; 120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 122 unsigned int full_children; /* KEYLENGTH bits needed */ 123 unsigned int empty_children; /* KEYLENGTH bits needed */ 124 union { 125 struct rcu_head rcu; 126 struct work_struct work; 127 struct tnode *tnode_free; 128 }; 129 struct rt_trie_node *child[0]; 130 }; 131 132 #ifdef CONFIG_IP_FIB_TRIE_STATS 133 struct trie_use_stats { 134 unsigned int gets; 135 unsigned int backtrack; 136 unsigned int semantic_match_passed; 137 unsigned int semantic_match_miss; 138 unsigned int null_node_hit; 139 unsigned int resize_node_skipped; 140 }; 141 #endif 142 143 struct trie_stat { 144 unsigned int totdepth; 145 unsigned int maxdepth; 146 unsigned int tnodes; 147 unsigned int leaves; 148 unsigned int nullpointers; 149 unsigned int prefixes; 150 unsigned int nodesizes[MAX_STAT_DEPTH]; 151 }; 152 153 struct trie { 154 struct rt_trie_node *trie; 155 #ifdef CONFIG_IP_FIB_TRIE_STATS 156 struct trie_use_stats stats; 157 #endif 158 }; 159 160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 162 int wasfull); 163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 164 static struct tnode *inflate(struct trie *t, struct tnode *tn); 165 static struct tnode *halve(struct trie *t, struct tnode *tn); 166 /* tnodes to free after resize(); protected by RTNL */ 167 static struct tnode *tnode_free_head; 168 static size_t tnode_free_size; 169 170 /* 171 * synchronize_rcu after call_rcu for that many pages; it should be especially 172 * useful before resizing the root node with PREEMPT_NONE configs; the value was 173 * obtained experimentally, aiming to avoid visible slowdown. 174 */ 175 static const int sync_pages = 128; 176 177 static struct kmem_cache *fn_alias_kmem __read_mostly; 178 static struct kmem_cache *trie_leaf_kmem __read_mostly; 179 180 static inline struct tnode *node_parent(struct rt_trie_node *node) 181 { 182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK); 183 } 184 185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node) 186 { 187 struct tnode *ret = node_parent(node); 188 189 return rcu_dereference_rtnl(ret); 190 } 191 192 /* Same as rcu_assign_pointer 193 * but that macro() assumes that value is a pointer. 194 */ 195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 196 { 197 smp_wmb(); 198 node->parent = (unsigned long)ptr | NODE_TYPE(node); 199 } 200 201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i) 202 { 203 BUG_ON(i >= 1U << tn->bits); 204 205 return tn->child[i]; 206 } 207 208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i) 209 { 210 struct rt_trie_node *ret = tnode_get_child(tn, i); 211 212 return rcu_dereference_rtnl(ret); 213 } 214 215 static inline int tnode_child_length(const struct tnode *tn) 216 { 217 return 1 << tn->bits; 218 } 219 220 static inline t_key mask_pfx(t_key k, unsigned int l) 221 { 222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 223 } 224 225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 226 { 227 if (offset < KEYLENGTH) 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 229 else 230 return 0; 231 } 232 233 static inline int tkey_equals(t_key a, t_key b) 234 { 235 return a == b; 236 } 237 238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 239 { 240 if (bits == 0 || offset >= KEYLENGTH) 241 return 1; 242 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 244 } 245 246 static inline int tkey_mismatch(t_key a, int offset, t_key b) 247 { 248 t_key diff = a ^ b; 249 int i = offset; 250 251 if (!diff) 252 return 0; 253 while ((diff << i) >> (KEYLENGTH-1) == 0) 254 i++; 255 return i; 256 } 257 258 /* 259 To understand this stuff, an understanding of keys and all their bits is 260 necessary. Every node in the trie has a key associated with it, but not 261 all of the bits in that key are significant. 262 263 Consider a node 'n' and its parent 'tp'. 264 265 If n is a leaf, every bit in its key is significant. Its presence is 266 necessitated by path compression, since during a tree traversal (when 267 searching for a leaf - unless we are doing an insertion) we will completely 268 ignore all skipped bits we encounter. Thus we need to verify, at the end of 269 a potentially successful search, that we have indeed been walking the 270 correct key path. 271 272 Note that we can never "miss" the correct key in the tree if present by 273 following the wrong path. Path compression ensures that segments of the key 274 that are the same for all keys with a given prefix are skipped, but the 275 skipped part *is* identical for each node in the subtrie below the skipped 276 bit! trie_insert() in this implementation takes care of that - note the 277 call to tkey_sub_equals() in trie_insert(). 278 279 if n is an internal node - a 'tnode' here, the various parts of its key 280 have many different meanings. 281 282 Example: 283 _________________________________________________________________ 284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 285 ----------------------------------------------------------------- 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 287 288 _________________________________________________________________ 289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 290 ----------------------------------------------------------------- 291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 292 293 tp->pos = 7 294 tp->bits = 3 295 n->pos = 15 296 n->bits = 4 297 298 First, let's just ignore the bits that come before the parent tp, that is 299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 300 not use them for anything. 301 302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 303 index into the parent's child array. That is, they will be used to find 304 'n' among tp's children. 305 306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 307 for the node n. 308 309 All the bits we have seen so far are significant to the node n. The rest 310 of the bits are really not needed or indeed known in n->key. 311 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 313 n's child array, and will of course be different for each child. 314 315 316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 317 at this point. 318 319 */ 320 321 static inline void check_tnode(const struct tnode *tn) 322 { 323 WARN_ON(tn && tn->pos+tn->bits > 32); 324 } 325 326 static const int halve_threshold = 25; 327 static const int inflate_threshold = 50; 328 static const int halve_threshold_root = 15; 329 static const int inflate_threshold_root = 30; 330 331 static void __alias_free_mem(struct rcu_head *head) 332 { 333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 334 kmem_cache_free(fn_alias_kmem, fa); 335 } 336 337 static inline void alias_free_mem_rcu(struct fib_alias *fa) 338 { 339 call_rcu(&fa->rcu, __alias_free_mem); 340 } 341 342 static void __leaf_free_rcu(struct rcu_head *head) 343 { 344 struct leaf *l = container_of(head, struct leaf, rcu); 345 kmem_cache_free(trie_leaf_kmem, l); 346 } 347 348 static inline void free_leaf(struct leaf *l) 349 { 350 call_rcu_bh(&l->rcu, __leaf_free_rcu); 351 } 352 353 static void __leaf_info_free_rcu(struct rcu_head *head) 354 { 355 kfree(container_of(head, struct leaf_info, rcu)); 356 } 357 358 static inline void free_leaf_info(struct leaf_info *leaf) 359 { 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu); 361 } 362 363 static struct tnode *tnode_alloc(size_t size) 364 { 365 if (size <= PAGE_SIZE) 366 return kzalloc(size, GFP_KERNEL); 367 else 368 return vzalloc(size); 369 } 370 371 static void __tnode_vfree(struct work_struct *arg) 372 { 373 struct tnode *tn = container_of(arg, struct tnode, work); 374 vfree(tn); 375 } 376 377 static void __tnode_free_rcu(struct rcu_head *head) 378 { 379 struct tnode *tn = container_of(head, struct tnode, rcu); 380 size_t size = sizeof(struct tnode) + 381 (sizeof(struct rt_trie_node *) << tn->bits); 382 383 if (size <= PAGE_SIZE) 384 kfree(tn); 385 else { 386 INIT_WORK(&tn->work, __tnode_vfree); 387 schedule_work(&tn->work); 388 } 389 } 390 391 static inline void tnode_free(struct tnode *tn) 392 { 393 if (IS_LEAF(tn)) 394 free_leaf((struct leaf *) tn); 395 else 396 call_rcu(&tn->rcu, __tnode_free_rcu); 397 } 398 399 static void tnode_free_safe(struct tnode *tn) 400 { 401 BUG_ON(IS_LEAF(tn)); 402 tn->tnode_free = tnode_free_head; 403 tnode_free_head = tn; 404 tnode_free_size += sizeof(struct tnode) + 405 (sizeof(struct rt_trie_node *) << tn->bits); 406 } 407 408 static void tnode_free_flush(void) 409 { 410 struct tnode *tn; 411 412 while ((tn = tnode_free_head)) { 413 tnode_free_head = tn->tnode_free; 414 tn->tnode_free = NULL; 415 tnode_free(tn); 416 } 417 418 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 419 tnode_free_size = 0; 420 synchronize_rcu(); 421 } 422 } 423 424 static struct leaf *leaf_new(void) 425 { 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 427 if (l) { 428 l->parent = T_LEAF; 429 INIT_HLIST_HEAD(&l->list); 430 } 431 return l; 432 } 433 434 static struct leaf_info *leaf_info_new(int plen) 435 { 436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 437 if (li) { 438 li->plen = plen; 439 INIT_LIST_HEAD(&li->falh); 440 } 441 return li; 442 } 443 444 static struct tnode *tnode_new(t_key key, int pos, int bits) 445 { 446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 447 struct tnode *tn = tnode_alloc(sz); 448 449 if (tn) { 450 tn->parent = T_TNODE; 451 tn->pos = pos; 452 tn->bits = bits; 453 tn->key = key; 454 tn->full_children = 0; 455 tn->empty_children = 1<<bits; 456 } 457 458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 459 sizeof(struct rt_trie_node) << bits); 460 return tn; 461 } 462 463 /* 464 * Check whether a tnode 'n' is "full", i.e. it is an internal node 465 * and no bits are skipped. See discussion in dyntree paper p. 6 466 */ 467 468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 469 { 470 if (n == NULL || IS_LEAF(n)) 471 return 0; 472 473 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 474 } 475 476 static inline void put_child(struct trie *t, struct tnode *tn, int i, 477 struct rt_trie_node *n) 478 { 479 tnode_put_child_reorg(tn, i, n, -1); 480 } 481 482 /* 483 * Add a child at position i overwriting the old value. 484 * Update the value of full_children and empty_children. 485 */ 486 487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 488 int wasfull) 489 { 490 struct rt_trie_node *chi = tn->child[i]; 491 int isfull; 492 493 BUG_ON(i >= 1<<tn->bits); 494 495 /* update emptyChildren */ 496 if (n == NULL && chi != NULL) 497 tn->empty_children++; 498 else if (n != NULL && chi == NULL) 499 tn->empty_children--; 500 501 /* update fullChildren */ 502 if (wasfull == -1) 503 wasfull = tnode_full(tn, chi); 504 505 isfull = tnode_full(tn, n); 506 if (wasfull && !isfull) 507 tn->full_children--; 508 else if (!wasfull && isfull) 509 tn->full_children++; 510 511 if (n) 512 node_set_parent(n, tn); 513 514 rcu_assign_pointer(tn->child[i], n); 515 } 516 517 #define MAX_WORK 10 518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 519 { 520 int i; 521 struct tnode *old_tn; 522 int inflate_threshold_use; 523 int halve_threshold_use; 524 int max_work; 525 526 if (!tn) 527 return NULL; 528 529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 530 tn, inflate_threshold, halve_threshold); 531 532 /* No children */ 533 if (tn->empty_children == tnode_child_length(tn)) { 534 tnode_free_safe(tn); 535 return NULL; 536 } 537 /* One child */ 538 if (tn->empty_children == tnode_child_length(tn) - 1) 539 goto one_child; 540 /* 541 * Double as long as the resulting node has a number of 542 * nonempty nodes that are above the threshold. 543 */ 544 545 /* 546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 547 * the Helsinki University of Technology and Matti Tikkanen of Nokia 548 * Telecommunications, page 6: 549 * "A node is doubled if the ratio of non-empty children to all 550 * children in the *doubled* node is at least 'high'." 551 * 552 * 'high' in this instance is the variable 'inflate_threshold'. It 553 * is expressed as a percentage, so we multiply it with 554 * tnode_child_length() and instead of multiplying by 2 (since the 555 * child array will be doubled by inflate()) and multiplying 556 * the left-hand side by 100 (to handle the percentage thing) we 557 * multiply the left-hand side by 50. 558 * 559 * The left-hand side may look a bit weird: tnode_child_length(tn) 560 * - tn->empty_children is of course the number of non-null children 561 * in the current node. tn->full_children is the number of "full" 562 * children, that is non-null tnodes with a skip value of 0. 563 * All of those will be doubled in the resulting inflated tnode, so 564 * we just count them one extra time here. 565 * 566 * A clearer way to write this would be: 567 * 568 * to_be_doubled = tn->full_children; 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 570 * tn->full_children; 571 * 572 * new_child_length = tnode_child_length(tn) * 2; 573 * 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 575 * new_child_length; 576 * if (new_fill_factor >= inflate_threshold) 577 * 578 * ...and so on, tho it would mess up the while () loop. 579 * 580 * anyway, 581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 582 * inflate_threshold 583 * 584 * avoid a division: 585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 586 * inflate_threshold * new_child_length 587 * 588 * expand not_to_be_doubled and to_be_doubled, and shorten: 589 * 100 * (tnode_child_length(tn) - tn->empty_children + 590 * tn->full_children) >= inflate_threshold * new_child_length 591 * 592 * expand new_child_length: 593 * 100 * (tnode_child_length(tn) - tn->empty_children + 594 * tn->full_children) >= 595 * inflate_threshold * tnode_child_length(tn) * 2 596 * 597 * shorten again: 598 * 50 * (tn->full_children + tnode_child_length(tn) - 599 * tn->empty_children) >= inflate_threshold * 600 * tnode_child_length(tn) 601 * 602 */ 603 604 check_tnode(tn); 605 606 /* Keep root node larger */ 607 608 if (!node_parent((struct rt_trie_node *)tn)) { 609 inflate_threshold_use = inflate_threshold_root; 610 halve_threshold_use = halve_threshold_root; 611 } else { 612 inflate_threshold_use = inflate_threshold; 613 halve_threshold_use = halve_threshold; 614 } 615 616 max_work = MAX_WORK; 617 while ((tn->full_children > 0 && max_work-- && 618 50 * (tn->full_children + tnode_child_length(tn) 619 - tn->empty_children) 620 >= inflate_threshold_use * tnode_child_length(tn))) { 621 622 old_tn = tn; 623 tn = inflate(t, tn); 624 625 if (IS_ERR(tn)) { 626 tn = old_tn; 627 #ifdef CONFIG_IP_FIB_TRIE_STATS 628 t->stats.resize_node_skipped++; 629 #endif 630 break; 631 } 632 } 633 634 check_tnode(tn); 635 636 /* Return if at least one inflate is run */ 637 if (max_work != MAX_WORK) 638 return (struct rt_trie_node *) tn; 639 640 /* 641 * Halve as long as the number of empty children in this 642 * node is above threshold. 643 */ 644 645 max_work = MAX_WORK; 646 while (tn->bits > 1 && max_work-- && 647 100 * (tnode_child_length(tn) - tn->empty_children) < 648 halve_threshold_use * tnode_child_length(tn)) { 649 650 old_tn = tn; 651 tn = halve(t, tn); 652 if (IS_ERR(tn)) { 653 tn = old_tn; 654 #ifdef CONFIG_IP_FIB_TRIE_STATS 655 t->stats.resize_node_skipped++; 656 #endif 657 break; 658 } 659 } 660 661 662 /* Only one child remains */ 663 if (tn->empty_children == tnode_child_length(tn) - 1) { 664 one_child: 665 for (i = 0; i < tnode_child_length(tn); i++) { 666 struct rt_trie_node *n; 667 668 n = tn->child[i]; 669 if (!n) 670 continue; 671 672 /* compress one level */ 673 674 node_set_parent(n, NULL); 675 tnode_free_safe(tn); 676 return n; 677 } 678 } 679 return (struct rt_trie_node *) tn; 680 } 681 682 static struct tnode *inflate(struct trie *t, struct tnode *tn) 683 { 684 struct tnode *oldtnode = tn; 685 int olen = tnode_child_length(tn); 686 int i; 687 688 pr_debug("In inflate\n"); 689 690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 691 692 if (!tn) 693 return ERR_PTR(-ENOMEM); 694 695 /* 696 * Preallocate and store tnodes before the actual work so we 697 * don't get into an inconsistent state if memory allocation 698 * fails. In case of failure we return the oldnode and inflate 699 * of tnode is ignored. 700 */ 701 702 for (i = 0; i < olen; i++) { 703 struct tnode *inode; 704 705 inode = (struct tnode *) tnode_get_child(oldtnode, i); 706 if (inode && 707 IS_TNODE(inode) && 708 inode->pos == oldtnode->pos + oldtnode->bits && 709 inode->bits > 1) { 710 struct tnode *left, *right; 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 712 713 left = tnode_new(inode->key&(~m), inode->pos + 1, 714 inode->bits - 1); 715 if (!left) 716 goto nomem; 717 718 right = tnode_new(inode->key|m, inode->pos + 1, 719 inode->bits - 1); 720 721 if (!right) { 722 tnode_free(left); 723 goto nomem; 724 } 725 726 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 728 } 729 } 730 731 for (i = 0; i < olen; i++) { 732 struct tnode *inode; 733 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 734 struct tnode *left, *right; 735 int size, j; 736 737 /* An empty child */ 738 if (node == NULL) 739 continue; 740 741 /* A leaf or an internal node with skipped bits */ 742 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 744 tn->pos + tn->bits - 1) { 745 if (tkey_extract_bits(node->key, 746 oldtnode->pos + oldtnode->bits, 747 1) == 0) 748 put_child(t, tn, 2*i, node); 749 else 750 put_child(t, tn, 2*i+1, node); 751 continue; 752 } 753 754 /* An internal node with two children */ 755 inode = (struct tnode *) node; 756 757 if (inode->bits == 1) { 758 put_child(t, tn, 2*i, inode->child[0]); 759 put_child(t, tn, 2*i+1, inode->child[1]); 760 761 tnode_free_safe(inode); 762 continue; 763 } 764 765 /* An internal node with more than two children */ 766 767 /* We will replace this node 'inode' with two new 768 * ones, 'left' and 'right', each with half of the 769 * original children. The two new nodes will have 770 * a position one bit further down the key and this 771 * means that the "significant" part of their keys 772 * (see the discussion near the top of this file) 773 * will differ by one bit, which will be "0" in 774 * left's key and "1" in right's key. Since we are 775 * moving the key position by one step, the bit that 776 * we are moving away from - the bit at position 777 * (inode->pos) - is the one that will differ between 778 * left and right. So... we synthesize that bit in the 779 * two new keys. 780 * The mask 'm' below will be a single "one" bit at 781 * the position (inode->pos) 782 */ 783 784 /* Use the old key, but set the new significant 785 * bit to zero. 786 */ 787 788 left = (struct tnode *) tnode_get_child(tn, 2*i); 789 put_child(t, tn, 2*i, NULL); 790 791 BUG_ON(!left); 792 793 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 794 put_child(t, tn, 2*i+1, NULL); 795 796 BUG_ON(!right); 797 798 size = tnode_child_length(left); 799 for (j = 0; j < size; j++) { 800 put_child(t, left, j, inode->child[j]); 801 put_child(t, right, j, inode->child[j + size]); 802 } 803 put_child(t, tn, 2*i, resize(t, left)); 804 put_child(t, tn, 2*i+1, resize(t, right)); 805 806 tnode_free_safe(inode); 807 } 808 tnode_free_safe(oldtnode); 809 return tn; 810 nomem: 811 { 812 int size = tnode_child_length(tn); 813 int j; 814 815 for (j = 0; j < size; j++) 816 if (tn->child[j]) 817 tnode_free((struct tnode *)tn->child[j]); 818 819 tnode_free(tn); 820 821 return ERR_PTR(-ENOMEM); 822 } 823 } 824 825 static struct tnode *halve(struct trie *t, struct tnode *tn) 826 { 827 struct tnode *oldtnode = tn; 828 struct rt_trie_node *left, *right; 829 int i; 830 int olen = tnode_child_length(tn); 831 832 pr_debug("In halve\n"); 833 834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 835 836 if (!tn) 837 return ERR_PTR(-ENOMEM); 838 839 /* 840 * Preallocate and store tnodes before the actual work so we 841 * don't get into an inconsistent state if memory allocation 842 * fails. In case of failure we return the oldnode and halve 843 * of tnode is ignored. 844 */ 845 846 for (i = 0; i < olen; i += 2) { 847 left = tnode_get_child(oldtnode, i); 848 right = tnode_get_child(oldtnode, i+1); 849 850 /* Two nonempty children */ 851 if (left && right) { 852 struct tnode *newn; 853 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 855 856 if (!newn) 857 goto nomem; 858 859 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 860 } 861 862 } 863 864 for (i = 0; i < olen; i += 2) { 865 struct tnode *newBinNode; 866 867 left = tnode_get_child(oldtnode, i); 868 right = tnode_get_child(oldtnode, i+1); 869 870 /* At least one of the children is empty */ 871 if (left == NULL) { 872 if (right == NULL) /* Both are empty */ 873 continue; 874 put_child(t, tn, i/2, right); 875 continue; 876 } 877 878 if (right == NULL) { 879 put_child(t, tn, i/2, left); 880 continue; 881 } 882 883 /* Two nonempty children */ 884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 885 put_child(t, tn, i/2, NULL); 886 put_child(t, newBinNode, 0, left); 887 put_child(t, newBinNode, 1, right); 888 put_child(t, tn, i/2, resize(t, newBinNode)); 889 } 890 tnode_free_safe(oldtnode); 891 return tn; 892 nomem: 893 { 894 int size = tnode_child_length(tn); 895 int j; 896 897 for (j = 0; j < size; j++) 898 if (tn->child[j]) 899 tnode_free((struct tnode *)tn->child[j]); 900 901 tnode_free(tn); 902 903 return ERR_PTR(-ENOMEM); 904 } 905 } 906 907 /* readside must use rcu_read_lock currently dump routines 908 via get_fa_head and dump */ 909 910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 911 { 912 struct hlist_head *head = &l->list; 913 struct hlist_node *node; 914 struct leaf_info *li; 915 916 hlist_for_each_entry_rcu(li, node, head, hlist) 917 if (li->plen == plen) 918 return li; 919 920 return NULL; 921 } 922 923 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 924 { 925 struct leaf_info *li = find_leaf_info(l, plen); 926 927 if (!li) 928 return NULL; 929 930 return &li->falh; 931 } 932 933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 934 { 935 struct leaf_info *li = NULL, *last = NULL; 936 struct hlist_node *node; 937 938 if (hlist_empty(head)) { 939 hlist_add_head_rcu(&new->hlist, head); 940 } else { 941 hlist_for_each_entry(li, node, head, hlist) { 942 if (new->plen > li->plen) 943 break; 944 945 last = li; 946 } 947 if (last) 948 hlist_add_after_rcu(&last->hlist, &new->hlist); 949 else 950 hlist_add_before_rcu(&new->hlist, &li->hlist); 951 } 952 } 953 954 /* rcu_read_lock needs to be hold by caller from readside */ 955 956 static struct leaf * 957 fib_find_node(struct trie *t, u32 key) 958 { 959 int pos; 960 struct tnode *tn; 961 struct rt_trie_node *n; 962 963 pos = 0; 964 n = rcu_dereference_rtnl(t->trie); 965 966 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 967 tn = (struct tnode *) n; 968 969 check_tnode(tn); 970 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 972 pos = tn->pos + tn->bits; 973 n = tnode_get_child_rcu(tn, 974 tkey_extract_bits(key, 975 tn->pos, 976 tn->bits)); 977 } else 978 break; 979 } 980 /* Case we have found a leaf. Compare prefixes */ 981 982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 983 return (struct leaf *)n; 984 985 return NULL; 986 } 987 988 static void trie_rebalance(struct trie *t, struct tnode *tn) 989 { 990 int wasfull; 991 t_key cindex, key; 992 struct tnode *tp; 993 994 key = tn->key; 995 996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 997 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 999 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1000 1001 tnode_put_child_reorg((struct tnode *)tp, cindex, 1002 (struct rt_trie_node *)tn, wasfull); 1003 1004 tp = node_parent((struct rt_trie_node *) tn); 1005 if (!tp) 1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1007 1008 tnode_free_flush(); 1009 if (!tp) 1010 break; 1011 tn = tp; 1012 } 1013 1014 /* Handle last (top) tnode */ 1015 if (IS_TNODE(tn)) 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1017 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1019 tnode_free_flush(); 1020 } 1021 1022 /* only used from updater-side */ 1023 1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1025 { 1026 int pos, newpos; 1027 struct tnode *tp = NULL, *tn = NULL; 1028 struct rt_trie_node *n; 1029 struct leaf *l; 1030 int missbit; 1031 struct list_head *fa_head = NULL; 1032 struct leaf_info *li; 1033 t_key cindex; 1034 1035 pos = 0; 1036 n = t->trie; 1037 1038 /* If we point to NULL, stop. Either the tree is empty and we should 1039 * just put a new leaf in if, or we have reached an empty child slot, 1040 * and we should just put our new leaf in that. 1041 * If we point to a T_TNODE, check if it matches our key. Note that 1042 * a T_TNODE might be skipping any number of bits - its 'pos' need 1043 * not be the parent's 'pos'+'bits'! 1044 * 1045 * If it does match the current key, get pos/bits from it, extract 1046 * the index from our key, push the T_TNODE and walk the tree. 1047 * 1048 * If it doesn't, we have to replace it with a new T_TNODE. 1049 * 1050 * If we point to a T_LEAF, it might or might not have the same key 1051 * as we do. If it does, just change the value, update the T_LEAF's 1052 * value, and return it. 1053 * If it doesn't, we need to replace it with a T_TNODE. 1054 */ 1055 1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1057 tn = (struct tnode *) n; 1058 1059 check_tnode(tn); 1060 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1062 tp = tn; 1063 pos = tn->pos + tn->bits; 1064 n = tnode_get_child(tn, 1065 tkey_extract_bits(key, 1066 tn->pos, 1067 tn->bits)); 1068 1069 BUG_ON(n && node_parent(n) != tn); 1070 } else 1071 break; 1072 } 1073 1074 /* 1075 * n ----> NULL, LEAF or TNODE 1076 * 1077 * tp is n's (parent) ----> NULL or TNODE 1078 */ 1079 1080 BUG_ON(tp && IS_LEAF(tp)); 1081 1082 /* Case 1: n is a leaf. Compare prefixes */ 1083 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1085 l = (struct leaf *) n; 1086 li = leaf_info_new(plen); 1087 1088 if (!li) 1089 return NULL; 1090 1091 fa_head = &li->falh; 1092 insert_leaf_info(&l->list, li); 1093 goto done; 1094 } 1095 l = leaf_new(); 1096 1097 if (!l) 1098 return NULL; 1099 1100 l->key = key; 1101 li = leaf_info_new(plen); 1102 1103 if (!li) { 1104 free_leaf(l); 1105 return NULL; 1106 } 1107 1108 fa_head = &li->falh; 1109 insert_leaf_info(&l->list, li); 1110 1111 if (t->trie && n == NULL) { 1112 /* Case 2: n is NULL, and will just insert a new leaf */ 1113 1114 node_set_parent((struct rt_trie_node *)l, tp); 1115 1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); 1118 } else { 1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1120 /* 1121 * Add a new tnode here 1122 * first tnode need some special handling 1123 */ 1124 1125 if (tp) 1126 pos = tp->pos+tp->bits; 1127 else 1128 pos = 0; 1129 1130 if (n) { 1131 newpos = tkey_mismatch(key, pos, n->key); 1132 tn = tnode_new(n->key, newpos, 1); 1133 } else { 1134 newpos = 0; 1135 tn = tnode_new(key, newpos, 1); /* First tnode */ 1136 } 1137 1138 if (!tn) { 1139 free_leaf_info(li); 1140 free_leaf(l); 1141 return NULL; 1142 } 1143 1144 node_set_parent((struct rt_trie_node *)tn, tp); 1145 1146 missbit = tkey_extract_bits(key, newpos, 1); 1147 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1148 put_child(t, tn, 1-missbit, n); 1149 1150 if (tp) { 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1152 put_child(t, (struct tnode *)tp, cindex, 1153 (struct rt_trie_node *)tn); 1154 } else { 1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1156 tp = tn; 1157 } 1158 } 1159 1160 if (tp && tp->pos + tp->bits > 32) 1161 pr_warning("fib_trie" 1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1163 tp, tp->pos, tp->bits, key, plen); 1164 1165 /* Rebalance the trie */ 1166 1167 trie_rebalance(t, tp); 1168 done: 1169 return fa_head; 1170 } 1171 1172 /* 1173 * Caller must hold RTNL. 1174 */ 1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1176 { 1177 struct trie *t = (struct trie *) tb->tb_data; 1178 struct fib_alias *fa, *new_fa; 1179 struct list_head *fa_head = NULL; 1180 struct fib_info *fi; 1181 int plen = cfg->fc_dst_len; 1182 u8 tos = cfg->fc_tos; 1183 u32 key, mask; 1184 int err; 1185 struct leaf *l; 1186 1187 if (plen > 32) 1188 return -EINVAL; 1189 1190 key = ntohl(cfg->fc_dst); 1191 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1193 1194 mask = ntohl(inet_make_mask(plen)); 1195 1196 if (key & ~mask) 1197 return -EINVAL; 1198 1199 key = key & mask; 1200 1201 fi = fib_create_info(cfg); 1202 if (IS_ERR(fi)) { 1203 err = PTR_ERR(fi); 1204 goto err; 1205 } 1206 1207 l = fib_find_node(t, key); 1208 fa = NULL; 1209 1210 if (l) { 1211 fa_head = get_fa_head(l, plen); 1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1213 } 1214 1215 /* Now fa, if non-NULL, points to the first fib alias 1216 * with the same keys [prefix,tos,priority], if such key already 1217 * exists or to the node before which we will insert new one. 1218 * 1219 * If fa is NULL, we will need to allocate a new one and 1220 * insert to the head of f. 1221 * 1222 * If f is NULL, no fib node matched the destination key 1223 * and we need to allocate a new one of those as well. 1224 */ 1225 1226 if (fa && fa->fa_tos == tos && 1227 fa->fa_info->fib_priority == fi->fib_priority) { 1228 struct fib_alias *fa_first, *fa_match; 1229 1230 err = -EEXIST; 1231 if (cfg->fc_nlflags & NLM_F_EXCL) 1232 goto out; 1233 1234 /* We have 2 goals: 1235 * 1. Find exact match for type, scope, fib_info to avoid 1236 * duplicate routes 1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1238 */ 1239 fa_match = NULL; 1240 fa_first = fa; 1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1242 list_for_each_entry_continue(fa, fa_head, fa_list) { 1243 if (fa->fa_tos != tos) 1244 break; 1245 if (fa->fa_info->fib_priority != fi->fib_priority) 1246 break; 1247 if (fa->fa_type == cfg->fc_type && 1248 fa->fa_scope == cfg->fc_scope && 1249 fa->fa_info == fi) { 1250 fa_match = fa; 1251 break; 1252 } 1253 } 1254 1255 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1256 struct fib_info *fi_drop; 1257 u8 state; 1258 1259 fa = fa_first; 1260 if (fa_match) { 1261 if (fa == fa_match) 1262 err = 0; 1263 goto out; 1264 } 1265 err = -ENOBUFS; 1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1267 if (new_fa == NULL) 1268 goto out; 1269 1270 fi_drop = fa->fa_info; 1271 new_fa->fa_tos = fa->fa_tos; 1272 new_fa->fa_info = fi; 1273 new_fa->fa_type = cfg->fc_type; 1274 new_fa->fa_scope = cfg->fc_scope; 1275 state = fa->fa_state; 1276 new_fa->fa_state = state & ~FA_S_ACCESSED; 1277 1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1279 alias_free_mem_rcu(fa); 1280 1281 fib_release_info(fi_drop); 1282 if (state & FA_S_ACCESSED) 1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1286 1287 goto succeeded; 1288 } 1289 /* Error if we find a perfect match which 1290 * uses the same scope, type, and nexthop 1291 * information. 1292 */ 1293 if (fa_match) 1294 goto out; 1295 1296 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1297 fa = fa_first; 1298 } 1299 err = -ENOENT; 1300 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1301 goto out; 1302 1303 err = -ENOBUFS; 1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1305 if (new_fa == NULL) 1306 goto out; 1307 1308 new_fa->fa_info = fi; 1309 new_fa->fa_tos = tos; 1310 new_fa->fa_type = cfg->fc_type; 1311 new_fa->fa_scope = cfg->fc_scope; 1312 new_fa->fa_state = 0; 1313 /* 1314 * Insert new entry to the list. 1315 */ 1316 1317 if (!fa_head) { 1318 fa_head = fib_insert_node(t, key, plen); 1319 if (unlikely(!fa_head)) { 1320 err = -ENOMEM; 1321 goto out_free_new_fa; 1322 } 1323 } 1324 1325 list_add_tail_rcu(&new_fa->fa_list, 1326 (fa ? &fa->fa_list : fa_head)); 1327 1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1330 &cfg->fc_nlinfo, 0); 1331 succeeded: 1332 return 0; 1333 1334 out_free_new_fa: 1335 kmem_cache_free(fn_alias_kmem, new_fa); 1336 out: 1337 fib_release_info(fi); 1338 err: 1339 return err; 1340 } 1341 1342 /* should be called with rcu_read_lock */ 1343 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1344 t_key key, const struct flowi4 *flp, 1345 struct fib_result *res, int fib_flags) 1346 { 1347 struct leaf_info *li; 1348 struct hlist_head *hhead = &l->list; 1349 struct hlist_node *node; 1350 1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1352 struct fib_alias *fa; 1353 int plen = li->plen; 1354 __be32 mask = inet_make_mask(plen); 1355 1356 if (l->key != (key & ntohl(mask))) 1357 continue; 1358 1359 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1360 struct fib_info *fi = fa->fa_info; 1361 int nhsel, err; 1362 1363 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1364 continue; 1365 if (fa->fa_scope < flp->flowi4_scope) 1366 continue; 1367 fib_alias_accessed(fa); 1368 err = fib_props[fa->fa_type].error; 1369 if (err) { 1370 #ifdef CONFIG_IP_FIB_TRIE_STATS 1371 t->stats.semantic_match_miss++; 1372 #endif 1373 return 1; 1374 } 1375 if (fi->fib_flags & RTNH_F_DEAD) 1376 continue; 1377 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1378 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1379 1380 if (nh->nh_flags & RTNH_F_DEAD) 1381 continue; 1382 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1383 continue; 1384 1385 #ifdef CONFIG_IP_FIB_TRIE_STATS 1386 t->stats.semantic_match_passed++; 1387 #endif 1388 res->prefixlen = plen; 1389 res->nh_sel = nhsel; 1390 res->type = fa->fa_type; 1391 res->scope = fa->fa_scope; 1392 res->fi = fi; 1393 res->table = tb; 1394 res->fa_head = &li->falh; 1395 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1396 atomic_inc(&res->fi->fib_clntref); 1397 return 0; 1398 } 1399 } 1400 1401 #ifdef CONFIG_IP_FIB_TRIE_STATS 1402 t->stats.semantic_match_miss++; 1403 #endif 1404 } 1405 1406 return 1; 1407 } 1408 1409 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1410 struct fib_result *res, int fib_flags) 1411 { 1412 struct trie *t = (struct trie *) tb->tb_data; 1413 int ret; 1414 struct rt_trie_node *n; 1415 struct tnode *pn; 1416 unsigned int pos, bits; 1417 t_key key = ntohl(flp->daddr); 1418 unsigned int chopped_off; 1419 t_key cindex = 0; 1420 unsigned int current_prefix_length = KEYLENGTH; 1421 struct tnode *cn; 1422 t_key pref_mismatch; 1423 1424 rcu_read_lock(); 1425 1426 n = rcu_dereference(t->trie); 1427 if (!n) 1428 goto failed; 1429 1430 #ifdef CONFIG_IP_FIB_TRIE_STATS 1431 t->stats.gets++; 1432 #endif 1433 1434 /* Just a leaf? */ 1435 if (IS_LEAF(n)) { 1436 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1437 goto found; 1438 } 1439 1440 pn = (struct tnode *) n; 1441 chopped_off = 0; 1442 1443 while (pn) { 1444 pos = pn->pos; 1445 bits = pn->bits; 1446 1447 if (!chopped_off) 1448 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1449 pos, bits); 1450 1451 n = tnode_get_child_rcu(pn, cindex); 1452 1453 if (n == NULL) { 1454 #ifdef CONFIG_IP_FIB_TRIE_STATS 1455 t->stats.null_node_hit++; 1456 #endif 1457 goto backtrace; 1458 } 1459 1460 if (IS_LEAF(n)) { 1461 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1462 if (ret > 0) 1463 goto backtrace; 1464 goto found; 1465 } 1466 1467 cn = (struct tnode *)n; 1468 1469 /* 1470 * It's a tnode, and we can do some extra checks here if we 1471 * like, to avoid descending into a dead-end branch. 1472 * This tnode is in the parent's child array at index 1473 * key[p_pos..p_pos+p_bits] but potentially with some bits 1474 * chopped off, so in reality the index may be just a 1475 * subprefix, padded with zero at the end. 1476 * We can also take a look at any skipped bits in this 1477 * tnode - everything up to p_pos is supposed to be ok, 1478 * and the non-chopped bits of the index (se previous 1479 * paragraph) are also guaranteed ok, but the rest is 1480 * considered unknown. 1481 * 1482 * The skipped bits are key[pos+bits..cn->pos]. 1483 */ 1484 1485 /* If current_prefix_length < pos+bits, we are already doing 1486 * actual prefix matching, which means everything from 1487 * pos+(bits-chopped_off) onward must be zero along some 1488 * branch of this subtree - otherwise there is *no* valid 1489 * prefix present. Here we can only check the skipped 1490 * bits. Remember, since we have already indexed into the 1491 * parent's child array, we know that the bits we chopped of 1492 * *are* zero. 1493 */ 1494 1495 /* NOTA BENE: Checking only skipped bits 1496 for the new node here */ 1497 1498 if (current_prefix_length < pos+bits) { 1499 if (tkey_extract_bits(cn->key, current_prefix_length, 1500 cn->pos - current_prefix_length) 1501 || !(cn->child[0])) 1502 goto backtrace; 1503 } 1504 1505 /* 1506 * If chopped_off=0, the index is fully validated and we 1507 * only need to look at the skipped bits for this, the new, 1508 * tnode. What we actually want to do is to find out if 1509 * these skipped bits match our key perfectly, or if we will 1510 * have to count on finding a matching prefix further down, 1511 * because if we do, we would like to have some way of 1512 * verifying the existence of such a prefix at this point. 1513 */ 1514 1515 /* The only thing we can do at this point is to verify that 1516 * any such matching prefix can indeed be a prefix to our 1517 * key, and if the bits in the node we are inspecting that 1518 * do not match our key are not ZERO, this cannot be true. 1519 * Thus, find out where there is a mismatch (before cn->pos) 1520 * and verify that all the mismatching bits are zero in the 1521 * new tnode's key. 1522 */ 1523 1524 /* 1525 * Note: We aren't very concerned about the piece of 1526 * the key that precede pn->pos+pn->bits, since these 1527 * have already been checked. The bits after cn->pos 1528 * aren't checked since these are by definition 1529 * "unknown" at this point. Thus, what we want to see 1530 * is if we are about to enter the "prefix matching" 1531 * state, and in that case verify that the skipped 1532 * bits that will prevail throughout this subtree are 1533 * zero, as they have to be if we are to find a 1534 * matching prefix. 1535 */ 1536 1537 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1538 1539 /* 1540 * In short: If skipped bits in this node do not match 1541 * the search key, enter the "prefix matching" 1542 * state.directly. 1543 */ 1544 if (pref_mismatch) { 1545 int mp = KEYLENGTH - fls(pref_mismatch); 1546 1547 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1548 goto backtrace; 1549 1550 if (current_prefix_length >= cn->pos) 1551 current_prefix_length = mp; 1552 } 1553 1554 pn = (struct tnode *)n; /* Descend */ 1555 chopped_off = 0; 1556 continue; 1557 1558 backtrace: 1559 chopped_off++; 1560 1561 /* As zero don't change the child key (cindex) */ 1562 while ((chopped_off <= pn->bits) 1563 && !(cindex & (1<<(chopped_off-1)))) 1564 chopped_off++; 1565 1566 /* Decrease current_... with bits chopped off */ 1567 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1568 current_prefix_length = pn->pos + pn->bits 1569 - chopped_off; 1570 1571 /* 1572 * Either we do the actual chop off according or if we have 1573 * chopped off all bits in this tnode walk up to our parent. 1574 */ 1575 1576 if (chopped_off <= pn->bits) { 1577 cindex &= ~(1 << (chopped_off-1)); 1578 } else { 1579 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1580 if (!parent) 1581 goto failed; 1582 1583 /* Get Child's index */ 1584 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1585 pn = parent; 1586 chopped_off = 0; 1587 1588 #ifdef CONFIG_IP_FIB_TRIE_STATS 1589 t->stats.backtrack++; 1590 #endif 1591 goto backtrace; 1592 } 1593 } 1594 failed: 1595 ret = 1; 1596 found: 1597 rcu_read_unlock(); 1598 return ret; 1599 } 1600 1601 /* 1602 * Remove the leaf and return parent. 1603 */ 1604 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1605 { 1606 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1607 1608 pr_debug("entering trie_leaf_remove(%p)\n", l); 1609 1610 if (tp) { 1611 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1612 put_child(t, (struct tnode *)tp, cindex, NULL); 1613 trie_rebalance(t, tp); 1614 } else 1615 rcu_assign_pointer(t->trie, NULL); 1616 1617 free_leaf(l); 1618 } 1619 1620 /* 1621 * Caller must hold RTNL. 1622 */ 1623 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1624 { 1625 struct trie *t = (struct trie *) tb->tb_data; 1626 u32 key, mask; 1627 int plen = cfg->fc_dst_len; 1628 u8 tos = cfg->fc_tos; 1629 struct fib_alias *fa, *fa_to_delete; 1630 struct list_head *fa_head; 1631 struct leaf *l; 1632 struct leaf_info *li; 1633 1634 if (plen > 32) 1635 return -EINVAL; 1636 1637 key = ntohl(cfg->fc_dst); 1638 mask = ntohl(inet_make_mask(plen)); 1639 1640 if (key & ~mask) 1641 return -EINVAL; 1642 1643 key = key & mask; 1644 l = fib_find_node(t, key); 1645 1646 if (!l) 1647 return -ESRCH; 1648 1649 fa_head = get_fa_head(l, plen); 1650 fa = fib_find_alias(fa_head, tos, 0); 1651 1652 if (!fa) 1653 return -ESRCH; 1654 1655 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1656 1657 fa_to_delete = NULL; 1658 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1659 list_for_each_entry_continue(fa, fa_head, fa_list) { 1660 struct fib_info *fi = fa->fa_info; 1661 1662 if (fa->fa_tos != tos) 1663 break; 1664 1665 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1666 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1667 fa->fa_scope == cfg->fc_scope) && 1668 (!cfg->fc_protocol || 1669 fi->fib_protocol == cfg->fc_protocol) && 1670 fib_nh_match(cfg, fi) == 0) { 1671 fa_to_delete = fa; 1672 break; 1673 } 1674 } 1675 1676 if (!fa_to_delete) 1677 return -ESRCH; 1678 1679 fa = fa_to_delete; 1680 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1681 &cfg->fc_nlinfo, 0); 1682 1683 l = fib_find_node(t, key); 1684 li = find_leaf_info(l, plen); 1685 1686 list_del_rcu(&fa->fa_list); 1687 1688 if (list_empty(fa_head)) { 1689 hlist_del_rcu(&li->hlist); 1690 free_leaf_info(li); 1691 } 1692 1693 if (hlist_empty(&l->list)) 1694 trie_leaf_remove(t, l); 1695 1696 if (fa->fa_state & FA_S_ACCESSED) 1697 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1698 1699 fib_release_info(fa->fa_info); 1700 alias_free_mem_rcu(fa); 1701 return 0; 1702 } 1703 1704 static int trie_flush_list(struct list_head *head) 1705 { 1706 struct fib_alias *fa, *fa_node; 1707 int found = 0; 1708 1709 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1710 struct fib_info *fi = fa->fa_info; 1711 1712 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1713 list_del_rcu(&fa->fa_list); 1714 fib_release_info(fa->fa_info); 1715 alias_free_mem_rcu(fa); 1716 found++; 1717 } 1718 } 1719 return found; 1720 } 1721 1722 static int trie_flush_leaf(struct leaf *l) 1723 { 1724 int found = 0; 1725 struct hlist_head *lih = &l->list; 1726 struct hlist_node *node, *tmp; 1727 struct leaf_info *li = NULL; 1728 1729 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1730 found += trie_flush_list(&li->falh); 1731 1732 if (list_empty(&li->falh)) { 1733 hlist_del_rcu(&li->hlist); 1734 free_leaf_info(li); 1735 } 1736 } 1737 return found; 1738 } 1739 1740 /* 1741 * Scan for the next right leaf starting at node p->child[idx] 1742 * Since we have back pointer, no recursion necessary. 1743 */ 1744 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1745 { 1746 do { 1747 t_key idx; 1748 1749 if (c) 1750 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1751 else 1752 idx = 0; 1753 1754 while (idx < 1u << p->bits) { 1755 c = tnode_get_child_rcu(p, idx++); 1756 if (!c) 1757 continue; 1758 1759 if (IS_LEAF(c)) { 1760 prefetch(p->child[idx]); 1761 return (struct leaf *) c; 1762 } 1763 1764 /* Rescan start scanning in new node */ 1765 p = (struct tnode *) c; 1766 idx = 0; 1767 } 1768 1769 /* Node empty, walk back up to parent */ 1770 c = (struct rt_trie_node *) p; 1771 } while ((p = node_parent_rcu(c)) != NULL); 1772 1773 return NULL; /* Root of trie */ 1774 } 1775 1776 static struct leaf *trie_firstleaf(struct trie *t) 1777 { 1778 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1779 1780 if (!n) 1781 return NULL; 1782 1783 if (IS_LEAF(n)) /* trie is just a leaf */ 1784 return (struct leaf *) n; 1785 1786 return leaf_walk_rcu(n, NULL); 1787 } 1788 1789 static struct leaf *trie_nextleaf(struct leaf *l) 1790 { 1791 struct rt_trie_node *c = (struct rt_trie_node *) l; 1792 struct tnode *p = node_parent_rcu(c); 1793 1794 if (!p) 1795 return NULL; /* trie with just one leaf */ 1796 1797 return leaf_walk_rcu(p, c); 1798 } 1799 1800 static struct leaf *trie_leafindex(struct trie *t, int index) 1801 { 1802 struct leaf *l = trie_firstleaf(t); 1803 1804 while (l && index-- > 0) 1805 l = trie_nextleaf(l); 1806 1807 return l; 1808 } 1809 1810 1811 /* 1812 * Caller must hold RTNL. 1813 */ 1814 int fib_table_flush(struct fib_table *tb) 1815 { 1816 struct trie *t = (struct trie *) tb->tb_data; 1817 struct leaf *l, *ll = NULL; 1818 int found = 0; 1819 1820 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1821 found += trie_flush_leaf(l); 1822 1823 if (ll && hlist_empty(&ll->list)) 1824 trie_leaf_remove(t, ll); 1825 ll = l; 1826 } 1827 1828 if (ll && hlist_empty(&ll->list)) 1829 trie_leaf_remove(t, ll); 1830 1831 pr_debug("trie_flush found=%d\n", found); 1832 return found; 1833 } 1834 1835 void fib_free_table(struct fib_table *tb) 1836 { 1837 kfree(tb); 1838 } 1839 1840 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1841 struct fib_table *tb, 1842 struct sk_buff *skb, struct netlink_callback *cb) 1843 { 1844 int i, s_i; 1845 struct fib_alias *fa; 1846 __be32 xkey = htonl(key); 1847 1848 s_i = cb->args[5]; 1849 i = 0; 1850 1851 /* rcu_read_lock is hold by caller */ 1852 1853 list_for_each_entry_rcu(fa, fah, fa_list) { 1854 if (i < s_i) { 1855 i++; 1856 continue; 1857 } 1858 1859 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1860 cb->nlh->nlmsg_seq, 1861 RTM_NEWROUTE, 1862 tb->tb_id, 1863 fa->fa_type, 1864 fa->fa_scope, 1865 xkey, 1866 plen, 1867 fa->fa_tos, 1868 fa->fa_info, NLM_F_MULTI) < 0) { 1869 cb->args[5] = i; 1870 return -1; 1871 } 1872 i++; 1873 } 1874 cb->args[5] = i; 1875 return skb->len; 1876 } 1877 1878 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1879 struct sk_buff *skb, struct netlink_callback *cb) 1880 { 1881 struct leaf_info *li; 1882 struct hlist_node *node; 1883 int i, s_i; 1884 1885 s_i = cb->args[4]; 1886 i = 0; 1887 1888 /* rcu_read_lock is hold by caller */ 1889 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1890 if (i < s_i) { 1891 i++; 1892 continue; 1893 } 1894 1895 if (i > s_i) 1896 cb->args[5] = 0; 1897 1898 if (list_empty(&li->falh)) 1899 continue; 1900 1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1902 cb->args[4] = i; 1903 return -1; 1904 } 1905 i++; 1906 } 1907 1908 cb->args[4] = i; 1909 return skb->len; 1910 } 1911 1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1913 struct netlink_callback *cb) 1914 { 1915 struct leaf *l; 1916 struct trie *t = (struct trie *) tb->tb_data; 1917 t_key key = cb->args[2]; 1918 int count = cb->args[3]; 1919 1920 rcu_read_lock(); 1921 /* Dump starting at last key. 1922 * Note: 0.0.0.0/0 (ie default) is first key. 1923 */ 1924 if (count == 0) 1925 l = trie_firstleaf(t); 1926 else { 1927 /* Normally, continue from last key, but if that is missing 1928 * fallback to using slow rescan 1929 */ 1930 l = fib_find_node(t, key); 1931 if (!l) 1932 l = trie_leafindex(t, count); 1933 } 1934 1935 while (l) { 1936 cb->args[2] = l->key; 1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1938 cb->args[3] = count; 1939 rcu_read_unlock(); 1940 return -1; 1941 } 1942 1943 ++count; 1944 l = trie_nextleaf(l); 1945 memset(&cb->args[4], 0, 1946 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1947 } 1948 cb->args[3] = count; 1949 rcu_read_unlock(); 1950 1951 return skb->len; 1952 } 1953 1954 void __init fib_trie_init(void) 1955 { 1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1957 sizeof(struct fib_alias), 1958 0, SLAB_PANIC, NULL); 1959 1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1961 max(sizeof(struct leaf), 1962 sizeof(struct leaf_info)), 1963 0, SLAB_PANIC, NULL); 1964 } 1965 1966 1967 struct fib_table *fib_trie_table(u32 id) 1968 { 1969 struct fib_table *tb; 1970 struct trie *t; 1971 1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1973 GFP_KERNEL); 1974 if (tb == NULL) 1975 return NULL; 1976 1977 tb->tb_id = id; 1978 tb->tb_default = -1; 1979 1980 t = (struct trie *) tb->tb_data; 1981 memset(t, 0, sizeof(*t)); 1982 1983 if (id == RT_TABLE_LOCAL) 1984 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION); 1985 1986 return tb; 1987 } 1988 1989 #ifdef CONFIG_PROC_FS 1990 /* Depth first Trie walk iterator */ 1991 struct fib_trie_iter { 1992 struct seq_net_private p; 1993 struct fib_table *tb; 1994 struct tnode *tnode; 1995 unsigned int index; 1996 unsigned int depth; 1997 }; 1998 1999 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2000 { 2001 struct tnode *tn = iter->tnode; 2002 unsigned int cindex = iter->index; 2003 struct tnode *p; 2004 2005 /* A single entry routing table */ 2006 if (!tn) 2007 return NULL; 2008 2009 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2010 iter->tnode, iter->index, iter->depth); 2011 rescan: 2012 while (cindex < (1<<tn->bits)) { 2013 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2014 2015 if (n) { 2016 if (IS_LEAF(n)) { 2017 iter->tnode = tn; 2018 iter->index = cindex + 1; 2019 } else { 2020 /* push down one level */ 2021 iter->tnode = (struct tnode *) n; 2022 iter->index = 0; 2023 ++iter->depth; 2024 } 2025 return n; 2026 } 2027 2028 ++cindex; 2029 } 2030 2031 /* Current node exhausted, pop back up */ 2032 p = node_parent_rcu((struct rt_trie_node *)tn); 2033 if (p) { 2034 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2035 tn = p; 2036 --iter->depth; 2037 goto rescan; 2038 } 2039 2040 /* got root? */ 2041 return NULL; 2042 } 2043 2044 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2045 struct trie *t) 2046 { 2047 struct rt_trie_node *n; 2048 2049 if (!t) 2050 return NULL; 2051 2052 n = rcu_dereference(t->trie); 2053 if (!n) 2054 return NULL; 2055 2056 if (IS_TNODE(n)) { 2057 iter->tnode = (struct tnode *) n; 2058 iter->index = 0; 2059 iter->depth = 1; 2060 } else { 2061 iter->tnode = NULL; 2062 iter->index = 0; 2063 iter->depth = 0; 2064 } 2065 2066 return n; 2067 } 2068 2069 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2070 { 2071 struct rt_trie_node *n; 2072 struct fib_trie_iter iter; 2073 2074 memset(s, 0, sizeof(*s)); 2075 2076 rcu_read_lock(); 2077 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2078 if (IS_LEAF(n)) { 2079 struct leaf *l = (struct leaf *)n; 2080 struct leaf_info *li; 2081 struct hlist_node *tmp; 2082 2083 s->leaves++; 2084 s->totdepth += iter.depth; 2085 if (iter.depth > s->maxdepth) 2086 s->maxdepth = iter.depth; 2087 2088 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2089 ++s->prefixes; 2090 } else { 2091 const struct tnode *tn = (const struct tnode *) n; 2092 int i; 2093 2094 s->tnodes++; 2095 if (tn->bits < MAX_STAT_DEPTH) 2096 s->nodesizes[tn->bits]++; 2097 2098 for (i = 0; i < (1<<tn->bits); i++) 2099 if (!tn->child[i]) 2100 s->nullpointers++; 2101 } 2102 } 2103 rcu_read_unlock(); 2104 } 2105 2106 /* 2107 * This outputs /proc/net/fib_triestats 2108 */ 2109 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2110 { 2111 unsigned int i, max, pointers, bytes, avdepth; 2112 2113 if (stat->leaves) 2114 avdepth = stat->totdepth*100 / stat->leaves; 2115 else 2116 avdepth = 0; 2117 2118 seq_printf(seq, "\tAver depth: %u.%02d\n", 2119 avdepth / 100, avdepth % 100); 2120 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2121 2122 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2123 bytes = sizeof(struct leaf) * stat->leaves; 2124 2125 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2126 bytes += sizeof(struct leaf_info) * stat->prefixes; 2127 2128 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2129 bytes += sizeof(struct tnode) * stat->tnodes; 2130 2131 max = MAX_STAT_DEPTH; 2132 while (max > 0 && stat->nodesizes[max-1] == 0) 2133 max--; 2134 2135 pointers = 0; 2136 for (i = 1; i <= max; i++) 2137 if (stat->nodesizes[i] != 0) { 2138 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2139 pointers += (1<<i) * stat->nodesizes[i]; 2140 } 2141 seq_putc(seq, '\n'); 2142 seq_printf(seq, "\tPointers: %u\n", pointers); 2143 2144 bytes += sizeof(struct rt_trie_node *) * pointers; 2145 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2146 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2147 } 2148 2149 #ifdef CONFIG_IP_FIB_TRIE_STATS 2150 static void trie_show_usage(struct seq_file *seq, 2151 const struct trie_use_stats *stats) 2152 { 2153 seq_printf(seq, "\nCounters:\n---------\n"); 2154 seq_printf(seq, "gets = %u\n", stats->gets); 2155 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2156 seq_printf(seq, "semantic match passed = %u\n", 2157 stats->semantic_match_passed); 2158 seq_printf(seq, "semantic match miss = %u\n", 2159 stats->semantic_match_miss); 2160 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2161 seq_printf(seq, "skipped node resize = %u\n\n", 2162 stats->resize_node_skipped); 2163 } 2164 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2165 2166 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2167 { 2168 if (tb->tb_id == RT_TABLE_LOCAL) 2169 seq_puts(seq, "Local:\n"); 2170 else if (tb->tb_id == RT_TABLE_MAIN) 2171 seq_puts(seq, "Main:\n"); 2172 else 2173 seq_printf(seq, "Id %d:\n", tb->tb_id); 2174 } 2175 2176 2177 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2178 { 2179 struct net *net = (struct net *)seq->private; 2180 unsigned int h; 2181 2182 seq_printf(seq, 2183 "Basic info: size of leaf:" 2184 " %Zd bytes, size of tnode: %Zd bytes.\n", 2185 sizeof(struct leaf), sizeof(struct tnode)); 2186 2187 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2188 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2189 struct hlist_node *node; 2190 struct fib_table *tb; 2191 2192 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2193 struct trie *t = (struct trie *) tb->tb_data; 2194 struct trie_stat stat; 2195 2196 if (!t) 2197 continue; 2198 2199 fib_table_print(seq, tb); 2200 2201 trie_collect_stats(t, &stat); 2202 trie_show_stats(seq, &stat); 2203 #ifdef CONFIG_IP_FIB_TRIE_STATS 2204 trie_show_usage(seq, &t->stats); 2205 #endif 2206 } 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2213 { 2214 return single_open_net(inode, file, fib_triestat_seq_show); 2215 } 2216 2217 static const struct file_operations fib_triestat_fops = { 2218 .owner = THIS_MODULE, 2219 .open = fib_triestat_seq_open, 2220 .read = seq_read, 2221 .llseek = seq_lseek, 2222 .release = single_release_net, 2223 }; 2224 2225 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2226 { 2227 struct fib_trie_iter *iter = seq->private; 2228 struct net *net = seq_file_net(seq); 2229 loff_t idx = 0; 2230 unsigned int h; 2231 2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2234 struct hlist_node *node; 2235 struct fib_table *tb; 2236 2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2238 struct rt_trie_node *n; 2239 2240 for (n = fib_trie_get_first(iter, 2241 (struct trie *) tb->tb_data); 2242 n; n = fib_trie_get_next(iter)) 2243 if (pos == idx++) { 2244 iter->tb = tb; 2245 return n; 2246 } 2247 } 2248 } 2249 2250 return NULL; 2251 } 2252 2253 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2254 __acquires(RCU) 2255 { 2256 rcu_read_lock(); 2257 return fib_trie_get_idx(seq, *pos); 2258 } 2259 2260 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2261 { 2262 struct fib_trie_iter *iter = seq->private; 2263 struct net *net = seq_file_net(seq); 2264 struct fib_table *tb = iter->tb; 2265 struct hlist_node *tb_node; 2266 unsigned int h; 2267 struct rt_trie_node *n; 2268 2269 ++*pos; 2270 /* next node in same table */ 2271 n = fib_trie_get_next(iter); 2272 if (n) 2273 return n; 2274 2275 /* walk rest of this hash chain */ 2276 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2277 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) { 2278 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2279 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2280 if (n) 2281 goto found; 2282 } 2283 2284 /* new hash chain */ 2285 while (++h < FIB_TABLE_HASHSZ) { 2286 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2287 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2288 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2289 if (n) 2290 goto found; 2291 } 2292 } 2293 return NULL; 2294 2295 found: 2296 iter->tb = tb; 2297 return n; 2298 } 2299 2300 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2301 __releases(RCU) 2302 { 2303 rcu_read_unlock(); 2304 } 2305 2306 static void seq_indent(struct seq_file *seq, int n) 2307 { 2308 while (n-- > 0) 2309 seq_puts(seq, " "); 2310 } 2311 2312 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2313 { 2314 switch (s) { 2315 case RT_SCOPE_UNIVERSE: return "universe"; 2316 case RT_SCOPE_SITE: return "site"; 2317 case RT_SCOPE_LINK: return "link"; 2318 case RT_SCOPE_HOST: return "host"; 2319 case RT_SCOPE_NOWHERE: return "nowhere"; 2320 default: 2321 snprintf(buf, len, "scope=%d", s); 2322 return buf; 2323 } 2324 } 2325 2326 static const char *const rtn_type_names[__RTN_MAX] = { 2327 [RTN_UNSPEC] = "UNSPEC", 2328 [RTN_UNICAST] = "UNICAST", 2329 [RTN_LOCAL] = "LOCAL", 2330 [RTN_BROADCAST] = "BROADCAST", 2331 [RTN_ANYCAST] = "ANYCAST", 2332 [RTN_MULTICAST] = "MULTICAST", 2333 [RTN_BLACKHOLE] = "BLACKHOLE", 2334 [RTN_UNREACHABLE] = "UNREACHABLE", 2335 [RTN_PROHIBIT] = "PROHIBIT", 2336 [RTN_THROW] = "THROW", 2337 [RTN_NAT] = "NAT", 2338 [RTN_XRESOLVE] = "XRESOLVE", 2339 }; 2340 2341 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2342 { 2343 if (t < __RTN_MAX && rtn_type_names[t]) 2344 return rtn_type_names[t]; 2345 snprintf(buf, len, "type %u", t); 2346 return buf; 2347 } 2348 2349 /* Pretty print the trie */ 2350 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2351 { 2352 const struct fib_trie_iter *iter = seq->private; 2353 struct rt_trie_node *n = v; 2354 2355 if (!node_parent_rcu(n)) 2356 fib_table_print(seq, iter->tb); 2357 2358 if (IS_TNODE(n)) { 2359 struct tnode *tn = (struct tnode *) n; 2360 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2361 2362 seq_indent(seq, iter->depth-1); 2363 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2364 &prf, tn->pos, tn->bits, tn->full_children, 2365 tn->empty_children); 2366 2367 } else { 2368 struct leaf *l = (struct leaf *) n; 2369 struct leaf_info *li; 2370 struct hlist_node *node; 2371 __be32 val = htonl(l->key); 2372 2373 seq_indent(seq, iter->depth); 2374 seq_printf(seq, " |-- %pI4\n", &val); 2375 2376 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2377 struct fib_alias *fa; 2378 2379 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2380 char buf1[32], buf2[32]; 2381 2382 seq_indent(seq, iter->depth+1); 2383 seq_printf(seq, " /%d %s %s", li->plen, 2384 rtn_scope(buf1, sizeof(buf1), 2385 fa->fa_scope), 2386 rtn_type(buf2, sizeof(buf2), 2387 fa->fa_type)); 2388 if (fa->fa_tos) 2389 seq_printf(seq, " tos=%d", fa->fa_tos); 2390 seq_putc(seq, '\n'); 2391 } 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 static const struct seq_operations fib_trie_seq_ops = { 2399 .start = fib_trie_seq_start, 2400 .next = fib_trie_seq_next, 2401 .stop = fib_trie_seq_stop, 2402 .show = fib_trie_seq_show, 2403 }; 2404 2405 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2406 { 2407 return seq_open_net(inode, file, &fib_trie_seq_ops, 2408 sizeof(struct fib_trie_iter)); 2409 } 2410 2411 static const struct file_operations fib_trie_fops = { 2412 .owner = THIS_MODULE, 2413 .open = fib_trie_seq_open, 2414 .read = seq_read, 2415 .llseek = seq_lseek, 2416 .release = seq_release_net, 2417 }; 2418 2419 struct fib_route_iter { 2420 struct seq_net_private p; 2421 struct trie *main_trie; 2422 loff_t pos; 2423 t_key key; 2424 }; 2425 2426 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2427 { 2428 struct leaf *l = NULL; 2429 struct trie *t = iter->main_trie; 2430 2431 /* use cache location of last found key */ 2432 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2433 pos -= iter->pos; 2434 else { 2435 iter->pos = 0; 2436 l = trie_firstleaf(t); 2437 } 2438 2439 while (l && pos-- > 0) { 2440 iter->pos++; 2441 l = trie_nextleaf(l); 2442 } 2443 2444 if (l) 2445 iter->key = pos; /* remember it */ 2446 else 2447 iter->pos = 0; /* forget it */ 2448 2449 return l; 2450 } 2451 2452 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2453 __acquires(RCU) 2454 { 2455 struct fib_route_iter *iter = seq->private; 2456 struct fib_table *tb; 2457 2458 rcu_read_lock(); 2459 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2460 if (!tb) 2461 return NULL; 2462 2463 iter->main_trie = (struct trie *) tb->tb_data; 2464 if (*pos == 0) 2465 return SEQ_START_TOKEN; 2466 else 2467 return fib_route_get_idx(iter, *pos - 1); 2468 } 2469 2470 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2471 { 2472 struct fib_route_iter *iter = seq->private; 2473 struct leaf *l = v; 2474 2475 ++*pos; 2476 if (v == SEQ_START_TOKEN) { 2477 iter->pos = 0; 2478 l = trie_firstleaf(iter->main_trie); 2479 } else { 2480 iter->pos++; 2481 l = trie_nextleaf(l); 2482 } 2483 2484 if (l) 2485 iter->key = l->key; 2486 else 2487 iter->pos = 0; 2488 return l; 2489 } 2490 2491 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2492 __releases(RCU) 2493 { 2494 rcu_read_unlock(); 2495 } 2496 2497 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2498 { 2499 unsigned int flags = 0; 2500 2501 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2502 flags = RTF_REJECT; 2503 if (fi && fi->fib_nh->nh_gw) 2504 flags |= RTF_GATEWAY; 2505 if (mask == htonl(0xFFFFFFFF)) 2506 flags |= RTF_HOST; 2507 flags |= RTF_UP; 2508 return flags; 2509 } 2510 2511 /* 2512 * This outputs /proc/net/route. 2513 * The format of the file is not supposed to be changed 2514 * and needs to be same as fib_hash output to avoid breaking 2515 * legacy utilities 2516 */ 2517 static int fib_route_seq_show(struct seq_file *seq, void *v) 2518 { 2519 struct leaf *l = v; 2520 struct leaf_info *li; 2521 struct hlist_node *node; 2522 2523 if (v == SEQ_START_TOKEN) { 2524 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2525 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2526 "\tWindow\tIRTT"); 2527 return 0; 2528 } 2529 2530 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2531 struct fib_alias *fa; 2532 __be32 mask, prefix; 2533 2534 mask = inet_make_mask(li->plen); 2535 prefix = htonl(l->key); 2536 2537 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2538 const struct fib_info *fi = fa->fa_info; 2539 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2540 int len; 2541 2542 if (fa->fa_type == RTN_BROADCAST 2543 || fa->fa_type == RTN_MULTICAST) 2544 continue; 2545 2546 if (fi) 2547 seq_printf(seq, 2548 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2549 "%d\t%08X\t%d\t%u\t%u%n", 2550 fi->fib_dev ? fi->fib_dev->name : "*", 2551 prefix, 2552 fi->fib_nh->nh_gw, flags, 0, 0, 2553 fi->fib_priority, 2554 mask, 2555 (fi->fib_advmss ? 2556 fi->fib_advmss + 40 : 0), 2557 fi->fib_window, 2558 fi->fib_rtt >> 3, &len); 2559 else 2560 seq_printf(seq, 2561 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2562 "%d\t%08X\t%d\t%u\t%u%n", 2563 prefix, 0, flags, 0, 0, 0, 2564 mask, 0, 0, 0, &len); 2565 2566 seq_printf(seq, "%*s\n", 127 - len, ""); 2567 } 2568 } 2569 2570 return 0; 2571 } 2572 2573 static const struct seq_operations fib_route_seq_ops = { 2574 .start = fib_route_seq_start, 2575 .next = fib_route_seq_next, 2576 .stop = fib_route_seq_stop, 2577 .show = fib_route_seq_show, 2578 }; 2579 2580 static int fib_route_seq_open(struct inode *inode, struct file *file) 2581 { 2582 return seq_open_net(inode, file, &fib_route_seq_ops, 2583 sizeof(struct fib_route_iter)); 2584 } 2585 2586 static const struct file_operations fib_route_fops = { 2587 .owner = THIS_MODULE, 2588 .open = fib_route_seq_open, 2589 .read = seq_read, 2590 .llseek = seq_lseek, 2591 .release = seq_release_net, 2592 }; 2593 2594 int __net_init fib_proc_init(struct net *net) 2595 { 2596 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2597 goto out1; 2598 2599 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2600 &fib_triestat_fops)) 2601 goto out2; 2602 2603 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2604 goto out3; 2605 2606 return 0; 2607 2608 out3: 2609 proc_net_remove(net, "fib_triestat"); 2610 out2: 2611 proc_net_remove(net, "fib_trie"); 2612 out1: 2613 return -ENOMEM; 2614 } 2615 2616 void __net_exit fib_proc_exit(struct net *net) 2617 { 2618 proc_net_remove(net, "fib_trie"); 2619 proc_net_remove(net, "fib_triestat"); 2620 proc_net_remove(net, "route"); 2621 } 2622 2623 #endif /* CONFIG_PROC_FS */ 2624