1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/skbuff.h> 56 #include <linux/netlink.h> 57 #include <linux/init.h> 58 #include <linux/list.h> 59 #include <linux/slab.h> 60 #include <linux/export.h> 61 #include <linux/vmalloc.h> 62 #include <linux/notifier.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <net/route.h> 67 #include <net/tcp.h> 68 #include <net/sock.h> 69 #include <net/ip_fib.h> 70 #include <net/fib_notifier.h> 71 #include <trace/events/fib.h> 72 #include "fib_lookup.h" 73 74 static int call_fib_entry_notifier(struct notifier_block *nb, 75 enum fib_event_type event_type, u32 dst, 76 int dst_len, struct fib_alias *fa, 77 struct netlink_ext_ack *extack) 78 { 79 struct fib_entry_notifier_info info = { 80 .info.extack = extack, 81 .dst = dst, 82 .dst_len = dst_len, 83 .fi = fa->fa_info, 84 .tos = fa->fa_tos, 85 .type = fa->fa_type, 86 .tb_id = fa->tb_id, 87 }; 88 return call_fib4_notifier(nb, event_type, &info.info); 89 } 90 91 static int call_fib_entry_notifiers(struct net *net, 92 enum fib_event_type event_type, u32 dst, 93 int dst_len, struct fib_alias *fa, 94 struct netlink_ext_ack *extack) 95 { 96 struct fib_entry_notifier_info info = { 97 .info.extack = extack, 98 .dst = dst, 99 .dst_len = dst_len, 100 .fi = fa->fa_info, 101 .tos = fa->fa_tos, 102 .type = fa->fa_type, 103 .tb_id = fa->tb_id, 104 }; 105 return call_fib4_notifiers(net, event_type, &info.info); 106 } 107 108 #define MAX_STAT_DEPTH 32 109 110 #define KEYLENGTH (8*sizeof(t_key)) 111 #define KEY_MAX ((t_key)~0) 112 113 typedef unsigned int t_key; 114 115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 116 #define IS_TNODE(n) ((n)->bits) 117 #define IS_LEAF(n) (!(n)->bits) 118 119 struct key_vector { 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char slen; 124 union { 125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 126 struct hlist_head leaf; 127 /* This array is valid if (pos | bits) > 0 (TNODE) */ 128 struct key_vector __rcu *tnode[0]; 129 }; 130 }; 131 132 struct tnode { 133 struct rcu_head rcu; 134 t_key empty_children; /* KEYLENGTH bits needed */ 135 t_key full_children; /* KEYLENGTH bits needed */ 136 struct key_vector __rcu *parent; 137 struct key_vector kv[1]; 138 #define tn_bits kv[0].bits 139 }; 140 141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 142 #define LEAF_SIZE TNODE_SIZE(1) 143 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats { 146 unsigned int gets; 147 unsigned int backtrack; 148 unsigned int semantic_match_passed; 149 unsigned int semantic_match_miss; 150 unsigned int null_node_hit; 151 unsigned int resize_node_skipped; 152 }; 153 #endif 154 155 struct trie_stat { 156 unsigned int totdepth; 157 unsigned int maxdepth; 158 unsigned int tnodes; 159 unsigned int leaves; 160 unsigned int nullpointers; 161 unsigned int prefixes; 162 unsigned int nodesizes[MAX_STAT_DEPTH]; 163 }; 164 165 struct trie { 166 struct key_vector kv[1]; 167 #ifdef CONFIG_IP_FIB_TRIE_STATS 168 struct trie_use_stats __percpu *stats; 169 #endif 170 }; 171 172 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 173 static unsigned int tnode_free_size; 174 175 /* 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 177 * especially useful before resizing the root node with PREEMPT_NONE configs; 178 * the value was obtained experimentally, aiming to avoid visible slowdown. 179 */ 180 unsigned int sysctl_fib_sync_mem = 512 * 1024; 181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 183 184 static struct kmem_cache *fn_alias_kmem __ro_after_init; 185 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 186 187 static inline struct tnode *tn_info(struct key_vector *kv) 188 { 189 return container_of(kv, struct tnode, kv[0]); 190 } 191 192 /* caller must hold RTNL */ 193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 195 196 /* caller must hold RCU read lock or RTNL */ 197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 199 200 /* wrapper for rcu_assign_pointer */ 201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 202 { 203 if (n) 204 rcu_assign_pointer(tn_info(n)->parent, tp); 205 } 206 207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 208 209 /* This provides us with the number of children in this node, in the case of a 210 * leaf this will return 0 meaning none of the children are accessible. 211 */ 212 static inline unsigned long child_length(const struct key_vector *tn) 213 { 214 return (1ul << tn->bits) & ~(1ul); 215 } 216 217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 218 219 static inline unsigned long get_index(t_key key, struct key_vector *kv) 220 { 221 unsigned long index = key ^ kv->key; 222 223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 224 return 0; 225 226 return index >> kv->pos; 227 } 228 229 /* To understand this stuff, an understanding of keys and all their bits is 230 * necessary. Every node in the trie has a key associated with it, but not 231 * all of the bits in that key are significant. 232 * 233 * Consider a node 'n' and its parent 'tp'. 234 * 235 * If n is a leaf, every bit in its key is significant. Its presence is 236 * necessitated by path compression, since during a tree traversal (when 237 * searching for a leaf - unless we are doing an insertion) we will completely 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 239 * a potentially successful search, that we have indeed been walking the 240 * correct key path. 241 * 242 * Note that we can never "miss" the correct key in the tree if present by 243 * following the wrong path. Path compression ensures that segments of the key 244 * that are the same for all keys with a given prefix are skipped, but the 245 * skipped part *is* identical for each node in the subtrie below the skipped 246 * bit! trie_insert() in this implementation takes care of that. 247 * 248 * if n is an internal node - a 'tnode' here, the various parts of its key 249 * have many different meanings. 250 * 251 * Example: 252 * _________________________________________________________________ 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 254 * ----------------------------------------------------------------- 255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 256 * 257 * _________________________________________________________________ 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 259 * ----------------------------------------------------------------- 260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 * 262 * tp->pos = 22 263 * tp->bits = 3 264 * n->pos = 13 265 * n->bits = 4 266 * 267 * First, let's just ignore the bits that come before the parent tp, that is 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 269 * point we do not use them for anything. 270 * 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 272 * index into the parent's child array. That is, they will be used to find 273 * 'n' among tp's children. 274 * 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 276 * for the node n. 277 * 278 * All the bits we have seen so far are significant to the node n. The rest 279 * of the bits are really not needed or indeed known in n->key. 280 * 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 282 * n's child array, and will of course be different for each child. 283 * 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 285 * at this point. 286 */ 287 288 static const int halve_threshold = 25; 289 static const int inflate_threshold = 50; 290 static const int halve_threshold_root = 15; 291 static const int inflate_threshold_root = 30; 292 293 static void __alias_free_mem(struct rcu_head *head) 294 { 295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 296 kmem_cache_free(fn_alias_kmem, fa); 297 } 298 299 static inline void alias_free_mem_rcu(struct fib_alias *fa) 300 { 301 call_rcu(&fa->rcu, __alias_free_mem); 302 } 303 304 #define TNODE_VMALLOC_MAX \ 305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 306 307 static void __node_free_rcu(struct rcu_head *head) 308 { 309 struct tnode *n = container_of(head, struct tnode, rcu); 310 311 if (!n->tn_bits) 312 kmem_cache_free(trie_leaf_kmem, n); 313 else 314 kvfree(n); 315 } 316 317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 318 319 static struct tnode *tnode_alloc(int bits) 320 { 321 size_t size; 322 323 /* verify bits is within bounds */ 324 if (bits > TNODE_VMALLOC_MAX) 325 return NULL; 326 327 /* determine size and verify it is non-zero and didn't overflow */ 328 size = TNODE_SIZE(1ul << bits); 329 330 if (size <= PAGE_SIZE) 331 return kzalloc(size, GFP_KERNEL); 332 else 333 return vzalloc(size); 334 } 335 336 static inline void empty_child_inc(struct key_vector *n) 337 { 338 tn_info(n)->empty_children++; 339 340 if (!tn_info(n)->empty_children) 341 tn_info(n)->full_children++; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 if (!tn_info(n)->empty_children) 347 tn_info(n)->full_children--; 348 349 tn_info(n)->empty_children--; 350 } 351 352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 353 { 354 struct key_vector *l; 355 struct tnode *kv; 356 357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 358 if (!kv) 359 return NULL; 360 361 /* initialize key vector */ 362 l = kv->kv; 363 l->key = key; 364 l->pos = 0; 365 l->bits = 0; 366 l->slen = fa->fa_slen; 367 368 /* link leaf to fib alias */ 369 INIT_HLIST_HEAD(&l->leaf); 370 hlist_add_head(&fa->fa_list, &l->leaf); 371 372 return l; 373 } 374 375 static struct key_vector *tnode_new(t_key key, int pos, int bits) 376 { 377 unsigned int shift = pos + bits; 378 struct key_vector *tn; 379 struct tnode *tnode; 380 381 /* verify bits and pos their msb bits clear and values are valid */ 382 BUG_ON(!bits || (shift > KEYLENGTH)); 383 384 tnode = tnode_alloc(bits); 385 if (!tnode) 386 return NULL; 387 388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 389 sizeof(struct key_vector *) << bits); 390 391 if (bits == KEYLENGTH) 392 tnode->full_children = 1; 393 else 394 tnode->empty_children = 1ul << bits; 395 396 tn = tnode->kv; 397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 398 tn->pos = pos; 399 tn->bits = bits; 400 tn->slen = pos; 401 402 return tn; 403 } 404 405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 406 * and no bits are skipped. See discussion in dyntree paper p. 6 407 */ 408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 409 { 410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 411 } 412 413 /* Add a child at position i overwriting the old value. 414 * Update the value of full_children and empty_children. 415 */ 416 static void put_child(struct key_vector *tn, unsigned long i, 417 struct key_vector *n) 418 { 419 struct key_vector *chi = get_child(tn, i); 420 int isfull, wasfull; 421 422 BUG_ON(i >= child_length(tn)); 423 424 /* update emptyChildren, overflow into fullChildren */ 425 if (!n && chi) 426 empty_child_inc(tn); 427 if (n && !chi) 428 empty_child_dec(tn); 429 430 /* update fullChildren */ 431 wasfull = tnode_full(tn, chi); 432 isfull = tnode_full(tn, n); 433 434 if (wasfull && !isfull) 435 tn_info(tn)->full_children--; 436 else if (!wasfull && isfull) 437 tn_info(tn)->full_children++; 438 439 if (n && (tn->slen < n->slen)) 440 tn->slen = n->slen; 441 442 rcu_assign_pointer(tn->tnode[i], n); 443 } 444 445 static void update_children(struct key_vector *tn) 446 { 447 unsigned long i; 448 449 /* update all of the child parent pointers */ 450 for (i = child_length(tn); i;) { 451 struct key_vector *inode = get_child(tn, --i); 452 453 if (!inode) 454 continue; 455 456 /* Either update the children of a tnode that 457 * already belongs to us or update the child 458 * to point to ourselves. 459 */ 460 if (node_parent(inode) == tn) 461 update_children(inode); 462 else 463 node_set_parent(inode, tn); 464 } 465 } 466 467 static inline void put_child_root(struct key_vector *tp, t_key key, 468 struct key_vector *n) 469 { 470 if (IS_TRIE(tp)) 471 rcu_assign_pointer(tp->tnode[0], n); 472 else 473 put_child(tp, get_index(key, tp), n); 474 } 475 476 static inline void tnode_free_init(struct key_vector *tn) 477 { 478 tn_info(tn)->rcu.next = NULL; 479 } 480 481 static inline void tnode_free_append(struct key_vector *tn, 482 struct key_vector *n) 483 { 484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 485 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 486 } 487 488 static void tnode_free(struct key_vector *tn) 489 { 490 struct callback_head *head = &tn_info(tn)->rcu; 491 492 while (head) { 493 head = head->next; 494 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 495 node_free(tn); 496 497 tn = container_of(head, struct tnode, rcu)->kv; 498 } 499 500 if (tnode_free_size >= sysctl_fib_sync_mem) { 501 tnode_free_size = 0; 502 synchronize_rcu(); 503 } 504 } 505 506 static struct key_vector *replace(struct trie *t, 507 struct key_vector *oldtnode, 508 struct key_vector *tn) 509 { 510 struct key_vector *tp = node_parent(oldtnode); 511 unsigned long i; 512 513 /* setup the parent pointer out of and back into this node */ 514 NODE_INIT_PARENT(tn, tp); 515 put_child_root(tp, tn->key, tn); 516 517 /* update all of the child parent pointers */ 518 update_children(tn); 519 520 /* all pointers should be clean so we are done */ 521 tnode_free(oldtnode); 522 523 /* resize children now that oldtnode is freed */ 524 for (i = child_length(tn); i;) { 525 struct key_vector *inode = get_child(tn, --i); 526 527 /* resize child node */ 528 if (tnode_full(tn, inode)) 529 tn = resize(t, inode); 530 } 531 532 return tp; 533 } 534 535 static struct key_vector *inflate(struct trie *t, 536 struct key_vector *oldtnode) 537 { 538 struct key_vector *tn; 539 unsigned long i; 540 t_key m; 541 542 pr_debug("In inflate\n"); 543 544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 545 if (!tn) 546 goto notnode; 547 548 /* prepare oldtnode to be freed */ 549 tnode_free_init(oldtnode); 550 551 /* Assemble all of the pointers in our cluster, in this case that 552 * represents all of the pointers out of our allocated nodes that 553 * point to existing tnodes and the links between our allocated 554 * nodes. 555 */ 556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 557 struct key_vector *inode = get_child(oldtnode, --i); 558 struct key_vector *node0, *node1; 559 unsigned long j, k; 560 561 /* An empty child */ 562 if (!inode) 563 continue; 564 565 /* A leaf or an internal node with skipped bits */ 566 if (!tnode_full(oldtnode, inode)) { 567 put_child(tn, get_index(inode->key, tn), inode); 568 continue; 569 } 570 571 /* drop the node in the old tnode free list */ 572 tnode_free_append(oldtnode, inode); 573 574 /* An internal node with two children */ 575 if (inode->bits == 1) { 576 put_child(tn, 2 * i + 1, get_child(inode, 1)); 577 put_child(tn, 2 * i, get_child(inode, 0)); 578 continue; 579 } 580 581 /* We will replace this node 'inode' with two new 582 * ones, 'node0' and 'node1', each with half of the 583 * original children. The two new nodes will have 584 * a position one bit further down the key and this 585 * means that the "significant" part of their keys 586 * (see the discussion near the top of this file) 587 * will differ by one bit, which will be "0" in 588 * node0's key and "1" in node1's key. Since we are 589 * moving the key position by one step, the bit that 590 * we are moving away from - the bit at position 591 * (tn->pos) - is the one that will differ between 592 * node0 and node1. So... we synthesize that bit in the 593 * two new keys. 594 */ 595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 596 if (!node1) 597 goto nomem; 598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 599 600 tnode_free_append(tn, node1); 601 if (!node0) 602 goto nomem; 603 tnode_free_append(tn, node0); 604 605 /* populate child pointers in new nodes */ 606 for (k = child_length(inode), j = k / 2; j;) { 607 put_child(node1, --j, get_child(inode, --k)); 608 put_child(node0, j, get_child(inode, j)); 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 } 612 613 /* link new nodes to parent */ 614 NODE_INIT_PARENT(node1, tn); 615 NODE_INIT_PARENT(node0, tn); 616 617 /* link parent to nodes */ 618 put_child(tn, 2 * i + 1, node1); 619 put_child(tn, 2 * i, node0); 620 } 621 622 /* setup the parent pointers into and out of this node */ 623 return replace(t, oldtnode, tn); 624 nomem: 625 /* all pointers should be clean so we are done */ 626 tnode_free(tn); 627 notnode: 628 return NULL; 629 } 630 631 static struct key_vector *halve(struct trie *t, 632 struct key_vector *oldtnode) 633 { 634 struct key_vector *tn; 635 unsigned long i; 636 637 pr_debug("In halve\n"); 638 639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 640 if (!tn) 641 goto notnode; 642 643 /* prepare oldtnode to be freed */ 644 tnode_free_init(oldtnode); 645 646 /* Assemble all of the pointers in our cluster, in this case that 647 * represents all of the pointers out of our allocated nodes that 648 * point to existing tnodes and the links between our allocated 649 * nodes. 650 */ 651 for (i = child_length(oldtnode); i;) { 652 struct key_vector *node1 = get_child(oldtnode, --i); 653 struct key_vector *node0 = get_child(oldtnode, --i); 654 struct key_vector *inode; 655 656 /* At least one of the children is empty */ 657 if (!node1 || !node0) { 658 put_child(tn, i / 2, node1 ? : node0); 659 continue; 660 } 661 662 /* Two nonempty children */ 663 inode = tnode_new(node0->key, oldtnode->pos, 1); 664 if (!inode) 665 goto nomem; 666 tnode_free_append(tn, inode); 667 668 /* initialize pointers out of node */ 669 put_child(inode, 1, node1); 670 put_child(inode, 0, node0); 671 NODE_INIT_PARENT(inode, tn); 672 673 /* link parent to node */ 674 put_child(tn, i / 2, inode); 675 } 676 677 /* setup the parent pointers into and out of this node */ 678 return replace(t, oldtnode, tn); 679 nomem: 680 /* all pointers should be clean so we are done */ 681 tnode_free(tn); 682 notnode: 683 return NULL; 684 } 685 686 static struct key_vector *collapse(struct trie *t, 687 struct key_vector *oldtnode) 688 { 689 struct key_vector *n, *tp; 690 unsigned long i; 691 692 /* scan the tnode looking for that one child that might still exist */ 693 for (n = NULL, i = child_length(oldtnode); !n && i;) 694 n = get_child(oldtnode, --i); 695 696 /* compress one level */ 697 tp = node_parent(oldtnode); 698 put_child_root(tp, oldtnode->key, n); 699 node_set_parent(n, tp); 700 701 /* drop dead node */ 702 node_free(oldtnode); 703 704 return tp; 705 } 706 707 static unsigned char update_suffix(struct key_vector *tn) 708 { 709 unsigned char slen = tn->pos; 710 unsigned long stride, i; 711 unsigned char slen_max; 712 713 /* only vector 0 can have a suffix length greater than or equal to 714 * tn->pos + tn->bits, the second highest node will have a suffix 715 * length at most of tn->pos + tn->bits - 1 716 */ 717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 718 719 /* search though the list of children looking for nodes that might 720 * have a suffix greater than the one we currently have. This is 721 * why we start with a stride of 2 since a stride of 1 would 722 * represent the nodes with suffix length equal to tn->pos 723 */ 724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 725 struct key_vector *n = get_child(tn, i); 726 727 if (!n || (n->slen <= slen)) 728 continue; 729 730 /* update stride and slen based on new value */ 731 stride <<= (n->slen - slen); 732 slen = n->slen; 733 i &= ~(stride - 1); 734 735 /* stop searching if we have hit the maximum possible value */ 736 if (slen >= slen_max) 737 break; 738 } 739 740 tn->slen = slen; 741 742 return slen; 743 } 744 745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia 747 * Telecommunications, page 6: 748 * "A node is doubled if the ratio of non-empty children to all 749 * children in the *doubled* node is at least 'high'." 750 * 751 * 'high' in this instance is the variable 'inflate_threshold'. It 752 * is expressed as a percentage, so we multiply it with 753 * child_length() and instead of multiplying by 2 (since the 754 * child array will be doubled by inflate()) and multiplying 755 * the left-hand side by 100 (to handle the percentage thing) we 756 * multiply the left-hand side by 50. 757 * 758 * The left-hand side may look a bit weird: child_length(tn) 759 * - tn->empty_children is of course the number of non-null children 760 * in the current node. tn->full_children is the number of "full" 761 * children, that is non-null tnodes with a skip value of 0. 762 * All of those will be doubled in the resulting inflated tnode, so 763 * we just count them one extra time here. 764 * 765 * A clearer way to write this would be: 766 * 767 * to_be_doubled = tn->full_children; 768 * not_to_be_doubled = child_length(tn) - tn->empty_children - 769 * tn->full_children; 770 * 771 * new_child_length = child_length(tn) * 2; 772 * 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 774 * new_child_length; 775 * if (new_fill_factor >= inflate_threshold) 776 * 777 * ...and so on, tho it would mess up the while () loop. 778 * 779 * anyway, 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 781 * inflate_threshold 782 * 783 * avoid a division: 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 785 * inflate_threshold * new_child_length 786 * 787 * expand not_to_be_doubled and to_be_doubled, and shorten: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= inflate_threshold * new_child_length 790 * 791 * expand new_child_length: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= 794 * inflate_threshold * child_length(tn) * 2 795 * 796 * shorten again: 797 * 50 * (tn->full_children + child_length(tn) - 798 * tn->empty_children) >= inflate_threshold * 799 * child_length(tn) 800 * 801 */ 802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 803 { 804 unsigned long used = child_length(tn); 805 unsigned long threshold = used; 806 807 /* Keep root node larger */ 808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 809 used -= tn_info(tn)->empty_children; 810 used += tn_info(tn)->full_children; 811 812 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 813 814 return (used > 1) && tn->pos && ((50 * used) >= threshold); 815 } 816 817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 818 { 819 unsigned long used = child_length(tn); 820 unsigned long threshold = used; 821 822 /* Keep root node larger */ 823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 824 used -= tn_info(tn)->empty_children; 825 826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 827 828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 829 } 830 831 static inline bool should_collapse(struct key_vector *tn) 832 { 833 unsigned long used = child_length(tn); 834 835 used -= tn_info(tn)->empty_children; 836 837 /* account for bits == KEYLENGTH case */ 838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 839 used -= KEY_MAX; 840 841 /* One child or none, time to drop us from the trie */ 842 return used < 2; 843 } 844 845 #define MAX_WORK 10 846 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 847 { 848 #ifdef CONFIG_IP_FIB_TRIE_STATS 849 struct trie_use_stats __percpu *stats = t->stats; 850 #endif 851 struct key_vector *tp = node_parent(tn); 852 unsigned long cindex = get_index(tn->key, tp); 853 int max_work = MAX_WORK; 854 855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 856 tn, inflate_threshold, halve_threshold); 857 858 /* track the tnode via the pointer from the parent instead of 859 * doing it ourselves. This way we can let RCU fully do its 860 * thing without us interfering 861 */ 862 BUG_ON(tn != get_child(tp, cindex)); 863 864 /* Double as long as the resulting node has a number of 865 * nonempty nodes that are above the threshold. 866 */ 867 while (should_inflate(tp, tn) && max_work) { 868 tp = inflate(t, tn); 869 if (!tp) { 870 #ifdef CONFIG_IP_FIB_TRIE_STATS 871 this_cpu_inc(stats->resize_node_skipped); 872 #endif 873 break; 874 } 875 876 max_work--; 877 tn = get_child(tp, cindex); 878 } 879 880 /* update parent in case inflate failed */ 881 tp = node_parent(tn); 882 883 /* Return if at least one inflate is run */ 884 if (max_work != MAX_WORK) 885 return tp; 886 887 /* Halve as long as the number of empty children in this 888 * node is above threshold. 889 */ 890 while (should_halve(tp, tn) && max_work) { 891 tp = halve(t, tn); 892 if (!tp) { 893 #ifdef CONFIG_IP_FIB_TRIE_STATS 894 this_cpu_inc(stats->resize_node_skipped); 895 #endif 896 break; 897 } 898 899 max_work--; 900 tn = get_child(tp, cindex); 901 } 902 903 /* Only one child remains */ 904 if (should_collapse(tn)) 905 return collapse(t, tn); 906 907 /* update parent in case halve failed */ 908 return node_parent(tn); 909 } 910 911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 912 { 913 unsigned char node_slen = tn->slen; 914 915 while ((node_slen > tn->pos) && (node_slen > slen)) { 916 slen = update_suffix(tn); 917 if (node_slen == slen) 918 break; 919 920 tn = node_parent(tn); 921 node_slen = tn->slen; 922 } 923 } 924 925 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 926 { 927 while (tn->slen < slen) { 928 tn->slen = slen; 929 tn = node_parent(tn); 930 } 931 } 932 933 /* rcu_read_lock needs to be hold by caller from readside */ 934 static struct key_vector *fib_find_node(struct trie *t, 935 struct key_vector **tp, u32 key) 936 { 937 struct key_vector *pn, *n = t->kv; 938 unsigned long index = 0; 939 940 do { 941 pn = n; 942 n = get_child_rcu(n, index); 943 944 if (!n) 945 break; 946 947 index = get_cindex(key, n); 948 949 /* This bit of code is a bit tricky but it combines multiple 950 * checks into a single check. The prefix consists of the 951 * prefix plus zeros for the bits in the cindex. The index 952 * is the difference between the key and this value. From 953 * this we can actually derive several pieces of data. 954 * if (index >= (1ul << bits)) 955 * we have a mismatch in skip bits and failed 956 * else 957 * we know the value is cindex 958 * 959 * This check is safe even if bits == KEYLENGTH due to the 960 * fact that we can only allocate a node with 32 bits if a 961 * long is greater than 32 bits. 962 */ 963 if (index >= (1ul << n->bits)) { 964 n = NULL; 965 break; 966 } 967 968 /* keep searching until we find a perfect match leaf or NULL */ 969 } while (IS_TNODE(n)); 970 971 *tp = pn; 972 973 return n; 974 } 975 976 /* Return the first fib alias matching TOS with 977 * priority less than or equal to PRIO. 978 * If 'find_first' is set, return the first matching 979 * fib alias, regardless of TOS and priority. 980 */ 981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 982 u8 tos, u32 prio, u32 tb_id, 983 bool find_first) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 struct fib_alias *fa_match; 1041 struct sk_buff *skb; 1042 int err; 1043 1044 rcu_read_lock(); 1045 1046 fa_match = fib_find_matching_alias(net, fri); 1047 if (!fa_match) 1048 goto out; 1049 1050 /* These are paired with the WRITE_ONCE() happening in this function. 1051 * The reason is that we are only protected by RCU at this point. 1052 */ 1053 if (READ_ONCE(fa_match->offload) == fri->offload && 1054 READ_ONCE(fa_match->trap) == fri->trap && 1055 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1056 goto out; 1057 1058 WRITE_ONCE(fa_match->offload, fri->offload); 1059 WRITE_ONCE(fa_match->trap, fri->trap); 1060 1061 /* 2 means send notifications only if offload_failed was changed. */ 1062 if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 && 1063 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1064 goto out; 1065 1066 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed); 1067 1068 if (!net->ipv4.sysctl_fib_notify_on_flag_change) 1069 goto out; 1070 1071 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1072 if (!skb) { 1073 err = -ENOBUFS; 1074 goto errout; 1075 } 1076 1077 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1078 if (err < 0) { 1079 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1080 WARN_ON(err == -EMSGSIZE); 1081 kfree_skb(skb); 1082 goto errout; 1083 } 1084 1085 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1086 goto out; 1087 1088 errout: 1089 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1090 out: 1091 rcu_read_unlock(); 1092 } 1093 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1094 1095 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1096 { 1097 while (!IS_TRIE(tn)) 1098 tn = resize(t, tn); 1099 } 1100 1101 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1102 struct fib_alias *new, t_key key) 1103 { 1104 struct key_vector *n, *l; 1105 1106 l = leaf_new(key, new); 1107 if (!l) 1108 goto noleaf; 1109 1110 /* retrieve child from parent node */ 1111 n = get_child(tp, get_index(key, tp)); 1112 1113 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1114 * 1115 * Add a new tnode here 1116 * first tnode need some special handling 1117 * leaves us in position for handling as case 3 1118 */ 1119 if (n) { 1120 struct key_vector *tn; 1121 1122 tn = tnode_new(key, __fls(key ^ n->key), 1); 1123 if (!tn) 1124 goto notnode; 1125 1126 /* initialize routes out of node */ 1127 NODE_INIT_PARENT(tn, tp); 1128 put_child(tn, get_index(key, tn) ^ 1, n); 1129 1130 /* start adding routes into the node */ 1131 put_child_root(tp, key, tn); 1132 node_set_parent(n, tn); 1133 1134 /* parent now has a NULL spot where the leaf can go */ 1135 tp = tn; 1136 } 1137 1138 /* Case 3: n is NULL, and will just insert a new leaf */ 1139 node_push_suffix(tp, new->fa_slen); 1140 NODE_INIT_PARENT(l, tp); 1141 put_child_root(tp, key, l); 1142 trie_rebalance(t, tp); 1143 1144 return 0; 1145 notnode: 1146 node_free(l); 1147 noleaf: 1148 return -ENOMEM; 1149 } 1150 1151 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1152 struct key_vector *l, struct fib_alias *new, 1153 struct fib_alias *fa, t_key key) 1154 { 1155 if (!l) 1156 return fib_insert_node(t, tp, new, key); 1157 1158 if (fa) { 1159 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1160 } else { 1161 struct fib_alias *last; 1162 1163 hlist_for_each_entry(last, &l->leaf, fa_list) { 1164 if (new->fa_slen < last->fa_slen) 1165 break; 1166 if ((new->fa_slen == last->fa_slen) && 1167 (new->tb_id > last->tb_id)) 1168 break; 1169 fa = last; 1170 } 1171 1172 if (fa) 1173 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1174 else 1175 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1176 } 1177 1178 /* if we added to the tail node then we need to update slen */ 1179 if (l->slen < new->fa_slen) { 1180 l->slen = new->fa_slen; 1181 node_push_suffix(tp, new->fa_slen); 1182 } 1183 1184 return 0; 1185 } 1186 1187 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1188 { 1189 if (plen > KEYLENGTH) { 1190 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1191 return false; 1192 } 1193 1194 if ((plen < KEYLENGTH) && (key << plen)) { 1195 NL_SET_ERR_MSG(extack, 1196 "Invalid prefix for given prefix length"); 1197 return false; 1198 } 1199 1200 return true; 1201 } 1202 1203 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1204 struct key_vector *l, struct fib_alias *old); 1205 1206 /* Caller must hold RTNL. */ 1207 int fib_table_insert(struct net *net, struct fib_table *tb, 1208 struct fib_config *cfg, struct netlink_ext_ack *extack) 1209 { 1210 struct trie *t = (struct trie *)tb->tb_data; 1211 struct fib_alias *fa, *new_fa; 1212 struct key_vector *l, *tp; 1213 u16 nlflags = NLM_F_EXCL; 1214 struct fib_info *fi; 1215 u8 plen = cfg->fc_dst_len; 1216 u8 slen = KEYLENGTH - plen; 1217 u8 tos = cfg->fc_tos; 1218 u32 key; 1219 int err; 1220 1221 key = ntohl(cfg->fc_dst); 1222 1223 if (!fib_valid_key_len(key, plen, extack)) 1224 return -EINVAL; 1225 1226 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1227 1228 fi = fib_create_info(cfg, extack); 1229 if (IS_ERR(fi)) { 1230 err = PTR_ERR(fi); 1231 goto err; 1232 } 1233 1234 l = fib_find_node(t, &tp, key); 1235 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1236 tb->tb_id, false) : NULL; 1237 1238 /* Now fa, if non-NULL, points to the first fib alias 1239 * with the same keys [prefix,tos,priority], if such key already 1240 * exists or to the node before which we will insert new one. 1241 * 1242 * If fa is NULL, we will need to allocate a new one and 1243 * insert to the tail of the section matching the suffix length 1244 * of the new alias. 1245 */ 1246 1247 if (fa && fa->fa_tos == tos && 1248 fa->fa_info->fib_priority == fi->fib_priority) { 1249 struct fib_alias *fa_first, *fa_match; 1250 1251 err = -EEXIST; 1252 if (cfg->fc_nlflags & NLM_F_EXCL) 1253 goto out; 1254 1255 nlflags &= ~NLM_F_EXCL; 1256 1257 /* We have 2 goals: 1258 * 1. Find exact match for type, scope, fib_info to avoid 1259 * duplicate routes 1260 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1261 */ 1262 fa_match = NULL; 1263 fa_first = fa; 1264 hlist_for_each_entry_from(fa, fa_list) { 1265 if ((fa->fa_slen != slen) || 1266 (fa->tb_id != tb->tb_id) || 1267 (fa->fa_tos != tos)) 1268 break; 1269 if (fa->fa_info->fib_priority != fi->fib_priority) 1270 break; 1271 if (fa->fa_type == cfg->fc_type && 1272 fa->fa_info == fi) { 1273 fa_match = fa; 1274 break; 1275 } 1276 } 1277 1278 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1279 struct fib_info *fi_drop; 1280 u8 state; 1281 1282 nlflags |= NLM_F_REPLACE; 1283 fa = fa_first; 1284 if (fa_match) { 1285 if (fa == fa_match) 1286 err = 0; 1287 goto out; 1288 } 1289 err = -ENOBUFS; 1290 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1291 if (!new_fa) 1292 goto out; 1293 1294 fi_drop = fa->fa_info; 1295 new_fa->fa_tos = fa->fa_tos; 1296 new_fa->fa_info = fi; 1297 new_fa->fa_type = cfg->fc_type; 1298 state = fa->fa_state; 1299 new_fa->fa_state = state & ~FA_S_ACCESSED; 1300 new_fa->fa_slen = fa->fa_slen; 1301 new_fa->tb_id = tb->tb_id; 1302 new_fa->fa_default = -1; 1303 new_fa->offload = 0; 1304 new_fa->trap = 0; 1305 new_fa->offload_failed = 0; 1306 1307 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1308 1309 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1310 tb->tb_id, true) == new_fa) { 1311 enum fib_event_type fib_event; 1312 1313 fib_event = FIB_EVENT_ENTRY_REPLACE; 1314 err = call_fib_entry_notifiers(net, fib_event, 1315 key, plen, 1316 new_fa, extack); 1317 if (err) { 1318 hlist_replace_rcu(&new_fa->fa_list, 1319 &fa->fa_list); 1320 goto out_free_new_fa; 1321 } 1322 } 1323 1324 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1325 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1326 1327 alias_free_mem_rcu(fa); 1328 1329 fib_release_info(fi_drop); 1330 if (state & FA_S_ACCESSED) 1331 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1332 1333 goto succeeded; 1334 } 1335 /* Error if we find a perfect match which 1336 * uses the same scope, type, and nexthop 1337 * information. 1338 */ 1339 if (fa_match) 1340 goto out; 1341 1342 if (cfg->fc_nlflags & NLM_F_APPEND) 1343 nlflags |= NLM_F_APPEND; 1344 else 1345 fa = fa_first; 1346 } 1347 err = -ENOENT; 1348 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1349 goto out; 1350 1351 nlflags |= NLM_F_CREATE; 1352 err = -ENOBUFS; 1353 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1354 if (!new_fa) 1355 goto out; 1356 1357 new_fa->fa_info = fi; 1358 new_fa->fa_tos = tos; 1359 new_fa->fa_type = cfg->fc_type; 1360 new_fa->fa_state = 0; 1361 new_fa->fa_slen = slen; 1362 new_fa->tb_id = tb->tb_id; 1363 new_fa->fa_default = -1; 1364 new_fa->offload = 0; 1365 new_fa->trap = 0; 1366 new_fa->offload_failed = 0; 1367 1368 /* Insert new entry to the list. */ 1369 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1370 if (err) 1371 goto out_free_new_fa; 1372 1373 /* The alias was already inserted, so the node must exist. */ 1374 l = l ? l : fib_find_node(t, &tp, key); 1375 if (WARN_ON_ONCE(!l)) 1376 goto out_free_new_fa; 1377 1378 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1379 new_fa) { 1380 enum fib_event_type fib_event; 1381 1382 fib_event = FIB_EVENT_ENTRY_REPLACE; 1383 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1384 new_fa, extack); 1385 if (err) 1386 goto out_remove_new_fa; 1387 } 1388 1389 if (!plen) 1390 tb->tb_num_default++; 1391 1392 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1393 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1394 &cfg->fc_nlinfo, nlflags); 1395 succeeded: 1396 return 0; 1397 1398 out_remove_new_fa: 1399 fib_remove_alias(t, tp, l, new_fa); 1400 out_free_new_fa: 1401 kmem_cache_free(fn_alias_kmem, new_fa); 1402 out: 1403 fib_release_info(fi); 1404 err: 1405 return err; 1406 } 1407 1408 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1409 { 1410 t_key prefix = n->key; 1411 1412 return (key ^ prefix) & (prefix | -prefix); 1413 } 1414 1415 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1416 const struct flowi4 *flp) 1417 { 1418 if (nhc->nhc_flags & RTNH_F_DEAD) 1419 return false; 1420 1421 if (ip_ignore_linkdown(nhc->nhc_dev) && 1422 nhc->nhc_flags & RTNH_F_LINKDOWN && 1423 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1424 return false; 1425 1426 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1427 if (flp->flowi4_oif && 1428 flp->flowi4_oif != nhc->nhc_oif) 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 /* should be called with rcu_read_lock */ 1436 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1437 struct fib_result *res, int fib_flags) 1438 { 1439 struct trie *t = (struct trie *) tb->tb_data; 1440 #ifdef CONFIG_IP_FIB_TRIE_STATS 1441 struct trie_use_stats __percpu *stats = t->stats; 1442 #endif 1443 const t_key key = ntohl(flp->daddr); 1444 struct key_vector *n, *pn; 1445 struct fib_alias *fa; 1446 unsigned long index; 1447 t_key cindex; 1448 1449 pn = t->kv; 1450 cindex = 0; 1451 1452 n = get_child_rcu(pn, cindex); 1453 if (!n) { 1454 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1455 return -EAGAIN; 1456 } 1457 1458 #ifdef CONFIG_IP_FIB_TRIE_STATS 1459 this_cpu_inc(stats->gets); 1460 #endif 1461 1462 /* Step 1: Travel to the longest prefix match in the trie */ 1463 for (;;) { 1464 index = get_cindex(key, n); 1465 1466 /* This bit of code is a bit tricky but it combines multiple 1467 * checks into a single check. The prefix consists of the 1468 * prefix plus zeros for the "bits" in the prefix. The index 1469 * is the difference between the key and this value. From 1470 * this we can actually derive several pieces of data. 1471 * if (index >= (1ul << bits)) 1472 * we have a mismatch in skip bits and failed 1473 * else 1474 * we know the value is cindex 1475 * 1476 * This check is safe even if bits == KEYLENGTH due to the 1477 * fact that we can only allocate a node with 32 bits if a 1478 * long is greater than 32 bits. 1479 */ 1480 if (index >= (1ul << n->bits)) 1481 break; 1482 1483 /* we have found a leaf. Prefixes have already been compared */ 1484 if (IS_LEAF(n)) 1485 goto found; 1486 1487 /* only record pn and cindex if we are going to be chopping 1488 * bits later. Otherwise we are just wasting cycles. 1489 */ 1490 if (n->slen > n->pos) { 1491 pn = n; 1492 cindex = index; 1493 } 1494 1495 n = get_child_rcu(n, index); 1496 if (unlikely(!n)) 1497 goto backtrace; 1498 } 1499 1500 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1501 for (;;) { 1502 /* record the pointer where our next node pointer is stored */ 1503 struct key_vector __rcu **cptr = n->tnode; 1504 1505 /* This test verifies that none of the bits that differ 1506 * between the key and the prefix exist in the region of 1507 * the lsb and higher in the prefix. 1508 */ 1509 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1510 goto backtrace; 1511 1512 /* exit out and process leaf */ 1513 if (unlikely(IS_LEAF(n))) 1514 break; 1515 1516 /* Don't bother recording parent info. Since we are in 1517 * prefix match mode we will have to come back to wherever 1518 * we started this traversal anyway 1519 */ 1520 1521 while ((n = rcu_dereference(*cptr)) == NULL) { 1522 backtrace: 1523 #ifdef CONFIG_IP_FIB_TRIE_STATS 1524 if (!n) 1525 this_cpu_inc(stats->null_node_hit); 1526 #endif 1527 /* If we are at cindex 0 there are no more bits for 1528 * us to strip at this level so we must ascend back 1529 * up one level to see if there are any more bits to 1530 * be stripped there. 1531 */ 1532 while (!cindex) { 1533 t_key pkey = pn->key; 1534 1535 /* If we don't have a parent then there is 1536 * nothing for us to do as we do not have any 1537 * further nodes to parse. 1538 */ 1539 if (IS_TRIE(pn)) { 1540 trace_fib_table_lookup(tb->tb_id, flp, 1541 NULL, -EAGAIN); 1542 return -EAGAIN; 1543 } 1544 #ifdef CONFIG_IP_FIB_TRIE_STATS 1545 this_cpu_inc(stats->backtrack); 1546 #endif 1547 /* Get Child's index */ 1548 pn = node_parent_rcu(pn); 1549 cindex = get_index(pkey, pn); 1550 } 1551 1552 /* strip the least significant bit from the cindex */ 1553 cindex &= cindex - 1; 1554 1555 /* grab pointer for next child node */ 1556 cptr = &pn->tnode[cindex]; 1557 } 1558 } 1559 1560 found: 1561 /* this line carries forward the xor from earlier in the function */ 1562 index = key ^ n->key; 1563 1564 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1565 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1566 struct fib_info *fi = fa->fa_info; 1567 struct fib_nh_common *nhc; 1568 int nhsel, err; 1569 1570 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1571 if (index >= (1ul << fa->fa_slen)) 1572 continue; 1573 } 1574 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1575 continue; 1576 if (fi->fib_dead) 1577 continue; 1578 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1579 continue; 1580 fib_alias_accessed(fa); 1581 err = fib_props[fa->fa_type].error; 1582 if (unlikely(err < 0)) { 1583 out_reject: 1584 #ifdef CONFIG_IP_FIB_TRIE_STATS 1585 this_cpu_inc(stats->semantic_match_passed); 1586 #endif 1587 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1588 return err; 1589 } 1590 if (fi->fib_flags & RTNH_F_DEAD) 1591 continue; 1592 1593 if (unlikely(fi->nh)) { 1594 if (nexthop_is_blackhole(fi->nh)) { 1595 err = fib_props[RTN_BLACKHOLE].error; 1596 goto out_reject; 1597 } 1598 1599 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1600 &nhsel); 1601 if (nhc) 1602 goto set_result; 1603 goto miss; 1604 } 1605 1606 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1607 nhc = fib_info_nhc(fi, nhsel); 1608 1609 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1610 continue; 1611 set_result: 1612 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1613 refcount_inc(&fi->fib_clntref); 1614 1615 res->prefix = htonl(n->key); 1616 res->prefixlen = KEYLENGTH - fa->fa_slen; 1617 res->nh_sel = nhsel; 1618 res->nhc = nhc; 1619 res->type = fa->fa_type; 1620 res->scope = fi->fib_scope; 1621 res->fi = fi; 1622 res->table = tb; 1623 res->fa_head = &n->leaf; 1624 #ifdef CONFIG_IP_FIB_TRIE_STATS 1625 this_cpu_inc(stats->semantic_match_passed); 1626 #endif 1627 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1628 1629 return err; 1630 } 1631 } 1632 miss: 1633 #ifdef CONFIG_IP_FIB_TRIE_STATS 1634 this_cpu_inc(stats->semantic_match_miss); 1635 #endif 1636 goto backtrace; 1637 } 1638 EXPORT_SYMBOL_GPL(fib_table_lookup); 1639 1640 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1641 struct key_vector *l, struct fib_alias *old) 1642 { 1643 /* record the location of the previous list_info entry */ 1644 struct hlist_node **pprev = old->fa_list.pprev; 1645 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1646 1647 /* remove the fib_alias from the list */ 1648 hlist_del_rcu(&old->fa_list); 1649 1650 /* if we emptied the list this leaf will be freed and we can sort 1651 * out parent suffix lengths as a part of trie_rebalance 1652 */ 1653 if (hlist_empty(&l->leaf)) { 1654 if (tp->slen == l->slen) 1655 node_pull_suffix(tp, tp->pos); 1656 put_child_root(tp, l->key, NULL); 1657 node_free(l); 1658 trie_rebalance(t, tp); 1659 return; 1660 } 1661 1662 /* only access fa if it is pointing at the last valid hlist_node */ 1663 if (*pprev) 1664 return; 1665 1666 /* update the trie with the latest suffix length */ 1667 l->slen = fa->fa_slen; 1668 node_pull_suffix(tp, fa->fa_slen); 1669 } 1670 1671 static void fib_notify_alias_delete(struct net *net, u32 key, 1672 struct hlist_head *fah, 1673 struct fib_alias *fa_to_delete, 1674 struct netlink_ext_ack *extack) 1675 { 1676 struct fib_alias *fa_next, *fa_to_notify; 1677 u32 tb_id = fa_to_delete->tb_id; 1678 u8 slen = fa_to_delete->fa_slen; 1679 enum fib_event_type fib_event; 1680 1681 /* Do not notify if we do not care about the route. */ 1682 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1683 return; 1684 1685 /* Determine if the route should be replaced by the next route in the 1686 * list. 1687 */ 1688 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1689 struct fib_alias, fa_list); 1690 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1691 fib_event = FIB_EVENT_ENTRY_REPLACE; 1692 fa_to_notify = fa_next; 1693 } else { 1694 fib_event = FIB_EVENT_ENTRY_DEL; 1695 fa_to_notify = fa_to_delete; 1696 } 1697 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1698 fa_to_notify, extack); 1699 } 1700 1701 /* Caller must hold RTNL. */ 1702 int fib_table_delete(struct net *net, struct fib_table *tb, 1703 struct fib_config *cfg, struct netlink_ext_ack *extack) 1704 { 1705 struct trie *t = (struct trie *) tb->tb_data; 1706 struct fib_alias *fa, *fa_to_delete; 1707 struct key_vector *l, *tp; 1708 u8 plen = cfg->fc_dst_len; 1709 u8 slen = KEYLENGTH - plen; 1710 u8 tos = cfg->fc_tos; 1711 u32 key; 1712 1713 key = ntohl(cfg->fc_dst); 1714 1715 if (!fib_valid_key_len(key, plen, extack)) 1716 return -EINVAL; 1717 1718 l = fib_find_node(t, &tp, key); 1719 if (!l) 1720 return -ESRCH; 1721 1722 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1723 if (!fa) 1724 return -ESRCH; 1725 1726 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1727 1728 fa_to_delete = NULL; 1729 hlist_for_each_entry_from(fa, fa_list) { 1730 struct fib_info *fi = fa->fa_info; 1731 1732 if ((fa->fa_slen != slen) || 1733 (fa->tb_id != tb->tb_id) || 1734 (fa->fa_tos != tos)) 1735 break; 1736 1737 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1738 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1739 fa->fa_info->fib_scope == cfg->fc_scope) && 1740 (!cfg->fc_prefsrc || 1741 fi->fib_prefsrc == cfg->fc_prefsrc) && 1742 (!cfg->fc_protocol || 1743 fi->fib_protocol == cfg->fc_protocol) && 1744 fib_nh_match(net, cfg, fi, extack) == 0 && 1745 fib_metrics_match(cfg, fi)) { 1746 fa_to_delete = fa; 1747 break; 1748 } 1749 } 1750 1751 if (!fa_to_delete) 1752 return -ESRCH; 1753 1754 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1755 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1756 &cfg->fc_nlinfo, 0); 1757 1758 if (!plen) 1759 tb->tb_num_default--; 1760 1761 fib_remove_alias(t, tp, l, fa_to_delete); 1762 1763 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1764 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1765 1766 fib_release_info(fa_to_delete->fa_info); 1767 alias_free_mem_rcu(fa_to_delete); 1768 return 0; 1769 } 1770 1771 /* Scan for the next leaf starting at the provided key value */ 1772 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1773 { 1774 struct key_vector *pn, *n = *tn; 1775 unsigned long cindex; 1776 1777 /* this loop is meant to try and find the key in the trie */ 1778 do { 1779 /* record parent and next child index */ 1780 pn = n; 1781 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1782 1783 if (cindex >> pn->bits) 1784 break; 1785 1786 /* descend into the next child */ 1787 n = get_child_rcu(pn, cindex++); 1788 if (!n) 1789 break; 1790 1791 /* guarantee forward progress on the keys */ 1792 if (IS_LEAF(n) && (n->key >= key)) 1793 goto found; 1794 } while (IS_TNODE(n)); 1795 1796 /* this loop will search for the next leaf with a greater key */ 1797 while (!IS_TRIE(pn)) { 1798 /* if we exhausted the parent node we will need to climb */ 1799 if (cindex >= (1ul << pn->bits)) { 1800 t_key pkey = pn->key; 1801 1802 pn = node_parent_rcu(pn); 1803 cindex = get_index(pkey, pn) + 1; 1804 continue; 1805 } 1806 1807 /* grab the next available node */ 1808 n = get_child_rcu(pn, cindex++); 1809 if (!n) 1810 continue; 1811 1812 /* no need to compare keys since we bumped the index */ 1813 if (IS_LEAF(n)) 1814 goto found; 1815 1816 /* Rescan start scanning in new node */ 1817 pn = n; 1818 cindex = 0; 1819 } 1820 1821 *tn = pn; 1822 return NULL; /* Root of trie */ 1823 found: 1824 /* if we are at the limit for keys just return NULL for the tnode */ 1825 *tn = pn; 1826 return n; 1827 } 1828 1829 static void fib_trie_free(struct fib_table *tb) 1830 { 1831 struct trie *t = (struct trie *)tb->tb_data; 1832 struct key_vector *pn = t->kv; 1833 unsigned long cindex = 1; 1834 struct hlist_node *tmp; 1835 struct fib_alias *fa; 1836 1837 /* walk trie in reverse order and free everything */ 1838 for (;;) { 1839 struct key_vector *n; 1840 1841 if (!(cindex--)) { 1842 t_key pkey = pn->key; 1843 1844 if (IS_TRIE(pn)) 1845 break; 1846 1847 n = pn; 1848 pn = node_parent(pn); 1849 1850 /* drop emptied tnode */ 1851 put_child_root(pn, n->key, NULL); 1852 node_free(n); 1853 1854 cindex = get_index(pkey, pn); 1855 1856 continue; 1857 } 1858 1859 /* grab the next available node */ 1860 n = get_child(pn, cindex); 1861 if (!n) 1862 continue; 1863 1864 if (IS_TNODE(n)) { 1865 /* record pn and cindex for leaf walking */ 1866 pn = n; 1867 cindex = 1ul << n->bits; 1868 1869 continue; 1870 } 1871 1872 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1873 hlist_del_rcu(&fa->fa_list); 1874 alias_free_mem_rcu(fa); 1875 } 1876 1877 put_child_root(pn, n->key, NULL); 1878 node_free(n); 1879 } 1880 1881 #ifdef CONFIG_IP_FIB_TRIE_STATS 1882 free_percpu(t->stats); 1883 #endif 1884 kfree(tb); 1885 } 1886 1887 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1888 { 1889 struct trie *ot = (struct trie *)oldtb->tb_data; 1890 struct key_vector *l, *tp = ot->kv; 1891 struct fib_table *local_tb; 1892 struct fib_alias *fa; 1893 struct trie *lt; 1894 t_key key = 0; 1895 1896 if (oldtb->tb_data == oldtb->__data) 1897 return oldtb; 1898 1899 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1900 if (!local_tb) 1901 return NULL; 1902 1903 lt = (struct trie *)local_tb->tb_data; 1904 1905 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1906 struct key_vector *local_l = NULL, *local_tp; 1907 1908 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1909 struct fib_alias *new_fa; 1910 1911 if (local_tb->tb_id != fa->tb_id) 1912 continue; 1913 1914 /* clone fa for new local table */ 1915 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1916 if (!new_fa) 1917 goto out; 1918 1919 memcpy(new_fa, fa, sizeof(*fa)); 1920 1921 /* insert clone into table */ 1922 if (!local_l) 1923 local_l = fib_find_node(lt, &local_tp, l->key); 1924 1925 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1926 NULL, l->key)) { 1927 kmem_cache_free(fn_alias_kmem, new_fa); 1928 goto out; 1929 } 1930 } 1931 1932 /* stop loop if key wrapped back to 0 */ 1933 key = l->key + 1; 1934 if (key < l->key) 1935 break; 1936 } 1937 1938 return local_tb; 1939 out: 1940 fib_trie_free(local_tb); 1941 1942 return NULL; 1943 } 1944 1945 /* Caller must hold RTNL */ 1946 void fib_table_flush_external(struct fib_table *tb) 1947 { 1948 struct trie *t = (struct trie *)tb->tb_data; 1949 struct key_vector *pn = t->kv; 1950 unsigned long cindex = 1; 1951 struct hlist_node *tmp; 1952 struct fib_alias *fa; 1953 1954 /* walk trie in reverse order */ 1955 for (;;) { 1956 unsigned char slen = 0; 1957 struct key_vector *n; 1958 1959 if (!(cindex--)) { 1960 t_key pkey = pn->key; 1961 1962 /* cannot resize the trie vector */ 1963 if (IS_TRIE(pn)) 1964 break; 1965 1966 /* update the suffix to address pulled leaves */ 1967 if (pn->slen > pn->pos) 1968 update_suffix(pn); 1969 1970 /* resize completed node */ 1971 pn = resize(t, pn); 1972 cindex = get_index(pkey, pn); 1973 1974 continue; 1975 } 1976 1977 /* grab the next available node */ 1978 n = get_child(pn, cindex); 1979 if (!n) 1980 continue; 1981 1982 if (IS_TNODE(n)) { 1983 /* record pn and cindex for leaf walking */ 1984 pn = n; 1985 cindex = 1ul << n->bits; 1986 1987 continue; 1988 } 1989 1990 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1991 /* if alias was cloned to local then we just 1992 * need to remove the local copy from main 1993 */ 1994 if (tb->tb_id != fa->tb_id) { 1995 hlist_del_rcu(&fa->fa_list); 1996 alias_free_mem_rcu(fa); 1997 continue; 1998 } 1999 2000 /* record local slen */ 2001 slen = fa->fa_slen; 2002 } 2003 2004 /* update leaf slen */ 2005 n->slen = slen; 2006 2007 if (hlist_empty(&n->leaf)) { 2008 put_child_root(pn, n->key, NULL); 2009 node_free(n); 2010 } 2011 } 2012 } 2013 2014 /* Caller must hold RTNL. */ 2015 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2016 { 2017 struct trie *t = (struct trie *)tb->tb_data; 2018 struct key_vector *pn = t->kv; 2019 unsigned long cindex = 1; 2020 struct hlist_node *tmp; 2021 struct fib_alias *fa; 2022 int found = 0; 2023 2024 /* walk trie in reverse order */ 2025 for (;;) { 2026 unsigned char slen = 0; 2027 struct key_vector *n; 2028 2029 if (!(cindex--)) { 2030 t_key pkey = pn->key; 2031 2032 /* cannot resize the trie vector */ 2033 if (IS_TRIE(pn)) 2034 break; 2035 2036 /* update the suffix to address pulled leaves */ 2037 if (pn->slen > pn->pos) 2038 update_suffix(pn); 2039 2040 /* resize completed node */ 2041 pn = resize(t, pn); 2042 cindex = get_index(pkey, pn); 2043 2044 continue; 2045 } 2046 2047 /* grab the next available node */ 2048 n = get_child(pn, cindex); 2049 if (!n) 2050 continue; 2051 2052 if (IS_TNODE(n)) { 2053 /* record pn and cindex for leaf walking */ 2054 pn = n; 2055 cindex = 1ul << n->bits; 2056 2057 continue; 2058 } 2059 2060 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2061 struct fib_info *fi = fa->fa_info; 2062 2063 if (!fi || tb->tb_id != fa->tb_id || 2064 (!(fi->fib_flags & RTNH_F_DEAD) && 2065 !fib_props[fa->fa_type].error)) { 2066 slen = fa->fa_slen; 2067 continue; 2068 } 2069 2070 /* Do not flush error routes if network namespace is 2071 * not being dismantled 2072 */ 2073 if (!flush_all && fib_props[fa->fa_type].error) { 2074 slen = fa->fa_slen; 2075 continue; 2076 } 2077 2078 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2079 NULL); 2080 hlist_del_rcu(&fa->fa_list); 2081 fib_release_info(fa->fa_info); 2082 alias_free_mem_rcu(fa); 2083 found++; 2084 } 2085 2086 /* update leaf slen */ 2087 n->slen = slen; 2088 2089 if (hlist_empty(&n->leaf)) { 2090 put_child_root(pn, n->key, NULL); 2091 node_free(n); 2092 } 2093 } 2094 2095 pr_debug("trie_flush found=%d\n", found); 2096 return found; 2097 } 2098 2099 /* derived from fib_trie_free */ 2100 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2101 struct nl_info *info) 2102 { 2103 struct trie *t = (struct trie *)tb->tb_data; 2104 struct key_vector *pn = t->kv; 2105 unsigned long cindex = 1; 2106 struct fib_alias *fa; 2107 2108 for (;;) { 2109 struct key_vector *n; 2110 2111 if (!(cindex--)) { 2112 t_key pkey = pn->key; 2113 2114 if (IS_TRIE(pn)) 2115 break; 2116 2117 pn = node_parent(pn); 2118 cindex = get_index(pkey, pn); 2119 continue; 2120 } 2121 2122 /* grab the next available node */ 2123 n = get_child(pn, cindex); 2124 if (!n) 2125 continue; 2126 2127 if (IS_TNODE(n)) { 2128 /* record pn and cindex for leaf walking */ 2129 pn = n; 2130 cindex = 1ul << n->bits; 2131 2132 continue; 2133 } 2134 2135 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2136 struct fib_info *fi = fa->fa_info; 2137 2138 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2139 continue; 2140 2141 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2142 KEYLENGTH - fa->fa_slen, tb->tb_id, 2143 info, NLM_F_REPLACE); 2144 } 2145 } 2146 } 2147 2148 void fib_info_notify_update(struct net *net, struct nl_info *info) 2149 { 2150 unsigned int h; 2151 2152 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2153 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2154 struct fib_table *tb; 2155 2156 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2157 lockdep_rtnl_is_held()) 2158 __fib_info_notify_update(net, tb, info); 2159 } 2160 } 2161 2162 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2163 struct notifier_block *nb, 2164 struct netlink_ext_ack *extack) 2165 { 2166 struct fib_alias *fa; 2167 int last_slen = -1; 2168 int err; 2169 2170 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2171 struct fib_info *fi = fa->fa_info; 2172 2173 if (!fi) 2174 continue; 2175 2176 /* local and main table can share the same trie, 2177 * so don't notify twice for the same entry. 2178 */ 2179 if (tb->tb_id != fa->tb_id) 2180 continue; 2181 2182 if (fa->fa_slen == last_slen) 2183 continue; 2184 2185 last_slen = fa->fa_slen; 2186 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2187 l->key, KEYLENGTH - fa->fa_slen, 2188 fa, extack); 2189 if (err) 2190 return err; 2191 } 2192 return 0; 2193 } 2194 2195 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2196 struct netlink_ext_ack *extack) 2197 { 2198 struct trie *t = (struct trie *)tb->tb_data; 2199 struct key_vector *l, *tp = t->kv; 2200 t_key key = 0; 2201 int err; 2202 2203 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2204 err = fib_leaf_notify(l, tb, nb, extack); 2205 if (err) 2206 return err; 2207 2208 key = l->key + 1; 2209 /* stop in case of wrap around */ 2210 if (key < l->key) 2211 break; 2212 } 2213 return 0; 2214 } 2215 2216 int fib_notify(struct net *net, struct notifier_block *nb, 2217 struct netlink_ext_ack *extack) 2218 { 2219 unsigned int h; 2220 int err; 2221 2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2224 struct fib_table *tb; 2225 2226 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2227 err = fib_table_notify(tb, nb, extack); 2228 if (err) 2229 return err; 2230 } 2231 } 2232 return 0; 2233 } 2234 2235 static void __trie_free_rcu(struct rcu_head *head) 2236 { 2237 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2238 #ifdef CONFIG_IP_FIB_TRIE_STATS 2239 struct trie *t = (struct trie *)tb->tb_data; 2240 2241 if (tb->tb_data == tb->__data) 2242 free_percpu(t->stats); 2243 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2244 kfree(tb); 2245 } 2246 2247 void fib_free_table(struct fib_table *tb) 2248 { 2249 call_rcu(&tb->rcu, __trie_free_rcu); 2250 } 2251 2252 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2253 struct sk_buff *skb, struct netlink_callback *cb, 2254 struct fib_dump_filter *filter) 2255 { 2256 unsigned int flags = NLM_F_MULTI; 2257 __be32 xkey = htonl(l->key); 2258 int i, s_i, i_fa, s_fa, err; 2259 struct fib_alias *fa; 2260 2261 if (filter->filter_set || 2262 !filter->dump_exceptions || !filter->dump_routes) 2263 flags |= NLM_F_DUMP_FILTERED; 2264 2265 s_i = cb->args[4]; 2266 s_fa = cb->args[5]; 2267 i = 0; 2268 2269 /* rcu_read_lock is hold by caller */ 2270 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2271 struct fib_info *fi = fa->fa_info; 2272 2273 if (i < s_i) 2274 goto next; 2275 2276 i_fa = 0; 2277 2278 if (tb->tb_id != fa->tb_id) 2279 goto next; 2280 2281 if (filter->filter_set) { 2282 if (filter->rt_type && fa->fa_type != filter->rt_type) 2283 goto next; 2284 2285 if ((filter->protocol && 2286 fi->fib_protocol != filter->protocol)) 2287 goto next; 2288 2289 if (filter->dev && 2290 !fib_info_nh_uses_dev(fi, filter->dev)) 2291 goto next; 2292 } 2293 2294 if (filter->dump_routes) { 2295 if (!s_fa) { 2296 struct fib_rt_info fri; 2297 2298 fri.fi = fi; 2299 fri.tb_id = tb->tb_id; 2300 fri.dst = xkey; 2301 fri.dst_len = KEYLENGTH - fa->fa_slen; 2302 fri.tos = fa->fa_tos; 2303 fri.type = fa->fa_type; 2304 fri.offload = READ_ONCE(fa->offload); 2305 fri.trap = READ_ONCE(fa->trap); 2306 fri.offload_failed = READ_ONCE(fa->offload_failed); 2307 err = fib_dump_info(skb, 2308 NETLINK_CB(cb->skb).portid, 2309 cb->nlh->nlmsg_seq, 2310 RTM_NEWROUTE, &fri, flags); 2311 if (err < 0) 2312 goto stop; 2313 } 2314 2315 i_fa++; 2316 } 2317 2318 if (filter->dump_exceptions) { 2319 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2320 &i_fa, s_fa, flags); 2321 if (err < 0) 2322 goto stop; 2323 } 2324 2325 next: 2326 i++; 2327 } 2328 2329 cb->args[4] = i; 2330 return skb->len; 2331 2332 stop: 2333 cb->args[4] = i; 2334 cb->args[5] = i_fa; 2335 return err; 2336 } 2337 2338 /* rcu_read_lock needs to be hold by caller from readside */ 2339 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2340 struct netlink_callback *cb, struct fib_dump_filter *filter) 2341 { 2342 struct trie *t = (struct trie *)tb->tb_data; 2343 struct key_vector *l, *tp = t->kv; 2344 /* Dump starting at last key. 2345 * Note: 0.0.0.0/0 (ie default) is first key. 2346 */ 2347 int count = cb->args[2]; 2348 t_key key = cb->args[3]; 2349 2350 /* First time here, count and key are both always 0. Count > 0 2351 * and key == 0 means the dump has wrapped around and we are done. 2352 */ 2353 if (count && !key) 2354 return skb->len; 2355 2356 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2357 int err; 2358 2359 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2360 if (err < 0) { 2361 cb->args[3] = key; 2362 cb->args[2] = count; 2363 return err; 2364 } 2365 2366 ++count; 2367 key = l->key + 1; 2368 2369 memset(&cb->args[4], 0, 2370 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2371 2372 /* stop loop if key wrapped back to 0 */ 2373 if (key < l->key) 2374 break; 2375 } 2376 2377 cb->args[3] = key; 2378 cb->args[2] = count; 2379 2380 return skb->len; 2381 } 2382 2383 void __init fib_trie_init(void) 2384 { 2385 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2386 sizeof(struct fib_alias), 2387 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2388 2389 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2390 LEAF_SIZE, 2391 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2392 } 2393 2394 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2395 { 2396 struct fib_table *tb; 2397 struct trie *t; 2398 size_t sz = sizeof(*tb); 2399 2400 if (!alias) 2401 sz += sizeof(struct trie); 2402 2403 tb = kzalloc(sz, GFP_KERNEL); 2404 if (!tb) 2405 return NULL; 2406 2407 tb->tb_id = id; 2408 tb->tb_num_default = 0; 2409 tb->tb_data = (alias ? alias->__data : tb->__data); 2410 2411 if (alias) 2412 return tb; 2413 2414 t = (struct trie *) tb->tb_data; 2415 t->kv[0].pos = KEYLENGTH; 2416 t->kv[0].slen = KEYLENGTH; 2417 #ifdef CONFIG_IP_FIB_TRIE_STATS 2418 t->stats = alloc_percpu(struct trie_use_stats); 2419 if (!t->stats) { 2420 kfree(tb); 2421 tb = NULL; 2422 } 2423 #endif 2424 2425 return tb; 2426 } 2427 2428 #ifdef CONFIG_PROC_FS 2429 /* Depth first Trie walk iterator */ 2430 struct fib_trie_iter { 2431 struct seq_net_private p; 2432 struct fib_table *tb; 2433 struct key_vector *tnode; 2434 unsigned int index; 2435 unsigned int depth; 2436 }; 2437 2438 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2439 { 2440 unsigned long cindex = iter->index; 2441 struct key_vector *pn = iter->tnode; 2442 t_key pkey; 2443 2444 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2445 iter->tnode, iter->index, iter->depth); 2446 2447 while (!IS_TRIE(pn)) { 2448 while (cindex < child_length(pn)) { 2449 struct key_vector *n = get_child_rcu(pn, cindex++); 2450 2451 if (!n) 2452 continue; 2453 2454 if (IS_LEAF(n)) { 2455 iter->tnode = pn; 2456 iter->index = cindex; 2457 } else { 2458 /* push down one level */ 2459 iter->tnode = n; 2460 iter->index = 0; 2461 ++iter->depth; 2462 } 2463 2464 return n; 2465 } 2466 2467 /* Current node exhausted, pop back up */ 2468 pkey = pn->key; 2469 pn = node_parent_rcu(pn); 2470 cindex = get_index(pkey, pn) + 1; 2471 --iter->depth; 2472 } 2473 2474 /* record root node so further searches know we are done */ 2475 iter->tnode = pn; 2476 iter->index = 0; 2477 2478 return NULL; 2479 } 2480 2481 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2482 struct trie *t) 2483 { 2484 struct key_vector *n, *pn; 2485 2486 if (!t) 2487 return NULL; 2488 2489 pn = t->kv; 2490 n = rcu_dereference(pn->tnode[0]); 2491 if (!n) 2492 return NULL; 2493 2494 if (IS_TNODE(n)) { 2495 iter->tnode = n; 2496 iter->index = 0; 2497 iter->depth = 1; 2498 } else { 2499 iter->tnode = pn; 2500 iter->index = 0; 2501 iter->depth = 0; 2502 } 2503 2504 return n; 2505 } 2506 2507 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2508 { 2509 struct key_vector *n; 2510 struct fib_trie_iter iter; 2511 2512 memset(s, 0, sizeof(*s)); 2513 2514 rcu_read_lock(); 2515 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2516 if (IS_LEAF(n)) { 2517 struct fib_alias *fa; 2518 2519 s->leaves++; 2520 s->totdepth += iter.depth; 2521 if (iter.depth > s->maxdepth) 2522 s->maxdepth = iter.depth; 2523 2524 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2525 ++s->prefixes; 2526 } else { 2527 s->tnodes++; 2528 if (n->bits < MAX_STAT_DEPTH) 2529 s->nodesizes[n->bits]++; 2530 s->nullpointers += tn_info(n)->empty_children; 2531 } 2532 } 2533 rcu_read_unlock(); 2534 } 2535 2536 /* 2537 * This outputs /proc/net/fib_triestats 2538 */ 2539 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2540 { 2541 unsigned int i, max, pointers, bytes, avdepth; 2542 2543 if (stat->leaves) 2544 avdepth = stat->totdepth*100 / stat->leaves; 2545 else 2546 avdepth = 0; 2547 2548 seq_printf(seq, "\tAver depth: %u.%02d\n", 2549 avdepth / 100, avdepth % 100); 2550 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2551 2552 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2553 bytes = LEAF_SIZE * stat->leaves; 2554 2555 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2556 bytes += sizeof(struct fib_alias) * stat->prefixes; 2557 2558 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2559 bytes += TNODE_SIZE(0) * stat->tnodes; 2560 2561 max = MAX_STAT_DEPTH; 2562 while (max > 0 && stat->nodesizes[max-1] == 0) 2563 max--; 2564 2565 pointers = 0; 2566 for (i = 1; i < max; i++) 2567 if (stat->nodesizes[i] != 0) { 2568 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2569 pointers += (1<<i) * stat->nodesizes[i]; 2570 } 2571 seq_putc(seq, '\n'); 2572 seq_printf(seq, "\tPointers: %u\n", pointers); 2573 2574 bytes += sizeof(struct key_vector *) * pointers; 2575 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2576 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2577 } 2578 2579 #ifdef CONFIG_IP_FIB_TRIE_STATS 2580 static void trie_show_usage(struct seq_file *seq, 2581 const struct trie_use_stats __percpu *stats) 2582 { 2583 struct trie_use_stats s = { 0 }; 2584 int cpu; 2585 2586 /* loop through all of the CPUs and gather up the stats */ 2587 for_each_possible_cpu(cpu) { 2588 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2589 2590 s.gets += pcpu->gets; 2591 s.backtrack += pcpu->backtrack; 2592 s.semantic_match_passed += pcpu->semantic_match_passed; 2593 s.semantic_match_miss += pcpu->semantic_match_miss; 2594 s.null_node_hit += pcpu->null_node_hit; 2595 s.resize_node_skipped += pcpu->resize_node_skipped; 2596 } 2597 2598 seq_printf(seq, "\nCounters:\n---------\n"); 2599 seq_printf(seq, "gets = %u\n", s.gets); 2600 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2601 seq_printf(seq, "semantic match passed = %u\n", 2602 s.semantic_match_passed); 2603 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2604 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2605 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2606 } 2607 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2608 2609 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2610 { 2611 if (tb->tb_id == RT_TABLE_LOCAL) 2612 seq_puts(seq, "Local:\n"); 2613 else if (tb->tb_id == RT_TABLE_MAIN) 2614 seq_puts(seq, "Main:\n"); 2615 else 2616 seq_printf(seq, "Id %d:\n", tb->tb_id); 2617 } 2618 2619 2620 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2621 { 2622 struct net *net = (struct net *)seq->private; 2623 unsigned int h; 2624 2625 seq_printf(seq, 2626 "Basic info: size of leaf:" 2627 " %zd bytes, size of tnode: %zd bytes.\n", 2628 LEAF_SIZE, TNODE_SIZE(0)); 2629 2630 rcu_read_lock(); 2631 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2632 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2633 struct fib_table *tb; 2634 2635 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2636 struct trie *t = (struct trie *) tb->tb_data; 2637 struct trie_stat stat; 2638 2639 if (!t) 2640 continue; 2641 2642 fib_table_print(seq, tb); 2643 2644 trie_collect_stats(t, &stat); 2645 trie_show_stats(seq, &stat); 2646 #ifdef CONFIG_IP_FIB_TRIE_STATS 2647 trie_show_usage(seq, t->stats); 2648 #endif 2649 } 2650 cond_resched_rcu(); 2651 } 2652 rcu_read_unlock(); 2653 2654 return 0; 2655 } 2656 2657 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2658 { 2659 struct fib_trie_iter *iter = seq->private; 2660 struct net *net = seq_file_net(seq); 2661 loff_t idx = 0; 2662 unsigned int h; 2663 2664 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2665 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2666 struct fib_table *tb; 2667 2668 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2669 struct key_vector *n; 2670 2671 for (n = fib_trie_get_first(iter, 2672 (struct trie *) tb->tb_data); 2673 n; n = fib_trie_get_next(iter)) 2674 if (pos == idx++) { 2675 iter->tb = tb; 2676 return n; 2677 } 2678 } 2679 } 2680 2681 return NULL; 2682 } 2683 2684 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2685 __acquires(RCU) 2686 { 2687 rcu_read_lock(); 2688 return fib_trie_get_idx(seq, *pos); 2689 } 2690 2691 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2692 { 2693 struct fib_trie_iter *iter = seq->private; 2694 struct net *net = seq_file_net(seq); 2695 struct fib_table *tb = iter->tb; 2696 struct hlist_node *tb_node; 2697 unsigned int h; 2698 struct key_vector *n; 2699 2700 ++*pos; 2701 /* next node in same table */ 2702 n = fib_trie_get_next(iter); 2703 if (n) 2704 return n; 2705 2706 /* walk rest of this hash chain */ 2707 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2708 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2709 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2710 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2711 if (n) 2712 goto found; 2713 } 2714 2715 /* new hash chain */ 2716 while (++h < FIB_TABLE_HASHSZ) { 2717 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2718 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2719 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2720 if (n) 2721 goto found; 2722 } 2723 } 2724 return NULL; 2725 2726 found: 2727 iter->tb = tb; 2728 return n; 2729 } 2730 2731 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2732 __releases(RCU) 2733 { 2734 rcu_read_unlock(); 2735 } 2736 2737 static void seq_indent(struct seq_file *seq, int n) 2738 { 2739 while (n-- > 0) 2740 seq_puts(seq, " "); 2741 } 2742 2743 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2744 { 2745 switch (s) { 2746 case RT_SCOPE_UNIVERSE: return "universe"; 2747 case RT_SCOPE_SITE: return "site"; 2748 case RT_SCOPE_LINK: return "link"; 2749 case RT_SCOPE_HOST: return "host"; 2750 case RT_SCOPE_NOWHERE: return "nowhere"; 2751 default: 2752 snprintf(buf, len, "scope=%d", s); 2753 return buf; 2754 } 2755 } 2756 2757 static const char *const rtn_type_names[__RTN_MAX] = { 2758 [RTN_UNSPEC] = "UNSPEC", 2759 [RTN_UNICAST] = "UNICAST", 2760 [RTN_LOCAL] = "LOCAL", 2761 [RTN_BROADCAST] = "BROADCAST", 2762 [RTN_ANYCAST] = "ANYCAST", 2763 [RTN_MULTICAST] = "MULTICAST", 2764 [RTN_BLACKHOLE] = "BLACKHOLE", 2765 [RTN_UNREACHABLE] = "UNREACHABLE", 2766 [RTN_PROHIBIT] = "PROHIBIT", 2767 [RTN_THROW] = "THROW", 2768 [RTN_NAT] = "NAT", 2769 [RTN_XRESOLVE] = "XRESOLVE", 2770 }; 2771 2772 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2773 { 2774 if (t < __RTN_MAX && rtn_type_names[t]) 2775 return rtn_type_names[t]; 2776 snprintf(buf, len, "type %u", t); 2777 return buf; 2778 } 2779 2780 /* Pretty print the trie */ 2781 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2782 { 2783 const struct fib_trie_iter *iter = seq->private; 2784 struct key_vector *n = v; 2785 2786 if (IS_TRIE(node_parent_rcu(n))) 2787 fib_table_print(seq, iter->tb); 2788 2789 if (IS_TNODE(n)) { 2790 __be32 prf = htonl(n->key); 2791 2792 seq_indent(seq, iter->depth-1); 2793 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2794 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2795 tn_info(n)->full_children, 2796 tn_info(n)->empty_children); 2797 } else { 2798 __be32 val = htonl(n->key); 2799 struct fib_alias *fa; 2800 2801 seq_indent(seq, iter->depth); 2802 seq_printf(seq, " |-- %pI4\n", &val); 2803 2804 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2805 char buf1[32], buf2[32]; 2806 2807 seq_indent(seq, iter->depth + 1); 2808 seq_printf(seq, " /%zu %s %s", 2809 KEYLENGTH - fa->fa_slen, 2810 rtn_scope(buf1, sizeof(buf1), 2811 fa->fa_info->fib_scope), 2812 rtn_type(buf2, sizeof(buf2), 2813 fa->fa_type)); 2814 if (fa->fa_tos) 2815 seq_printf(seq, " tos=%d", fa->fa_tos); 2816 seq_putc(seq, '\n'); 2817 } 2818 } 2819 2820 return 0; 2821 } 2822 2823 static const struct seq_operations fib_trie_seq_ops = { 2824 .start = fib_trie_seq_start, 2825 .next = fib_trie_seq_next, 2826 .stop = fib_trie_seq_stop, 2827 .show = fib_trie_seq_show, 2828 }; 2829 2830 struct fib_route_iter { 2831 struct seq_net_private p; 2832 struct fib_table *main_tb; 2833 struct key_vector *tnode; 2834 loff_t pos; 2835 t_key key; 2836 }; 2837 2838 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2839 loff_t pos) 2840 { 2841 struct key_vector *l, **tp = &iter->tnode; 2842 t_key key; 2843 2844 /* use cached location of previously found key */ 2845 if (iter->pos > 0 && pos >= iter->pos) { 2846 key = iter->key; 2847 } else { 2848 iter->pos = 1; 2849 key = 0; 2850 } 2851 2852 pos -= iter->pos; 2853 2854 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2855 key = l->key + 1; 2856 iter->pos++; 2857 l = NULL; 2858 2859 /* handle unlikely case of a key wrap */ 2860 if (!key) 2861 break; 2862 } 2863 2864 if (l) 2865 iter->key = l->key; /* remember it */ 2866 else 2867 iter->pos = 0; /* forget it */ 2868 2869 return l; 2870 } 2871 2872 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2873 __acquires(RCU) 2874 { 2875 struct fib_route_iter *iter = seq->private; 2876 struct fib_table *tb; 2877 struct trie *t; 2878 2879 rcu_read_lock(); 2880 2881 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2882 if (!tb) 2883 return NULL; 2884 2885 iter->main_tb = tb; 2886 t = (struct trie *)tb->tb_data; 2887 iter->tnode = t->kv; 2888 2889 if (*pos != 0) 2890 return fib_route_get_idx(iter, *pos); 2891 2892 iter->pos = 0; 2893 iter->key = KEY_MAX; 2894 2895 return SEQ_START_TOKEN; 2896 } 2897 2898 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2899 { 2900 struct fib_route_iter *iter = seq->private; 2901 struct key_vector *l = NULL; 2902 t_key key = iter->key + 1; 2903 2904 ++*pos; 2905 2906 /* only allow key of 0 for start of sequence */ 2907 if ((v == SEQ_START_TOKEN) || key) 2908 l = leaf_walk_rcu(&iter->tnode, key); 2909 2910 if (l) { 2911 iter->key = l->key; 2912 iter->pos++; 2913 } else { 2914 iter->pos = 0; 2915 } 2916 2917 return l; 2918 } 2919 2920 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2921 __releases(RCU) 2922 { 2923 rcu_read_unlock(); 2924 } 2925 2926 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2927 { 2928 unsigned int flags = 0; 2929 2930 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2931 flags = RTF_REJECT; 2932 if (fi) { 2933 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2934 2935 if (nhc->nhc_gw.ipv4) 2936 flags |= RTF_GATEWAY; 2937 } 2938 if (mask == htonl(0xFFFFFFFF)) 2939 flags |= RTF_HOST; 2940 flags |= RTF_UP; 2941 return flags; 2942 } 2943 2944 /* 2945 * This outputs /proc/net/route. 2946 * The format of the file is not supposed to be changed 2947 * and needs to be same as fib_hash output to avoid breaking 2948 * legacy utilities 2949 */ 2950 static int fib_route_seq_show(struct seq_file *seq, void *v) 2951 { 2952 struct fib_route_iter *iter = seq->private; 2953 struct fib_table *tb = iter->main_tb; 2954 struct fib_alias *fa; 2955 struct key_vector *l = v; 2956 __be32 prefix; 2957 2958 if (v == SEQ_START_TOKEN) { 2959 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2960 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2961 "\tWindow\tIRTT"); 2962 return 0; 2963 } 2964 2965 prefix = htonl(l->key); 2966 2967 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2968 struct fib_info *fi = fa->fa_info; 2969 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2970 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2971 2972 if ((fa->fa_type == RTN_BROADCAST) || 2973 (fa->fa_type == RTN_MULTICAST)) 2974 continue; 2975 2976 if (fa->tb_id != tb->tb_id) 2977 continue; 2978 2979 seq_setwidth(seq, 127); 2980 2981 if (fi) { 2982 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2983 __be32 gw = 0; 2984 2985 if (nhc->nhc_gw_family == AF_INET) 2986 gw = nhc->nhc_gw.ipv4; 2987 2988 seq_printf(seq, 2989 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2990 "%d\t%08X\t%d\t%u\t%u", 2991 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2992 prefix, gw, flags, 0, 0, 2993 fi->fib_priority, 2994 mask, 2995 (fi->fib_advmss ? 2996 fi->fib_advmss + 40 : 0), 2997 fi->fib_window, 2998 fi->fib_rtt >> 3); 2999 } else { 3000 seq_printf(seq, 3001 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 3002 "%d\t%08X\t%d\t%u\t%u", 3003 prefix, 0, flags, 0, 0, 0, 3004 mask, 0, 0, 0); 3005 } 3006 seq_pad(seq, '\n'); 3007 } 3008 3009 return 0; 3010 } 3011 3012 static const struct seq_operations fib_route_seq_ops = { 3013 .start = fib_route_seq_start, 3014 .next = fib_route_seq_next, 3015 .stop = fib_route_seq_stop, 3016 .show = fib_route_seq_show, 3017 }; 3018 3019 int __net_init fib_proc_init(struct net *net) 3020 { 3021 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3022 sizeof(struct fib_trie_iter))) 3023 goto out1; 3024 3025 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3026 fib_triestat_seq_show, NULL)) 3027 goto out2; 3028 3029 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3030 sizeof(struct fib_route_iter))) 3031 goto out3; 3032 3033 return 0; 3034 3035 out3: 3036 remove_proc_entry("fib_triestat", net->proc_net); 3037 out2: 3038 remove_proc_entry("fib_trie", net->proc_net); 3039 out1: 3040 return -ENOMEM; 3041 } 3042 3043 void __net_exit fib_proc_exit(struct net *net) 3044 { 3045 remove_proc_entry("fib_trie", net->proc_net); 3046 remove_proc_entry("fib_triestat", net->proc_net); 3047 remove_proc_entry("route", net->proc_net); 3048 } 3049 3050 #endif /* CONFIG_PROC_FS */ 3051