xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 static unsigned int fib_seq_sum(void)
88 {
89 	unsigned int fib_seq = 0;
90 	struct net *net;
91 
92 	rtnl_lock();
93 	for_each_net(net)
94 		fib_seq += net->ipv4.fib_seq;
95 	rtnl_unlock();
96 
97 	return fib_seq;
98 }
99 
100 static ATOMIC_NOTIFIER_HEAD(fib_chain);
101 
102 static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 			     enum fib_event_type event_type,
104 			     struct fib_notifier_info *info)
105 {
106 	info->net = net;
107 	return nb->notifier_call(nb, event_type, info);
108 }
109 
110 static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 			     enum fib_event_type event_type)
112 {
113 #ifdef CONFIG_IP_MULTIPLE_TABLES
114 	struct fib_notifier_info info;
115 
116 	if (net->ipv4.fib_has_custom_rules)
117 		call_fib_notifier(nb, net, event_type, &info);
118 #endif
119 }
120 
121 static void fib_notify(struct net *net, struct notifier_block *nb,
122 		       enum fib_event_type event_type);
123 
124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 				   enum fib_event_type event_type, u32 dst,
126 				   int dst_len, struct fib_info *fi,
127 				   u8 tos, u8 type, u32 tb_id)
128 {
129 	struct fib_entry_notifier_info info = {
130 		.dst = dst,
131 		.dst_len = dst_len,
132 		.fi = fi,
133 		.tos = tos,
134 		.type = type,
135 		.tb_id = tb_id,
136 	};
137 	return call_fib_notifier(nb, net, event_type, &info.info);
138 }
139 
140 static bool fib_dump_is_consistent(struct notifier_block *nb,
141 				   void (*cb)(struct notifier_block *nb),
142 				   unsigned int fib_seq)
143 {
144 	atomic_notifier_chain_register(&fib_chain, nb);
145 	if (fib_seq == fib_seq_sum())
146 		return true;
147 	atomic_notifier_chain_unregister(&fib_chain, nb);
148 	if (cb)
149 		cb(nb);
150 	return false;
151 }
152 
153 #define FIB_DUMP_MAX_RETRIES 5
154 int register_fib_notifier(struct notifier_block *nb,
155 			  void (*cb)(struct notifier_block *nb))
156 {
157 	int retries = 0;
158 
159 	do {
160 		unsigned int fib_seq = fib_seq_sum();
161 		struct net *net;
162 
163 		/* Mutex semantics guarantee that every change done to
164 		 * FIB tries before we read the change sequence counter
165 		 * is now visible to us.
166 		 */
167 		rcu_read_lock();
168 		for_each_net_rcu(net) {
169 			fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
170 			fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
171 		}
172 		rcu_read_unlock();
173 
174 		if (fib_dump_is_consistent(nb, cb, fib_seq))
175 			return 0;
176 	} while (++retries < FIB_DUMP_MAX_RETRIES);
177 
178 	return -EBUSY;
179 }
180 EXPORT_SYMBOL(register_fib_notifier);
181 
182 int unregister_fib_notifier(struct notifier_block *nb)
183 {
184 	return atomic_notifier_chain_unregister(&fib_chain, nb);
185 }
186 EXPORT_SYMBOL(unregister_fib_notifier);
187 
188 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
189 		       struct fib_notifier_info *info)
190 {
191 	net->ipv4.fib_seq++;
192 	info->net = net;
193 	return atomic_notifier_call_chain(&fib_chain, event_type, info);
194 }
195 
196 static int call_fib_entry_notifiers(struct net *net,
197 				    enum fib_event_type event_type, u32 dst,
198 				    int dst_len, struct fib_info *fi,
199 				    u8 tos, u8 type, u32 tb_id)
200 {
201 	struct fib_entry_notifier_info info = {
202 		.dst = dst,
203 		.dst_len = dst_len,
204 		.fi = fi,
205 		.tos = tos,
206 		.type = type,
207 		.tb_id = tb_id,
208 	};
209 	return call_fib_notifiers(net, event_type, &info.info);
210 }
211 
212 #define MAX_STAT_DEPTH 32
213 
214 #define KEYLENGTH	(8*sizeof(t_key))
215 #define KEY_MAX		((t_key)~0)
216 
217 typedef unsigned int t_key;
218 
219 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
220 #define IS_TNODE(n)	((n)->bits)
221 #define IS_LEAF(n)	(!(n)->bits)
222 
223 struct key_vector {
224 	t_key key;
225 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
226 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
227 	unsigned char slen;
228 	union {
229 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
230 		struct hlist_head leaf;
231 		/* This array is valid if (pos | bits) > 0 (TNODE) */
232 		struct key_vector __rcu *tnode[0];
233 	};
234 };
235 
236 struct tnode {
237 	struct rcu_head rcu;
238 	t_key empty_children;		/* KEYLENGTH bits needed */
239 	t_key full_children;		/* KEYLENGTH bits needed */
240 	struct key_vector __rcu *parent;
241 	struct key_vector kv[1];
242 #define tn_bits kv[0].bits
243 };
244 
245 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
246 #define LEAF_SIZE	TNODE_SIZE(1)
247 
248 #ifdef CONFIG_IP_FIB_TRIE_STATS
249 struct trie_use_stats {
250 	unsigned int gets;
251 	unsigned int backtrack;
252 	unsigned int semantic_match_passed;
253 	unsigned int semantic_match_miss;
254 	unsigned int null_node_hit;
255 	unsigned int resize_node_skipped;
256 };
257 #endif
258 
259 struct trie_stat {
260 	unsigned int totdepth;
261 	unsigned int maxdepth;
262 	unsigned int tnodes;
263 	unsigned int leaves;
264 	unsigned int nullpointers;
265 	unsigned int prefixes;
266 	unsigned int nodesizes[MAX_STAT_DEPTH];
267 };
268 
269 struct trie {
270 	struct key_vector kv[1];
271 #ifdef CONFIG_IP_FIB_TRIE_STATS
272 	struct trie_use_stats __percpu *stats;
273 #endif
274 };
275 
276 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
277 static size_t tnode_free_size;
278 
279 /*
280  * synchronize_rcu after call_rcu for that many pages; it should be especially
281  * useful before resizing the root node with PREEMPT_NONE configs; the value was
282  * obtained experimentally, aiming to avoid visible slowdown.
283  */
284 static const int sync_pages = 128;
285 
286 static struct kmem_cache *fn_alias_kmem __read_mostly;
287 static struct kmem_cache *trie_leaf_kmem __read_mostly;
288 
289 static inline struct tnode *tn_info(struct key_vector *kv)
290 {
291 	return container_of(kv, struct tnode, kv[0]);
292 }
293 
294 /* caller must hold RTNL */
295 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
296 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
297 
298 /* caller must hold RCU read lock or RTNL */
299 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
300 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
301 
302 /* wrapper for rcu_assign_pointer */
303 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
304 {
305 	if (n)
306 		rcu_assign_pointer(tn_info(n)->parent, tp);
307 }
308 
309 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
310 
311 /* This provides us with the number of children in this node, in the case of a
312  * leaf this will return 0 meaning none of the children are accessible.
313  */
314 static inline unsigned long child_length(const struct key_vector *tn)
315 {
316 	return (1ul << tn->bits) & ~(1ul);
317 }
318 
319 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
320 
321 static inline unsigned long get_index(t_key key, struct key_vector *kv)
322 {
323 	unsigned long index = key ^ kv->key;
324 
325 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
326 		return 0;
327 
328 	return index >> kv->pos;
329 }
330 
331 /* To understand this stuff, an understanding of keys and all their bits is
332  * necessary. Every node in the trie has a key associated with it, but not
333  * all of the bits in that key are significant.
334  *
335  * Consider a node 'n' and its parent 'tp'.
336  *
337  * If n is a leaf, every bit in its key is significant. Its presence is
338  * necessitated by path compression, since during a tree traversal (when
339  * searching for a leaf - unless we are doing an insertion) we will completely
340  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
341  * a potentially successful search, that we have indeed been walking the
342  * correct key path.
343  *
344  * Note that we can never "miss" the correct key in the tree if present by
345  * following the wrong path. Path compression ensures that segments of the key
346  * that are the same for all keys with a given prefix are skipped, but the
347  * skipped part *is* identical for each node in the subtrie below the skipped
348  * bit! trie_insert() in this implementation takes care of that.
349  *
350  * if n is an internal node - a 'tnode' here, the various parts of its key
351  * have many different meanings.
352  *
353  * Example:
354  * _________________________________________________________________
355  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
356  * -----------------------------------------------------------------
357  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
358  *
359  * _________________________________________________________________
360  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
361  * -----------------------------------------------------------------
362  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
363  *
364  * tp->pos = 22
365  * tp->bits = 3
366  * n->pos = 13
367  * n->bits = 4
368  *
369  * First, let's just ignore the bits that come before the parent tp, that is
370  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
371  * point we do not use them for anything.
372  *
373  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
374  * index into the parent's child array. That is, they will be used to find
375  * 'n' among tp's children.
376  *
377  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
378  * for the node n.
379  *
380  * All the bits we have seen so far are significant to the node n. The rest
381  * of the bits are really not needed or indeed known in n->key.
382  *
383  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
384  * n's child array, and will of course be different for each child.
385  *
386  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
387  * at this point.
388  */
389 
390 static const int halve_threshold = 25;
391 static const int inflate_threshold = 50;
392 static const int halve_threshold_root = 15;
393 static const int inflate_threshold_root = 30;
394 
395 static void __alias_free_mem(struct rcu_head *head)
396 {
397 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
398 	kmem_cache_free(fn_alias_kmem, fa);
399 }
400 
401 static inline void alias_free_mem_rcu(struct fib_alias *fa)
402 {
403 	call_rcu(&fa->rcu, __alias_free_mem);
404 }
405 
406 #define TNODE_KMALLOC_MAX \
407 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
408 #define TNODE_VMALLOC_MAX \
409 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410 
411 static void __node_free_rcu(struct rcu_head *head)
412 {
413 	struct tnode *n = container_of(head, struct tnode, rcu);
414 
415 	if (!n->tn_bits)
416 		kmem_cache_free(trie_leaf_kmem, n);
417 	else
418 		kvfree(n);
419 }
420 
421 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
422 
423 static struct tnode *tnode_alloc(int bits)
424 {
425 	size_t size;
426 
427 	/* verify bits is within bounds */
428 	if (bits > TNODE_VMALLOC_MAX)
429 		return NULL;
430 
431 	/* determine size and verify it is non-zero and didn't overflow */
432 	size = TNODE_SIZE(1ul << bits);
433 
434 	if (size <= PAGE_SIZE)
435 		return kzalloc(size, GFP_KERNEL);
436 	else
437 		return vzalloc(size);
438 }
439 
440 static inline void empty_child_inc(struct key_vector *n)
441 {
442 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
443 }
444 
445 static inline void empty_child_dec(struct key_vector *n)
446 {
447 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
448 }
449 
450 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
451 {
452 	struct key_vector *l;
453 	struct tnode *kv;
454 
455 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
456 	if (!kv)
457 		return NULL;
458 
459 	/* initialize key vector */
460 	l = kv->kv;
461 	l->key = key;
462 	l->pos = 0;
463 	l->bits = 0;
464 	l->slen = fa->fa_slen;
465 
466 	/* link leaf to fib alias */
467 	INIT_HLIST_HEAD(&l->leaf);
468 	hlist_add_head(&fa->fa_list, &l->leaf);
469 
470 	return l;
471 }
472 
473 static struct key_vector *tnode_new(t_key key, int pos, int bits)
474 {
475 	unsigned int shift = pos + bits;
476 	struct key_vector *tn;
477 	struct tnode *tnode;
478 
479 	/* verify bits and pos their msb bits clear and values are valid */
480 	BUG_ON(!bits || (shift > KEYLENGTH));
481 
482 	tnode = tnode_alloc(bits);
483 	if (!tnode)
484 		return NULL;
485 
486 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
487 		 sizeof(struct key_vector *) << bits);
488 
489 	if (bits == KEYLENGTH)
490 		tnode->full_children = 1;
491 	else
492 		tnode->empty_children = 1ul << bits;
493 
494 	tn = tnode->kv;
495 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
496 	tn->pos = pos;
497 	tn->bits = bits;
498 	tn->slen = pos;
499 
500 	return tn;
501 }
502 
503 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
504  * and no bits are skipped. See discussion in dyntree paper p. 6
505  */
506 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
507 {
508 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
509 }
510 
511 /* Add a child at position i overwriting the old value.
512  * Update the value of full_children and empty_children.
513  */
514 static void put_child(struct key_vector *tn, unsigned long i,
515 		      struct key_vector *n)
516 {
517 	struct key_vector *chi = get_child(tn, i);
518 	int isfull, wasfull;
519 
520 	BUG_ON(i >= child_length(tn));
521 
522 	/* update emptyChildren, overflow into fullChildren */
523 	if (!n && chi)
524 		empty_child_inc(tn);
525 	if (n && !chi)
526 		empty_child_dec(tn);
527 
528 	/* update fullChildren */
529 	wasfull = tnode_full(tn, chi);
530 	isfull = tnode_full(tn, n);
531 
532 	if (wasfull && !isfull)
533 		tn_info(tn)->full_children--;
534 	else if (!wasfull && isfull)
535 		tn_info(tn)->full_children++;
536 
537 	if (n && (tn->slen < n->slen))
538 		tn->slen = n->slen;
539 
540 	rcu_assign_pointer(tn->tnode[i], n);
541 }
542 
543 static void update_children(struct key_vector *tn)
544 {
545 	unsigned long i;
546 
547 	/* update all of the child parent pointers */
548 	for (i = child_length(tn); i;) {
549 		struct key_vector *inode = get_child(tn, --i);
550 
551 		if (!inode)
552 			continue;
553 
554 		/* Either update the children of a tnode that
555 		 * already belongs to us or update the child
556 		 * to point to ourselves.
557 		 */
558 		if (node_parent(inode) == tn)
559 			update_children(inode);
560 		else
561 			node_set_parent(inode, tn);
562 	}
563 }
564 
565 static inline void put_child_root(struct key_vector *tp, t_key key,
566 				  struct key_vector *n)
567 {
568 	if (IS_TRIE(tp))
569 		rcu_assign_pointer(tp->tnode[0], n);
570 	else
571 		put_child(tp, get_index(key, tp), n);
572 }
573 
574 static inline void tnode_free_init(struct key_vector *tn)
575 {
576 	tn_info(tn)->rcu.next = NULL;
577 }
578 
579 static inline void tnode_free_append(struct key_vector *tn,
580 				     struct key_vector *n)
581 {
582 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
583 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
584 }
585 
586 static void tnode_free(struct key_vector *tn)
587 {
588 	struct callback_head *head = &tn_info(tn)->rcu;
589 
590 	while (head) {
591 		head = head->next;
592 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
593 		node_free(tn);
594 
595 		tn = container_of(head, struct tnode, rcu)->kv;
596 	}
597 
598 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
599 		tnode_free_size = 0;
600 		synchronize_rcu();
601 	}
602 }
603 
604 static struct key_vector *replace(struct trie *t,
605 				  struct key_vector *oldtnode,
606 				  struct key_vector *tn)
607 {
608 	struct key_vector *tp = node_parent(oldtnode);
609 	unsigned long i;
610 
611 	/* setup the parent pointer out of and back into this node */
612 	NODE_INIT_PARENT(tn, tp);
613 	put_child_root(tp, tn->key, tn);
614 
615 	/* update all of the child parent pointers */
616 	update_children(tn);
617 
618 	/* all pointers should be clean so we are done */
619 	tnode_free(oldtnode);
620 
621 	/* resize children now that oldtnode is freed */
622 	for (i = child_length(tn); i;) {
623 		struct key_vector *inode = get_child(tn, --i);
624 
625 		/* resize child node */
626 		if (tnode_full(tn, inode))
627 			tn = resize(t, inode);
628 	}
629 
630 	return tp;
631 }
632 
633 static struct key_vector *inflate(struct trie *t,
634 				  struct key_vector *oldtnode)
635 {
636 	struct key_vector *tn;
637 	unsigned long i;
638 	t_key m;
639 
640 	pr_debug("In inflate\n");
641 
642 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
643 	if (!tn)
644 		goto notnode;
645 
646 	/* prepare oldtnode to be freed */
647 	tnode_free_init(oldtnode);
648 
649 	/* Assemble all of the pointers in our cluster, in this case that
650 	 * represents all of the pointers out of our allocated nodes that
651 	 * point to existing tnodes and the links between our allocated
652 	 * nodes.
653 	 */
654 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
655 		struct key_vector *inode = get_child(oldtnode, --i);
656 		struct key_vector *node0, *node1;
657 		unsigned long j, k;
658 
659 		/* An empty child */
660 		if (!inode)
661 			continue;
662 
663 		/* A leaf or an internal node with skipped bits */
664 		if (!tnode_full(oldtnode, inode)) {
665 			put_child(tn, get_index(inode->key, tn), inode);
666 			continue;
667 		}
668 
669 		/* drop the node in the old tnode free list */
670 		tnode_free_append(oldtnode, inode);
671 
672 		/* An internal node with two children */
673 		if (inode->bits == 1) {
674 			put_child(tn, 2 * i + 1, get_child(inode, 1));
675 			put_child(tn, 2 * i, get_child(inode, 0));
676 			continue;
677 		}
678 
679 		/* We will replace this node 'inode' with two new
680 		 * ones, 'node0' and 'node1', each with half of the
681 		 * original children. The two new nodes will have
682 		 * a position one bit further down the key and this
683 		 * means that the "significant" part of their keys
684 		 * (see the discussion near the top of this file)
685 		 * will differ by one bit, which will be "0" in
686 		 * node0's key and "1" in node1's key. Since we are
687 		 * moving the key position by one step, the bit that
688 		 * we are moving away from - the bit at position
689 		 * (tn->pos) - is the one that will differ between
690 		 * node0 and node1. So... we synthesize that bit in the
691 		 * two new keys.
692 		 */
693 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
694 		if (!node1)
695 			goto nomem;
696 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
697 
698 		tnode_free_append(tn, node1);
699 		if (!node0)
700 			goto nomem;
701 		tnode_free_append(tn, node0);
702 
703 		/* populate child pointers in new nodes */
704 		for (k = child_length(inode), j = k / 2; j;) {
705 			put_child(node1, --j, get_child(inode, --k));
706 			put_child(node0, j, get_child(inode, j));
707 			put_child(node1, --j, get_child(inode, --k));
708 			put_child(node0, j, get_child(inode, j));
709 		}
710 
711 		/* link new nodes to parent */
712 		NODE_INIT_PARENT(node1, tn);
713 		NODE_INIT_PARENT(node0, tn);
714 
715 		/* link parent to nodes */
716 		put_child(tn, 2 * i + 1, node1);
717 		put_child(tn, 2 * i, node0);
718 	}
719 
720 	/* setup the parent pointers into and out of this node */
721 	return replace(t, oldtnode, tn);
722 nomem:
723 	/* all pointers should be clean so we are done */
724 	tnode_free(tn);
725 notnode:
726 	return NULL;
727 }
728 
729 static struct key_vector *halve(struct trie *t,
730 				struct key_vector *oldtnode)
731 {
732 	struct key_vector *tn;
733 	unsigned long i;
734 
735 	pr_debug("In halve\n");
736 
737 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
738 	if (!tn)
739 		goto notnode;
740 
741 	/* prepare oldtnode to be freed */
742 	tnode_free_init(oldtnode);
743 
744 	/* Assemble all of the pointers in our cluster, in this case that
745 	 * represents all of the pointers out of our allocated nodes that
746 	 * point to existing tnodes and the links between our allocated
747 	 * nodes.
748 	 */
749 	for (i = child_length(oldtnode); i;) {
750 		struct key_vector *node1 = get_child(oldtnode, --i);
751 		struct key_vector *node0 = get_child(oldtnode, --i);
752 		struct key_vector *inode;
753 
754 		/* At least one of the children is empty */
755 		if (!node1 || !node0) {
756 			put_child(tn, i / 2, node1 ? : node0);
757 			continue;
758 		}
759 
760 		/* Two nonempty children */
761 		inode = tnode_new(node0->key, oldtnode->pos, 1);
762 		if (!inode)
763 			goto nomem;
764 		tnode_free_append(tn, inode);
765 
766 		/* initialize pointers out of node */
767 		put_child(inode, 1, node1);
768 		put_child(inode, 0, node0);
769 		NODE_INIT_PARENT(inode, tn);
770 
771 		/* link parent to node */
772 		put_child(tn, i / 2, inode);
773 	}
774 
775 	/* setup the parent pointers into and out of this node */
776 	return replace(t, oldtnode, tn);
777 nomem:
778 	/* all pointers should be clean so we are done */
779 	tnode_free(tn);
780 notnode:
781 	return NULL;
782 }
783 
784 static struct key_vector *collapse(struct trie *t,
785 				   struct key_vector *oldtnode)
786 {
787 	struct key_vector *n, *tp;
788 	unsigned long i;
789 
790 	/* scan the tnode looking for that one child that might still exist */
791 	for (n = NULL, i = child_length(oldtnode); !n && i;)
792 		n = get_child(oldtnode, --i);
793 
794 	/* compress one level */
795 	tp = node_parent(oldtnode);
796 	put_child_root(tp, oldtnode->key, n);
797 	node_set_parent(n, tp);
798 
799 	/* drop dead node */
800 	node_free(oldtnode);
801 
802 	return tp;
803 }
804 
805 static unsigned char update_suffix(struct key_vector *tn)
806 {
807 	unsigned char slen = tn->pos;
808 	unsigned long stride, i;
809 	unsigned char slen_max;
810 
811 	/* only vector 0 can have a suffix length greater than or equal to
812 	 * tn->pos + tn->bits, the second highest node will have a suffix
813 	 * length at most of tn->pos + tn->bits - 1
814 	 */
815 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
816 
817 	/* search though the list of children looking for nodes that might
818 	 * have a suffix greater than the one we currently have.  This is
819 	 * why we start with a stride of 2 since a stride of 1 would
820 	 * represent the nodes with suffix length equal to tn->pos
821 	 */
822 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
823 		struct key_vector *n = get_child(tn, i);
824 
825 		if (!n || (n->slen <= slen))
826 			continue;
827 
828 		/* update stride and slen based on new value */
829 		stride <<= (n->slen - slen);
830 		slen = n->slen;
831 		i &= ~(stride - 1);
832 
833 		/* stop searching if we have hit the maximum possible value */
834 		if (slen >= slen_max)
835 			break;
836 	}
837 
838 	tn->slen = slen;
839 
840 	return slen;
841 }
842 
843 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
844  * the Helsinki University of Technology and Matti Tikkanen of Nokia
845  * Telecommunications, page 6:
846  * "A node is doubled if the ratio of non-empty children to all
847  * children in the *doubled* node is at least 'high'."
848  *
849  * 'high' in this instance is the variable 'inflate_threshold'. It
850  * is expressed as a percentage, so we multiply it with
851  * child_length() and instead of multiplying by 2 (since the
852  * child array will be doubled by inflate()) and multiplying
853  * the left-hand side by 100 (to handle the percentage thing) we
854  * multiply the left-hand side by 50.
855  *
856  * The left-hand side may look a bit weird: child_length(tn)
857  * - tn->empty_children is of course the number of non-null children
858  * in the current node. tn->full_children is the number of "full"
859  * children, that is non-null tnodes with a skip value of 0.
860  * All of those will be doubled in the resulting inflated tnode, so
861  * we just count them one extra time here.
862  *
863  * A clearer way to write this would be:
864  *
865  * to_be_doubled = tn->full_children;
866  * not_to_be_doubled = child_length(tn) - tn->empty_children -
867  *     tn->full_children;
868  *
869  * new_child_length = child_length(tn) * 2;
870  *
871  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
872  *      new_child_length;
873  * if (new_fill_factor >= inflate_threshold)
874  *
875  * ...and so on, tho it would mess up the while () loop.
876  *
877  * anyway,
878  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
879  *      inflate_threshold
880  *
881  * avoid a division:
882  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
883  *      inflate_threshold * new_child_length
884  *
885  * expand not_to_be_doubled and to_be_doubled, and shorten:
886  * 100 * (child_length(tn) - tn->empty_children +
887  *    tn->full_children) >= inflate_threshold * new_child_length
888  *
889  * expand new_child_length:
890  * 100 * (child_length(tn) - tn->empty_children +
891  *    tn->full_children) >=
892  *      inflate_threshold * child_length(tn) * 2
893  *
894  * shorten again:
895  * 50 * (tn->full_children + child_length(tn) -
896  *    tn->empty_children) >= inflate_threshold *
897  *    child_length(tn)
898  *
899  */
900 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
901 {
902 	unsigned long used = child_length(tn);
903 	unsigned long threshold = used;
904 
905 	/* Keep root node larger */
906 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
907 	used -= tn_info(tn)->empty_children;
908 	used += tn_info(tn)->full_children;
909 
910 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
911 
912 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
913 }
914 
915 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
916 {
917 	unsigned long used = child_length(tn);
918 	unsigned long threshold = used;
919 
920 	/* Keep root node larger */
921 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
922 	used -= tn_info(tn)->empty_children;
923 
924 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
925 
926 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
927 }
928 
929 static inline bool should_collapse(struct key_vector *tn)
930 {
931 	unsigned long used = child_length(tn);
932 
933 	used -= tn_info(tn)->empty_children;
934 
935 	/* account for bits == KEYLENGTH case */
936 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
937 		used -= KEY_MAX;
938 
939 	/* One child or none, time to drop us from the trie */
940 	return used < 2;
941 }
942 
943 #define MAX_WORK 10
944 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
945 {
946 #ifdef CONFIG_IP_FIB_TRIE_STATS
947 	struct trie_use_stats __percpu *stats = t->stats;
948 #endif
949 	struct key_vector *tp = node_parent(tn);
950 	unsigned long cindex = get_index(tn->key, tp);
951 	int max_work = MAX_WORK;
952 
953 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
954 		 tn, inflate_threshold, halve_threshold);
955 
956 	/* track the tnode via the pointer from the parent instead of
957 	 * doing it ourselves.  This way we can let RCU fully do its
958 	 * thing without us interfering
959 	 */
960 	BUG_ON(tn != get_child(tp, cindex));
961 
962 	/* Double as long as the resulting node has a number of
963 	 * nonempty nodes that are above the threshold.
964 	 */
965 	while (should_inflate(tp, tn) && max_work) {
966 		tp = inflate(t, tn);
967 		if (!tp) {
968 #ifdef CONFIG_IP_FIB_TRIE_STATS
969 			this_cpu_inc(stats->resize_node_skipped);
970 #endif
971 			break;
972 		}
973 
974 		max_work--;
975 		tn = get_child(tp, cindex);
976 	}
977 
978 	/* update parent in case inflate failed */
979 	tp = node_parent(tn);
980 
981 	/* Return if at least one inflate is run */
982 	if (max_work != MAX_WORK)
983 		return tp;
984 
985 	/* Halve as long as the number of empty children in this
986 	 * node is above threshold.
987 	 */
988 	while (should_halve(tp, tn) && max_work) {
989 		tp = halve(t, tn);
990 		if (!tp) {
991 #ifdef CONFIG_IP_FIB_TRIE_STATS
992 			this_cpu_inc(stats->resize_node_skipped);
993 #endif
994 			break;
995 		}
996 
997 		max_work--;
998 		tn = get_child(tp, cindex);
999 	}
1000 
1001 	/* Only one child remains */
1002 	if (should_collapse(tn))
1003 		return collapse(t, tn);
1004 
1005 	/* update parent in case halve failed */
1006 	return node_parent(tn);
1007 }
1008 
1009 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1010 {
1011 	unsigned char node_slen = tn->slen;
1012 
1013 	while ((node_slen > tn->pos) && (node_slen > slen)) {
1014 		slen = update_suffix(tn);
1015 		if (node_slen == slen)
1016 			break;
1017 
1018 		tn = node_parent(tn);
1019 		node_slen = tn->slen;
1020 	}
1021 }
1022 
1023 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1024 {
1025 	while (tn->slen < slen) {
1026 		tn->slen = slen;
1027 		tn = node_parent(tn);
1028 	}
1029 }
1030 
1031 /* rcu_read_lock needs to be hold by caller from readside */
1032 static struct key_vector *fib_find_node(struct trie *t,
1033 					struct key_vector **tp, u32 key)
1034 {
1035 	struct key_vector *pn, *n = t->kv;
1036 	unsigned long index = 0;
1037 
1038 	do {
1039 		pn = n;
1040 		n = get_child_rcu(n, index);
1041 
1042 		if (!n)
1043 			break;
1044 
1045 		index = get_cindex(key, n);
1046 
1047 		/* This bit of code is a bit tricky but it combines multiple
1048 		 * checks into a single check.  The prefix consists of the
1049 		 * prefix plus zeros for the bits in the cindex. The index
1050 		 * is the difference between the key and this value.  From
1051 		 * this we can actually derive several pieces of data.
1052 		 *   if (index >= (1ul << bits))
1053 		 *     we have a mismatch in skip bits and failed
1054 		 *   else
1055 		 *     we know the value is cindex
1056 		 *
1057 		 * This check is safe even if bits == KEYLENGTH due to the
1058 		 * fact that we can only allocate a node with 32 bits if a
1059 		 * long is greater than 32 bits.
1060 		 */
1061 		if (index >= (1ul << n->bits)) {
1062 			n = NULL;
1063 			break;
1064 		}
1065 
1066 		/* keep searching until we find a perfect match leaf or NULL */
1067 	} while (IS_TNODE(n));
1068 
1069 	*tp = pn;
1070 
1071 	return n;
1072 }
1073 
1074 /* Return the first fib alias matching TOS with
1075  * priority less than or equal to PRIO.
1076  */
1077 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1078 					u8 tos, u32 prio, u32 tb_id)
1079 {
1080 	struct fib_alias *fa;
1081 
1082 	if (!fah)
1083 		return NULL;
1084 
1085 	hlist_for_each_entry(fa, fah, fa_list) {
1086 		if (fa->fa_slen < slen)
1087 			continue;
1088 		if (fa->fa_slen != slen)
1089 			break;
1090 		if (fa->tb_id > tb_id)
1091 			continue;
1092 		if (fa->tb_id != tb_id)
1093 			break;
1094 		if (fa->fa_tos > tos)
1095 			continue;
1096 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1097 			return fa;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104 {
1105 	while (!IS_TRIE(tn))
1106 		tn = resize(t, tn);
1107 }
1108 
1109 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110 			   struct fib_alias *new, t_key key)
1111 {
1112 	struct key_vector *n, *l;
1113 
1114 	l = leaf_new(key, new);
1115 	if (!l)
1116 		goto noleaf;
1117 
1118 	/* retrieve child from parent node */
1119 	n = get_child(tp, get_index(key, tp));
1120 
1121 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122 	 *
1123 	 *  Add a new tnode here
1124 	 *  first tnode need some special handling
1125 	 *  leaves us in position for handling as case 3
1126 	 */
1127 	if (n) {
1128 		struct key_vector *tn;
1129 
1130 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1131 		if (!tn)
1132 			goto notnode;
1133 
1134 		/* initialize routes out of node */
1135 		NODE_INIT_PARENT(tn, tp);
1136 		put_child(tn, get_index(key, tn) ^ 1, n);
1137 
1138 		/* start adding routes into the node */
1139 		put_child_root(tp, key, tn);
1140 		node_set_parent(n, tn);
1141 
1142 		/* parent now has a NULL spot where the leaf can go */
1143 		tp = tn;
1144 	}
1145 
1146 	/* Case 3: n is NULL, and will just insert a new leaf */
1147 	node_push_suffix(tp, new->fa_slen);
1148 	NODE_INIT_PARENT(l, tp);
1149 	put_child_root(tp, key, l);
1150 	trie_rebalance(t, tp);
1151 
1152 	return 0;
1153 notnode:
1154 	node_free(l);
1155 noleaf:
1156 	return -ENOMEM;
1157 }
1158 
1159 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160 			    struct key_vector *l, struct fib_alias *new,
1161 			    struct fib_alias *fa, t_key key)
1162 {
1163 	if (!l)
1164 		return fib_insert_node(t, tp, new, key);
1165 
1166 	if (fa) {
1167 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168 	} else {
1169 		struct fib_alias *last;
1170 
1171 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1172 			if (new->fa_slen < last->fa_slen)
1173 				break;
1174 			if ((new->fa_slen == last->fa_slen) &&
1175 			    (new->tb_id > last->tb_id))
1176 				break;
1177 			fa = last;
1178 		}
1179 
1180 		if (fa)
1181 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1182 		else
1183 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184 	}
1185 
1186 	/* if we added to the tail node then we need to update slen */
1187 	if (l->slen < new->fa_slen) {
1188 		l->slen = new->fa_slen;
1189 		node_push_suffix(tp, new->fa_slen);
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /* Caller must hold RTNL. */
1196 int fib_table_insert(struct net *net, struct fib_table *tb,
1197 		     struct fib_config *cfg)
1198 {
1199 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1200 	struct trie *t = (struct trie *)tb->tb_data;
1201 	struct fib_alias *fa, *new_fa;
1202 	struct key_vector *l, *tp;
1203 	u16 nlflags = NLM_F_EXCL;
1204 	struct fib_info *fi;
1205 	u8 plen = cfg->fc_dst_len;
1206 	u8 slen = KEYLENGTH - plen;
1207 	u8 tos = cfg->fc_tos;
1208 	u32 key;
1209 	int err;
1210 
1211 	if (plen > KEYLENGTH)
1212 		return -EINVAL;
1213 
1214 	key = ntohl(cfg->fc_dst);
1215 
1216 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1217 
1218 	if ((plen < KEYLENGTH) && (key << plen))
1219 		return -EINVAL;
1220 
1221 	fi = fib_create_info(cfg);
1222 	if (IS_ERR(fi)) {
1223 		err = PTR_ERR(fi);
1224 		goto err;
1225 	}
1226 
1227 	l = fib_find_node(t, &tp, key);
1228 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1229 				tb->tb_id) : NULL;
1230 
1231 	/* Now fa, if non-NULL, points to the first fib alias
1232 	 * with the same keys [prefix,tos,priority], if such key already
1233 	 * exists or to the node before which we will insert new one.
1234 	 *
1235 	 * If fa is NULL, we will need to allocate a new one and
1236 	 * insert to the tail of the section matching the suffix length
1237 	 * of the new alias.
1238 	 */
1239 
1240 	if (fa && fa->fa_tos == tos &&
1241 	    fa->fa_info->fib_priority == fi->fib_priority) {
1242 		struct fib_alias *fa_first, *fa_match;
1243 
1244 		err = -EEXIST;
1245 		if (cfg->fc_nlflags & NLM_F_EXCL)
1246 			goto out;
1247 
1248 		nlflags &= ~NLM_F_EXCL;
1249 
1250 		/* We have 2 goals:
1251 		 * 1. Find exact match for type, scope, fib_info to avoid
1252 		 * duplicate routes
1253 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1254 		 */
1255 		fa_match = NULL;
1256 		fa_first = fa;
1257 		hlist_for_each_entry_from(fa, fa_list) {
1258 			if ((fa->fa_slen != slen) ||
1259 			    (fa->tb_id != tb->tb_id) ||
1260 			    (fa->fa_tos != tos))
1261 				break;
1262 			if (fa->fa_info->fib_priority != fi->fib_priority)
1263 				break;
1264 			if (fa->fa_type == cfg->fc_type &&
1265 			    fa->fa_info == fi) {
1266 				fa_match = fa;
1267 				break;
1268 			}
1269 		}
1270 
1271 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1272 			struct fib_info *fi_drop;
1273 			u8 state;
1274 
1275 			nlflags |= NLM_F_REPLACE;
1276 			fa = fa_first;
1277 			if (fa_match) {
1278 				if (fa == fa_match)
1279 					err = 0;
1280 				goto out;
1281 			}
1282 			err = -ENOBUFS;
1283 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1284 			if (!new_fa)
1285 				goto out;
1286 
1287 			fi_drop = fa->fa_info;
1288 			new_fa->fa_tos = fa->fa_tos;
1289 			new_fa->fa_info = fi;
1290 			new_fa->fa_type = cfg->fc_type;
1291 			state = fa->fa_state;
1292 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1293 			new_fa->fa_slen = fa->fa_slen;
1294 			new_fa->tb_id = tb->tb_id;
1295 			new_fa->fa_default = -1;
1296 
1297 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1298 						 key, plen, fi,
1299 						 new_fa->fa_tos, cfg->fc_type,
1300 						 tb->tb_id);
1301 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1302 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1303 
1304 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1305 
1306 			alias_free_mem_rcu(fa);
1307 
1308 			fib_release_info(fi_drop);
1309 			if (state & FA_S_ACCESSED)
1310 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1311 
1312 			goto succeeded;
1313 		}
1314 		/* Error if we find a perfect match which
1315 		 * uses the same scope, type, and nexthop
1316 		 * information.
1317 		 */
1318 		if (fa_match)
1319 			goto out;
1320 
1321 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1322 			event = FIB_EVENT_ENTRY_APPEND;
1323 			nlflags |= NLM_F_APPEND;
1324 		} else {
1325 			fa = fa_first;
1326 		}
1327 	}
1328 	err = -ENOENT;
1329 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1330 		goto out;
1331 
1332 	nlflags |= NLM_F_CREATE;
1333 	err = -ENOBUFS;
1334 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1335 	if (!new_fa)
1336 		goto out;
1337 
1338 	new_fa->fa_info = fi;
1339 	new_fa->fa_tos = tos;
1340 	new_fa->fa_type = cfg->fc_type;
1341 	new_fa->fa_state = 0;
1342 	new_fa->fa_slen = slen;
1343 	new_fa->tb_id = tb->tb_id;
1344 	new_fa->fa_default = -1;
1345 
1346 	/* Insert new entry to the list. */
1347 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1348 	if (err)
1349 		goto out_free_new_fa;
1350 
1351 	if (!plen)
1352 		tb->tb_num_default++;
1353 
1354 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1355 	call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1356 				 tb->tb_id);
1357 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1358 		  &cfg->fc_nlinfo, nlflags);
1359 succeeded:
1360 	return 0;
1361 
1362 out_free_new_fa:
1363 	kmem_cache_free(fn_alias_kmem, new_fa);
1364 out:
1365 	fib_release_info(fi);
1366 err:
1367 	return err;
1368 }
1369 
1370 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1371 {
1372 	t_key prefix = n->key;
1373 
1374 	return (key ^ prefix) & (prefix | -prefix);
1375 }
1376 
1377 /* should be called with rcu_read_lock */
1378 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1379 		     struct fib_result *res, int fib_flags)
1380 {
1381 	struct trie *t = (struct trie *) tb->tb_data;
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 	struct trie_use_stats __percpu *stats = t->stats;
1384 #endif
1385 	const t_key key = ntohl(flp->daddr);
1386 	struct key_vector *n, *pn;
1387 	struct fib_alias *fa;
1388 	unsigned long index;
1389 	t_key cindex;
1390 
1391 	trace_fib_table_lookup(tb->tb_id, flp);
1392 
1393 	pn = t->kv;
1394 	cindex = 0;
1395 
1396 	n = get_child_rcu(pn, cindex);
1397 	if (!n)
1398 		return -EAGAIN;
1399 
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 	this_cpu_inc(stats->gets);
1402 #endif
1403 
1404 	/* Step 1: Travel to the longest prefix match in the trie */
1405 	for (;;) {
1406 		index = get_cindex(key, n);
1407 
1408 		/* This bit of code is a bit tricky but it combines multiple
1409 		 * checks into a single check.  The prefix consists of the
1410 		 * prefix plus zeros for the "bits" in the prefix. The index
1411 		 * is the difference between the key and this value.  From
1412 		 * this we can actually derive several pieces of data.
1413 		 *   if (index >= (1ul << bits))
1414 		 *     we have a mismatch in skip bits and failed
1415 		 *   else
1416 		 *     we know the value is cindex
1417 		 *
1418 		 * This check is safe even if bits == KEYLENGTH due to the
1419 		 * fact that we can only allocate a node with 32 bits if a
1420 		 * long is greater than 32 bits.
1421 		 */
1422 		if (index >= (1ul << n->bits))
1423 			break;
1424 
1425 		/* we have found a leaf. Prefixes have already been compared */
1426 		if (IS_LEAF(n))
1427 			goto found;
1428 
1429 		/* only record pn and cindex if we are going to be chopping
1430 		 * bits later.  Otherwise we are just wasting cycles.
1431 		 */
1432 		if (n->slen > n->pos) {
1433 			pn = n;
1434 			cindex = index;
1435 		}
1436 
1437 		n = get_child_rcu(n, index);
1438 		if (unlikely(!n))
1439 			goto backtrace;
1440 	}
1441 
1442 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1443 	for (;;) {
1444 		/* record the pointer where our next node pointer is stored */
1445 		struct key_vector __rcu **cptr = n->tnode;
1446 
1447 		/* This test verifies that none of the bits that differ
1448 		 * between the key and the prefix exist in the region of
1449 		 * the lsb and higher in the prefix.
1450 		 */
1451 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1452 			goto backtrace;
1453 
1454 		/* exit out and process leaf */
1455 		if (unlikely(IS_LEAF(n)))
1456 			break;
1457 
1458 		/* Don't bother recording parent info.  Since we are in
1459 		 * prefix match mode we will have to come back to wherever
1460 		 * we started this traversal anyway
1461 		 */
1462 
1463 		while ((n = rcu_dereference(*cptr)) == NULL) {
1464 backtrace:
1465 #ifdef CONFIG_IP_FIB_TRIE_STATS
1466 			if (!n)
1467 				this_cpu_inc(stats->null_node_hit);
1468 #endif
1469 			/* If we are at cindex 0 there are no more bits for
1470 			 * us to strip at this level so we must ascend back
1471 			 * up one level to see if there are any more bits to
1472 			 * be stripped there.
1473 			 */
1474 			while (!cindex) {
1475 				t_key pkey = pn->key;
1476 
1477 				/* If we don't have a parent then there is
1478 				 * nothing for us to do as we do not have any
1479 				 * further nodes to parse.
1480 				 */
1481 				if (IS_TRIE(pn))
1482 					return -EAGAIN;
1483 #ifdef CONFIG_IP_FIB_TRIE_STATS
1484 				this_cpu_inc(stats->backtrack);
1485 #endif
1486 				/* Get Child's index */
1487 				pn = node_parent_rcu(pn);
1488 				cindex = get_index(pkey, pn);
1489 			}
1490 
1491 			/* strip the least significant bit from the cindex */
1492 			cindex &= cindex - 1;
1493 
1494 			/* grab pointer for next child node */
1495 			cptr = &pn->tnode[cindex];
1496 		}
1497 	}
1498 
1499 found:
1500 	/* this line carries forward the xor from earlier in the function */
1501 	index = key ^ n->key;
1502 
1503 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1504 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1505 		struct fib_info *fi = fa->fa_info;
1506 		int nhsel, err;
1507 
1508 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1509 			if (index >= (1ul << fa->fa_slen))
1510 				continue;
1511 		}
1512 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1513 			continue;
1514 		if (fi->fib_dead)
1515 			continue;
1516 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1517 			continue;
1518 		fib_alias_accessed(fa);
1519 		err = fib_props[fa->fa_type].error;
1520 		if (unlikely(err < 0)) {
1521 #ifdef CONFIG_IP_FIB_TRIE_STATS
1522 			this_cpu_inc(stats->semantic_match_passed);
1523 #endif
1524 			return err;
1525 		}
1526 		if (fi->fib_flags & RTNH_F_DEAD)
1527 			continue;
1528 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1529 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1530 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1531 
1532 			if (nh->nh_flags & RTNH_F_DEAD)
1533 				continue;
1534 			if (in_dev &&
1535 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1536 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1537 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1538 				continue;
1539 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1540 				if (flp->flowi4_oif &&
1541 				    flp->flowi4_oif != nh->nh_oif)
1542 					continue;
1543 			}
1544 
1545 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1546 				atomic_inc(&fi->fib_clntref);
1547 
1548 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1549 			res->nh_sel = nhsel;
1550 			res->type = fa->fa_type;
1551 			res->scope = fi->fib_scope;
1552 			res->fi = fi;
1553 			res->table = tb;
1554 			res->fa_head = &n->leaf;
1555 #ifdef CONFIG_IP_FIB_TRIE_STATS
1556 			this_cpu_inc(stats->semantic_match_passed);
1557 #endif
1558 			trace_fib_table_lookup_nh(nh);
1559 
1560 			return err;
1561 		}
1562 	}
1563 #ifdef CONFIG_IP_FIB_TRIE_STATS
1564 	this_cpu_inc(stats->semantic_match_miss);
1565 #endif
1566 	goto backtrace;
1567 }
1568 EXPORT_SYMBOL_GPL(fib_table_lookup);
1569 
1570 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1571 			     struct key_vector *l, struct fib_alias *old)
1572 {
1573 	/* record the location of the previous list_info entry */
1574 	struct hlist_node **pprev = old->fa_list.pprev;
1575 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1576 
1577 	/* remove the fib_alias from the list */
1578 	hlist_del_rcu(&old->fa_list);
1579 
1580 	/* if we emptied the list this leaf will be freed and we can sort
1581 	 * out parent suffix lengths as a part of trie_rebalance
1582 	 */
1583 	if (hlist_empty(&l->leaf)) {
1584 		if (tp->slen == l->slen)
1585 			node_pull_suffix(tp, tp->pos);
1586 		put_child_root(tp, l->key, NULL);
1587 		node_free(l);
1588 		trie_rebalance(t, tp);
1589 		return;
1590 	}
1591 
1592 	/* only access fa if it is pointing at the last valid hlist_node */
1593 	if (*pprev)
1594 		return;
1595 
1596 	/* update the trie with the latest suffix length */
1597 	l->slen = fa->fa_slen;
1598 	node_pull_suffix(tp, fa->fa_slen);
1599 }
1600 
1601 /* Caller must hold RTNL. */
1602 int fib_table_delete(struct net *net, struct fib_table *tb,
1603 		     struct fib_config *cfg)
1604 {
1605 	struct trie *t = (struct trie *) tb->tb_data;
1606 	struct fib_alias *fa, *fa_to_delete;
1607 	struct key_vector *l, *tp;
1608 	u8 plen = cfg->fc_dst_len;
1609 	u8 slen = KEYLENGTH - plen;
1610 	u8 tos = cfg->fc_tos;
1611 	u32 key;
1612 
1613 	if (plen > KEYLENGTH)
1614 		return -EINVAL;
1615 
1616 	key = ntohl(cfg->fc_dst);
1617 
1618 	if ((plen < KEYLENGTH) && (key << plen))
1619 		return -EINVAL;
1620 
1621 	l = fib_find_node(t, &tp, key);
1622 	if (!l)
1623 		return -ESRCH;
1624 
1625 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1626 	if (!fa)
1627 		return -ESRCH;
1628 
1629 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1630 
1631 	fa_to_delete = NULL;
1632 	hlist_for_each_entry_from(fa, fa_list) {
1633 		struct fib_info *fi = fa->fa_info;
1634 
1635 		if ((fa->fa_slen != slen) ||
1636 		    (fa->tb_id != tb->tb_id) ||
1637 		    (fa->fa_tos != tos))
1638 			break;
1639 
1640 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1641 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1643 		    (!cfg->fc_prefsrc ||
1644 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1645 		    (!cfg->fc_protocol ||
1646 		     fi->fib_protocol == cfg->fc_protocol) &&
1647 		    fib_nh_match(cfg, fi) == 0) {
1648 			fa_to_delete = fa;
1649 			break;
1650 		}
1651 	}
1652 
1653 	if (!fa_to_delete)
1654 		return -ESRCH;
1655 
1656 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1657 				 fa_to_delete->fa_info, tos,
1658 				 fa_to_delete->fa_type, tb->tb_id);
1659 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1660 		  &cfg->fc_nlinfo, 0);
1661 
1662 	if (!plen)
1663 		tb->tb_num_default--;
1664 
1665 	fib_remove_alias(t, tp, l, fa_to_delete);
1666 
1667 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1668 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1669 
1670 	fib_release_info(fa_to_delete->fa_info);
1671 	alias_free_mem_rcu(fa_to_delete);
1672 	return 0;
1673 }
1674 
1675 /* Scan for the next leaf starting at the provided key value */
1676 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1677 {
1678 	struct key_vector *pn, *n = *tn;
1679 	unsigned long cindex;
1680 
1681 	/* this loop is meant to try and find the key in the trie */
1682 	do {
1683 		/* record parent and next child index */
1684 		pn = n;
1685 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1686 
1687 		if (cindex >> pn->bits)
1688 			break;
1689 
1690 		/* descend into the next child */
1691 		n = get_child_rcu(pn, cindex++);
1692 		if (!n)
1693 			break;
1694 
1695 		/* guarantee forward progress on the keys */
1696 		if (IS_LEAF(n) && (n->key >= key))
1697 			goto found;
1698 	} while (IS_TNODE(n));
1699 
1700 	/* this loop will search for the next leaf with a greater key */
1701 	while (!IS_TRIE(pn)) {
1702 		/* if we exhausted the parent node we will need to climb */
1703 		if (cindex >= (1ul << pn->bits)) {
1704 			t_key pkey = pn->key;
1705 
1706 			pn = node_parent_rcu(pn);
1707 			cindex = get_index(pkey, pn) + 1;
1708 			continue;
1709 		}
1710 
1711 		/* grab the next available node */
1712 		n = get_child_rcu(pn, cindex++);
1713 		if (!n)
1714 			continue;
1715 
1716 		/* no need to compare keys since we bumped the index */
1717 		if (IS_LEAF(n))
1718 			goto found;
1719 
1720 		/* Rescan start scanning in new node */
1721 		pn = n;
1722 		cindex = 0;
1723 	}
1724 
1725 	*tn = pn;
1726 	return NULL; /* Root of trie */
1727 found:
1728 	/* if we are at the limit for keys just return NULL for the tnode */
1729 	*tn = pn;
1730 	return n;
1731 }
1732 
1733 static void fib_trie_free(struct fib_table *tb)
1734 {
1735 	struct trie *t = (struct trie *)tb->tb_data;
1736 	struct key_vector *pn = t->kv;
1737 	unsigned long cindex = 1;
1738 	struct hlist_node *tmp;
1739 	struct fib_alias *fa;
1740 
1741 	/* walk trie in reverse order and free everything */
1742 	for (;;) {
1743 		struct key_vector *n;
1744 
1745 		if (!(cindex--)) {
1746 			t_key pkey = pn->key;
1747 
1748 			if (IS_TRIE(pn))
1749 				break;
1750 
1751 			n = pn;
1752 			pn = node_parent(pn);
1753 
1754 			/* drop emptied tnode */
1755 			put_child_root(pn, n->key, NULL);
1756 			node_free(n);
1757 
1758 			cindex = get_index(pkey, pn);
1759 
1760 			continue;
1761 		}
1762 
1763 		/* grab the next available node */
1764 		n = get_child(pn, cindex);
1765 		if (!n)
1766 			continue;
1767 
1768 		if (IS_TNODE(n)) {
1769 			/* record pn and cindex for leaf walking */
1770 			pn = n;
1771 			cindex = 1ul << n->bits;
1772 
1773 			continue;
1774 		}
1775 
1776 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1777 			hlist_del_rcu(&fa->fa_list);
1778 			alias_free_mem_rcu(fa);
1779 		}
1780 
1781 		put_child_root(pn, n->key, NULL);
1782 		node_free(n);
1783 	}
1784 
1785 #ifdef CONFIG_IP_FIB_TRIE_STATS
1786 	free_percpu(t->stats);
1787 #endif
1788 	kfree(tb);
1789 }
1790 
1791 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1792 {
1793 	struct trie *ot = (struct trie *)oldtb->tb_data;
1794 	struct key_vector *l, *tp = ot->kv;
1795 	struct fib_table *local_tb;
1796 	struct fib_alias *fa;
1797 	struct trie *lt;
1798 	t_key key = 0;
1799 
1800 	if (oldtb->tb_data == oldtb->__data)
1801 		return oldtb;
1802 
1803 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1804 	if (!local_tb)
1805 		return NULL;
1806 
1807 	lt = (struct trie *)local_tb->tb_data;
1808 
1809 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1810 		struct key_vector *local_l = NULL, *local_tp;
1811 
1812 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1813 			struct fib_alias *new_fa;
1814 
1815 			if (local_tb->tb_id != fa->tb_id)
1816 				continue;
1817 
1818 			/* clone fa for new local table */
1819 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1820 			if (!new_fa)
1821 				goto out;
1822 
1823 			memcpy(new_fa, fa, sizeof(*fa));
1824 
1825 			/* insert clone into table */
1826 			if (!local_l)
1827 				local_l = fib_find_node(lt, &local_tp, l->key);
1828 
1829 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1830 					     NULL, l->key)) {
1831 				kmem_cache_free(fn_alias_kmem, new_fa);
1832 				goto out;
1833 			}
1834 		}
1835 
1836 		/* stop loop if key wrapped back to 0 */
1837 		key = l->key + 1;
1838 		if (key < l->key)
1839 			break;
1840 	}
1841 
1842 	return local_tb;
1843 out:
1844 	fib_trie_free(local_tb);
1845 
1846 	return NULL;
1847 }
1848 
1849 /* Caller must hold RTNL */
1850 void fib_table_flush_external(struct fib_table *tb)
1851 {
1852 	struct trie *t = (struct trie *)tb->tb_data;
1853 	struct key_vector *pn = t->kv;
1854 	unsigned long cindex = 1;
1855 	struct hlist_node *tmp;
1856 	struct fib_alias *fa;
1857 
1858 	/* walk trie in reverse order */
1859 	for (;;) {
1860 		unsigned char slen = 0;
1861 		struct key_vector *n;
1862 
1863 		if (!(cindex--)) {
1864 			t_key pkey = pn->key;
1865 
1866 			/* cannot resize the trie vector */
1867 			if (IS_TRIE(pn))
1868 				break;
1869 
1870 			/* update the suffix to address pulled leaves */
1871 			if (pn->slen > pn->pos)
1872 				update_suffix(pn);
1873 
1874 			/* resize completed node */
1875 			pn = resize(t, pn);
1876 			cindex = get_index(pkey, pn);
1877 
1878 			continue;
1879 		}
1880 
1881 		/* grab the next available node */
1882 		n = get_child(pn, cindex);
1883 		if (!n)
1884 			continue;
1885 
1886 		if (IS_TNODE(n)) {
1887 			/* record pn and cindex for leaf walking */
1888 			pn = n;
1889 			cindex = 1ul << n->bits;
1890 
1891 			continue;
1892 		}
1893 
1894 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1895 			/* if alias was cloned to local then we just
1896 			 * need to remove the local copy from main
1897 			 */
1898 			if (tb->tb_id != fa->tb_id) {
1899 				hlist_del_rcu(&fa->fa_list);
1900 				alias_free_mem_rcu(fa);
1901 				continue;
1902 			}
1903 
1904 			/* record local slen */
1905 			slen = fa->fa_slen;
1906 		}
1907 
1908 		/* update leaf slen */
1909 		n->slen = slen;
1910 
1911 		if (hlist_empty(&n->leaf)) {
1912 			put_child_root(pn, n->key, NULL);
1913 			node_free(n);
1914 		}
1915 	}
1916 }
1917 
1918 /* Caller must hold RTNL. */
1919 int fib_table_flush(struct net *net, struct fib_table *tb)
1920 {
1921 	struct trie *t = (struct trie *)tb->tb_data;
1922 	struct key_vector *pn = t->kv;
1923 	unsigned long cindex = 1;
1924 	struct hlist_node *tmp;
1925 	struct fib_alias *fa;
1926 	int found = 0;
1927 
1928 	/* walk trie in reverse order */
1929 	for (;;) {
1930 		unsigned char slen = 0;
1931 		struct key_vector *n;
1932 
1933 		if (!(cindex--)) {
1934 			t_key pkey = pn->key;
1935 
1936 			/* cannot resize the trie vector */
1937 			if (IS_TRIE(pn))
1938 				break;
1939 
1940 			/* update the suffix to address pulled leaves */
1941 			if (pn->slen > pn->pos)
1942 				update_suffix(pn);
1943 
1944 			/* resize completed node */
1945 			pn = resize(t, pn);
1946 			cindex = get_index(pkey, pn);
1947 
1948 			continue;
1949 		}
1950 
1951 		/* grab the next available node */
1952 		n = get_child(pn, cindex);
1953 		if (!n)
1954 			continue;
1955 
1956 		if (IS_TNODE(n)) {
1957 			/* record pn and cindex for leaf walking */
1958 			pn = n;
1959 			cindex = 1ul << n->bits;
1960 
1961 			continue;
1962 		}
1963 
1964 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1965 			struct fib_info *fi = fa->fa_info;
1966 
1967 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1968 			    tb->tb_id != fa->tb_id) {
1969 				slen = fa->fa_slen;
1970 				continue;
1971 			}
1972 
1973 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1974 						 n->key,
1975 						 KEYLENGTH - fa->fa_slen,
1976 						 fi, fa->fa_tos, fa->fa_type,
1977 						 tb->tb_id);
1978 			hlist_del_rcu(&fa->fa_list);
1979 			fib_release_info(fa->fa_info);
1980 			alias_free_mem_rcu(fa);
1981 			found++;
1982 		}
1983 
1984 		/* update leaf slen */
1985 		n->slen = slen;
1986 
1987 		if (hlist_empty(&n->leaf)) {
1988 			put_child_root(pn, n->key, NULL);
1989 			node_free(n);
1990 		}
1991 	}
1992 
1993 	pr_debug("trie_flush found=%d\n", found);
1994 	return found;
1995 }
1996 
1997 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1998 			    struct fib_table *tb, struct notifier_block *nb,
1999 			    enum fib_event_type event_type)
2000 {
2001 	struct fib_alias *fa;
2002 
2003 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2004 		struct fib_info *fi = fa->fa_info;
2005 
2006 		if (!fi)
2007 			continue;
2008 
2009 		/* local and main table can share the same trie,
2010 		 * so don't notify twice for the same entry.
2011 		 */
2012 		if (tb->tb_id != fa->tb_id)
2013 			continue;
2014 
2015 		call_fib_entry_notifier(nb, net, event_type, l->key,
2016 					KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2017 					fa->fa_type, fa->tb_id);
2018 	}
2019 }
2020 
2021 static void fib_table_notify(struct net *net, struct fib_table *tb,
2022 			     struct notifier_block *nb,
2023 			     enum fib_event_type event_type)
2024 {
2025 	struct trie *t = (struct trie *)tb->tb_data;
2026 	struct key_vector *l, *tp = t->kv;
2027 	t_key key = 0;
2028 
2029 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2030 		fib_leaf_notify(net, l, tb, nb, event_type);
2031 
2032 		key = l->key + 1;
2033 		/* stop in case of wrap around */
2034 		if (key < l->key)
2035 			break;
2036 	}
2037 }
2038 
2039 static void fib_notify(struct net *net, struct notifier_block *nb,
2040 		       enum fib_event_type event_type)
2041 {
2042 	unsigned int h;
2043 
2044 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2045 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2046 		struct fib_table *tb;
2047 
2048 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2049 			fib_table_notify(net, tb, nb, event_type);
2050 	}
2051 }
2052 
2053 static void __trie_free_rcu(struct rcu_head *head)
2054 {
2055 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2056 #ifdef CONFIG_IP_FIB_TRIE_STATS
2057 	struct trie *t = (struct trie *)tb->tb_data;
2058 
2059 	if (tb->tb_data == tb->__data)
2060 		free_percpu(t->stats);
2061 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2062 	kfree(tb);
2063 }
2064 
2065 void fib_free_table(struct fib_table *tb)
2066 {
2067 	call_rcu(&tb->rcu, __trie_free_rcu);
2068 }
2069 
2070 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2071 			     struct sk_buff *skb, struct netlink_callback *cb)
2072 {
2073 	__be32 xkey = htonl(l->key);
2074 	struct fib_alias *fa;
2075 	int i, s_i;
2076 
2077 	s_i = cb->args[4];
2078 	i = 0;
2079 
2080 	/* rcu_read_lock is hold by caller */
2081 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2082 		if (i < s_i) {
2083 			i++;
2084 			continue;
2085 		}
2086 
2087 		if (tb->tb_id != fa->tb_id) {
2088 			i++;
2089 			continue;
2090 		}
2091 
2092 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2093 				  cb->nlh->nlmsg_seq,
2094 				  RTM_NEWROUTE,
2095 				  tb->tb_id,
2096 				  fa->fa_type,
2097 				  xkey,
2098 				  KEYLENGTH - fa->fa_slen,
2099 				  fa->fa_tos,
2100 				  fa->fa_info, NLM_F_MULTI) < 0) {
2101 			cb->args[4] = i;
2102 			return -1;
2103 		}
2104 		i++;
2105 	}
2106 
2107 	cb->args[4] = i;
2108 	return skb->len;
2109 }
2110 
2111 /* rcu_read_lock needs to be hold by caller from readside */
2112 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2113 		   struct netlink_callback *cb)
2114 {
2115 	struct trie *t = (struct trie *)tb->tb_data;
2116 	struct key_vector *l, *tp = t->kv;
2117 	/* Dump starting at last key.
2118 	 * Note: 0.0.0.0/0 (ie default) is first key.
2119 	 */
2120 	int count = cb->args[2];
2121 	t_key key = cb->args[3];
2122 
2123 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2124 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2125 			cb->args[3] = key;
2126 			cb->args[2] = count;
2127 			return -1;
2128 		}
2129 
2130 		++count;
2131 		key = l->key + 1;
2132 
2133 		memset(&cb->args[4], 0,
2134 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2135 
2136 		/* stop loop if key wrapped back to 0 */
2137 		if (key < l->key)
2138 			break;
2139 	}
2140 
2141 	cb->args[3] = key;
2142 	cb->args[2] = count;
2143 
2144 	return skb->len;
2145 }
2146 
2147 void __init fib_trie_init(void)
2148 {
2149 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2150 					  sizeof(struct fib_alias),
2151 					  0, SLAB_PANIC, NULL);
2152 
2153 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2154 					   LEAF_SIZE,
2155 					   0, SLAB_PANIC, NULL);
2156 }
2157 
2158 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2159 {
2160 	struct fib_table *tb;
2161 	struct trie *t;
2162 	size_t sz = sizeof(*tb);
2163 
2164 	if (!alias)
2165 		sz += sizeof(struct trie);
2166 
2167 	tb = kzalloc(sz, GFP_KERNEL);
2168 	if (!tb)
2169 		return NULL;
2170 
2171 	tb->tb_id = id;
2172 	tb->tb_num_default = 0;
2173 	tb->tb_data = (alias ? alias->__data : tb->__data);
2174 
2175 	if (alias)
2176 		return tb;
2177 
2178 	t = (struct trie *) tb->tb_data;
2179 	t->kv[0].pos = KEYLENGTH;
2180 	t->kv[0].slen = KEYLENGTH;
2181 #ifdef CONFIG_IP_FIB_TRIE_STATS
2182 	t->stats = alloc_percpu(struct trie_use_stats);
2183 	if (!t->stats) {
2184 		kfree(tb);
2185 		tb = NULL;
2186 	}
2187 #endif
2188 
2189 	return tb;
2190 }
2191 
2192 #ifdef CONFIG_PROC_FS
2193 /* Depth first Trie walk iterator */
2194 struct fib_trie_iter {
2195 	struct seq_net_private p;
2196 	struct fib_table *tb;
2197 	struct key_vector *tnode;
2198 	unsigned int index;
2199 	unsigned int depth;
2200 };
2201 
2202 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2203 {
2204 	unsigned long cindex = iter->index;
2205 	struct key_vector *pn = iter->tnode;
2206 	t_key pkey;
2207 
2208 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2209 		 iter->tnode, iter->index, iter->depth);
2210 
2211 	while (!IS_TRIE(pn)) {
2212 		while (cindex < child_length(pn)) {
2213 			struct key_vector *n = get_child_rcu(pn, cindex++);
2214 
2215 			if (!n)
2216 				continue;
2217 
2218 			if (IS_LEAF(n)) {
2219 				iter->tnode = pn;
2220 				iter->index = cindex;
2221 			} else {
2222 				/* push down one level */
2223 				iter->tnode = n;
2224 				iter->index = 0;
2225 				++iter->depth;
2226 			}
2227 
2228 			return n;
2229 		}
2230 
2231 		/* Current node exhausted, pop back up */
2232 		pkey = pn->key;
2233 		pn = node_parent_rcu(pn);
2234 		cindex = get_index(pkey, pn) + 1;
2235 		--iter->depth;
2236 	}
2237 
2238 	/* record root node so further searches know we are done */
2239 	iter->tnode = pn;
2240 	iter->index = 0;
2241 
2242 	return NULL;
2243 }
2244 
2245 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2246 					     struct trie *t)
2247 {
2248 	struct key_vector *n, *pn;
2249 
2250 	if (!t)
2251 		return NULL;
2252 
2253 	pn = t->kv;
2254 	n = rcu_dereference(pn->tnode[0]);
2255 	if (!n)
2256 		return NULL;
2257 
2258 	if (IS_TNODE(n)) {
2259 		iter->tnode = n;
2260 		iter->index = 0;
2261 		iter->depth = 1;
2262 	} else {
2263 		iter->tnode = pn;
2264 		iter->index = 0;
2265 		iter->depth = 0;
2266 	}
2267 
2268 	return n;
2269 }
2270 
2271 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2272 {
2273 	struct key_vector *n;
2274 	struct fib_trie_iter iter;
2275 
2276 	memset(s, 0, sizeof(*s));
2277 
2278 	rcu_read_lock();
2279 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2280 		if (IS_LEAF(n)) {
2281 			struct fib_alias *fa;
2282 
2283 			s->leaves++;
2284 			s->totdepth += iter.depth;
2285 			if (iter.depth > s->maxdepth)
2286 				s->maxdepth = iter.depth;
2287 
2288 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2289 				++s->prefixes;
2290 		} else {
2291 			s->tnodes++;
2292 			if (n->bits < MAX_STAT_DEPTH)
2293 				s->nodesizes[n->bits]++;
2294 			s->nullpointers += tn_info(n)->empty_children;
2295 		}
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 
2300 /*
2301  *	This outputs /proc/net/fib_triestats
2302  */
2303 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2304 {
2305 	unsigned int i, max, pointers, bytes, avdepth;
2306 
2307 	if (stat->leaves)
2308 		avdepth = stat->totdepth*100 / stat->leaves;
2309 	else
2310 		avdepth = 0;
2311 
2312 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2313 		   avdepth / 100, avdepth % 100);
2314 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2315 
2316 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2317 	bytes = LEAF_SIZE * stat->leaves;
2318 
2319 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2320 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2321 
2322 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2323 	bytes += TNODE_SIZE(0) * stat->tnodes;
2324 
2325 	max = MAX_STAT_DEPTH;
2326 	while (max > 0 && stat->nodesizes[max-1] == 0)
2327 		max--;
2328 
2329 	pointers = 0;
2330 	for (i = 1; i < max; i++)
2331 		if (stat->nodesizes[i] != 0) {
2332 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2333 			pointers += (1<<i) * stat->nodesizes[i];
2334 		}
2335 	seq_putc(seq, '\n');
2336 	seq_printf(seq, "\tPointers: %u\n", pointers);
2337 
2338 	bytes += sizeof(struct key_vector *) * pointers;
2339 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2340 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2341 }
2342 
2343 #ifdef CONFIG_IP_FIB_TRIE_STATS
2344 static void trie_show_usage(struct seq_file *seq,
2345 			    const struct trie_use_stats __percpu *stats)
2346 {
2347 	struct trie_use_stats s = { 0 };
2348 	int cpu;
2349 
2350 	/* loop through all of the CPUs and gather up the stats */
2351 	for_each_possible_cpu(cpu) {
2352 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2353 
2354 		s.gets += pcpu->gets;
2355 		s.backtrack += pcpu->backtrack;
2356 		s.semantic_match_passed += pcpu->semantic_match_passed;
2357 		s.semantic_match_miss += pcpu->semantic_match_miss;
2358 		s.null_node_hit += pcpu->null_node_hit;
2359 		s.resize_node_skipped += pcpu->resize_node_skipped;
2360 	}
2361 
2362 	seq_printf(seq, "\nCounters:\n---------\n");
2363 	seq_printf(seq, "gets = %u\n", s.gets);
2364 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2365 	seq_printf(seq, "semantic match passed = %u\n",
2366 		   s.semantic_match_passed);
2367 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2368 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2369 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2370 }
2371 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2372 
2373 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2374 {
2375 	if (tb->tb_id == RT_TABLE_LOCAL)
2376 		seq_puts(seq, "Local:\n");
2377 	else if (tb->tb_id == RT_TABLE_MAIN)
2378 		seq_puts(seq, "Main:\n");
2379 	else
2380 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2381 }
2382 
2383 
2384 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2385 {
2386 	struct net *net = (struct net *)seq->private;
2387 	unsigned int h;
2388 
2389 	seq_printf(seq,
2390 		   "Basic info: size of leaf:"
2391 		   " %zd bytes, size of tnode: %zd bytes.\n",
2392 		   LEAF_SIZE, TNODE_SIZE(0));
2393 
2394 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2395 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2396 		struct fib_table *tb;
2397 
2398 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2399 			struct trie *t = (struct trie *) tb->tb_data;
2400 			struct trie_stat stat;
2401 
2402 			if (!t)
2403 				continue;
2404 
2405 			fib_table_print(seq, tb);
2406 
2407 			trie_collect_stats(t, &stat);
2408 			trie_show_stats(seq, &stat);
2409 #ifdef CONFIG_IP_FIB_TRIE_STATS
2410 			trie_show_usage(seq, t->stats);
2411 #endif
2412 		}
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2419 {
2420 	return single_open_net(inode, file, fib_triestat_seq_show);
2421 }
2422 
2423 static const struct file_operations fib_triestat_fops = {
2424 	.owner	= THIS_MODULE,
2425 	.open	= fib_triestat_seq_open,
2426 	.read	= seq_read,
2427 	.llseek	= seq_lseek,
2428 	.release = single_release_net,
2429 };
2430 
2431 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2432 {
2433 	struct fib_trie_iter *iter = seq->private;
2434 	struct net *net = seq_file_net(seq);
2435 	loff_t idx = 0;
2436 	unsigned int h;
2437 
2438 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2439 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2440 		struct fib_table *tb;
2441 
2442 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2443 			struct key_vector *n;
2444 
2445 			for (n = fib_trie_get_first(iter,
2446 						    (struct trie *) tb->tb_data);
2447 			     n; n = fib_trie_get_next(iter))
2448 				if (pos == idx++) {
2449 					iter->tb = tb;
2450 					return n;
2451 				}
2452 		}
2453 	}
2454 
2455 	return NULL;
2456 }
2457 
2458 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2459 	__acquires(RCU)
2460 {
2461 	rcu_read_lock();
2462 	return fib_trie_get_idx(seq, *pos);
2463 }
2464 
2465 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466 {
2467 	struct fib_trie_iter *iter = seq->private;
2468 	struct net *net = seq_file_net(seq);
2469 	struct fib_table *tb = iter->tb;
2470 	struct hlist_node *tb_node;
2471 	unsigned int h;
2472 	struct key_vector *n;
2473 
2474 	++*pos;
2475 	/* next node in same table */
2476 	n = fib_trie_get_next(iter);
2477 	if (n)
2478 		return n;
2479 
2480 	/* walk rest of this hash chain */
2481 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2482 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2483 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2484 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2485 		if (n)
2486 			goto found;
2487 	}
2488 
2489 	/* new hash chain */
2490 	while (++h < FIB_TABLE_HASHSZ) {
2491 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2492 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2493 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2494 			if (n)
2495 				goto found;
2496 		}
2497 	}
2498 	return NULL;
2499 
2500 found:
2501 	iter->tb = tb;
2502 	return n;
2503 }
2504 
2505 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2506 	__releases(RCU)
2507 {
2508 	rcu_read_unlock();
2509 }
2510 
2511 static void seq_indent(struct seq_file *seq, int n)
2512 {
2513 	while (n-- > 0)
2514 		seq_puts(seq, "   ");
2515 }
2516 
2517 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2518 {
2519 	switch (s) {
2520 	case RT_SCOPE_UNIVERSE: return "universe";
2521 	case RT_SCOPE_SITE:	return "site";
2522 	case RT_SCOPE_LINK:	return "link";
2523 	case RT_SCOPE_HOST:	return "host";
2524 	case RT_SCOPE_NOWHERE:	return "nowhere";
2525 	default:
2526 		snprintf(buf, len, "scope=%d", s);
2527 		return buf;
2528 	}
2529 }
2530 
2531 static const char *const rtn_type_names[__RTN_MAX] = {
2532 	[RTN_UNSPEC] = "UNSPEC",
2533 	[RTN_UNICAST] = "UNICAST",
2534 	[RTN_LOCAL] = "LOCAL",
2535 	[RTN_BROADCAST] = "BROADCAST",
2536 	[RTN_ANYCAST] = "ANYCAST",
2537 	[RTN_MULTICAST] = "MULTICAST",
2538 	[RTN_BLACKHOLE] = "BLACKHOLE",
2539 	[RTN_UNREACHABLE] = "UNREACHABLE",
2540 	[RTN_PROHIBIT] = "PROHIBIT",
2541 	[RTN_THROW] = "THROW",
2542 	[RTN_NAT] = "NAT",
2543 	[RTN_XRESOLVE] = "XRESOLVE",
2544 };
2545 
2546 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2547 {
2548 	if (t < __RTN_MAX && rtn_type_names[t])
2549 		return rtn_type_names[t];
2550 	snprintf(buf, len, "type %u", t);
2551 	return buf;
2552 }
2553 
2554 /* Pretty print the trie */
2555 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2556 {
2557 	const struct fib_trie_iter *iter = seq->private;
2558 	struct key_vector *n = v;
2559 
2560 	if (IS_TRIE(node_parent_rcu(n)))
2561 		fib_table_print(seq, iter->tb);
2562 
2563 	if (IS_TNODE(n)) {
2564 		__be32 prf = htonl(n->key);
2565 
2566 		seq_indent(seq, iter->depth-1);
2567 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2568 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2569 			   tn_info(n)->full_children,
2570 			   tn_info(n)->empty_children);
2571 	} else {
2572 		__be32 val = htonl(n->key);
2573 		struct fib_alias *fa;
2574 
2575 		seq_indent(seq, iter->depth);
2576 		seq_printf(seq, "  |-- %pI4\n", &val);
2577 
2578 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2579 			char buf1[32], buf2[32];
2580 
2581 			seq_indent(seq, iter->depth + 1);
2582 			seq_printf(seq, "  /%zu %s %s",
2583 				   KEYLENGTH - fa->fa_slen,
2584 				   rtn_scope(buf1, sizeof(buf1),
2585 					     fa->fa_info->fib_scope),
2586 				   rtn_type(buf2, sizeof(buf2),
2587 					    fa->fa_type));
2588 			if (fa->fa_tos)
2589 				seq_printf(seq, " tos=%d", fa->fa_tos);
2590 			seq_putc(seq, '\n');
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 static const struct seq_operations fib_trie_seq_ops = {
2598 	.start  = fib_trie_seq_start,
2599 	.next   = fib_trie_seq_next,
2600 	.stop   = fib_trie_seq_stop,
2601 	.show   = fib_trie_seq_show,
2602 };
2603 
2604 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2605 {
2606 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2607 			    sizeof(struct fib_trie_iter));
2608 }
2609 
2610 static const struct file_operations fib_trie_fops = {
2611 	.owner  = THIS_MODULE,
2612 	.open   = fib_trie_seq_open,
2613 	.read   = seq_read,
2614 	.llseek = seq_lseek,
2615 	.release = seq_release_net,
2616 };
2617 
2618 struct fib_route_iter {
2619 	struct seq_net_private p;
2620 	struct fib_table *main_tb;
2621 	struct key_vector *tnode;
2622 	loff_t	pos;
2623 	t_key	key;
2624 };
2625 
2626 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2627 					    loff_t pos)
2628 {
2629 	struct key_vector *l, **tp = &iter->tnode;
2630 	t_key key;
2631 
2632 	/* use cached location of previously found key */
2633 	if (iter->pos > 0 && pos >= iter->pos) {
2634 		key = iter->key;
2635 	} else {
2636 		iter->pos = 1;
2637 		key = 0;
2638 	}
2639 
2640 	pos -= iter->pos;
2641 
2642 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2643 		key = l->key + 1;
2644 		iter->pos++;
2645 		l = NULL;
2646 
2647 		/* handle unlikely case of a key wrap */
2648 		if (!key)
2649 			break;
2650 	}
2651 
2652 	if (l)
2653 		iter->key = l->key;	/* remember it */
2654 	else
2655 		iter->pos = 0;		/* forget it */
2656 
2657 	return l;
2658 }
2659 
2660 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2661 	__acquires(RCU)
2662 {
2663 	struct fib_route_iter *iter = seq->private;
2664 	struct fib_table *tb;
2665 	struct trie *t;
2666 
2667 	rcu_read_lock();
2668 
2669 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2670 	if (!tb)
2671 		return NULL;
2672 
2673 	iter->main_tb = tb;
2674 	t = (struct trie *)tb->tb_data;
2675 	iter->tnode = t->kv;
2676 
2677 	if (*pos != 0)
2678 		return fib_route_get_idx(iter, *pos);
2679 
2680 	iter->pos = 0;
2681 	iter->key = KEY_MAX;
2682 
2683 	return SEQ_START_TOKEN;
2684 }
2685 
2686 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2687 {
2688 	struct fib_route_iter *iter = seq->private;
2689 	struct key_vector *l = NULL;
2690 	t_key key = iter->key + 1;
2691 
2692 	++*pos;
2693 
2694 	/* only allow key of 0 for start of sequence */
2695 	if ((v == SEQ_START_TOKEN) || key)
2696 		l = leaf_walk_rcu(&iter->tnode, key);
2697 
2698 	if (l) {
2699 		iter->key = l->key;
2700 		iter->pos++;
2701 	} else {
2702 		iter->pos = 0;
2703 	}
2704 
2705 	return l;
2706 }
2707 
2708 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2709 	__releases(RCU)
2710 {
2711 	rcu_read_unlock();
2712 }
2713 
2714 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2715 {
2716 	unsigned int flags = 0;
2717 
2718 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2719 		flags = RTF_REJECT;
2720 	if (fi && fi->fib_nh->nh_gw)
2721 		flags |= RTF_GATEWAY;
2722 	if (mask == htonl(0xFFFFFFFF))
2723 		flags |= RTF_HOST;
2724 	flags |= RTF_UP;
2725 	return flags;
2726 }
2727 
2728 /*
2729  *	This outputs /proc/net/route.
2730  *	The format of the file is not supposed to be changed
2731  *	and needs to be same as fib_hash output to avoid breaking
2732  *	legacy utilities
2733  */
2734 static int fib_route_seq_show(struct seq_file *seq, void *v)
2735 {
2736 	struct fib_route_iter *iter = seq->private;
2737 	struct fib_table *tb = iter->main_tb;
2738 	struct fib_alias *fa;
2739 	struct key_vector *l = v;
2740 	__be32 prefix;
2741 
2742 	if (v == SEQ_START_TOKEN) {
2743 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2744 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2745 			   "\tWindow\tIRTT");
2746 		return 0;
2747 	}
2748 
2749 	prefix = htonl(l->key);
2750 
2751 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2752 		const struct fib_info *fi = fa->fa_info;
2753 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2754 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2755 
2756 		if ((fa->fa_type == RTN_BROADCAST) ||
2757 		    (fa->fa_type == RTN_MULTICAST))
2758 			continue;
2759 
2760 		if (fa->tb_id != tb->tb_id)
2761 			continue;
2762 
2763 		seq_setwidth(seq, 127);
2764 
2765 		if (fi)
2766 			seq_printf(seq,
2767 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2768 				   "%d\t%08X\t%d\t%u\t%u",
2769 				   fi->fib_dev ? fi->fib_dev->name : "*",
2770 				   prefix,
2771 				   fi->fib_nh->nh_gw, flags, 0, 0,
2772 				   fi->fib_priority,
2773 				   mask,
2774 				   (fi->fib_advmss ?
2775 				    fi->fib_advmss + 40 : 0),
2776 				   fi->fib_window,
2777 				   fi->fib_rtt >> 3);
2778 		else
2779 			seq_printf(seq,
2780 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2781 				   "%d\t%08X\t%d\t%u\t%u",
2782 				   prefix, 0, flags, 0, 0, 0,
2783 				   mask, 0, 0, 0);
2784 
2785 		seq_pad(seq, '\n');
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 static const struct seq_operations fib_route_seq_ops = {
2792 	.start  = fib_route_seq_start,
2793 	.next   = fib_route_seq_next,
2794 	.stop   = fib_route_seq_stop,
2795 	.show   = fib_route_seq_show,
2796 };
2797 
2798 static int fib_route_seq_open(struct inode *inode, struct file *file)
2799 {
2800 	return seq_open_net(inode, file, &fib_route_seq_ops,
2801 			    sizeof(struct fib_route_iter));
2802 }
2803 
2804 static const struct file_operations fib_route_fops = {
2805 	.owner  = THIS_MODULE,
2806 	.open   = fib_route_seq_open,
2807 	.read   = seq_read,
2808 	.llseek = seq_lseek,
2809 	.release = seq_release_net,
2810 };
2811 
2812 int __net_init fib_proc_init(struct net *net)
2813 {
2814 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2815 		goto out1;
2816 
2817 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2818 			 &fib_triestat_fops))
2819 		goto out2;
2820 
2821 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2822 		goto out3;
2823 
2824 	return 0;
2825 
2826 out3:
2827 	remove_proc_entry("fib_triestat", net->proc_net);
2828 out2:
2829 	remove_proc_entry("fib_trie", net->proc_net);
2830 out1:
2831 	return -ENOMEM;
2832 }
2833 
2834 void __net_exit fib_proc_exit(struct net *net)
2835 {
2836 	remove_proc_entry("fib_trie", net->proc_net);
2837 	remove_proc_entry("fib_triestat", net->proc_net);
2838 	remove_proc_entry("route", net->proc_net);
2839 }
2840 
2841 #endif /* CONFIG_PROC_FS */
2842