xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 23c2b932)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 #define MAX_STAT_DEPTH 32
88 
89 #define KEYLENGTH	(8*sizeof(t_key))
90 #define KEY_MAX		((t_key)~0)
91 
92 typedef unsigned int t_key;
93 
94 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n)	((n)->bits)
96 #define IS_LEAF(n)	(!(n)->bits)
97 
98 struct key_vector {
99 	t_key key;
100 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
101 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
102 	unsigned char slen;
103 	union {
104 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 		struct hlist_head leaf;
106 		/* This array is valid if (pos | bits) > 0 (TNODE) */
107 		struct key_vector __rcu *tnode[0];
108 	};
109 };
110 
111 struct tnode {
112 	struct rcu_head rcu;
113 	t_key empty_children;		/* KEYLENGTH bits needed */
114 	t_key full_children;		/* KEYLENGTH bits needed */
115 	struct key_vector __rcu *parent;
116 	struct key_vector kv[1];
117 #define tn_bits kv[0].bits
118 };
119 
120 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE	TNODE_SIZE(1)
122 
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125 	unsigned int gets;
126 	unsigned int backtrack;
127 	unsigned int semantic_match_passed;
128 	unsigned int semantic_match_miss;
129 	unsigned int null_node_hit;
130 	unsigned int resize_node_skipped;
131 };
132 #endif
133 
134 struct trie_stat {
135 	unsigned int totdepth;
136 	unsigned int maxdepth;
137 	unsigned int tnodes;
138 	unsigned int leaves;
139 	unsigned int nullpointers;
140 	unsigned int prefixes;
141 	unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143 
144 struct trie {
145 	struct key_vector kv[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 	struct trie_use_stats __percpu *stats;
148 #endif
149 };
150 
151 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 static size_t tnode_free_size;
153 
154 /*
155  * synchronize_rcu after call_rcu for that many pages; it should be especially
156  * useful before resizing the root node with PREEMPT_NONE configs; the value was
157  * obtained experimentally, aiming to avoid visible slowdown.
158  */
159 static const int sync_pages = 128;
160 
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163 
164 static inline struct tnode *tn_info(struct key_vector *kv)
165 {
166 	return container_of(kv, struct tnode, kv[0]);
167 }
168 
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
172 
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
176 
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179 {
180 	if (n)
181 		rcu_assign_pointer(tn_info(n)->parent, tp);
182 }
183 
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 
186 /* This provides us with the number of children in this node, in the case of a
187  * leaf this will return 0 meaning none of the children are accessible.
188  */
189 static inline unsigned long child_length(const struct key_vector *tn)
190 {
191 	return (1ul << tn->bits) & ~(1ul);
192 }
193 
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195 
196 static inline unsigned long get_index(t_key key, struct key_vector *kv)
197 {
198 	unsigned long index = key ^ kv->key;
199 
200 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
201 		return 0;
202 
203 	return index >> kv->pos;
204 }
205 
206 /* To understand this stuff, an understanding of keys and all their bits is
207  * necessary. Every node in the trie has a key associated with it, but not
208  * all of the bits in that key are significant.
209  *
210  * Consider a node 'n' and its parent 'tp'.
211  *
212  * If n is a leaf, every bit in its key is significant. Its presence is
213  * necessitated by path compression, since during a tree traversal (when
214  * searching for a leaf - unless we are doing an insertion) we will completely
215  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216  * a potentially successful search, that we have indeed been walking the
217  * correct key path.
218  *
219  * Note that we can never "miss" the correct key in the tree if present by
220  * following the wrong path. Path compression ensures that segments of the key
221  * that are the same for all keys with a given prefix are skipped, but the
222  * skipped part *is* identical for each node in the subtrie below the skipped
223  * bit! trie_insert() in this implementation takes care of that.
224  *
225  * if n is an internal node - a 'tnode' here, the various parts of its key
226  * have many different meanings.
227  *
228  * Example:
229  * _________________________________________________________________
230  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231  * -----------------------------------------------------------------
232  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
233  *
234  * _________________________________________________________________
235  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236  * -----------------------------------------------------------------
237  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
238  *
239  * tp->pos = 22
240  * tp->bits = 3
241  * n->pos = 13
242  * n->bits = 4
243  *
244  * First, let's just ignore the bits that come before the parent tp, that is
245  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246  * point we do not use them for anything.
247  *
248  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249  * index into the parent's child array. That is, they will be used to find
250  * 'n' among tp's children.
251  *
252  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
253  * for the node n.
254  *
255  * All the bits we have seen so far are significant to the node n. The rest
256  * of the bits are really not needed or indeed known in n->key.
257  *
258  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259  * n's child array, and will of course be different for each child.
260  *
261  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
262  * at this point.
263  */
264 
265 static const int halve_threshold = 25;
266 static const int inflate_threshold = 50;
267 static const int halve_threshold_root = 15;
268 static const int inflate_threshold_root = 30;
269 
270 static void __alias_free_mem(struct rcu_head *head)
271 {
272 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
273 	kmem_cache_free(fn_alias_kmem, fa);
274 }
275 
276 static inline void alias_free_mem_rcu(struct fib_alias *fa)
277 {
278 	call_rcu(&fa->rcu, __alias_free_mem);
279 }
280 
281 #define TNODE_KMALLOC_MAX \
282 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
285 
286 static void __node_free_rcu(struct rcu_head *head)
287 {
288 	struct tnode *n = container_of(head, struct tnode, rcu);
289 
290 	if (!n->tn_bits)
291 		kmem_cache_free(trie_leaf_kmem, n);
292 	else
293 		kvfree(n);
294 }
295 
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297 
298 static struct tnode *tnode_alloc(int bits)
299 {
300 	size_t size;
301 
302 	/* verify bits is within bounds */
303 	if (bits > TNODE_VMALLOC_MAX)
304 		return NULL;
305 
306 	/* determine size and verify it is non-zero and didn't overflow */
307 	size = TNODE_SIZE(1ul << bits);
308 
309 	if (size <= PAGE_SIZE)
310 		return kzalloc(size, GFP_KERNEL);
311 	else
312 		return vzalloc(size);
313 }
314 
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319 
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324 
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 	struct key_vector *l;
328 	struct tnode *kv;
329 
330 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
331 	if (!kv)
332 		return NULL;
333 
334 	/* initialize key vector */
335 	l = kv->kv;
336 	l->key = key;
337 	l->pos = 0;
338 	l->bits = 0;
339 	l->slen = fa->fa_slen;
340 
341 	/* link leaf to fib alias */
342 	INIT_HLIST_HEAD(&l->leaf);
343 	hlist_add_head(&fa->fa_list, &l->leaf);
344 
345 	return l;
346 }
347 
348 static struct key_vector *tnode_new(t_key key, int pos, int bits)
349 {
350 	unsigned int shift = pos + bits;
351 	struct key_vector *tn;
352 	struct tnode *tnode;
353 
354 	/* verify bits and pos their msb bits clear and values are valid */
355 	BUG_ON(!bits || (shift > KEYLENGTH));
356 
357 	tnode = tnode_alloc(bits);
358 	if (!tnode)
359 		return NULL;
360 
361 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
362 		 sizeof(struct key_vector *) << bits);
363 
364 	if (bits == KEYLENGTH)
365 		tnode->full_children = 1;
366 	else
367 		tnode->empty_children = 1ul << bits;
368 
369 	tn = tnode->kv;
370 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
371 	tn->pos = pos;
372 	tn->bits = bits;
373 	tn->slen = pos;
374 
375 	return tn;
376 }
377 
378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
379  * and no bits are skipped. See discussion in dyntree paper p. 6
380  */
381 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
382 {
383 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
384 }
385 
386 /* Add a child at position i overwriting the old value.
387  * Update the value of full_children and empty_children.
388  */
389 static void put_child(struct key_vector *tn, unsigned long i,
390 		      struct key_vector *n)
391 {
392 	struct key_vector *chi = get_child(tn, i);
393 	int isfull, wasfull;
394 
395 	BUG_ON(i >= child_length(tn));
396 
397 	/* update emptyChildren, overflow into fullChildren */
398 	if (!n && chi)
399 		empty_child_inc(tn);
400 	if (n && !chi)
401 		empty_child_dec(tn);
402 
403 	/* update fullChildren */
404 	wasfull = tnode_full(tn, chi);
405 	isfull = tnode_full(tn, n);
406 
407 	if (wasfull && !isfull)
408 		tn_info(tn)->full_children--;
409 	else if (!wasfull && isfull)
410 		tn_info(tn)->full_children++;
411 
412 	if (n && (tn->slen < n->slen))
413 		tn->slen = n->slen;
414 
415 	rcu_assign_pointer(tn->tnode[i], n);
416 }
417 
418 static void update_children(struct key_vector *tn)
419 {
420 	unsigned long i;
421 
422 	/* update all of the child parent pointers */
423 	for (i = child_length(tn); i;) {
424 		struct key_vector *inode = get_child(tn, --i);
425 
426 		if (!inode)
427 			continue;
428 
429 		/* Either update the children of a tnode that
430 		 * already belongs to us or update the child
431 		 * to point to ourselves.
432 		 */
433 		if (node_parent(inode) == tn)
434 			update_children(inode);
435 		else
436 			node_set_parent(inode, tn);
437 	}
438 }
439 
440 static inline void put_child_root(struct key_vector *tp, t_key key,
441 				  struct key_vector *n)
442 {
443 	if (IS_TRIE(tp))
444 		rcu_assign_pointer(tp->tnode[0], n);
445 	else
446 		put_child(tp, get_index(key, tp), n);
447 }
448 
449 static inline void tnode_free_init(struct key_vector *tn)
450 {
451 	tn_info(tn)->rcu.next = NULL;
452 }
453 
454 static inline void tnode_free_append(struct key_vector *tn,
455 				     struct key_vector *n)
456 {
457 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
458 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
459 }
460 
461 static void tnode_free(struct key_vector *tn)
462 {
463 	struct callback_head *head = &tn_info(tn)->rcu;
464 
465 	while (head) {
466 		head = head->next;
467 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
468 		node_free(tn);
469 
470 		tn = container_of(head, struct tnode, rcu)->kv;
471 	}
472 
473 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
474 		tnode_free_size = 0;
475 		synchronize_rcu();
476 	}
477 }
478 
479 static struct key_vector *replace(struct trie *t,
480 				  struct key_vector *oldtnode,
481 				  struct key_vector *tn)
482 {
483 	struct key_vector *tp = node_parent(oldtnode);
484 	unsigned long i;
485 
486 	/* setup the parent pointer out of and back into this node */
487 	NODE_INIT_PARENT(tn, tp);
488 	put_child_root(tp, tn->key, tn);
489 
490 	/* update all of the child parent pointers */
491 	update_children(tn);
492 
493 	/* all pointers should be clean so we are done */
494 	tnode_free(oldtnode);
495 
496 	/* resize children now that oldtnode is freed */
497 	for (i = child_length(tn); i;) {
498 		struct key_vector *inode = get_child(tn, --i);
499 
500 		/* resize child node */
501 		if (tnode_full(tn, inode))
502 			tn = resize(t, inode);
503 	}
504 
505 	return tp;
506 }
507 
508 static struct key_vector *inflate(struct trie *t,
509 				  struct key_vector *oldtnode)
510 {
511 	struct key_vector *tn;
512 	unsigned long i;
513 	t_key m;
514 
515 	pr_debug("In inflate\n");
516 
517 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
518 	if (!tn)
519 		goto notnode;
520 
521 	/* prepare oldtnode to be freed */
522 	tnode_free_init(oldtnode);
523 
524 	/* Assemble all of the pointers in our cluster, in this case that
525 	 * represents all of the pointers out of our allocated nodes that
526 	 * point to existing tnodes and the links between our allocated
527 	 * nodes.
528 	 */
529 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
530 		struct key_vector *inode = get_child(oldtnode, --i);
531 		struct key_vector *node0, *node1;
532 		unsigned long j, k;
533 
534 		/* An empty child */
535 		if (!inode)
536 			continue;
537 
538 		/* A leaf or an internal node with skipped bits */
539 		if (!tnode_full(oldtnode, inode)) {
540 			put_child(tn, get_index(inode->key, tn), inode);
541 			continue;
542 		}
543 
544 		/* drop the node in the old tnode free list */
545 		tnode_free_append(oldtnode, inode);
546 
547 		/* An internal node with two children */
548 		if (inode->bits == 1) {
549 			put_child(tn, 2 * i + 1, get_child(inode, 1));
550 			put_child(tn, 2 * i, get_child(inode, 0));
551 			continue;
552 		}
553 
554 		/* We will replace this node 'inode' with two new
555 		 * ones, 'node0' and 'node1', each with half of the
556 		 * original children. The two new nodes will have
557 		 * a position one bit further down the key and this
558 		 * means that the "significant" part of their keys
559 		 * (see the discussion near the top of this file)
560 		 * will differ by one bit, which will be "0" in
561 		 * node0's key and "1" in node1's key. Since we are
562 		 * moving the key position by one step, the bit that
563 		 * we are moving away from - the bit at position
564 		 * (tn->pos) - is the one that will differ between
565 		 * node0 and node1. So... we synthesize that bit in the
566 		 * two new keys.
567 		 */
568 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
569 		if (!node1)
570 			goto nomem;
571 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
572 
573 		tnode_free_append(tn, node1);
574 		if (!node0)
575 			goto nomem;
576 		tnode_free_append(tn, node0);
577 
578 		/* populate child pointers in new nodes */
579 		for (k = child_length(inode), j = k / 2; j;) {
580 			put_child(node1, --j, get_child(inode, --k));
581 			put_child(node0, j, get_child(inode, j));
582 			put_child(node1, --j, get_child(inode, --k));
583 			put_child(node0, j, get_child(inode, j));
584 		}
585 
586 		/* link new nodes to parent */
587 		NODE_INIT_PARENT(node1, tn);
588 		NODE_INIT_PARENT(node0, tn);
589 
590 		/* link parent to nodes */
591 		put_child(tn, 2 * i + 1, node1);
592 		put_child(tn, 2 * i, node0);
593 	}
594 
595 	/* setup the parent pointers into and out of this node */
596 	return replace(t, oldtnode, tn);
597 nomem:
598 	/* all pointers should be clean so we are done */
599 	tnode_free(tn);
600 notnode:
601 	return NULL;
602 }
603 
604 static struct key_vector *halve(struct trie *t,
605 				struct key_vector *oldtnode)
606 {
607 	struct key_vector *tn;
608 	unsigned long i;
609 
610 	pr_debug("In halve\n");
611 
612 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
613 	if (!tn)
614 		goto notnode;
615 
616 	/* prepare oldtnode to be freed */
617 	tnode_free_init(oldtnode);
618 
619 	/* Assemble all of the pointers in our cluster, in this case that
620 	 * represents all of the pointers out of our allocated nodes that
621 	 * point to existing tnodes and the links between our allocated
622 	 * nodes.
623 	 */
624 	for (i = child_length(oldtnode); i;) {
625 		struct key_vector *node1 = get_child(oldtnode, --i);
626 		struct key_vector *node0 = get_child(oldtnode, --i);
627 		struct key_vector *inode;
628 
629 		/* At least one of the children is empty */
630 		if (!node1 || !node0) {
631 			put_child(tn, i / 2, node1 ? : node0);
632 			continue;
633 		}
634 
635 		/* Two nonempty children */
636 		inode = tnode_new(node0->key, oldtnode->pos, 1);
637 		if (!inode)
638 			goto nomem;
639 		tnode_free_append(tn, inode);
640 
641 		/* initialize pointers out of node */
642 		put_child(inode, 1, node1);
643 		put_child(inode, 0, node0);
644 		NODE_INIT_PARENT(inode, tn);
645 
646 		/* link parent to node */
647 		put_child(tn, i / 2, inode);
648 	}
649 
650 	/* setup the parent pointers into and out of this node */
651 	return replace(t, oldtnode, tn);
652 nomem:
653 	/* all pointers should be clean so we are done */
654 	tnode_free(tn);
655 notnode:
656 	return NULL;
657 }
658 
659 static struct key_vector *collapse(struct trie *t,
660 				   struct key_vector *oldtnode)
661 {
662 	struct key_vector *n, *tp;
663 	unsigned long i;
664 
665 	/* scan the tnode looking for that one child that might still exist */
666 	for (n = NULL, i = child_length(oldtnode); !n && i;)
667 		n = get_child(oldtnode, --i);
668 
669 	/* compress one level */
670 	tp = node_parent(oldtnode);
671 	put_child_root(tp, oldtnode->key, n);
672 	node_set_parent(n, tp);
673 
674 	/* drop dead node */
675 	node_free(oldtnode);
676 
677 	return tp;
678 }
679 
680 static unsigned char update_suffix(struct key_vector *tn)
681 {
682 	unsigned char slen = tn->pos;
683 	unsigned long stride, i;
684 
685 	/* search though the list of children looking for nodes that might
686 	 * have a suffix greater than the one we currently have.  This is
687 	 * why we start with a stride of 2 since a stride of 1 would
688 	 * represent the nodes with suffix length equal to tn->pos
689 	 */
690 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
691 		struct key_vector *n = get_child(tn, i);
692 
693 		if (!n || (n->slen <= slen))
694 			continue;
695 
696 		/* update stride and slen based on new value */
697 		stride <<= (n->slen - slen);
698 		slen = n->slen;
699 		i &= ~(stride - 1);
700 
701 		/* if slen covers all but the last bit we can stop here
702 		 * there will be nothing longer than that since only node
703 		 * 0 and 1 << (bits - 1) could have that as their suffix
704 		 * length.
705 		 */
706 		if ((slen + 1) >= (tn->pos + tn->bits))
707 			break;
708 	}
709 
710 	tn->slen = slen;
711 
712 	return slen;
713 }
714 
715 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
716  * the Helsinki University of Technology and Matti Tikkanen of Nokia
717  * Telecommunications, page 6:
718  * "A node is doubled if the ratio of non-empty children to all
719  * children in the *doubled* node is at least 'high'."
720  *
721  * 'high' in this instance is the variable 'inflate_threshold'. It
722  * is expressed as a percentage, so we multiply it with
723  * child_length() and instead of multiplying by 2 (since the
724  * child array will be doubled by inflate()) and multiplying
725  * the left-hand side by 100 (to handle the percentage thing) we
726  * multiply the left-hand side by 50.
727  *
728  * The left-hand side may look a bit weird: child_length(tn)
729  * - tn->empty_children is of course the number of non-null children
730  * in the current node. tn->full_children is the number of "full"
731  * children, that is non-null tnodes with a skip value of 0.
732  * All of those will be doubled in the resulting inflated tnode, so
733  * we just count them one extra time here.
734  *
735  * A clearer way to write this would be:
736  *
737  * to_be_doubled = tn->full_children;
738  * not_to_be_doubled = child_length(tn) - tn->empty_children -
739  *     tn->full_children;
740  *
741  * new_child_length = child_length(tn) * 2;
742  *
743  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
744  *      new_child_length;
745  * if (new_fill_factor >= inflate_threshold)
746  *
747  * ...and so on, tho it would mess up the while () loop.
748  *
749  * anyway,
750  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
751  *      inflate_threshold
752  *
753  * avoid a division:
754  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
755  *      inflate_threshold * new_child_length
756  *
757  * expand not_to_be_doubled and to_be_doubled, and shorten:
758  * 100 * (child_length(tn) - tn->empty_children +
759  *    tn->full_children) >= inflate_threshold * new_child_length
760  *
761  * expand new_child_length:
762  * 100 * (child_length(tn) - tn->empty_children +
763  *    tn->full_children) >=
764  *      inflate_threshold * child_length(tn) * 2
765  *
766  * shorten again:
767  * 50 * (tn->full_children + child_length(tn) -
768  *    tn->empty_children) >= inflate_threshold *
769  *    child_length(tn)
770  *
771  */
772 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
773 {
774 	unsigned long used = child_length(tn);
775 	unsigned long threshold = used;
776 
777 	/* Keep root node larger */
778 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
779 	used -= tn_info(tn)->empty_children;
780 	used += tn_info(tn)->full_children;
781 
782 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
783 
784 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
785 }
786 
787 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
788 {
789 	unsigned long used = child_length(tn);
790 	unsigned long threshold = used;
791 
792 	/* Keep root node larger */
793 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
794 	used -= tn_info(tn)->empty_children;
795 
796 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
797 
798 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
799 }
800 
801 static inline bool should_collapse(struct key_vector *tn)
802 {
803 	unsigned long used = child_length(tn);
804 
805 	used -= tn_info(tn)->empty_children;
806 
807 	/* account for bits == KEYLENGTH case */
808 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
809 		used -= KEY_MAX;
810 
811 	/* One child or none, time to drop us from the trie */
812 	return used < 2;
813 }
814 
815 #define MAX_WORK 10
816 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
817 {
818 #ifdef CONFIG_IP_FIB_TRIE_STATS
819 	struct trie_use_stats __percpu *stats = t->stats;
820 #endif
821 	struct key_vector *tp = node_parent(tn);
822 	unsigned long cindex = get_index(tn->key, tp);
823 	int max_work = MAX_WORK;
824 
825 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
826 		 tn, inflate_threshold, halve_threshold);
827 
828 	/* track the tnode via the pointer from the parent instead of
829 	 * doing it ourselves.  This way we can let RCU fully do its
830 	 * thing without us interfering
831 	 */
832 	BUG_ON(tn != get_child(tp, cindex));
833 
834 	/* Double as long as the resulting node has a number of
835 	 * nonempty nodes that are above the threshold.
836 	 */
837 	while (should_inflate(tp, tn) && max_work) {
838 		tp = inflate(t, tn);
839 		if (!tp) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841 			this_cpu_inc(stats->resize_node_skipped);
842 #endif
843 			break;
844 		}
845 
846 		max_work--;
847 		tn = get_child(tp, cindex);
848 	}
849 
850 	/* update parent in case inflate failed */
851 	tp = node_parent(tn);
852 
853 	/* Return if at least one inflate is run */
854 	if (max_work != MAX_WORK)
855 		return tp;
856 
857 	/* Halve as long as the number of empty children in this
858 	 * node is above threshold.
859 	 */
860 	while (should_halve(tp, tn) && max_work) {
861 		tp = halve(t, tn);
862 		if (!tp) {
863 #ifdef CONFIG_IP_FIB_TRIE_STATS
864 			this_cpu_inc(stats->resize_node_skipped);
865 #endif
866 			break;
867 		}
868 
869 		max_work--;
870 		tn = get_child(tp, cindex);
871 	}
872 
873 	/* Only one child remains */
874 	if (should_collapse(tn))
875 		return collapse(t, tn);
876 
877 	/* update parent in case halve failed */
878 	tp = node_parent(tn);
879 
880 	/* Return if at least one deflate was run */
881 	if (max_work != MAX_WORK)
882 		return tp;
883 
884 	/* push the suffix length to the parent node */
885 	if (tn->slen > tn->pos) {
886 		unsigned char slen = update_suffix(tn);
887 
888 		if (slen > tp->slen)
889 			tp->slen = slen;
890 	}
891 
892 	return tp;
893 }
894 
895 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
896 {
897 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
898 		if (update_suffix(tp) > l->slen)
899 			break;
900 		tp = node_parent(tp);
901 	}
902 }
903 
904 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
905 {
906 	/* if this is a new leaf then tn will be NULL and we can sort
907 	 * out parent suffix lengths as a part of trie_rebalance
908 	 */
909 	while (tn->slen < l->slen) {
910 		tn->slen = l->slen;
911 		tn = node_parent(tn);
912 	}
913 }
914 
915 /* rcu_read_lock needs to be hold by caller from readside */
916 static struct key_vector *fib_find_node(struct trie *t,
917 					struct key_vector **tp, u32 key)
918 {
919 	struct key_vector *pn, *n = t->kv;
920 	unsigned long index = 0;
921 
922 	do {
923 		pn = n;
924 		n = get_child_rcu(n, index);
925 
926 		if (!n)
927 			break;
928 
929 		index = get_cindex(key, n);
930 
931 		/* This bit of code is a bit tricky but it combines multiple
932 		 * checks into a single check.  The prefix consists of the
933 		 * prefix plus zeros for the bits in the cindex. The index
934 		 * is the difference between the key and this value.  From
935 		 * this we can actually derive several pieces of data.
936 		 *   if (index >= (1ul << bits))
937 		 *     we have a mismatch in skip bits and failed
938 		 *   else
939 		 *     we know the value is cindex
940 		 *
941 		 * This check is safe even if bits == KEYLENGTH due to the
942 		 * fact that we can only allocate a node with 32 bits if a
943 		 * long is greater than 32 bits.
944 		 */
945 		if (index >= (1ul << n->bits)) {
946 			n = NULL;
947 			break;
948 		}
949 
950 		/* keep searching until we find a perfect match leaf or NULL */
951 	} while (IS_TNODE(n));
952 
953 	*tp = pn;
954 
955 	return n;
956 }
957 
958 /* Return the first fib alias matching TOS with
959  * priority less than or equal to PRIO.
960  */
961 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
962 					u8 tos, u32 prio, u32 tb_id)
963 {
964 	struct fib_alias *fa;
965 
966 	if (!fah)
967 		return NULL;
968 
969 	hlist_for_each_entry(fa, fah, fa_list) {
970 		if (fa->fa_slen < slen)
971 			continue;
972 		if (fa->fa_slen != slen)
973 			break;
974 		if (fa->tb_id > tb_id)
975 			continue;
976 		if (fa->tb_id != tb_id)
977 			break;
978 		if (fa->fa_tos > tos)
979 			continue;
980 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
981 			return fa;
982 	}
983 
984 	return NULL;
985 }
986 
987 static void trie_rebalance(struct trie *t, struct key_vector *tn)
988 {
989 	while (!IS_TRIE(tn))
990 		tn = resize(t, tn);
991 }
992 
993 static int fib_insert_node(struct trie *t, struct key_vector *tp,
994 			   struct fib_alias *new, t_key key)
995 {
996 	struct key_vector *n, *l;
997 
998 	l = leaf_new(key, new);
999 	if (!l)
1000 		goto noleaf;
1001 
1002 	/* retrieve child from parent node */
1003 	n = get_child(tp, get_index(key, tp));
1004 
1005 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006 	 *
1007 	 *  Add a new tnode here
1008 	 *  first tnode need some special handling
1009 	 *  leaves us in position for handling as case 3
1010 	 */
1011 	if (n) {
1012 		struct key_vector *tn;
1013 
1014 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1015 		if (!tn)
1016 			goto notnode;
1017 
1018 		/* initialize routes out of node */
1019 		NODE_INIT_PARENT(tn, tp);
1020 		put_child(tn, get_index(key, tn) ^ 1, n);
1021 
1022 		/* start adding routes into the node */
1023 		put_child_root(tp, key, tn);
1024 		node_set_parent(n, tn);
1025 
1026 		/* parent now has a NULL spot where the leaf can go */
1027 		tp = tn;
1028 	}
1029 
1030 	/* Case 3: n is NULL, and will just insert a new leaf */
1031 	NODE_INIT_PARENT(l, tp);
1032 	put_child_root(tp, key, l);
1033 	trie_rebalance(t, tp);
1034 
1035 	return 0;
1036 notnode:
1037 	node_free(l);
1038 noleaf:
1039 	return -ENOMEM;
1040 }
1041 
1042 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043 			    struct key_vector *l, struct fib_alias *new,
1044 			    struct fib_alias *fa, t_key key)
1045 {
1046 	if (!l)
1047 		return fib_insert_node(t, tp, new, key);
1048 
1049 	if (fa) {
1050 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051 	} else {
1052 		struct fib_alias *last;
1053 
1054 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1055 			if (new->fa_slen < last->fa_slen)
1056 				break;
1057 			if ((new->fa_slen == last->fa_slen) &&
1058 			    (new->tb_id > last->tb_id))
1059 				break;
1060 			fa = last;
1061 		}
1062 
1063 		if (fa)
1064 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065 		else
1066 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067 	}
1068 
1069 	/* if we added to the tail node then we need to update slen */
1070 	if (l->slen < new->fa_slen) {
1071 		l->slen = new->fa_slen;
1072 		leaf_push_suffix(tp, l);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /* Caller must hold RTNL. */
1079 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1080 {
1081 	struct trie *t = (struct trie *)tb->tb_data;
1082 	struct fib_alias *fa, *new_fa;
1083 	struct key_vector *l, *tp;
1084 	unsigned int nlflags = 0;
1085 	struct fib_info *fi;
1086 	u8 plen = cfg->fc_dst_len;
1087 	u8 slen = KEYLENGTH - plen;
1088 	u8 tos = cfg->fc_tos;
1089 	u32 key;
1090 	int err;
1091 
1092 	if (plen > KEYLENGTH)
1093 		return -EINVAL;
1094 
1095 	key = ntohl(cfg->fc_dst);
1096 
1097 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098 
1099 	if ((plen < KEYLENGTH) && (key << plen))
1100 		return -EINVAL;
1101 
1102 	fi = fib_create_info(cfg);
1103 	if (IS_ERR(fi)) {
1104 		err = PTR_ERR(fi);
1105 		goto err;
1106 	}
1107 
1108 	l = fib_find_node(t, &tp, key);
1109 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110 				tb->tb_id) : NULL;
1111 
1112 	/* Now fa, if non-NULL, points to the first fib alias
1113 	 * with the same keys [prefix,tos,priority], if such key already
1114 	 * exists or to the node before which we will insert new one.
1115 	 *
1116 	 * If fa is NULL, we will need to allocate a new one and
1117 	 * insert to the tail of the section matching the suffix length
1118 	 * of the new alias.
1119 	 */
1120 
1121 	if (fa && fa->fa_tos == tos &&
1122 	    fa->fa_info->fib_priority == fi->fib_priority) {
1123 		struct fib_alias *fa_first, *fa_match;
1124 
1125 		err = -EEXIST;
1126 		if (cfg->fc_nlflags & NLM_F_EXCL)
1127 			goto out;
1128 
1129 		/* We have 2 goals:
1130 		 * 1. Find exact match for type, scope, fib_info to avoid
1131 		 * duplicate routes
1132 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133 		 */
1134 		fa_match = NULL;
1135 		fa_first = fa;
1136 		hlist_for_each_entry_from(fa, fa_list) {
1137 			if ((fa->fa_slen != slen) ||
1138 			    (fa->tb_id != tb->tb_id) ||
1139 			    (fa->fa_tos != tos))
1140 				break;
1141 			if (fa->fa_info->fib_priority != fi->fib_priority)
1142 				break;
1143 			if (fa->fa_type == cfg->fc_type &&
1144 			    fa->fa_info == fi) {
1145 				fa_match = fa;
1146 				break;
1147 			}
1148 		}
1149 
1150 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151 			struct fib_info *fi_drop;
1152 			u8 state;
1153 
1154 			fa = fa_first;
1155 			if (fa_match) {
1156 				if (fa == fa_match)
1157 					err = 0;
1158 				goto out;
1159 			}
1160 			err = -ENOBUFS;
1161 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162 			if (!new_fa)
1163 				goto out;
1164 
1165 			fi_drop = fa->fa_info;
1166 			new_fa->fa_tos = fa->fa_tos;
1167 			new_fa->fa_info = fi;
1168 			new_fa->fa_type = cfg->fc_type;
1169 			state = fa->fa_state;
1170 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1171 			new_fa->fa_slen = fa->fa_slen;
1172 			new_fa->tb_id = tb->tb_id;
1173 			new_fa->fa_default = -1;
1174 
1175 			err = switchdev_fib_ipv4_add(key, plen, fi,
1176 						     new_fa->fa_tos,
1177 						     cfg->fc_type,
1178 						     cfg->fc_nlflags,
1179 						     tb->tb_id);
1180 			if (err) {
1181 				switchdev_fib_ipv4_abort(fi);
1182 				kmem_cache_free(fn_alias_kmem, new_fa);
1183 				goto out;
1184 			}
1185 
1186 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187 
1188 			alias_free_mem_rcu(fa);
1189 
1190 			fib_release_info(fi_drop);
1191 			if (state & FA_S_ACCESSED)
1192 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195 
1196 			goto succeeded;
1197 		}
1198 		/* Error if we find a perfect match which
1199 		 * uses the same scope, type, and nexthop
1200 		 * information.
1201 		 */
1202 		if (fa_match)
1203 			goto out;
1204 
1205 		if (cfg->fc_nlflags & NLM_F_APPEND)
1206 			nlflags = NLM_F_APPEND;
1207 		else
1208 			fa = fa_first;
1209 	}
1210 	err = -ENOENT;
1211 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 		goto out;
1213 
1214 	err = -ENOBUFS;
1215 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216 	if (!new_fa)
1217 		goto out;
1218 
1219 	new_fa->fa_info = fi;
1220 	new_fa->fa_tos = tos;
1221 	new_fa->fa_type = cfg->fc_type;
1222 	new_fa->fa_state = 0;
1223 	new_fa->fa_slen = slen;
1224 	new_fa->tb_id = tb->tb_id;
1225 	new_fa->fa_default = -1;
1226 
1227 	/* (Optionally) offload fib entry to switch hardware. */
1228 	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229 				     cfg->fc_nlflags, tb->tb_id);
1230 	if (err) {
1231 		switchdev_fib_ipv4_abort(fi);
1232 		goto out_free_new_fa;
1233 	}
1234 
1235 	/* Insert new entry to the list. */
1236 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237 	if (err)
1238 		goto out_sw_fib_del;
1239 
1240 	if (!plen)
1241 		tb->tb_num_default++;
1242 
1243 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245 		  &cfg->fc_nlinfo, nlflags);
1246 succeeded:
1247 	return 0;
1248 
1249 out_sw_fib_del:
1250 	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1251 out_free_new_fa:
1252 	kmem_cache_free(fn_alias_kmem, new_fa);
1253 out:
1254 	fib_release_info(fi);
1255 err:
1256 	return err;
1257 }
1258 
1259 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260 {
1261 	t_key prefix = n->key;
1262 
1263 	return (key ^ prefix) & (prefix | -prefix);
1264 }
1265 
1266 /* should be called with rcu_read_lock */
1267 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1268 		     struct fib_result *res, int fib_flags)
1269 {
1270 	struct trie *t = (struct trie *) tb->tb_data;
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 	struct trie_use_stats __percpu *stats = t->stats;
1273 #endif
1274 	const t_key key = ntohl(flp->daddr);
1275 	struct key_vector *n, *pn;
1276 	struct fib_alias *fa;
1277 	unsigned long index;
1278 	t_key cindex;
1279 
1280 	trace_fib_table_lookup(tb->tb_id, flp);
1281 
1282 	pn = t->kv;
1283 	cindex = 0;
1284 
1285 	n = get_child_rcu(pn, cindex);
1286 	if (!n)
1287 		return -EAGAIN;
1288 
1289 #ifdef CONFIG_IP_FIB_TRIE_STATS
1290 	this_cpu_inc(stats->gets);
1291 #endif
1292 
1293 	/* Step 1: Travel to the longest prefix match in the trie */
1294 	for (;;) {
1295 		index = get_cindex(key, n);
1296 
1297 		/* This bit of code is a bit tricky but it combines multiple
1298 		 * checks into a single check.  The prefix consists of the
1299 		 * prefix plus zeros for the "bits" in the prefix. The index
1300 		 * is the difference between the key and this value.  From
1301 		 * this we can actually derive several pieces of data.
1302 		 *   if (index >= (1ul << bits))
1303 		 *     we have a mismatch in skip bits and failed
1304 		 *   else
1305 		 *     we know the value is cindex
1306 		 *
1307 		 * This check is safe even if bits == KEYLENGTH due to the
1308 		 * fact that we can only allocate a node with 32 bits if a
1309 		 * long is greater than 32 bits.
1310 		 */
1311 		if (index >= (1ul << n->bits))
1312 			break;
1313 
1314 		/* we have found a leaf. Prefixes have already been compared */
1315 		if (IS_LEAF(n))
1316 			goto found;
1317 
1318 		/* only record pn and cindex if we are going to be chopping
1319 		 * bits later.  Otherwise we are just wasting cycles.
1320 		 */
1321 		if (n->slen > n->pos) {
1322 			pn = n;
1323 			cindex = index;
1324 		}
1325 
1326 		n = get_child_rcu(n, index);
1327 		if (unlikely(!n))
1328 			goto backtrace;
1329 	}
1330 
1331 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332 	for (;;) {
1333 		/* record the pointer where our next node pointer is stored */
1334 		struct key_vector __rcu **cptr = n->tnode;
1335 
1336 		/* This test verifies that none of the bits that differ
1337 		 * between the key and the prefix exist in the region of
1338 		 * the lsb and higher in the prefix.
1339 		 */
1340 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341 			goto backtrace;
1342 
1343 		/* exit out and process leaf */
1344 		if (unlikely(IS_LEAF(n)))
1345 			break;
1346 
1347 		/* Don't bother recording parent info.  Since we are in
1348 		 * prefix match mode we will have to come back to wherever
1349 		 * we started this traversal anyway
1350 		 */
1351 
1352 		while ((n = rcu_dereference(*cptr)) == NULL) {
1353 backtrace:
1354 #ifdef CONFIG_IP_FIB_TRIE_STATS
1355 			if (!n)
1356 				this_cpu_inc(stats->null_node_hit);
1357 #endif
1358 			/* If we are at cindex 0 there are no more bits for
1359 			 * us to strip at this level so we must ascend back
1360 			 * up one level to see if there are any more bits to
1361 			 * be stripped there.
1362 			 */
1363 			while (!cindex) {
1364 				t_key pkey = pn->key;
1365 
1366 				/* If we don't have a parent then there is
1367 				 * nothing for us to do as we do not have any
1368 				 * further nodes to parse.
1369 				 */
1370 				if (IS_TRIE(pn))
1371 					return -EAGAIN;
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 				this_cpu_inc(stats->backtrack);
1374 #endif
1375 				/* Get Child's index */
1376 				pn = node_parent_rcu(pn);
1377 				cindex = get_index(pkey, pn);
1378 			}
1379 
1380 			/* strip the least significant bit from the cindex */
1381 			cindex &= cindex - 1;
1382 
1383 			/* grab pointer for next child node */
1384 			cptr = &pn->tnode[cindex];
1385 		}
1386 	}
1387 
1388 found:
1389 	/* this line carries forward the xor from earlier in the function */
1390 	index = key ^ n->key;
1391 
1392 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1393 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394 		struct fib_info *fi = fa->fa_info;
1395 		int nhsel, err;
1396 
1397 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1398 			if (index >= (1ul << fa->fa_slen))
1399 				continue;
1400 		}
1401 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1402 			continue;
1403 		if (fi->fib_dead)
1404 			continue;
1405 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1406 			continue;
1407 		fib_alias_accessed(fa);
1408 		err = fib_props[fa->fa_type].error;
1409 		if (unlikely(err < 0)) {
1410 #ifdef CONFIG_IP_FIB_TRIE_STATS
1411 			this_cpu_inc(stats->semantic_match_passed);
1412 #endif
1413 			return err;
1414 		}
1415 		if (fi->fib_flags & RTNH_F_DEAD)
1416 			continue;
1417 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1418 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1419 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1420 
1421 			if (nh->nh_flags & RTNH_F_DEAD)
1422 				continue;
1423 			if (in_dev &&
1424 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1425 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1426 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1427 				continue;
1428 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1429 				if (flp->flowi4_oif &&
1430 				    flp->flowi4_oif != nh->nh_oif)
1431 					continue;
1432 			}
1433 
1434 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1435 				atomic_inc(&fi->fib_clntref);
1436 
1437 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1438 			res->nh_sel = nhsel;
1439 			res->type = fa->fa_type;
1440 			res->scope = fi->fib_scope;
1441 			res->fi = fi;
1442 			res->table = tb;
1443 			res->fa_head = &n->leaf;
1444 #ifdef CONFIG_IP_FIB_TRIE_STATS
1445 			this_cpu_inc(stats->semantic_match_passed);
1446 #endif
1447 			trace_fib_table_lookup_nh(nh);
1448 
1449 			return err;
1450 		}
1451 	}
1452 #ifdef CONFIG_IP_FIB_TRIE_STATS
1453 	this_cpu_inc(stats->semantic_match_miss);
1454 #endif
1455 	goto backtrace;
1456 }
1457 EXPORT_SYMBOL_GPL(fib_table_lookup);
1458 
1459 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1460 			     struct key_vector *l, struct fib_alias *old)
1461 {
1462 	/* record the location of the previous list_info entry */
1463 	struct hlist_node **pprev = old->fa_list.pprev;
1464 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1465 
1466 	/* remove the fib_alias from the list */
1467 	hlist_del_rcu(&old->fa_list);
1468 
1469 	/* if we emptied the list this leaf will be freed and we can sort
1470 	 * out parent suffix lengths as a part of trie_rebalance
1471 	 */
1472 	if (hlist_empty(&l->leaf)) {
1473 		put_child_root(tp, l->key, NULL);
1474 		node_free(l);
1475 		trie_rebalance(t, tp);
1476 		return;
1477 	}
1478 
1479 	/* only access fa if it is pointing at the last valid hlist_node */
1480 	if (*pprev)
1481 		return;
1482 
1483 	/* update the trie with the latest suffix length */
1484 	l->slen = fa->fa_slen;
1485 	leaf_pull_suffix(tp, l);
1486 }
1487 
1488 /* Caller must hold RTNL. */
1489 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1490 {
1491 	struct trie *t = (struct trie *) tb->tb_data;
1492 	struct fib_alias *fa, *fa_to_delete;
1493 	struct key_vector *l, *tp;
1494 	u8 plen = cfg->fc_dst_len;
1495 	u8 slen = KEYLENGTH - plen;
1496 	u8 tos = cfg->fc_tos;
1497 	u32 key;
1498 
1499 	if (plen > KEYLENGTH)
1500 		return -EINVAL;
1501 
1502 	key = ntohl(cfg->fc_dst);
1503 
1504 	if ((plen < KEYLENGTH) && (key << plen))
1505 		return -EINVAL;
1506 
1507 	l = fib_find_node(t, &tp, key);
1508 	if (!l)
1509 		return -ESRCH;
1510 
1511 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1512 	if (!fa)
1513 		return -ESRCH;
1514 
1515 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1516 
1517 	fa_to_delete = NULL;
1518 	hlist_for_each_entry_from(fa, fa_list) {
1519 		struct fib_info *fi = fa->fa_info;
1520 
1521 		if ((fa->fa_slen != slen) ||
1522 		    (fa->tb_id != tb->tb_id) ||
1523 		    (fa->fa_tos != tos))
1524 			break;
1525 
1526 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1527 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1528 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1529 		    (!cfg->fc_prefsrc ||
1530 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1531 		    (!cfg->fc_protocol ||
1532 		     fi->fib_protocol == cfg->fc_protocol) &&
1533 		    fib_nh_match(cfg, fi) == 0) {
1534 			fa_to_delete = fa;
1535 			break;
1536 		}
1537 	}
1538 
1539 	if (!fa_to_delete)
1540 		return -ESRCH;
1541 
1542 	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1543 			       cfg->fc_type, tb->tb_id);
1544 
1545 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1546 		  &cfg->fc_nlinfo, 0);
1547 
1548 	if (!plen)
1549 		tb->tb_num_default--;
1550 
1551 	fib_remove_alias(t, tp, l, fa_to_delete);
1552 
1553 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1554 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1555 
1556 	fib_release_info(fa_to_delete->fa_info);
1557 	alias_free_mem_rcu(fa_to_delete);
1558 	return 0;
1559 }
1560 
1561 /* Scan for the next leaf starting at the provided key value */
1562 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1563 {
1564 	struct key_vector *pn, *n = *tn;
1565 	unsigned long cindex;
1566 
1567 	/* this loop is meant to try and find the key in the trie */
1568 	do {
1569 		/* record parent and next child index */
1570 		pn = n;
1571 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1572 
1573 		if (cindex >> pn->bits)
1574 			break;
1575 
1576 		/* descend into the next child */
1577 		n = get_child_rcu(pn, cindex++);
1578 		if (!n)
1579 			break;
1580 
1581 		/* guarantee forward progress on the keys */
1582 		if (IS_LEAF(n) && (n->key >= key))
1583 			goto found;
1584 	} while (IS_TNODE(n));
1585 
1586 	/* this loop will search for the next leaf with a greater key */
1587 	while (!IS_TRIE(pn)) {
1588 		/* if we exhausted the parent node we will need to climb */
1589 		if (cindex >= (1ul << pn->bits)) {
1590 			t_key pkey = pn->key;
1591 
1592 			pn = node_parent_rcu(pn);
1593 			cindex = get_index(pkey, pn) + 1;
1594 			continue;
1595 		}
1596 
1597 		/* grab the next available node */
1598 		n = get_child_rcu(pn, cindex++);
1599 		if (!n)
1600 			continue;
1601 
1602 		/* no need to compare keys since we bumped the index */
1603 		if (IS_LEAF(n))
1604 			goto found;
1605 
1606 		/* Rescan start scanning in new node */
1607 		pn = n;
1608 		cindex = 0;
1609 	}
1610 
1611 	*tn = pn;
1612 	return NULL; /* Root of trie */
1613 found:
1614 	/* if we are at the limit for keys just return NULL for the tnode */
1615 	*tn = pn;
1616 	return n;
1617 }
1618 
1619 static void fib_trie_free(struct fib_table *tb)
1620 {
1621 	struct trie *t = (struct trie *)tb->tb_data;
1622 	struct key_vector *pn = t->kv;
1623 	unsigned long cindex = 1;
1624 	struct hlist_node *tmp;
1625 	struct fib_alias *fa;
1626 
1627 	/* walk trie in reverse order and free everything */
1628 	for (;;) {
1629 		struct key_vector *n;
1630 
1631 		if (!(cindex--)) {
1632 			t_key pkey = pn->key;
1633 
1634 			if (IS_TRIE(pn))
1635 				break;
1636 
1637 			n = pn;
1638 			pn = node_parent(pn);
1639 
1640 			/* drop emptied tnode */
1641 			put_child_root(pn, n->key, NULL);
1642 			node_free(n);
1643 
1644 			cindex = get_index(pkey, pn);
1645 
1646 			continue;
1647 		}
1648 
1649 		/* grab the next available node */
1650 		n = get_child(pn, cindex);
1651 		if (!n)
1652 			continue;
1653 
1654 		if (IS_TNODE(n)) {
1655 			/* record pn and cindex for leaf walking */
1656 			pn = n;
1657 			cindex = 1ul << n->bits;
1658 
1659 			continue;
1660 		}
1661 
1662 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1663 			hlist_del_rcu(&fa->fa_list);
1664 			alias_free_mem_rcu(fa);
1665 		}
1666 
1667 		put_child_root(pn, n->key, NULL);
1668 		node_free(n);
1669 	}
1670 
1671 #ifdef CONFIG_IP_FIB_TRIE_STATS
1672 	free_percpu(t->stats);
1673 #endif
1674 	kfree(tb);
1675 }
1676 
1677 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1678 {
1679 	struct trie *ot = (struct trie *)oldtb->tb_data;
1680 	struct key_vector *l, *tp = ot->kv;
1681 	struct fib_table *local_tb;
1682 	struct fib_alias *fa;
1683 	struct trie *lt;
1684 	t_key key = 0;
1685 
1686 	if (oldtb->tb_data == oldtb->__data)
1687 		return oldtb;
1688 
1689 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1690 	if (!local_tb)
1691 		return NULL;
1692 
1693 	lt = (struct trie *)local_tb->tb_data;
1694 
1695 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1696 		struct key_vector *local_l = NULL, *local_tp;
1697 
1698 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1699 			struct fib_alias *new_fa;
1700 
1701 			if (local_tb->tb_id != fa->tb_id)
1702 				continue;
1703 
1704 			/* clone fa for new local table */
1705 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1706 			if (!new_fa)
1707 				goto out;
1708 
1709 			memcpy(new_fa, fa, sizeof(*fa));
1710 
1711 			/* insert clone into table */
1712 			if (!local_l)
1713 				local_l = fib_find_node(lt, &local_tp, l->key);
1714 
1715 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1716 					     NULL, l->key))
1717 				goto out;
1718 		}
1719 
1720 		/* stop loop if key wrapped back to 0 */
1721 		key = l->key + 1;
1722 		if (key < l->key)
1723 			break;
1724 	}
1725 
1726 	return local_tb;
1727 out:
1728 	fib_trie_free(local_tb);
1729 
1730 	return NULL;
1731 }
1732 
1733 /* Caller must hold RTNL */
1734 void fib_table_flush_external(struct fib_table *tb)
1735 {
1736 	struct trie *t = (struct trie *)tb->tb_data;
1737 	struct key_vector *pn = t->kv;
1738 	unsigned long cindex = 1;
1739 	struct hlist_node *tmp;
1740 	struct fib_alias *fa;
1741 
1742 	/* walk trie in reverse order */
1743 	for (;;) {
1744 		unsigned char slen = 0;
1745 		struct key_vector *n;
1746 
1747 		if (!(cindex--)) {
1748 			t_key pkey = pn->key;
1749 
1750 			/* cannot resize the trie vector */
1751 			if (IS_TRIE(pn))
1752 				break;
1753 
1754 			/* resize completed node */
1755 			pn = resize(t, pn);
1756 			cindex = get_index(pkey, pn);
1757 
1758 			continue;
1759 		}
1760 
1761 		/* grab the next available node */
1762 		n = get_child(pn, cindex);
1763 		if (!n)
1764 			continue;
1765 
1766 		if (IS_TNODE(n)) {
1767 			/* record pn and cindex for leaf walking */
1768 			pn = n;
1769 			cindex = 1ul << n->bits;
1770 
1771 			continue;
1772 		}
1773 
1774 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1775 			struct fib_info *fi = fa->fa_info;
1776 
1777 			/* if alias was cloned to local then we just
1778 			 * need to remove the local copy from main
1779 			 */
1780 			if (tb->tb_id != fa->tb_id) {
1781 				hlist_del_rcu(&fa->fa_list);
1782 				alias_free_mem_rcu(fa);
1783 				continue;
1784 			}
1785 
1786 			/* record local slen */
1787 			slen = fa->fa_slen;
1788 
1789 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1790 				continue;
1791 
1792 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1793 					       fi, fa->fa_tos, fa->fa_type,
1794 					       tb->tb_id);
1795 		}
1796 
1797 		/* update leaf slen */
1798 		n->slen = slen;
1799 
1800 		if (hlist_empty(&n->leaf)) {
1801 			put_child_root(pn, n->key, NULL);
1802 			node_free(n);
1803 		}
1804 	}
1805 }
1806 
1807 /* Caller must hold RTNL. */
1808 int fib_table_flush(struct fib_table *tb)
1809 {
1810 	struct trie *t = (struct trie *)tb->tb_data;
1811 	struct key_vector *pn = t->kv;
1812 	unsigned long cindex = 1;
1813 	struct hlist_node *tmp;
1814 	struct fib_alias *fa;
1815 	int found = 0;
1816 
1817 	/* walk trie in reverse order */
1818 	for (;;) {
1819 		unsigned char slen = 0;
1820 		struct key_vector *n;
1821 
1822 		if (!(cindex--)) {
1823 			t_key pkey = pn->key;
1824 
1825 			/* cannot resize the trie vector */
1826 			if (IS_TRIE(pn))
1827 				break;
1828 
1829 			/* resize completed node */
1830 			pn = resize(t, pn);
1831 			cindex = get_index(pkey, pn);
1832 
1833 			continue;
1834 		}
1835 
1836 		/* grab the next available node */
1837 		n = get_child(pn, cindex);
1838 		if (!n)
1839 			continue;
1840 
1841 		if (IS_TNODE(n)) {
1842 			/* record pn and cindex for leaf walking */
1843 			pn = n;
1844 			cindex = 1ul << n->bits;
1845 
1846 			continue;
1847 		}
1848 
1849 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1850 			struct fib_info *fi = fa->fa_info;
1851 
1852 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1853 				slen = fa->fa_slen;
1854 				continue;
1855 			}
1856 
1857 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1858 					       fi, fa->fa_tos, fa->fa_type,
1859 					       tb->tb_id);
1860 			hlist_del_rcu(&fa->fa_list);
1861 			fib_release_info(fa->fa_info);
1862 			alias_free_mem_rcu(fa);
1863 			found++;
1864 		}
1865 
1866 		/* update leaf slen */
1867 		n->slen = slen;
1868 
1869 		if (hlist_empty(&n->leaf)) {
1870 			put_child_root(pn, n->key, NULL);
1871 			node_free(n);
1872 		}
1873 	}
1874 
1875 	pr_debug("trie_flush found=%d\n", found);
1876 	return found;
1877 }
1878 
1879 static void __trie_free_rcu(struct rcu_head *head)
1880 {
1881 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1882 #ifdef CONFIG_IP_FIB_TRIE_STATS
1883 	struct trie *t = (struct trie *)tb->tb_data;
1884 
1885 	if (tb->tb_data == tb->__data)
1886 		free_percpu(t->stats);
1887 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1888 	kfree(tb);
1889 }
1890 
1891 void fib_free_table(struct fib_table *tb)
1892 {
1893 	call_rcu(&tb->rcu, __trie_free_rcu);
1894 }
1895 
1896 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1897 			     struct sk_buff *skb, struct netlink_callback *cb)
1898 {
1899 	__be32 xkey = htonl(l->key);
1900 	struct fib_alias *fa;
1901 	int i, s_i;
1902 
1903 	s_i = cb->args[4];
1904 	i = 0;
1905 
1906 	/* rcu_read_lock is hold by caller */
1907 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1908 		if (i < s_i) {
1909 			i++;
1910 			continue;
1911 		}
1912 
1913 		if (tb->tb_id != fa->tb_id) {
1914 			i++;
1915 			continue;
1916 		}
1917 
1918 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1919 				  cb->nlh->nlmsg_seq,
1920 				  RTM_NEWROUTE,
1921 				  tb->tb_id,
1922 				  fa->fa_type,
1923 				  xkey,
1924 				  KEYLENGTH - fa->fa_slen,
1925 				  fa->fa_tos,
1926 				  fa->fa_info, NLM_F_MULTI) < 0) {
1927 			cb->args[4] = i;
1928 			return -1;
1929 		}
1930 		i++;
1931 	}
1932 
1933 	cb->args[4] = i;
1934 	return skb->len;
1935 }
1936 
1937 /* rcu_read_lock needs to be hold by caller from readside */
1938 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1939 		   struct netlink_callback *cb)
1940 {
1941 	struct trie *t = (struct trie *)tb->tb_data;
1942 	struct key_vector *l, *tp = t->kv;
1943 	/* Dump starting at last key.
1944 	 * Note: 0.0.0.0/0 (ie default) is first key.
1945 	 */
1946 	int count = cb->args[2];
1947 	t_key key = cb->args[3];
1948 
1949 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1950 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951 			cb->args[3] = key;
1952 			cb->args[2] = count;
1953 			return -1;
1954 		}
1955 
1956 		++count;
1957 		key = l->key + 1;
1958 
1959 		memset(&cb->args[4], 0,
1960 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1961 
1962 		/* stop loop if key wrapped back to 0 */
1963 		if (key < l->key)
1964 			break;
1965 	}
1966 
1967 	cb->args[3] = key;
1968 	cb->args[2] = count;
1969 
1970 	return skb->len;
1971 }
1972 
1973 void __init fib_trie_init(void)
1974 {
1975 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1976 					  sizeof(struct fib_alias),
1977 					  0, SLAB_PANIC, NULL);
1978 
1979 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1980 					   LEAF_SIZE,
1981 					   0, SLAB_PANIC, NULL);
1982 }
1983 
1984 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1985 {
1986 	struct fib_table *tb;
1987 	struct trie *t;
1988 	size_t sz = sizeof(*tb);
1989 
1990 	if (!alias)
1991 		sz += sizeof(struct trie);
1992 
1993 	tb = kzalloc(sz, GFP_KERNEL);
1994 	if (!tb)
1995 		return NULL;
1996 
1997 	tb->tb_id = id;
1998 	tb->tb_num_default = 0;
1999 	tb->tb_data = (alias ? alias->__data : tb->__data);
2000 
2001 	if (alias)
2002 		return tb;
2003 
2004 	t = (struct trie *) tb->tb_data;
2005 	t->kv[0].pos = KEYLENGTH;
2006 	t->kv[0].slen = KEYLENGTH;
2007 #ifdef CONFIG_IP_FIB_TRIE_STATS
2008 	t->stats = alloc_percpu(struct trie_use_stats);
2009 	if (!t->stats) {
2010 		kfree(tb);
2011 		tb = NULL;
2012 	}
2013 #endif
2014 
2015 	return tb;
2016 }
2017 
2018 #ifdef CONFIG_PROC_FS
2019 /* Depth first Trie walk iterator */
2020 struct fib_trie_iter {
2021 	struct seq_net_private p;
2022 	struct fib_table *tb;
2023 	struct key_vector *tnode;
2024 	unsigned int index;
2025 	unsigned int depth;
2026 };
2027 
2028 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2029 {
2030 	unsigned long cindex = iter->index;
2031 	struct key_vector *pn = iter->tnode;
2032 	t_key pkey;
2033 
2034 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2035 		 iter->tnode, iter->index, iter->depth);
2036 
2037 	while (!IS_TRIE(pn)) {
2038 		while (cindex < child_length(pn)) {
2039 			struct key_vector *n = get_child_rcu(pn, cindex++);
2040 
2041 			if (!n)
2042 				continue;
2043 
2044 			if (IS_LEAF(n)) {
2045 				iter->tnode = pn;
2046 				iter->index = cindex;
2047 			} else {
2048 				/* push down one level */
2049 				iter->tnode = n;
2050 				iter->index = 0;
2051 				++iter->depth;
2052 			}
2053 
2054 			return n;
2055 		}
2056 
2057 		/* Current node exhausted, pop back up */
2058 		pkey = pn->key;
2059 		pn = node_parent_rcu(pn);
2060 		cindex = get_index(pkey, pn) + 1;
2061 		--iter->depth;
2062 	}
2063 
2064 	/* record root node so further searches know we are done */
2065 	iter->tnode = pn;
2066 	iter->index = 0;
2067 
2068 	return NULL;
2069 }
2070 
2071 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2072 					     struct trie *t)
2073 {
2074 	struct key_vector *n, *pn;
2075 
2076 	if (!t)
2077 		return NULL;
2078 
2079 	pn = t->kv;
2080 	n = rcu_dereference(pn->tnode[0]);
2081 	if (!n)
2082 		return NULL;
2083 
2084 	if (IS_TNODE(n)) {
2085 		iter->tnode = n;
2086 		iter->index = 0;
2087 		iter->depth = 1;
2088 	} else {
2089 		iter->tnode = pn;
2090 		iter->index = 0;
2091 		iter->depth = 0;
2092 	}
2093 
2094 	return n;
2095 }
2096 
2097 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2098 {
2099 	struct key_vector *n;
2100 	struct fib_trie_iter iter;
2101 
2102 	memset(s, 0, sizeof(*s));
2103 
2104 	rcu_read_lock();
2105 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2106 		if (IS_LEAF(n)) {
2107 			struct fib_alias *fa;
2108 
2109 			s->leaves++;
2110 			s->totdepth += iter.depth;
2111 			if (iter.depth > s->maxdepth)
2112 				s->maxdepth = iter.depth;
2113 
2114 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2115 				++s->prefixes;
2116 		} else {
2117 			s->tnodes++;
2118 			if (n->bits < MAX_STAT_DEPTH)
2119 				s->nodesizes[n->bits]++;
2120 			s->nullpointers += tn_info(n)->empty_children;
2121 		}
2122 	}
2123 	rcu_read_unlock();
2124 }
2125 
2126 /*
2127  *	This outputs /proc/net/fib_triestats
2128  */
2129 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2130 {
2131 	unsigned int i, max, pointers, bytes, avdepth;
2132 
2133 	if (stat->leaves)
2134 		avdepth = stat->totdepth*100 / stat->leaves;
2135 	else
2136 		avdepth = 0;
2137 
2138 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2139 		   avdepth / 100, avdepth % 100);
2140 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2141 
2142 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2143 	bytes = LEAF_SIZE * stat->leaves;
2144 
2145 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2146 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2147 
2148 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2149 	bytes += TNODE_SIZE(0) * stat->tnodes;
2150 
2151 	max = MAX_STAT_DEPTH;
2152 	while (max > 0 && stat->nodesizes[max-1] == 0)
2153 		max--;
2154 
2155 	pointers = 0;
2156 	for (i = 1; i < max; i++)
2157 		if (stat->nodesizes[i] != 0) {
2158 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2159 			pointers += (1<<i) * stat->nodesizes[i];
2160 		}
2161 	seq_putc(seq, '\n');
2162 	seq_printf(seq, "\tPointers: %u\n", pointers);
2163 
2164 	bytes += sizeof(struct key_vector *) * pointers;
2165 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2166 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2167 }
2168 
2169 #ifdef CONFIG_IP_FIB_TRIE_STATS
2170 static void trie_show_usage(struct seq_file *seq,
2171 			    const struct trie_use_stats __percpu *stats)
2172 {
2173 	struct trie_use_stats s = { 0 };
2174 	int cpu;
2175 
2176 	/* loop through all of the CPUs and gather up the stats */
2177 	for_each_possible_cpu(cpu) {
2178 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2179 
2180 		s.gets += pcpu->gets;
2181 		s.backtrack += pcpu->backtrack;
2182 		s.semantic_match_passed += pcpu->semantic_match_passed;
2183 		s.semantic_match_miss += pcpu->semantic_match_miss;
2184 		s.null_node_hit += pcpu->null_node_hit;
2185 		s.resize_node_skipped += pcpu->resize_node_skipped;
2186 	}
2187 
2188 	seq_printf(seq, "\nCounters:\n---------\n");
2189 	seq_printf(seq, "gets = %u\n", s.gets);
2190 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2191 	seq_printf(seq, "semantic match passed = %u\n",
2192 		   s.semantic_match_passed);
2193 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2194 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2195 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2196 }
2197 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2198 
2199 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2200 {
2201 	if (tb->tb_id == RT_TABLE_LOCAL)
2202 		seq_puts(seq, "Local:\n");
2203 	else if (tb->tb_id == RT_TABLE_MAIN)
2204 		seq_puts(seq, "Main:\n");
2205 	else
2206 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2207 }
2208 
2209 
2210 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2211 {
2212 	struct net *net = (struct net *)seq->private;
2213 	unsigned int h;
2214 
2215 	seq_printf(seq,
2216 		   "Basic info: size of leaf:"
2217 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2218 		   LEAF_SIZE, TNODE_SIZE(0));
2219 
2220 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2221 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2222 		struct fib_table *tb;
2223 
2224 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2225 			struct trie *t = (struct trie *) tb->tb_data;
2226 			struct trie_stat stat;
2227 
2228 			if (!t)
2229 				continue;
2230 
2231 			fib_table_print(seq, tb);
2232 
2233 			trie_collect_stats(t, &stat);
2234 			trie_show_stats(seq, &stat);
2235 #ifdef CONFIG_IP_FIB_TRIE_STATS
2236 			trie_show_usage(seq, t->stats);
2237 #endif
2238 		}
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2245 {
2246 	return single_open_net(inode, file, fib_triestat_seq_show);
2247 }
2248 
2249 static const struct file_operations fib_triestat_fops = {
2250 	.owner	= THIS_MODULE,
2251 	.open	= fib_triestat_seq_open,
2252 	.read	= seq_read,
2253 	.llseek	= seq_lseek,
2254 	.release = single_release_net,
2255 };
2256 
2257 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2258 {
2259 	struct fib_trie_iter *iter = seq->private;
2260 	struct net *net = seq_file_net(seq);
2261 	loff_t idx = 0;
2262 	unsigned int h;
2263 
2264 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2265 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2266 		struct fib_table *tb;
2267 
2268 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2269 			struct key_vector *n;
2270 
2271 			for (n = fib_trie_get_first(iter,
2272 						    (struct trie *) tb->tb_data);
2273 			     n; n = fib_trie_get_next(iter))
2274 				if (pos == idx++) {
2275 					iter->tb = tb;
2276 					return n;
2277 				}
2278 		}
2279 	}
2280 
2281 	return NULL;
2282 }
2283 
2284 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2285 	__acquires(RCU)
2286 {
2287 	rcu_read_lock();
2288 	return fib_trie_get_idx(seq, *pos);
2289 }
2290 
2291 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2292 {
2293 	struct fib_trie_iter *iter = seq->private;
2294 	struct net *net = seq_file_net(seq);
2295 	struct fib_table *tb = iter->tb;
2296 	struct hlist_node *tb_node;
2297 	unsigned int h;
2298 	struct key_vector *n;
2299 
2300 	++*pos;
2301 	/* next node in same table */
2302 	n = fib_trie_get_next(iter);
2303 	if (n)
2304 		return n;
2305 
2306 	/* walk rest of this hash chain */
2307 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2308 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2309 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2310 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2311 		if (n)
2312 			goto found;
2313 	}
2314 
2315 	/* new hash chain */
2316 	while (++h < FIB_TABLE_HASHSZ) {
2317 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2318 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2319 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320 			if (n)
2321 				goto found;
2322 		}
2323 	}
2324 	return NULL;
2325 
2326 found:
2327 	iter->tb = tb;
2328 	return n;
2329 }
2330 
2331 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2332 	__releases(RCU)
2333 {
2334 	rcu_read_unlock();
2335 }
2336 
2337 static void seq_indent(struct seq_file *seq, int n)
2338 {
2339 	while (n-- > 0)
2340 		seq_puts(seq, "   ");
2341 }
2342 
2343 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2344 {
2345 	switch (s) {
2346 	case RT_SCOPE_UNIVERSE: return "universe";
2347 	case RT_SCOPE_SITE:	return "site";
2348 	case RT_SCOPE_LINK:	return "link";
2349 	case RT_SCOPE_HOST:	return "host";
2350 	case RT_SCOPE_NOWHERE:	return "nowhere";
2351 	default:
2352 		snprintf(buf, len, "scope=%d", s);
2353 		return buf;
2354 	}
2355 }
2356 
2357 static const char *const rtn_type_names[__RTN_MAX] = {
2358 	[RTN_UNSPEC] = "UNSPEC",
2359 	[RTN_UNICAST] = "UNICAST",
2360 	[RTN_LOCAL] = "LOCAL",
2361 	[RTN_BROADCAST] = "BROADCAST",
2362 	[RTN_ANYCAST] = "ANYCAST",
2363 	[RTN_MULTICAST] = "MULTICAST",
2364 	[RTN_BLACKHOLE] = "BLACKHOLE",
2365 	[RTN_UNREACHABLE] = "UNREACHABLE",
2366 	[RTN_PROHIBIT] = "PROHIBIT",
2367 	[RTN_THROW] = "THROW",
2368 	[RTN_NAT] = "NAT",
2369 	[RTN_XRESOLVE] = "XRESOLVE",
2370 };
2371 
2372 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2373 {
2374 	if (t < __RTN_MAX && rtn_type_names[t])
2375 		return rtn_type_names[t];
2376 	snprintf(buf, len, "type %u", t);
2377 	return buf;
2378 }
2379 
2380 /* Pretty print the trie */
2381 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2382 {
2383 	const struct fib_trie_iter *iter = seq->private;
2384 	struct key_vector *n = v;
2385 
2386 	if (IS_TRIE(node_parent_rcu(n)))
2387 		fib_table_print(seq, iter->tb);
2388 
2389 	if (IS_TNODE(n)) {
2390 		__be32 prf = htonl(n->key);
2391 
2392 		seq_indent(seq, iter->depth-1);
2393 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2394 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2395 			   tn_info(n)->full_children,
2396 			   tn_info(n)->empty_children);
2397 	} else {
2398 		__be32 val = htonl(n->key);
2399 		struct fib_alias *fa;
2400 
2401 		seq_indent(seq, iter->depth);
2402 		seq_printf(seq, "  |-- %pI4\n", &val);
2403 
2404 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2405 			char buf1[32], buf2[32];
2406 
2407 			seq_indent(seq, iter->depth + 1);
2408 			seq_printf(seq, "  /%zu %s %s",
2409 				   KEYLENGTH - fa->fa_slen,
2410 				   rtn_scope(buf1, sizeof(buf1),
2411 					     fa->fa_info->fib_scope),
2412 				   rtn_type(buf2, sizeof(buf2),
2413 					    fa->fa_type));
2414 			if (fa->fa_tos)
2415 				seq_printf(seq, " tos=%d", fa->fa_tos);
2416 			seq_putc(seq, '\n');
2417 		}
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 static const struct seq_operations fib_trie_seq_ops = {
2424 	.start  = fib_trie_seq_start,
2425 	.next   = fib_trie_seq_next,
2426 	.stop   = fib_trie_seq_stop,
2427 	.show   = fib_trie_seq_show,
2428 };
2429 
2430 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2431 {
2432 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2433 			    sizeof(struct fib_trie_iter));
2434 }
2435 
2436 static const struct file_operations fib_trie_fops = {
2437 	.owner  = THIS_MODULE,
2438 	.open   = fib_trie_seq_open,
2439 	.read   = seq_read,
2440 	.llseek = seq_lseek,
2441 	.release = seq_release_net,
2442 };
2443 
2444 struct fib_route_iter {
2445 	struct seq_net_private p;
2446 	struct fib_table *main_tb;
2447 	struct key_vector *tnode;
2448 	loff_t	pos;
2449 	t_key	key;
2450 };
2451 
2452 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2453 					    loff_t pos)
2454 {
2455 	struct fib_table *tb = iter->main_tb;
2456 	struct key_vector *l, **tp = &iter->tnode;
2457 	struct trie *t;
2458 	t_key key;
2459 
2460 	/* use cache location of next-to-find key */
2461 	if (iter->pos > 0 && pos >= iter->pos) {
2462 		pos -= iter->pos;
2463 		key = iter->key;
2464 	} else {
2465 		t = (struct trie *)tb->tb_data;
2466 		iter->tnode = t->kv;
2467 		iter->pos = 0;
2468 		key = 0;
2469 	}
2470 
2471 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2472 		key = l->key + 1;
2473 		iter->pos++;
2474 
2475 		if (--pos <= 0)
2476 			break;
2477 
2478 		l = NULL;
2479 
2480 		/* handle unlikely case of a key wrap */
2481 		if (!key)
2482 			break;
2483 	}
2484 
2485 	if (l)
2486 		iter->key = key;	/* remember it */
2487 	else
2488 		iter->pos = 0;		/* forget it */
2489 
2490 	return l;
2491 }
2492 
2493 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2494 	__acquires(RCU)
2495 {
2496 	struct fib_route_iter *iter = seq->private;
2497 	struct fib_table *tb;
2498 	struct trie *t;
2499 
2500 	rcu_read_lock();
2501 
2502 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503 	if (!tb)
2504 		return NULL;
2505 
2506 	iter->main_tb = tb;
2507 
2508 	if (*pos != 0)
2509 		return fib_route_get_idx(iter, *pos);
2510 
2511 	t = (struct trie *)tb->tb_data;
2512 	iter->tnode = t->kv;
2513 	iter->pos = 0;
2514 	iter->key = 0;
2515 
2516 	return SEQ_START_TOKEN;
2517 }
2518 
2519 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520 {
2521 	struct fib_route_iter *iter = seq->private;
2522 	struct key_vector *l = NULL;
2523 	t_key key = iter->key;
2524 
2525 	++*pos;
2526 
2527 	/* only allow key of 0 for start of sequence */
2528 	if ((v == SEQ_START_TOKEN) || key)
2529 		l = leaf_walk_rcu(&iter->tnode, key);
2530 
2531 	if (l) {
2532 		iter->key = l->key + 1;
2533 		iter->pos++;
2534 	} else {
2535 		iter->pos = 0;
2536 	}
2537 
2538 	return l;
2539 }
2540 
2541 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2542 	__releases(RCU)
2543 {
2544 	rcu_read_unlock();
2545 }
2546 
2547 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2548 {
2549 	unsigned int flags = 0;
2550 
2551 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2552 		flags = RTF_REJECT;
2553 	if (fi && fi->fib_nh->nh_gw)
2554 		flags |= RTF_GATEWAY;
2555 	if (mask == htonl(0xFFFFFFFF))
2556 		flags |= RTF_HOST;
2557 	flags |= RTF_UP;
2558 	return flags;
2559 }
2560 
2561 /*
2562  *	This outputs /proc/net/route.
2563  *	The format of the file is not supposed to be changed
2564  *	and needs to be same as fib_hash output to avoid breaking
2565  *	legacy utilities
2566  */
2567 static int fib_route_seq_show(struct seq_file *seq, void *v)
2568 {
2569 	struct fib_route_iter *iter = seq->private;
2570 	struct fib_table *tb = iter->main_tb;
2571 	struct fib_alias *fa;
2572 	struct key_vector *l = v;
2573 	__be32 prefix;
2574 
2575 	if (v == SEQ_START_TOKEN) {
2576 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2577 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2578 			   "\tWindow\tIRTT");
2579 		return 0;
2580 	}
2581 
2582 	prefix = htonl(l->key);
2583 
2584 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2585 		const struct fib_info *fi = fa->fa_info;
2586 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2587 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2588 
2589 		if ((fa->fa_type == RTN_BROADCAST) ||
2590 		    (fa->fa_type == RTN_MULTICAST))
2591 			continue;
2592 
2593 		if (fa->tb_id != tb->tb_id)
2594 			continue;
2595 
2596 		seq_setwidth(seq, 127);
2597 
2598 		if (fi)
2599 			seq_printf(seq,
2600 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2601 				   "%d\t%08X\t%d\t%u\t%u",
2602 				   fi->fib_dev ? fi->fib_dev->name : "*",
2603 				   prefix,
2604 				   fi->fib_nh->nh_gw, flags, 0, 0,
2605 				   fi->fib_priority,
2606 				   mask,
2607 				   (fi->fib_advmss ?
2608 				    fi->fib_advmss + 40 : 0),
2609 				   fi->fib_window,
2610 				   fi->fib_rtt >> 3);
2611 		else
2612 			seq_printf(seq,
2613 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2614 				   "%d\t%08X\t%d\t%u\t%u",
2615 				   prefix, 0, flags, 0, 0, 0,
2616 				   mask, 0, 0, 0);
2617 
2618 		seq_pad(seq, '\n');
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static const struct seq_operations fib_route_seq_ops = {
2625 	.start  = fib_route_seq_start,
2626 	.next   = fib_route_seq_next,
2627 	.stop   = fib_route_seq_stop,
2628 	.show   = fib_route_seq_show,
2629 };
2630 
2631 static int fib_route_seq_open(struct inode *inode, struct file *file)
2632 {
2633 	return seq_open_net(inode, file, &fib_route_seq_ops,
2634 			    sizeof(struct fib_route_iter));
2635 }
2636 
2637 static const struct file_operations fib_route_fops = {
2638 	.owner  = THIS_MODULE,
2639 	.open   = fib_route_seq_open,
2640 	.read   = seq_read,
2641 	.llseek = seq_lseek,
2642 	.release = seq_release_net,
2643 };
2644 
2645 int __net_init fib_proc_init(struct net *net)
2646 {
2647 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2648 		goto out1;
2649 
2650 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2651 			 &fib_triestat_fops))
2652 		goto out2;
2653 
2654 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2655 		goto out3;
2656 
2657 	return 0;
2658 
2659 out3:
2660 	remove_proc_entry("fib_triestat", net->proc_net);
2661 out2:
2662 	remove_proc_entry("fib_trie", net->proc_net);
2663 out1:
2664 	return -ENOMEM;
2665 }
2666 
2667 void __net_exit fib_proc_exit(struct net *net)
2668 {
2669 	remove_proc_entry("fib_trie", net->proc_net);
2670 	remove_proc_entry("fib_triestat", net->proc_net);
2671 	remove_proc_entry("route", net->proc_net);
2672 }
2673 
2674 #endif /* CONFIG_PROC_FS */
2675