1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/skbuff.h> 56 #include <linux/netlink.h> 57 #include <linux/init.h> 58 #include <linux/list.h> 59 #include <linux/slab.h> 60 #include <linux/export.h> 61 #include <linux/vmalloc.h> 62 #include <linux/notifier.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <net/route.h> 67 #include <net/tcp.h> 68 #include <net/sock.h> 69 #include <net/ip_fib.h> 70 #include <net/fib_notifier.h> 71 #include <trace/events/fib.h> 72 #include "fib_lookup.h" 73 74 static int call_fib_entry_notifier(struct notifier_block *nb, 75 enum fib_event_type event_type, u32 dst, 76 int dst_len, struct fib_alias *fa, 77 struct netlink_ext_ack *extack) 78 { 79 struct fib_entry_notifier_info info = { 80 .info.extack = extack, 81 .dst = dst, 82 .dst_len = dst_len, 83 .fi = fa->fa_info, 84 .tos = fa->fa_tos, 85 .type = fa->fa_type, 86 .tb_id = fa->tb_id, 87 }; 88 return call_fib4_notifier(nb, event_type, &info.info); 89 } 90 91 static int call_fib_entry_notifiers(struct net *net, 92 enum fib_event_type event_type, u32 dst, 93 int dst_len, struct fib_alias *fa, 94 struct netlink_ext_ack *extack) 95 { 96 struct fib_entry_notifier_info info = { 97 .info.extack = extack, 98 .dst = dst, 99 .dst_len = dst_len, 100 .fi = fa->fa_info, 101 .tos = fa->fa_tos, 102 .type = fa->fa_type, 103 .tb_id = fa->tb_id, 104 }; 105 return call_fib4_notifiers(net, event_type, &info.info); 106 } 107 108 #define MAX_STAT_DEPTH 32 109 110 #define KEYLENGTH (8*sizeof(t_key)) 111 #define KEY_MAX ((t_key)~0) 112 113 typedef unsigned int t_key; 114 115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 116 #define IS_TNODE(n) ((n)->bits) 117 #define IS_LEAF(n) (!(n)->bits) 118 119 struct key_vector { 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char slen; 124 union { 125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 126 struct hlist_head leaf; 127 /* This array is valid if (pos | bits) > 0 (TNODE) */ 128 struct key_vector __rcu *tnode[0]; 129 }; 130 }; 131 132 struct tnode { 133 struct rcu_head rcu; 134 t_key empty_children; /* KEYLENGTH bits needed */ 135 t_key full_children; /* KEYLENGTH bits needed */ 136 struct key_vector __rcu *parent; 137 struct key_vector kv[1]; 138 #define tn_bits kv[0].bits 139 }; 140 141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 142 #define LEAF_SIZE TNODE_SIZE(1) 143 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats { 146 unsigned int gets; 147 unsigned int backtrack; 148 unsigned int semantic_match_passed; 149 unsigned int semantic_match_miss; 150 unsigned int null_node_hit; 151 unsigned int resize_node_skipped; 152 }; 153 #endif 154 155 struct trie_stat { 156 unsigned int totdepth; 157 unsigned int maxdepth; 158 unsigned int tnodes; 159 unsigned int leaves; 160 unsigned int nullpointers; 161 unsigned int prefixes; 162 unsigned int nodesizes[MAX_STAT_DEPTH]; 163 }; 164 165 struct trie { 166 struct key_vector kv[1]; 167 #ifdef CONFIG_IP_FIB_TRIE_STATS 168 struct trie_use_stats __percpu *stats; 169 #endif 170 }; 171 172 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 173 static unsigned int tnode_free_size; 174 175 /* 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 177 * especially useful before resizing the root node with PREEMPT_NONE configs; 178 * the value was obtained experimentally, aiming to avoid visible slowdown. 179 */ 180 unsigned int sysctl_fib_sync_mem = 512 * 1024; 181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 183 184 static struct kmem_cache *fn_alias_kmem __ro_after_init; 185 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 186 187 static inline struct tnode *tn_info(struct key_vector *kv) 188 { 189 return container_of(kv, struct tnode, kv[0]); 190 } 191 192 /* caller must hold RTNL */ 193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 195 196 /* caller must hold RCU read lock or RTNL */ 197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 199 200 /* wrapper for rcu_assign_pointer */ 201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 202 { 203 if (n) 204 rcu_assign_pointer(tn_info(n)->parent, tp); 205 } 206 207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 208 209 /* This provides us with the number of children in this node, in the case of a 210 * leaf this will return 0 meaning none of the children are accessible. 211 */ 212 static inline unsigned long child_length(const struct key_vector *tn) 213 { 214 return (1ul << tn->bits) & ~(1ul); 215 } 216 217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 218 219 static inline unsigned long get_index(t_key key, struct key_vector *kv) 220 { 221 unsigned long index = key ^ kv->key; 222 223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 224 return 0; 225 226 return index >> kv->pos; 227 } 228 229 /* To understand this stuff, an understanding of keys and all their bits is 230 * necessary. Every node in the trie has a key associated with it, but not 231 * all of the bits in that key are significant. 232 * 233 * Consider a node 'n' and its parent 'tp'. 234 * 235 * If n is a leaf, every bit in its key is significant. Its presence is 236 * necessitated by path compression, since during a tree traversal (when 237 * searching for a leaf - unless we are doing an insertion) we will completely 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 239 * a potentially successful search, that we have indeed been walking the 240 * correct key path. 241 * 242 * Note that we can never "miss" the correct key in the tree if present by 243 * following the wrong path. Path compression ensures that segments of the key 244 * that are the same for all keys with a given prefix are skipped, but the 245 * skipped part *is* identical for each node in the subtrie below the skipped 246 * bit! trie_insert() in this implementation takes care of that. 247 * 248 * if n is an internal node - a 'tnode' here, the various parts of its key 249 * have many different meanings. 250 * 251 * Example: 252 * _________________________________________________________________ 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 254 * ----------------------------------------------------------------- 255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 256 * 257 * _________________________________________________________________ 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 259 * ----------------------------------------------------------------- 260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 * 262 * tp->pos = 22 263 * tp->bits = 3 264 * n->pos = 13 265 * n->bits = 4 266 * 267 * First, let's just ignore the bits that come before the parent tp, that is 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 269 * point we do not use them for anything. 270 * 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 272 * index into the parent's child array. That is, they will be used to find 273 * 'n' among tp's children. 274 * 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 276 * for the node n. 277 * 278 * All the bits we have seen so far are significant to the node n. The rest 279 * of the bits are really not needed or indeed known in n->key. 280 * 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 282 * n's child array, and will of course be different for each child. 283 * 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 285 * at this point. 286 */ 287 288 static const int halve_threshold = 25; 289 static const int inflate_threshold = 50; 290 static const int halve_threshold_root = 15; 291 static const int inflate_threshold_root = 30; 292 293 static void __alias_free_mem(struct rcu_head *head) 294 { 295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 296 kmem_cache_free(fn_alias_kmem, fa); 297 } 298 299 static inline void alias_free_mem_rcu(struct fib_alias *fa) 300 { 301 call_rcu(&fa->rcu, __alias_free_mem); 302 } 303 304 #define TNODE_VMALLOC_MAX \ 305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 306 307 static void __node_free_rcu(struct rcu_head *head) 308 { 309 struct tnode *n = container_of(head, struct tnode, rcu); 310 311 if (!n->tn_bits) 312 kmem_cache_free(trie_leaf_kmem, n); 313 else 314 kvfree(n); 315 } 316 317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 318 319 static struct tnode *tnode_alloc(int bits) 320 { 321 size_t size; 322 323 /* verify bits is within bounds */ 324 if (bits > TNODE_VMALLOC_MAX) 325 return NULL; 326 327 /* determine size and verify it is non-zero and didn't overflow */ 328 size = TNODE_SIZE(1ul << bits); 329 330 if (size <= PAGE_SIZE) 331 return kzalloc(size, GFP_KERNEL); 332 else 333 return vzalloc(size); 334 } 335 336 static inline void empty_child_inc(struct key_vector *n) 337 { 338 tn_info(n)->empty_children++; 339 340 if (!tn_info(n)->empty_children) 341 tn_info(n)->full_children++; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 if (!tn_info(n)->empty_children) 347 tn_info(n)->full_children--; 348 349 tn_info(n)->empty_children--; 350 } 351 352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 353 { 354 struct key_vector *l; 355 struct tnode *kv; 356 357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 358 if (!kv) 359 return NULL; 360 361 /* initialize key vector */ 362 l = kv->kv; 363 l->key = key; 364 l->pos = 0; 365 l->bits = 0; 366 l->slen = fa->fa_slen; 367 368 /* link leaf to fib alias */ 369 INIT_HLIST_HEAD(&l->leaf); 370 hlist_add_head(&fa->fa_list, &l->leaf); 371 372 return l; 373 } 374 375 static struct key_vector *tnode_new(t_key key, int pos, int bits) 376 { 377 unsigned int shift = pos + bits; 378 struct key_vector *tn; 379 struct tnode *tnode; 380 381 /* verify bits and pos their msb bits clear and values are valid */ 382 BUG_ON(!bits || (shift > KEYLENGTH)); 383 384 tnode = tnode_alloc(bits); 385 if (!tnode) 386 return NULL; 387 388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 389 sizeof(struct key_vector *) << bits); 390 391 if (bits == KEYLENGTH) 392 tnode->full_children = 1; 393 else 394 tnode->empty_children = 1ul << bits; 395 396 tn = tnode->kv; 397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 398 tn->pos = pos; 399 tn->bits = bits; 400 tn->slen = pos; 401 402 return tn; 403 } 404 405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 406 * and no bits are skipped. See discussion in dyntree paper p. 6 407 */ 408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 409 { 410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 411 } 412 413 /* Add a child at position i overwriting the old value. 414 * Update the value of full_children and empty_children. 415 */ 416 static void put_child(struct key_vector *tn, unsigned long i, 417 struct key_vector *n) 418 { 419 struct key_vector *chi = get_child(tn, i); 420 int isfull, wasfull; 421 422 BUG_ON(i >= child_length(tn)); 423 424 /* update emptyChildren, overflow into fullChildren */ 425 if (!n && chi) 426 empty_child_inc(tn); 427 if (n && !chi) 428 empty_child_dec(tn); 429 430 /* update fullChildren */ 431 wasfull = tnode_full(tn, chi); 432 isfull = tnode_full(tn, n); 433 434 if (wasfull && !isfull) 435 tn_info(tn)->full_children--; 436 else if (!wasfull && isfull) 437 tn_info(tn)->full_children++; 438 439 if (n && (tn->slen < n->slen)) 440 tn->slen = n->slen; 441 442 rcu_assign_pointer(tn->tnode[i], n); 443 } 444 445 static void update_children(struct key_vector *tn) 446 { 447 unsigned long i; 448 449 /* update all of the child parent pointers */ 450 for (i = child_length(tn); i;) { 451 struct key_vector *inode = get_child(tn, --i); 452 453 if (!inode) 454 continue; 455 456 /* Either update the children of a tnode that 457 * already belongs to us or update the child 458 * to point to ourselves. 459 */ 460 if (node_parent(inode) == tn) 461 update_children(inode); 462 else 463 node_set_parent(inode, tn); 464 } 465 } 466 467 static inline void put_child_root(struct key_vector *tp, t_key key, 468 struct key_vector *n) 469 { 470 if (IS_TRIE(tp)) 471 rcu_assign_pointer(tp->tnode[0], n); 472 else 473 put_child(tp, get_index(key, tp), n); 474 } 475 476 static inline void tnode_free_init(struct key_vector *tn) 477 { 478 tn_info(tn)->rcu.next = NULL; 479 } 480 481 static inline void tnode_free_append(struct key_vector *tn, 482 struct key_vector *n) 483 { 484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 485 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 486 } 487 488 static void tnode_free(struct key_vector *tn) 489 { 490 struct callback_head *head = &tn_info(tn)->rcu; 491 492 while (head) { 493 head = head->next; 494 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 495 node_free(tn); 496 497 tn = container_of(head, struct tnode, rcu)->kv; 498 } 499 500 if (tnode_free_size >= sysctl_fib_sync_mem) { 501 tnode_free_size = 0; 502 synchronize_rcu(); 503 } 504 } 505 506 static struct key_vector *replace(struct trie *t, 507 struct key_vector *oldtnode, 508 struct key_vector *tn) 509 { 510 struct key_vector *tp = node_parent(oldtnode); 511 unsigned long i; 512 513 /* setup the parent pointer out of and back into this node */ 514 NODE_INIT_PARENT(tn, tp); 515 put_child_root(tp, tn->key, tn); 516 517 /* update all of the child parent pointers */ 518 update_children(tn); 519 520 /* all pointers should be clean so we are done */ 521 tnode_free(oldtnode); 522 523 /* resize children now that oldtnode is freed */ 524 for (i = child_length(tn); i;) { 525 struct key_vector *inode = get_child(tn, --i); 526 527 /* resize child node */ 528 if (tnode_full(tn, inode)) 529 tn = resize(t, inode); 530 } 531 532 return tp; 533 } 534 535 static struct key_vector *inflate(struct trie *t, 536 struct key_vector *oldtnode) 537 { 538 struct key_vector *tn; 539 unsigned long i; 540 t_key m; 541 542 pr_debug("In inflate\n"); 543 544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 545 if (!tn) 546 goto notnode; 547 548 /* prepare oldtnode to be freed */ 549 tnode_free_init(oldtnode); 550 551 /* Assemble all of the pointers in our cluster, in this case that 552 * represents all of the pointers out of our allocated nodes that 553 * point to existing tnodes and the links between our allocated 554 * nodes. 555 */ 556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 557 struct key_vector *inode = get_child(oldtnode, --i); 558 struct key_vector *node0, *node1; 559 unsigned long j, k; 560 561 /* An empty child */ 562 if (!inode) 563 continue; 564 565 /* A leaf or an internal node with skipped bits */ 566 if (!tnode_full(oldtnode, inode)) { 567 put_child(tn, get_index(inode->key, tn), inode); 568 continue; 569 } 570 571 /* drop the node in the old tnode free list */ 572 tnode_free_append(oldtnode, inode); 573 574 /* An internal node with two children */ 575 if (inode->bits == 1) { 576 put_child(tn, 2 * i + 1, get_child(inode, 1)); 577 put_child(tn, 2 * i, get_child(inode, 0)); 578 continue; 579 } 580 581 /* We will replace this node 'inode' with two new 582 * ones, 'node0' and 'node1', each with half of the 583 * original children. The two new nodes will have 584 * a position one bit further down the key and this 585 * means that the "significant" part of their keys 586 * (see the discussion near the top of this file) 587 * will differ by one bit, which will be "0" in 588 * node0's key and "1" in node1's key. Since we are 589 * moving the key position by one step, the bit that 590 * we are moving away from - the bit at position 591 * (tn->pos) - is the one that will differ between 592 * node0 and node1. So... we synthesize that bit in the 593 * two new keys. 594 */ 595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 596 if (!node1) 597 goto nomem; 598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 599 600 tnode_free_append(tn, node1); 601 if (!node0) 602 goto nomem; 603 tnode_free_append(tn, node0); 604 605 /* populate child pointers in new nodes */ 606 for (k = child_length(inode), j = k / 2; j;) { 607 put_child(node1, --j, get_child(inode, --k)); 608 put_child(node0, j, get_child(inode, j)); 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 } 612 613 /* link new nodes to parent */ 614 NODE_INIT_PARENT(node1, tn); 615 NODE_INIT_PARENT(node0, tn); 616 617 /* link parent to nodes */ 618 put_child(tn, 2 * i + 1, node1); 619 put_child(tn, 2 * i, node0); 620 } 621 622 /* setup the parent pointers into and out of this node */ 623 return replace(t, oldtnode, tn); 624 nomem: 625 /* all pointers should be clean so we are done */ 626 tnode_free(tn); 627 notnode: 628 return NULL; 629 } 630 631 static struct key_vector *halve(struct trie *t, 632 struct key_vector *oldtnode) 633 { 634 struct key_vector *tn; 635 unsigned long i; 636 637 pr_debug("In halve\n"); 638 639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 640 if (!tn) 641 goto notnode; 642 643 /* prepare oldtnode to be freed */ 644 tnode_free_init(oldtnode); 645 646 /* Assemble all of the pointers in our cluster, in this case that 647 * represents all of the pointers out of our allocated nodes that 648 * point to existing tnodes and the links between our allocated 649 * nodes. 650 */ 651 for (i = child_length(oldtnode); i;) { 652 struct key_vector *node1 = get_child(oldtnode, --i); 653 struct key_vector *node0 = get_child(oldtnode, --i); 654 struct key_vector *inode; 655 656 /* At least one of the children is empty */ 657 if (!node1 || !node0) { 658 put_child(tn, i / 2, node1 ? : node0); 659 continue; 660 } 661 662 /* Two nonempty children */ 663 inode = tnode_new(node0->key, oldtnode->pos, 1); 664 if (!inode) 665 goto nomem; 666 tnode_free_append(tn, inode); 667 668 /* initialize pointers out of node */ 669 put_child(inode, 1, node1); 670 put_child(inode, 0, node0); 671 NODE_INIT_PARENT(inode, tn); 672 673 /* link parent to node */ 674 put_child(tn, i / 2, inode); 675 } 676 677 /* setup the parent pointers into and out of this node */ 678 return replace(t, oldtnode, tn); 679 nomem: 680 /* all pointers should be clean so we are done */ 681 tnode_free(tn); 682 notnode: 683 return NULL; 684 } 685 686 static struct key_vector *collapse(struct trie *t, 687 struct key_vector *oldtnode) 688 { 689 struct key_vector *n, *tp; 690 unsigned long i; 691 692 /* scan the tnode looking for that one child that might still exist */ 693 for (n = NULL, i = child_length(oldtnode); !n && i;) 694 n = get_child(oldtnode, --i); 695 696 /* compress one level */ 697 tp = node_parent(oldtnode); 698 put_child_root(tp, oldtnode->key, n); 699 node_set_parent(n, tp); 700 701 /* drop dead node */ 702 node_free(oldtnode); 703 704 return tp; 705 } 706 707 static unsigned char update_suffix(struct key_vector *tn) 708 { 709 unsigned char slen = tn->pos; 710 unsigned long stride, i; 711 unsigned char slen_max; 712 713 /* only vector 0 can have a suffix length greater than or equal to 714 * tn->pos + tn->bits, the second highest node will have a suffix 715 * length at most of tn->pos + tn->bits - 1 716 */ 717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 718 719 /* search though the list of children looking for nodes that might 720 * have a suffix greater than the one we currently have. This is 721 * why we start with a stride of 2 since a stride of 1 would 722 * represent the nodes with suffix length equal to tn->pos 723 */ 724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 725 struct key_vector *n = get_child(tn, i); 726 727 if (!n || (n->slen <= slen)) 728 continue; 729 730 /* update stride and slen based on new value */ 731 stride <<= (n->slen - slen); 732 slen = n->slen; 733 i &= ~(stride - 1); 734 735 /* stop searching if we have hit the maximum possible value */ 736 if (slen >= slen_max) 737 break; 738 } 739 740 tn->slen = slen; 741 742 return slen; 743 } 744 745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia 747 * Telecommunications, page 6: 748 * "A node is doubled if the ratio of non-empty children to all 749 * children in the *doubled* node is at least 'high'." 750 * 751 * 'high' in this instance is the variable 'inflate_threshold'. It 752 * is expressed as a percentage, so we multiply it with 753 * child_length() and instead of multiplying by 2 (since the 754 * child array will be doubled by inflate()) and multiplying 755 * the left-hand side by 100 (to handle the percentage thing) we 756 * multiply the left-hand side by 50. 757 * 758 * The left-hand side may look a bit weird: child_length(tn) 759 * - tn->empty_children is of course the number of non-null children 760 * in the current node. tn->full_children is the number of "full" 761 * children, that is non-null tnodes with a skip value of 0. 762 * All of those will be doubled in the resulting inflated tnode, so 763 * we just count them one extra time here. 764 * 765 * A clearer way to write this would be: 766 * 767 * to_be_doubled = tn->full_children; 768 * not_to_be_doubled = child_length(tn) - tn->empty_children - 769 * tn->full_children; 770 * 771 * new_child_length = child_length(tn) * 2; 772 * 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 774 * new_child_length; 775 * if (new_fill_factor >= inflate_threshold) 776 * 777 * ...and so on, tho it would mess up the while () loop. 778 * 779 * anyway, 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 781 * inflate_threshold 782 * 783 * avoid a division: 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 785 * inflate_threshold * new_child_length 786 * 787 * expand not_to_be_doubled and to_be_doubled, and shorten: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= inflate_threshold * new_child_length 790 * 791 * expand new_child_length: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= 794 * inflate_threshold * child_length(tn) * 2 795 * 796 * shorten again: 797 * 50 * (tn->full_children + child_length(tn) - 798 * tn->empty_children) >= inflate_threshold * 799 * child_length(tn) 800 * 801 */ 802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 803 { 804 unsigned long used = child_length(tn); 805 unsigned long threshold = used; 806 807 /* Keep root node larger */ 808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 809 used -= tn_info(tn)->empty_children; 810 used += tn_info(tn)->full_children; 811 812 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 813 814 return (used > 1) && tn->pos && ((50 * used) >= threshold); 815 } 816 817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 818 { 819 unsigned long used = child_length(tn); 820 unsigned long threshold = used; 821 822 /* Keep root node larger */ 823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 824 used -= tn_info(tn)->empty_children; 825 826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 827 828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 829 } 830 831 static inline bool should_collapse(struct key_vector *tn) 832 { 833 unsigned long used = child_length(tn); 834 835 used -= tn_info(tn)->empty_children; 836 837 /* account for bits == KEYLENGTH case */ 838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 839 used -= KEY_MAX; 840 841 /* One child or none, time to drop us from the trie */ 842 return used < 2; 843 } 844 845 #define MAX_WORK 10 846 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 847 { 848 #ifdef CONFIG_IP_FIB_TRIE_STATS 849 struct trie_use_stats __percpu *stats = t->stats; 850 #endif 851 struct key_vector *tp = node_parent(tn); 852 unsigned long cindex = get_index(tn->key, tp); 853 int max_work = MAX_WORK; 854 855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 856 tn, inflate_threshold, halve_threshold); 857 858 /* track the tnode via the pointer from the parent instead of 859 * doing it ourselves. This way we can let RCU fully do its 860 * thing without us interfering 861 */ 862 BUG_ON(tn != get_child(tp, cindex)); 863 864 /* Double as long as the resulting node has a number of 865 * nonempty nodes that are above the threshold. 866 */ 867 while (should_inflate(tp, tn) && max_work) { 868 tp = inflate(t, tn); 869 if (!tp) { 870 #ifdef CONFIG_IP_FIB_TRIE_STATS 871 this_cpu_inc(stats->resize_node_skipped); 872 #endif 873 break; 874 } 875 876 max_work--; 877 tn = get_child(tp, cindex); 878 } 879 880 /* update parent in case inflate failed */ 881 tp = node_parent(tn); 882 883 /* Return if at least one inflate is run */ 884 if (max_work != MAX_WORK) 885 return tp; 886 887 /* Halve as long as the number of empty children in this 888 * node is above threshold. 889 */ 890 while (should_halve(tp, tn) && max_work) { 891 tp = halve(t, tn); 892 if (!tp) { 893 #ifdef CONFIG_IP_FIB_TRIE_STATS 894 this_cpu_inc(stats->resize_node_skipped); 895 #endif 896 break; 897 } 898 899 max_work--; 900 tn = get_child(tp, cindex); 901 } 902 903 /* Only one child remains */ 904 if (should_collapse(tn)) 905 return collapse(t, tn); 906 907 /* update parent in case halve failed */ 908 return node_parent(tn); 909 } 910 911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 912 { 913 unsigned char node_slen = tn->slen; 914 915 while ((node_slen > tn->pos) && (node_slen > slen)) { 916 slen = update_suffix(tn); 917 if (node_slen == slen) 918 break; 919 920 tn = node_parent(tn); 921 node_slen = tn->slen; 922 } 923 } 924 925 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 926 { 927 while (tn->slen < slen) { 928 tn->slen = slen; 929 tn = node_parent(tn); 930 } 931 } 932 933 /* rcu_read_lock needs to be hold by caller from readside */ 934 static struct key_vector *fib_find_node(struct trie *t, 935 struct key_vector **tp, u32 key) 936 { 937 struct key_vector *pn, *n = t->kv; 938 unsigned long index = 0; 939 940 do { 941 pn = n; 942 n = get_child_rcu(n, index); 943 944 if (!n) 945 break; 946 947 index = get_cindex(key, n); 948 949 /* This bit of code is a bit tricky but it combines multiple 950 * checks into a single check. The prefix consists of the 951 * prefix plus zeros for the bits in the cindex. The index 952 * is the difference between the key and this value. From 953 * this we can actually derive several pieces of data. 954 * if (index >= (1ul << bits)) 955 * we have a mismatch in skip bits and failed 956 * else 957 * we know the value is cindex 958 * 959 * This check is safe even if bits == KEYLENGTH due to the 960 * fact that we can only allocate a node with 32 bits if a 961 * long is greater than 32 bits. 962 */ 963 if (index >= (1ul << n->bits)) { 964 n = NULL; 965 break; 966 } 967 968 /* keep searching until we find a perfect match leaf or NULL */ 969 } while (IS_TNODE(n)); 970 971 *tp = pn; 972 973 return n; 974 } 975 976 /* Return the first fib alias matching TOS with 977 * priority less than or equal to PRIO. 978 * If 'find_first' is set, return the first matching 979 * fib alias, regardless of TOS and priority. 980 */ 981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 982 u8 tos, u32 prio, u32 tb_id, 983 bool find_first) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 struct fib_alias *fa_match; 1041 1042 rcu_read_lock(); 1043 1044 fa_match = fib_find_matching_alias(net, fri); 1045 if (!fa_match) 1046 goto out; 1047 1048 fa_match->offload = fri->offload; 1049 fa_match->trap = fri->trap; 1050 1051 out: 1052 rcu_read_unlock(); 1053 } 1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1055 1056 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1057 { 1058 while (!IS_TRIE(tn)) 1059 tn = resize(t, tn); 1060 } 1061 1062 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1063 struct fib_alias *new, t_key key) 1064 { 1065 struct key_vector *n, *l; 1066 1067 l = leaf_new(key, new); 1068 if (!l) 1069 goto noleaf; 1070 1071 /* retrieve child from parent node */ 1072 n = get_child(tp, get_index(key, tp)); 1073 1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1075 * 1076 * Add a new tnode here 1077 * first tnode need some special handling 1078 * leaves us in position for handling as case 3 1079 */ 1080 if (n) { 1081 struct key_vector *tn; 1082 1083 tn = tnode_new(key, __fls(key ^ n->key), 1); 1084 if (!tn) 1085 goto notnode; 1086 1087 /* initialize routes out of node */ 1088 NODE_INIT_PARENT(tn, tp); 1089 put_child(tn, get_index(key, tn) ^ 1, n); 1090 1091 /* start adding routes into the node */ 1092 put_child_root(tp, key, tn); 1093 node_set_parent(n, tn); 1094 1095 /* parent now has a NULL spot where the leaf can go */ 1096 tp = tn; 1097 } 1098 1099 /* Case 3: n is NULL, and will just insert a new leaf */ 1100 node_push_suffix(tp, new->fa_slen); 1101 NODE_INIT_PARENT(l, tp); 1102 put_child_root(tp, key, l); 1103 trie_rebalance(t, tp); 1104 1105 return 0; 1106 notnode: 1107 node_free(l); 1108 noleaf: 1109 return -ENOMEM; 1110 } 1111 1112 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1113 struct key_vector *l, struct fib_alias *new, 1114 struct fib_alias *fa, t_key key) 1115 { 1116 if (!l) 1117 return fib_insert_node(t, tp, new, key); 1118 1119 if (fa) { 1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1121 } else { 1122 struct fib_alias *last; 1123 1124 hlist_for_each_entry(last, &l->leaf, fa_list) { 1125 if (new->fa_slen < last->fa_slen) 1126 break; 1127 if ((new->fa_slen == last->fa_slen) && 1128 (new->tb_id > last->tb_id)) 1129 break; 1130 fa = last; 1131 } 1132 1133 if (fa) 1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1135 else 1136 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1137 } 1138 1139 /* if we added to the tail node then we need to update slen */ 1140 if (l->slen < new->fa_slen) { 1141 l->slen = new->fa_slen; 1142 node_push_suffix(tp, new->fa_slen); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1149 { 1150 if (plen > KEYLENGTH) { 1151 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1152 return false; 1153 } 1154 1155 if ((plen < KEYLENGTH) && (key << plen)) { 1156 NL_SET_ERR_MSG(extack, 1157 "Invalid prefix for given prefix length"); 1158 return false; 1159 } 1160 1161 return true; 1162 } 1163 1164 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1165 struct key_vector *l, struct fib_alias *old); 1166 1167 /* Caller must hold RTNL. */ 1168 int fib_table_insert(struct net *net, struct fib_table *tb, 1169 struct fib_config *cfg, struct netlink_ext_ack *extack) 1170 { 1171 struct trie *t = (struct trie *)tb->tb_data; 1172 struct fib_alias *fa, *new_fa; 1173 struct key_vector *l, *tp; 1174 u16 nlflags = NLM_F_EXCL; 1175 struct fib_info *fi; 1176 u8 plen = cfg->fc_dst_len; 1177 u8 slen = KEYLENGTH - plen; 1178 u8 tos = cfg->fc_tos; 1179 u32 key; 1180 int err; 1181 1182 key = ntohl(cfg->fc_dst); 1183 1184 if (!fib_valid_key_len(key, plen, extack)) 1185 return -EINVAL; 1186 1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1188 1189 fi = fib_create_info(cfg, extack); 1190 if (IS_ERR(fi)) { 1191 err = PTR_ERR(fi); 1192 goto err; 1193 } 1194 1195 l = fib_find_node(t, &tp, key); 1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1197 tb->tb_id, false) : NULL; 1198 1199 /* Now fa, if non-NULL, points to the first fib alias 1200 * with the same keys [prefix,tos,priority], if such key already 1201 * exists or to the node before which we will insert new one. 1202 * 1203 * If fa is NULL, we will need to allocate a new one and 1204 * insert to the tail of the section matching the suffix length 1205 * of the new alias. 1206 */ 1207 1208 if (fa && fa->fa_tos == tos && 1209 fa->fa_info->fib_priority == fi->fib_priority) { 1210 struct fib_alias *fa_first, *fa_match; 1211 1212 err = -EEXIST; 1213 if (cfg->fc_nlflags & NLM_F_EXCL) 1214 goto out; 1215 1216 nlflags &= ~NLM_F_EXCL; 1217 1218 /* We have 2 goals: 1219 * 1. Find exact match for type, scope, fib_info to avoid 1220 * duplicate routes 1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1222 */ 1223 fa_match = NULL; 1224 fa_first = fa; 1225 hlist_for_each_entry_from(fa, fa_list) { 1226 if ((fa->fa_slen != slen) || 1227 (fa->tb_id != tb->tb_id) || 1228 (fa->fa_tos != tos)) 1229 break; 1230 if (fa->fa_info->fib_priority != fi->fib_priority) 1231 break; 1232 if (fa->fa_type == cfg->fc_type && 1233 fa->fa_info == fi) { 1234 fa_match = fa; 1235 break; 1236 } 1237 } 1238 1239 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1240 struct fib_info *fi_drop; 1241 u8 state; 1242 1243 nlflags |= NLM_F_REPLACE; 1244 fa = fa_first; 1245 if (fa_match) { 1246 if (fa == fa_match) 1247 err = 0; 1248 goto out; 1249 } 1250 err = -ENOBUFS; 1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1252 if (!new_fa) 1253 goto out; 1254 1255 fi_drop = fa->fa_info; 1256 new_fa->fa_tos = fa->fa_tos; 1257 new_fa->fa_info = fi; 1258 new_fa->fa_type = cfg->fc_type; 1259 state = fa->fa_state; 1260 new_fa->fa_state = state & ~FA_S_ACCESSED; 1261 new_fa->fa_slen = fa->fa_slen; 1262 new_fa->tb_id = tb->tb_id; 1263 new_fa->fa_default = -1; 1264 new_fa->offload = 0; 1265 new_fa->trap = 0; 1266 1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1268 1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1270 tb->tb_id, true) == new_fa) { 1271 enum fib_event_type fib_event; 1272 1273 fib_event = FIB_EVENT_ENTRY_REPLACE; 1274 err = call_fib_entry_notifiers(net, fib_event, 1275 key, plen, 1276 new_fa, extack); 1277 if (err) { 1278 hlist_replace_rcu(&new_fa->fa_list, 1279 &fa->fa_list); 1280 goto out_free_new_fa; 1281 } 1282 } 1283 1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1285 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1286 1287 alias_free_mem_rcu(fa); 1288 1289 fib_release_info(fi_drop); 1290 if (state & FA_S_ACCESSED) 1291 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1292 1293 goto succeeded; 1294 } 1295 /* Error if we find a perfect match which 1296 * uses the same scope, type, and nexthop 1297 * information. 1298 */ 1299 if (fa_match) 1300 goto out; 1301 1302 if (cfg->fc_nlflags & NLM_F_APPEND) 1303 nlflags |= NLM_F_APPEND; 1304 else 1305 fa = fa_first; 1306 } 1307 err = -ENOENT; 1308 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1309 goto out; 1310 1311 nlflags |= NLM_F_CREATE; 1312 err = -ENOBUFS; 1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1314 if (!new_fa) 1315 goto out; 1316 1317 new_fa->fa_info = fi; 1318 new_fa->fa_tos = tos; 1319 new_fa->fa_type = cfg->fc_type; 1320 new_fa->fa_state = 0; 1321 new_fa->fa_slen = slen; 1322 new_fa->tb_id = tb->tb_id; 1323 new_fa->fa_default = -1; 1324 new_fa->offload = 0; 1325 new_fa->trap = 0; 1326 1327 /* Insert new entry to the list. */ 1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1329 if (err) 1330 goto out_free_new_fa; 1331 1332 /* The alias was already inserted, so the node must exist. */ 1333 l = l ? l : fib_find_node(t, &tp, key); 1334 if (WARN_ON_ONCE(!l)) 1335 goto out_free_new_fa; 1336 1337 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1338 new_fa) { 1339 enum fib_event_type fib_event; 1340 1341 fib_event = FIB_EVENT_ENTRY_REPLACE; 1342 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1343 new_fa, extack); 1344 if (err) 1345 goto out_remove_new_fa; 1346 } 1347 1348 if (!plen) 1349 tb->tb_num_default++; 1350 1351 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1352 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1353 &cfg->fc_nlinfo, nlflags); 1354 succeeded: 1355 return 0; 1356 1357 out_remove_new_fa: 1358 fib_remove_alias(t, tp, l, new_fa); 1359 out_free_new_fa: 1360 kmem_cache_free(fn_alias_kmem, new_fa); 1361 out: 1362 fib_release_info(fi); 1363 err: 1364 return err; 1365 } 1366 1367 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1368 { 1369 t_key prefix = n->key; 1370 1371 return (key ^ prefix) & (prefix | -prefix); 1372 } 1373 1374 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1375 const struct flowi4 *flp) 1376 { 1377 if (nhc->nhc_flags & RTNH_F_DEAD) 1378 return false; 1379 1380 if (ip_ignore_linkdown(nhc->nhc_dev) && 1381 nhc->nhc_flags & RTNH_F_LINKDOWN && 1382 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1383 return false; 1384 1385 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1386 if (flp->flowi4_oif && 1387 flp->flowi4_oif != nhc->nhc_oif) 1388 return false; 1389 } 1390 1391 return true; 1392 } 1393 1394 /* should be called with rcu_read_lock */ 1395 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1396 struct fib_result *res, int fib_flags) 1397 { 1398 struct trie *t = (struct trie *) tb->tb_data; 1399 #ifdef CONFIG_IP_FIB_TRIE_STATS 1400 struct trie_use_stats __percpu *stats = t->stats; 1401 #endif 1402 const t_key key = ntohl(flp->daddr); 1403 struct key_vector *n, *pn; 1404 struct fib_alias *fa; 1405 unsigned long index; 1406 t_key cindex; 1407 1408 pn = t->kv; 1409 cindex = 0; 1410 1411 n = get_child_rcu(pn, cindex); 1412 if (!n) { 1413 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1414 return -EAGAIN; 1415 } 1416 1417 #ifdef CONFIG_IP_FIB_TRIE_STATS 1418 this_cpu_inc(stats->gets); 1419 #endif 1420 1421 /* Step 1: Travel to the longest prefix match in the trie */ 1422 for (;;) { 1423 index = get_cindex(key, n); 1424 1425 /* This bit of code is a bit tricky but it combines multiple 1426 * checks into a single check. The prefix consists of the 1427 * prefix plus zeros for the "bits" in the prefix. The index 1428 * is the difference between the key and this value. From 1429 * this we can actually derive several pieces of data. 1430 * if (index >= (1ul << bits)) 1431 * we have a mismatch in skip bits and failed 1432 * else 1433 * we know the value is cindex 1434 * 1435 * This check is safe even if bits == KEYLENGTH due to the 1436 * fact that we can only allocate a node with 32 bits if a 1437 * long is greater than 32 bits. 1438 */ 1439 if (index >= (1ul << n->bits)) 1440 break; 1441 1442 /* we have found a leaf. Prefixes have already been compared */ 1443 if (IS_LEAF(n)) 1444 goto found; 1445 1446 /* only record pn and cindex if we are going to be chopping 1447 * bits later. Otherwise we are just wasting cycles. 1448 */ 1449 if (n->slen > n->pos) { 1450 pn = n; 1451 cindex = index; 1452 } 1453 1454 n = get_child_rcu(n, index); 1455 if (unlikely(!n)) 1456 goto backtrace; 1457 } 1458 1459 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1460 for (;;) { 1461 /* record the pointer where our next node pointer is stored */ 1462 struct key_vector __rcu **cptr = n->tnode; 1463 1464 /* This test verifies that none of the bits that differ 1465 * between the key and the prefix exist in the region of 1466 * the lsb and higher in the prefix. 1467 */ 1468 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1469 goto backtrace; 1470 1471 /* exit out and process leaf */ 1472 if (unlikely(IS_LEAF(n))) 1473 break; 1474 1475 /* Don't bother recording parent info. Since we are in 1476 * prefix match mode we will have to come back to wherever 1477 * we started this traversal anyway 1478 */ 1479 1480 while ((n = rcu_dereference(*cptr)) == NULL) { 1481 backtrace: 1482 #ifdef CONFIG_IP_FIB_TRIE_STATS 1483 if (!n) 1484 this_cpu_inc(stats->null_node_hit); 1485 #endif 1486 /* If we are at cindex 0 there are no more bits for 1487 * us to strip at this level so we must ascend back 1488 * up one level to see if there are any more bits to 1489 * be stripped there. 1490 */ 1491 while (!cindex) { 1492 t_key pkey = pn->key; 1493 1494 /* If we don't have a parent then there is 1495 * nothing for us to do as we do not have any 1496 * further nodes to parse. 1497 */ 1498 if (IS_TRIE(pn)) { 1499 trace_fib_table_lookup(tb->tb_id, flp, 1500 NULL, -EAGAIN); 1501 return -EAGAIN; 1502 } 1503 #ifdef CONFIG_IP_FIB_TRIE_STATS 1504 this_cpu_inc(stats->backtrack); 1505 #endif 1506 /* Get Child's index */ 1507 pn = node_parent_rcu(pn); 1508 cindex = get_index(pkey, pn); 1509 } 1510 1511 /* strip the least significant bit from the cindex */ 1512 cindex &= cindex - 1; 1513 1514 /* grab pointer for next child node */ 1515 cptr = &pn->tnode[cindex]; 1516 } 1517 } 1518 1519 found: 1520 /* this line carries forward the xor from earlier in the function */ 1521 index = key ^ n->key; 1522 1523 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1524 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1525 struct fib_info *fi = fa->fa_info; 1526 struct fib_nh_common *nhc; 1527 int nhsel, err; 1528 1529 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1530 if (index >= (1ul << fa->fa_slen)) 1531 continue; 1532 } 1533 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1534 continue; 1535 if (fi->fib_dead) 1536 continue; 1537 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1538 continue; 1539 fib_alias_accessed(fa); 1540 err = fib_props[fa->fa_type].error; 1541 if (unlikely(err < 0)) { 1542 out_reject: 1543 #ifdef CONFIG_IP_FIB_TRIE_STATS 1544 this_cpu_inc(stats->semantic_match_passed); 1545 #endif 1546 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1547 return err; 1548 } 1549 if (fi->fib_flags & RTNH_F_DEAD) 1550 continue; 1551 1552 if (unlikely(fi->nh)) { 1553 if (nexthop_is_blackhole(fi->nh)) { 1554 err = fib_props[RTN_BLACKHOLE].error; 1555 goto out_reject; 1556 } 1557 1558 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1559 &nhsel); 1560 if (nhc) 1561 goto set_result; 1562 goto miss; 1563 } 1564 1565 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1566 nhc = fib_info_nhc(fi, nhsel); 1567 1568 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1569 continue; 1570 set_result: 1571 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1572 refcount_inc(&fi->fib_clntref); 1573 1574 res->prefix = htonl(n->key); 1575 res->prefixlen = KEYLENGTH - fa->fa_slen; 1576 res->nh_sel = nhsel; 1577 res->nhc = nhc; 1578 res->type = fa->fa_type; 1579 res->scope = fi->fib_scope; 1580 res->fi = fi; 1581 res->table = tb; 1582 res->fa_head = &n->leaf; 1583 #ifdef CONFIG_IP_FIB_TRIE_STATS 1584 this_cpu_inc(stats->semantic_match_passed); 1585 #endif 1586 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1587 1588 return err; 1589 } 1590 } 1591 miss: 1592 #ifdef CONFIG_IP_FIB_TRIE_STATS 1593 this_cpu_inc(stats->semantic_match_miss); 1594 #endif 1595 goto backtrace; 1596 } 1597 EXPORT_SYMBOL_GPL(fib_table_lookup); 1598 1599 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1600 struct key_vector *l, struct fib_alias *old) 1601 { 1602 /* record the location of the previous list_info entry */ 1603 struct hlist_node **pprev = old->fa_list.pprev; 1604 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1605 1606 /* remove the fib_alias from the list */ 1607 hlist_del_rcu(&old->fa_list); 1608 1609 /* if we emptied the list this leaf will be freed and we can sort 1610 * out parent suffix lengths as a part of trie_rebalance 1611 */ 1612 if (hlist_empty(&l->leaf)) { 1613 if (tp->slen == l->slen) 1614 node_pull_suffix(tp, tp->pos); 1615 put_child_root(tp, l->key, NULL); 1616 node_free(l); 1617 trie_rebalance(t, tp); 1618 return; 1619 } 1620 1621 /* only access fa if it is pointing at the last valid hlist_node */ 1622 if (*pprev) 1623 return; 1624 1625 /* update the trie with the latest suffix length */ 1626 l->slen = fa->fa_slen; 1627 node_pull_suffix(tp, fa->fa_slen); 1628 } 1629 1630 static void fib_notify_alias_delete(struct net *net, u32 key, 1631 struct hlist_head *fah, 1632 struct fib_alias *fa_to_delete, 1633 struct netlink_ext_ack *extack) 1634 { 1635 struct fib_alias *fa_next, *fa_to_notify; 1636 u32 tb_id = fa_to_delete->tb_id; 1637 u8 slen = fa_to_delete->fa_slen; 1638 enum fib_event_type fib_event; 1639 1640 /* Do not notify if we do not care about the route. */ 1641 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1642 return; 1643 1644 /* Determine if the route should be replaced by the next route in the 1645 * list. 1646 */ 1647 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1648 struct fib_alias, fa_list); 1649 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1650 fib_event = FIB_EVENT_ENTRY_REPLACE; 1651 fa_to_notify = fa_next; 1652 } else { 1653 fib_event = FIB_EVENT_ENTRY_DEL; 1654 fa_to_notify = fa_to_delete; 1655 } 1656 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1657 fa_to_notify, extack); 1658 } 1659 1660 /* Caller must hold RTNL. */ 1661 int fib_table_delete(struct net *net, struct fib_table *tb, 1662 struct fib_config *cfg, struct netlink_ext_ack *extack) 1663 { 1664 struct trie *t = (struct trie *) tb->tb_data; 1665 struct fib_alias *fa, *fa_to_delete; 1666 struct key_vector *l, *tp; 1667 u8 plen = cfg->fc_dst_len; 1668 u8 slen = KEYLENGTH - plen; 1669 u8 tos = cfg->fc_tos; 1670 u32 key; 1671 1672 key = ntohl(cfg->fc_dst); 1673 1674 if (!fib_valid_key_len(key, plen, extack)) 1675 return -EINVAL; 1676 1677 l = fib_find_node(t, &tp, key); 1678 if (!l) 1679 return -ESRCH; 1680 1681 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1682 if (!fa) 1683 return -ESRCH; 1684 1685 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1686 1687 fa_to_delete = NULL; 1688 hlist_for_each_entry_from(fa, fa_list) { 1689 struct fib_info *fi = fa->fa_info; 1690 1691 if ((fa->fa_slen != slen) || 1692 (fa->tb_id != tb->tb_id) || 1693 (fa->fa_tos != tos)) 1694 break; 1695 1696 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1697 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1698 fa->fa_info->fib_scope == cfg->fc_scope) && 1699 (!cfg->fc_prefsrc || 1700 fi->fib_prefsrc == cfg->fc_prefsrc) && 1701 (!cfg->fc_protocol || 1702 fi->fib_protocol == cfg->fc_protocol) && 1703 fib_nh_match(net, cfg, fi, extack) == 0 && 1704 fib_metrics_match(cfg, fi)) { 1705 fa_to_delete = fa; 1706 break; 1707 } 1708 } 1709 1710 if (!fa_to_delete) 1711 return -ESRCH; 1712 1713 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1714 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1715 &cfg->fc_nlinfo, 0); 1716 1717 if (!plen) 1718 tb->tb_num_default--; 1719 1720 fib_remove_alias(t, tp, l, fa_to_delete); 1721 1722 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1723 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1724 1725 fib_release_info(fa_to_delete->fa_info); 1726 alias_free_mem_rcu(fa_to_delete); 1727 return 0; 1728 } 1729 1730 /* Scan for the next leaf starting at the provided key value */ 1731 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1732 { 1733 struct key_vector *pn, *n = *tn; 1734 unsigned long cindex; 1735 1736 /* this loop is meant to try and find the key in the trie */ 1737 do { 1738 /* record parent and next child index */ 1739 pn = n; 1740 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1741 1742 if (cindex >> pn->bits) 1743 break; 1744 1745 /* descend into the next child */ 1746 n = get_child_rcu(pn, cindex++); 1747 if (!n) 1748 break; 1749 1750 /* guarantee forward progress on the keys */ 1751 if (IS_LEAF(n) && (n->key >= key)) 1752 goto found; 1753 } while (IS_TNODE(n)); 1754 1755 /* this loop will search for the next leaf with a greater key */ 1756 while (!IS_TRIE(pn)) { 1757 /* if we exhausted the parent node we will need to climb */ 1758 if (cindex >= (1ul << pn->bits)) { 1759 t_key pkey = pn->key; 1760 1761 pn = node_parent_rcu(pn); 1762 cindex = get_index(pkey, pn) + 1; 1763 continue; 1764 } 1765 1766 /* grab the next available node */ 1767 n = get_child_rcu(pn, cindex++); 1768 if (!n) 1769 continue; 1770 1771 /* no need to compare keys since we bumped the index */ 1772 if (IS_LEAF(n)) 1773 goto found; 1774 1775 /* Rescan start scanning in new node */ 1776 pn = n; 1777 cindex = 0; 1778 } 1779 1780 *tn = pn; 1781 return NULL; /* Root of trie */ 1782 found: 1783 /* if we are at the limit for keys just return NULL for the tnode */ 1784 *tn = pn; 1785 return n; 1786 } 1787 1788 static void fib_trie_free(struct fib_table *tb) 1789 { 1790 struct trie *t = (struct trie *)tb->tb_data; 1791 struct key_vector *pn = t->kv; 1792 unsigned long cindex = 1; 1793 struct hlist_node *tmp; 1794 struct fib_alias *fa; 1795 1796 /* walk trie in reverse order and free everything */ 1797 for (;;) { 1798 struct key_vector *n; 1799 1800 if (!(cindex--)) { 1801 t_key pkey = pn->key; 1802 1803 if (IS_TRIE(pn)) 1804 break; 1805 1806 n = pn; 1807 pn = node_parent(pn); 1808 1809 /* drop emptied tnode */ 1810 put_child_root(pn, n->key, NULL); 1811 node_free(n); 1812 1813 cindex = get_index(pkey, pn); 1814 1815 continue; 1816 } 1817 1818 /* grab the next available node */ 1819 n = get_child(pn, cindex); 1820 if (!n) 1821 continue; 1822 1823 if (IS_TNODE(n)) { 1824 /* record pn and cindex for leaf walking */ 1825 pn = n; 1826 cindex = 1ul << n->bits; 1827 1828 continue; 1829 } 1830 1831 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1832 hlist_del_rcu(&fa->fa_list); 1833 alias_free_mem_rcu(fa); 1834 } 1835 1836 put_child_root(pn, n->key, NULL); 1837 node_free(n); 1838 } 1839 1840 #ifdef CONFIG_IP_FIB_TRIE_STATS 1841 free_percpu(t->stats); 1842 #endif 1843 kfree(tb); 1844 } 1845 1846 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1847 { 1848 struct trie *ot = (struct trie *)oldtb->tb_data; 1849 struct key_vector *l, *tp = ot->kv; 1850 struct fib_table *local_tb; 1851 struct fib_alias *fa; 1852 struct trie *lt; 1853 t_key key = 0; 1854 1855 if (oldtb->tb_data == oldtb->__data) 1856 return oldtb; 1857 1858 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1859 if (!local_tb) 1860 return NULL; 1861 1862 lt = (struct trie *)local_tb->tb_data; 1863 1864 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1865 struct key_vector *local_l = NULL, *local_tp; 1866 1867 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1868 struct fib_alias *new_fa; 1869 1870 if (local_tb->tb_id != fa->tb_id) 1871 continue; 1872 1873 /* clone fa for new local table */ 1874 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1875 if (!new_fa) 1876 goto out; 1877 1878 memcpy(new_fa, fa, sizeof(*fa)); 1879 1880 /* insert clone into table */ 1881 if (!local_l) 1882 local_l = fib_find_node(lt, &local_tp, l->key); 1883 1884 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1885 NULL, l->key)) { 1886 kmem_cache_free(fn_alias_kmem, new_fa); 1887 goto out; 1888 } 1889 } 1890 1891 /* stop loop if key wrapped back to 0 */ 1892 key = l->key + 1; 1893 if (key < l->key) 1894 break; 1895 } 1896 1897 return local_tb; 1898 out: 1899 fib_trie_free(local_tb); 1900 1901 return NULL; 1902 } 1903 1904 /* Caller must hold RTNL */ 1905 void fib_table_flush_external(struct fib_table *tb) 1906 { 1907 struct trie *t = (struct trie *)tb->tb_data; 1908 struct key_vector *pn = t->kv; 1909 unsigned long cindex = 1; 1910 struct hlist_node *tmp; 1911 struct fib_alias *fa; 1912 1913 /* walk trie in reverse order */ 1914 for (;;) { 1915 unsigned char slen = 0; 1916 struct key_vector *n; 1917 1918 if (!(cindex--)) { 1919 t_key pkey = pn->key; 1920 1921 /* cannot resize the trie vector */ 1922 if (IS_TRIE(pn)) 1923 break; 1924 1925 /* update the suffix to address pulled leaves */ 1926 if (pn->slen > pn->pos) 1927 update_suffix(pn); 1928 1929 /* resize completed node */ 1930 pn = resize(t, pn); 1931 cindex = get_index(pkey, pn); 1932 1933 continue; 1934 } 1935 1936 /* grab the next available node */ 1937 n = get_child(pn, cindex); 1938 if (!n) 1939 continue; 1940 1941 if (IS_TNODE(n)) { 1942 /* record pn and cindex for leaf walking */ 1943 pn = n; 1944 cindex = 1ul << n->bits; 1945 1946 continue; 1947 } 1948 1949 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1950 /* if alias was cloned to local then we just 1951 * need to remove the local copy from main 1952 */ 1953 if (tb->tb_id != fa->tb_id) { 1954 hlist_del_rcu(&fa->fa_list); 1955 alias_free_mem_rcu(fa); 1956 continue; 1957 } 1958 1959 /* record local slen */ 1960 slen = fa->fa_slen; 1961 } 1962 1963 /* update leaf slen */ 1964 n->slen = slen; 1965 1966 if (hlist_empty(&n->leaf)) { 1967 put_child_root(pn, n->key, NULL); 1968 node_free(n); 1969 } 1970 } 1971 } 1972 1973 /* Caller must hold RTNL. */ 1974 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1975 { 1976 struct trie *t = (struct trie *)tb->tb_data; 1977 struct key_vector *pn = t->kv; 1978 unsigned long cindex = 1; 1979 struct hlist_node *tmp; 1980 struct fib_alias *fa; 1981 int found = 0; 1982 1983 /* walk trie in reverse order */ 1984 for (;;) { 1985 unsigned char slen = 0; 1986 struct key_vector *n; 1987 1988 if (!(cindex--)) { 1989 t_key pkey = pn->key; 1990 1991 /* cannot resize the trie vector */ 1992 if (IS_TRIE(pn)) 1993 break; 1994 1995 /* update the suffix to address pulled leaves */ 1996 if (pn->slen > pn->pos) 1997 update_suffix(pn); 1998 1999 /* resize completed node */ 2000 pn = resize(t, pn); 2001 cindex = get_index(pkey, pn); 2002 2003 continue; 2004 } 2005 2006 /* grab the next available node */ 2007 n = get_child(pn, cindex); 2008 if (!n) 2009 continue; 2010 2011 if (IS_TNODE(n)) { 2012 /* record pn and cindex for leaf walking */ 2013 pn = n; 2014 cindex = 1ul << n->bits; 2015 2016 continue; 2017 } 2018 2019 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2020 struct fib_info *fi = fa->fa_info; 2021 2022 if (!fi || tb->tb_id != fa->tb_id || 2023 (!(fi->fib_flags & RTNH_F_DEAD) && 2024 !fib_props[fa->fa_type].error)) { 2025 slen = fa->fa_slen; 2026 continue; 2027 } 2028 2029 /* Do not flush error routes if network namespace is 2030 * not being dismantled 2031 */ 2032 if (!flush_all && fib_props[fa->fa_type].error) { 2033 slen = fa->fa_slen; 2034 continue; 2035 } 2036 2037 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2038 NULL); 2039 hlist_del_rcu(&fa->fa_list); 2040 fib_release_info(fa->fa_info); 2041 alias_free_mem_rcu(fa); 2042 found++; 2043 } 2044 2045 /* update leaf slen */ 2046 n->slen = slen; 2047 2048 if (hlist_empty(&n->leaf)) { 2049 put_child_root(pn, n->key, NULL); 2050 node_free(n); 2051 } 2052 } 2053 2054 pr_debug("trie_flush found=%d\n", found); 2055 return found; 2056 } 2057 2058 /* derived from fib_trie_free */ 2059 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2060 struct nl_info *info) 2061 { 2062 struct trie *t = (struct trie *)tb->tb_data; 2063 struct key_vector *pn = t->kv; 2064 unsigned long cindex = 1; 2065 struct fib_alias *fa; 2066 2067 for (;;) { 2068 struct key_vector *n; 2069 2070 if (!(cindex--)) { 2071 t_key pkey = pn->key; 2072 2073 if (IS_TRIE(pn)) 2074 break; 2075 2076 pn = node_parent(pn); 2077 cindex = get_index(pkey, pn); 2078 continue; 2079 } 2080 2081 /* grab the next available node */ 2082 n = get_child(pn, cindex); 2083 if (!n) 2084 continue; 2085 2086 if (IS_TNODE(n)) { 2087 /* record pn and cindex for leaf walking */ 2088 pn = n; 2089 cindex = 1ul << n->bits; 2090 2091 continue; 2092 } 2093 2094 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2095 struct fib_info *fi = fa->fa_info; 2096 2097 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2098 continue; 2099 2100 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2101 KEYLENGTH - fa->fa_slen, tb->tb_id, 2102 info, NLM_F_REPLACE); 2103 2104 /* call_fib_entry_notifiers will be removed when 2105 * in-kernel notifier is implemented and supported 2106 * for nexthop objects 2107 */ 2108 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 2109 n->key, 2110 KEYLENGTH - fa->fa_slen, fa, 2111 NULL); 2112 } 2113 } 2114 } 2115 2116 void fib_info_notify_update(struct net *net, struct nl_info *info) 2117 { 2118 unsigned int h; 2119 2120 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2121 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2122 struct fib_table *tb; 2123 2124 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2125 __fib_info_notify_update(net, tb, info); 2126 } 2127 } 2128 2129 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2130 struct notifier_block *nb, 2131 struct netlink_ext_ack *extack) 2132 { 2133 struct fib_alias *fa; 2134 int last_slen = -1; 2135 int err; 2136 2137 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2138 struct fib_info *fi = fa->fa_info; 2139 2140 if (!fi) 2141 continue; 2142 2143 /* local and main table can share the same trie, 2144 * so don't notify twice for the same entry. 2145 */ 2146 if (tb->tb_id != fa->tb_id) 2147 continue; 2148 2149 if (fa->fa_slen == last_slen) 2150 continue; 2151 2152 last_slen = fa->fa_slen; 2153 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2154 l->key, KEYLENGTH - fa->fa_slen, 2155 fa, extack); 2156 if (err) 2157 return err; 2158 } 2159 return 0; 2160 } 2161 2162 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2163 struct netlink_ext_ack *extack) 2164 { 2165 struct trie *t = (struct trie *)tb->tb_data; 2166 struct key_vector *l, *tp = t->kv; 2167 t_key key = 0; 2168 int err; 2169 2170 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2171 err = fib_leaf_notify(l, tb, nb, extack); 2172 if (err) 2173 return err; 2174 2175 key = l->key + 1; 2176 /* stop in case of wrap around */ 2177 if (key < l->key) 2178 break; 2179 } 2180 return 0; 2181 } 2182 2183 int fib_notify(struct net *net, struct notifier_block *nb, 2184 struct netlink_ext_ack *extack) 2185 { 2186 unsigned int h; 2187 int err; 2188 2189 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2190 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2191 struct fib_table *tb; 2192 2193 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2194 err = fib_table_notify(tb, nb, extack); 2195 if (err) 2196 return err; 2197 } 2198 } 2199 return 0; 2200 } 2201 2202 static void __trie_free_rcu(struct rcu_head *head) 2203 { 2204 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2205 #ifdef CONFIG_IP_FIB_TRIE_STATS 2206 struct trie *t = (struct trie *)tb->tb_data; 2207 2208 if (tb->tb_data == tb->__data) 2209 free_percpu(t->stats); 2210 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2211 kfree(tb); 2212 } 2213 2214 void fib_free_table(struct fib_table *tb) 2215 { 2216 call_rcu(&tb->rcu, __trie_free_rcu); 2217 } 2218 2219 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2220 struct sk_buff *skb, struct netlink_callback *cb, 2221 struct fib_dump_filter *filter) 2222 { 2223 unsigned int flags = NLM_F_MULTI; 2224 __be32 xkey = htonl(l->key); 2225 int i, s_i, i_fa, s_fa, err; 2226 struct fib_alias *fa; 2227 2228 if (filter->filter_set || 2229 !filter->dump_exceptions || !filter->dump_routes) 2230 flags |= NLM_F_DUMP_FILTERED; 2231 2232 s_i = cb->args[4]; 2233 s_fa = cb->args[5]; 2234 i = 0; 2235 2236 /* rcu_read_lock is hold by caller */ 2237 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2238 struct fib_info *fi = fa->fa_info; 2239 2240 if (i < s_i) 2241 goto next; 2242 2243 i_fa = 0; 2244 2245 if (tb->tb_id != fa->tb_id) 2246 goto next; 2247 2248 if (filter->filter_set) { 2249 if (filter->rt_type && fa->fa_type != filter->rt_type) 2250 goto next; 2251 2252 if ((filter->protocol && 2253 fi->fib_protocol != filter->protocol)) 2254 goto next; 2255 2256 if (filter->dev && 2257 !fib_info_nh_uses_dev(fi, filter->dev)) 2258 goto next; 2259 } 2260 2261 if (filter->dump_routes) { 2262 if (!s_fa) { 2263 struct fib_rt_info fri; 2264 2265 fri.fi = fi; 2266 fri.tb_id = tb->tb_id; 2267 fri.dst = xkey; 2268 fri.dst_len = KEYLENGTH - fa->fa_slen; 2269 fri.tos = fa->fa_tos; 2270 fri.type = fa->fa_type; 2271 fri.offload = fa->offload; 2272 fri.trap = fa->trap; 2273 err = fib_dump_info(skb, 2274 NETLINK_CB(cb->skb).portid, 2275 cb->nlh->nlmsg_seq, 2276 RTM_NEWROUTE, &fri, flags); 2277 if (err < 0) 2278 goto stop; 2279 } 2280 2281 i_fa++; 2282 } 2283 2284 if (filter->dump_exceptions) { 2285 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2286 &i_fa, s_fa, flags); 2287 if (err < 0) 2288 goto stop; 2289 } 2290 2291 next: 2292 i++; 2293 } 2294 2295 cb->args[4] = i; 2296 return skb->len; 2297 2298 stop: 2299 cb->args[4] = i; 2300 cb->args[5] = i_fa; 2301 return err; 2302 } 2303 2304 /* rcu_read_lock needs to be hold by caller from readside */ 2305 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2306 struct netlink_callback *cb, struct fib_dump_filter *filter) 2307 { 2308 struct trie *t = (struct trie *)tb->tb_data; 2309 struct key_vector *l, *tp = t->kv; 2310 /* Dump starting at last key. 2311 * Note: 0.0.0.0/0 (ie default) is first key. 2312 */ 2313 int count = cb->args[2]; 2314 t_key key = cb->args[3]; 2315 2316 /* First time here, count and key are both always 0. Count > 0 2317 * and key == 0 means the dump has wrapped around and we are done. 2318 */ 2319 if (count && !key) 2320 return skb->len; 2321 2322 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2323 int err; 2324 2325 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2326 if (err < 0) { 2327 cb->args[3] = key; 2328 cb->args[2] = count; 2329 return err; 2330 } 2331 2332 ++count; 2333 key = l->key + 1; 2334 2335 memset(&cb->args[4], 0, 2336 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2337 2338 /* stop loop if key wrapped back to 0 */ 2339 if (key < l->key) 2340 break; 2341 } 2342 2343 cb->args[3] = key; 2344 cb->args[2] = count; 2345 2346 return skb->len; 2347 } 2348 2349 void __init fib_trie_init(void) 2350 { 2351 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2352 sizeof(struct fib_alias), 2353 0, SLAB_PANIC, NULL); 2354 2355 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2356 LEAF_SIZE, 2357 0, SLAB_PANIC, NULL); 2358 } 2359 2360 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2361 { 2362 struct fib_table *tb; 2363 struct trie *t; 2364 size_t sz = sizeof(*tb); 2365 2366 if (!alias) 2367 sz += sizeof(struct trie); 2368 2369 tb = kzalloc(sz, GFP_KERNEL); 2370 if (!tb) 2371 return NULL; 2372 2373 tb->tb_id = id; 2374 tb->tb_num_default = 0; 2375 tb->tb_data = (alias ? alias->__data : tb->__data); 2376 2377 if (alias) 2378 return tb; 2379 2380 t = (struct trie *) tb->tb_data; 2381 t->kv[0].pos = KEYLENGTH; 2382 t->kv[0].slen = KEYLENGTH; 2383 #ifdef CONFIG_IP_FIB_TRIE_STATS 2384 t->stats = alloc_percpu(struct trie_use_stats); 2385 if (!t->stats) { 2386 kfree(tb); 2387 tb = NULL; 2388 } 2389 #endif 2390 2391 return tb; 2392 } 2393 2394 #ifdef CONFIG_PROC_FS 2395 /* Depth first Trie walk iterator */ 2396 struct fib_trie_iter { 2397 struct seq_net_private p; 2398 struct fib_table *tb; 2399 struct key_vector *tnode; 2400 unsigned int index; 2401 unsigned int depth; 2402 }; 2403 2404 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2405 { 2406 unsigned long cindex = iter->index; 2407 struct key_vector *pn = iter->tnode; 2408 t_key pkey; 2409 2410 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2411 iter->tnode, iter->index, iter->depth); 2412 2413 while (!IS_TRIE(pn)) { 2414 while (cindex < child_length(pn)) { 2415 struct key_vector *n = get_child_rcu(pn, cindex++); 2416 2417 if (!n) 2418 continue; 2419 2420 if (IS_LEAF(n)) { 2421 iter->tnode = pn; 2422 iter->index = cindex; 2423 } else { 2424 /* push down one level */ 2425 iter->tnode = n; 2426 iter->index = 0; 2427 ++iter->depth; 2428 } 2429 2430 return n; 2431 } 2432 2433 /* Current node exhausted, pop back up */ 2434 pkey = pn->key; 2435 pn = node_parent_rcu(pn); 2436 cindex = get_index(pkey, pn) + 1; 2437 --iter->depth; 2438 } 2439 2440 /* record root node so further searches know we are done */ 2441 iter->tnode = pn; 2442 iter->index = 0; 2443 2444 return NULL; 2445 } 2446 2447 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2448 struct trie *t) 2449 { 2450 struct key_vector *n, *pn; 2451 2452 if (!t) 2453 return NULL; 2454 2455 pn = t->kv; 2456 n = rcu_dereference(pn->tnode[0]); 2457 if (!n) 2458 return NULL; 2459 2460 if (IS_TNODE(n)) { 2461 iter->tnode = n; 2462 iter->index = 0; 2463 iter->depth = 1; 2464 } else { 2465 iter->tnode = pn; 2466 iter->index = 0; 2467 iter->depth = 0; 2468 } 2469 2470 return n; 2471 } 2472 2473 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2474 { 2475 struct key_vector *n; 2476 struct fib_trie_iter iter; 2477 2478 memset(s, 0, sizeof(*s)); 2479 2480 rcu_read_lock(); 2481 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2482 if (IS_LEAF(n)) { 2483 struct fib_alias *fa; 2484 2485 s->leaves++; 2486 s->totdepth += iter.depth; 2487 if (iter.depth > s->maxdepth) 2488 s->maxdepth = iter.depth; 2489 2490 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2491 ++s->prefixes; 2492 } else { 2493 s->tnodes++; 2494 if (n->bits < MAX_STAT_DEPTH) 2495 s->nodesizes[n->bits]++; 2496 s->nullpointers += tn_info(n)->empty_children; 2497 } 2498 } 2499 rcu_read_unlock(); 2500 } 2501 2502 /* 2503 * This outputs /proc/net/fib_triestats 2504 */ 2505 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2506 { 2507 unsigned int i, max, pointers, bytes, avdepth; 2508 2509 if (stat->leaves) 2510 avdepth = stat->totdepth*100 / stat->leaves; 2511 else 2512 avdepth = 0; 2513 2514 seq_printf(seq, "\tAver depth: %u.%02d\n", 2515 avdepth / 100, avdepth % 100); 2516 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2517 2518 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2519 bytes = LEAF_SIZE * stat->leaves; 2520 2521 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2522 bytes += sizeof(struct fib_alias) * stat->prefixes; 2523 2524 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2525 bytes += TNODE_SIZE(0) * stat->tnodes; 2526 2527 max = MAX_STAT_DEPTH; 2528 while (max > 0 && stat->nodesizes[max-1] == 0) 2529 max--; 2530 2531 pointers = 0; 2532 for (i = 1; i < max; i++) 2533 if (stat->nodesizes[i] != 0) { 2534 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2535 pointers += (1<<i) * stat->nodesizes[i]; 2536 } 2537 seq_putc(seq, '\n'); 2538 seq_printf(seq, "\tPointers: %u\n", pointers); 2539 2540 bytes += sizeof(struct key_vector *) * pointers; 2541 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2542 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2543 } 2544 2545 #ifdef CONFIG_IP_FIB_TRIE_STATS 2546 static void trie_show_usage(struct seq_file *seq, 2547 const struct trie_use_stats __percpu *stats) 2548 { 2549 struct trie_use_stats s = { 0 }; 2550 int cpu; 2551 2552 /* loop through all of the CPUs and gather up the stats */ 2553 for_each_possible_cpu(cpu) { 2554 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2555 2556 s.gets += pcpu->gets; 2557 s.backtrack += pcpu->backtrack; 2558 s.semantic_match_passed += pcpu->semantic_match_passed; 2559 s.semantic_match_miss += pcpu->semantic_match_miss; 2560 s.null_node_hit += pcpu->null_node_hit; 2561 s.resize_node_skipped += pcpu->resize_node_skipped; 2562 } 2563 2564 seq_printf(seq, "\nCounters:\n---------\n"); 2565 seq_printf(seq, "gets = %u\n", s.gets); 2566 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2567 seq_printf(seq, "semantic match passed = %u\n", 2568 s.semantic_match_passed); 2569 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2570 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2571 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2572 } 2573 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2574 2575 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2576 { 2577 if (tb->tb_id == RT_TABLE_LOCAL) 2578 seq_puts(seq, "Local:\n"); 2579 else if (tb->tb_id == RT_TABLE_MAIN) 2580 seq_puts(seq, "Main:\n"); 2581 else 2582 seq_printf(seq, "Id %d:\n", tb->tb_id); 2583 } 2584 2585 2586 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2587 { 2588 struct net *net = (struct net *)seq->private; 2589 unsigned int h; 2590 2591 seq_printf(seq, 2592 "Basic info: size of leaf:" 2593 " %zd bytes, size of tnode: %zd bytes.\n", 2594 LEAF_SIZE, TNODE_SIZE(0)); 2595 2596 rcu_read_lock(); 2597 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2598 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2599 struct fib_table *tb; 2600 2601 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2602 struct trie *t = (struct trie *) tb->tb_data; 2603 struct trie_stat stat; 2604 2605 if (!t) 2606 continue; 2607 2608 fib_table_print(seq, tb); 2609 2610 trie_collect_stats(t, &stat); 2611 trie_show_stats(seq, &stat); 2612 #ifdef CONFIG_IP_FIB_TRIE_STATS 2613 trie_show_usage(seq, t->stats); 2614 #endif 2615 } 2616 cond_resched_rcu(); 2617 } 2618 rcu_read_unlock(); 2619 2620 return 0; 2621 } 2622 2623 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2624 { 2625 struct fib_trie_iter *iter = seq->private; 2626 struct net *net = seq_file_net(seq); 2627 loff_t idx = 0; 2628 unsigned int h; 2629 2630 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2631 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2632 struct fib_table *tb; 2633 2634 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2635 struct key_vector *n; 2636 2637 for (n = fib_trie_get_first(iter, 2638 (struct trie *) tb->tb_data); 2639 n; n = fib_trie_get_next(iter)) 2640 if (pos == idx++) { 2641 iter->tb = tb; 2642 return n; 2643 } 2644 } 2645 } 2646 2647 return NULL; 2648 } 2649 2650 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2651 __acquires(RCU) 2652 { 2653 rcu_read_lock(); 2654 return fib_trie_get_idx(seq, *pos); 2655 } 2656 2657 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2658 { 2659 struct fib_trie_iter *iter = seq->private; 2660 struct net *net = seq_file_net(seq); 2661 struct fib_table *tb = iter->tb; 2662 struct hlist_node *tb_node; 2663 unsigned int h; 2664 struct key_vector *n; 2665 2666 ++*pos; 2667 /* next node in same table */ 2668 n = fib_trie_get_next(iter); 2669 if (n) 2670 return n; 2671 2672 /* walk rest of this hash chain */ 2673 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2674 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2675 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2676 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2677 if (n) 2678 goto found; 2679 } 2680 2681 /* new hash chain */ 2682 while (++h < FIB_TABLE_HASHSZ) { 2683 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2684 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2685 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2686 if (n) 2687 goto found; 2688 } 2689 } 2690 return NULL; 2691 2692 found: 2693 iter->tb = tb; 2694 return n; 2695 } 2696 2697 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2698 __releases(RCU) 2699 { 2700 rcu_read_unlock(); 2701 } 2702 2703 static void seq_indent(struct seq_file *seq, int n) 2704 { 2705 while (n-- > 0) 2706 seq_puts(seq, " "); 2707 } 2708 2709 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2710 { 2711 switch (s) { 2712 case RT_SCOPE_UNIVERSE: return "universe"; 2713 case RT_SCOPE_SITE: return "site"; 2714 case RT_SCOPE_LINK: return "link"; 2715 case RT_SCOPE_HOST: return "host"; 2716 case RT_SCOPE_NOWHERE: return "nowhere"; 2717 default: 2718 snprintf(buf, len, "scope=%d", s); 2719 return buf; 2720 } 2721 } 2722 2723 static const char *const rtn_type_names[__RTN_MAX] = { 2724 [RTN_UNSPEC] = "UNSPEC", 2725 [RTN_UNICAST] = "UNICAST", 2726 [RTN_LOCAL] = "LOCAL", 2727 [RTN_BROADCAST] = "BROADCAST", 2728 [RTN_ANYCAST] = "ANYCAST", 2729 [RTN_MULTICAST] = "MULTICAST", 2730 [RTN_BLACKHOLE] = "BLACKHOLE", 2731 [RTN_UNREACHABLE] = "UNREACHABLE", 2732 [RTN_PROHIBIT] = "PROHIBIT", 2733 [RTN_THROW] = "THROW", 2734 [RTN_NAT] = "NAT", 2735 [RTN_XRESOLVE] = "XRESOLVE", 2736 }; 2737 2738 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2739 { 2740 if (t < __RTN_MAX && rtn_type_names[t]) 2741 return rtn_type_names[t]; 2742 snprintf(buf, len, "type %u", t); 2743 return buf; 2744 } 2745 2746 /* Pretty print the trie */ 2747 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2748 { 2749 const struct fib_trie_iter *iter = seq->private; 2750 struct key_vector *n = v; 2751 2752 if (IS_TRIE(node_parent_rcu(n))) 2753 fib_table_print(seq, iter->tb); 2754 2755 if (IS_TNODE(n)) { 2756 __be32 prf = htonl(n->key); 2757 2758 seq_indent(seq, iter->depth-1); 2759 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2760 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2761 tn_info(n)->full_children, 2762 tn_info(n)->empty_children); 2763 } else { 2764 __be32 val = htonl(n->key); 2765 struct fib_alias *fa; 2766 2767 seq_indent(seq, iter->depth); 2768 seq_printf(seq, " |-- %pI4\n", &val); 2769 2770 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2771 char buf1[32], buf2[32]; 2772 2773 seq_indent(seq, iter->depth + 1); 2774 seq_printf(seq, " /%zu %s %s", 2775 KEYLENGTH - fa->fa_slen, 2776 rtn_scope(buf1, sizeof(buf1), 2777 fa->fa_info->fib_scope), 2778 rtn_type(buf2, sizeof(buf2), 2779 fa->fa_type)); 2780 if (fa->fa_tos) 2781 seq_printf(seq, " tos=%d", fa->fa_tos); 2782 seq_putc(seq, '\n'); 2783 } 2784 } 2785 2786 return 0; 2787 } 2788 2789 static const struct seq_operations fib_trie_seq_ops = { 2790 .start = fib_trie_seq_start, 2791 .next = fib_trie_seq_next, 2792 .stop = fib_trie_seq_stop, 2793 .show = fib_trie_seq_show, 2794 }; 2795 2796 struct fib_route_iter { 2797 struct seq_net_private p; 2798 struct fib_table *main_tb; 2799 struct key_vector *tnode; 2800 loff_t pos; 2801 t_key key; 2802 }; 2803 2804 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2805 loff_t pos) 2806 { 2807 struct key_vector *l, **tp = &iter->tnode; 2808 t_key key; 2809 2810 /* use cached location of previously found key */ 2811 if (iter->pos > 0 && pos >= iter->pos) { 2812 key = iter->key; 2813 } else { 2814 iter->pos = 1; 2815 key = 0; 2816 } 2817 2818 pos -= iter->pos; 2819 2820 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2821 key = l->key + 1; 2822 iter->pos++; 2823 l = NULL; 2824 2825 /* handle unlikely case of a key wrap */ 2826 if (!key) 2827 break; 2828 } 2829 2830 if (l) 2831 iter->key = l->key; /* remember it */ 2832 else 2833 iter->pos = 0; /* forget it */ 2834 2835 return l; 2836 } 2837 2838 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2839 __acquires(RCU) 2840 { 2841 struct fib_route_iter *iter = seq->private; 2842 struct fib_table *tb; 2843 struct trie *t; 2844 2845 rcu_read_lock(); 2846 2847 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2848 if (!tb) 2849 return NULL; 2850 2851 iter->main_tb = tb; 2852 t = (struct trie *)tb->tb_data; 2853 iter->tnode = t->kv; 2854 2855 if (*pos != 0) 2856 return fib_route_get_idx(iter, *pos); 2857 2858 iter->pos = 0; 2859 iter->key = KEY_MAX; 2860 2861 return SEQ_START_TOKEN; 2862 } 2863 2864 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2865 { 2866 struct fib_route_iter *iter = seq->private; 2867 struct key_vector *l = NULL; 2868 t_key key = iter->key + 1; 2869 2870 ++*pos; 2871 2872 /* only allow key of 0 for start of sequence */ 2873 if ((v == SEQ_START_TOKEN) || key) 2874 l = leaf_walk_rcu(&iter->tnode, key); 2875 2876 if (l) { 2877 iter->key = l->key; 2878 iter->pos++; 2879 } else { 2880 iter->pos = 0; 2881 } 2882 2883 return l; 2884 } 2885 2886 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2887 __releases(RCU) 2888 { 2889 rcu_read_unlock(); 2890 } 2891 2892 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2893 { 2894 unsigned int flags = 0; 2895 2896 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2897 flags = RTF_REJECT; 2898 if (fi) { 2899 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2900 2901 if (nhc->nhc_gw.ipv4) 2902 flags |= RTF_GATEWAY; 2903 } 2904 if (mask == htonl(0xFFFFFFFF)) 2905 flags |= RTF_HOST; 2906 flags |= RTF_UP; 2907 return flags; 2908 } 2909 2910 /* 2911 * This outputs /proc/net/route. 2912 * The format of the file is not supposed to be changed 2913 * and needs to be same as fib_hash output to avoid breaking 2914 * legacy utilities 2915 */ 2916 static int fib_route_seq_show(struct seq_file *seq, void *v) 2917 { 2918 struct fib_route_iter *iter = seq->private; 2919 struct fib_table *tb = iter->main_tb; 2920 struct fib_alias *fa; 2921 struct key_vector *l = v; 2922 __be32 prefix; 2923 2924 if (v == SEQ_START_TOKEN) { 2925 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2926 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2927 "\tWindow\tIRTT"); 2928 return 0; 2929 } 2930 2931 prefix = htonl(l->key); 2932 2933 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2934 struct fib_info *fi = fa->fa_info; 2935 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2936 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2937 2938 if ((fa->fa_type == RTN_BROADCAST) || 2939 (fa->fa_type == RTN_MULTICAST)) 2940 continue; 2941 2942 if (fa->tb_id != tb->tb_id) 2943 continue; 2944 2945 seq_setwidth(seq, 127); 2946 2947 if (fi) { 2948 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2949 __be32 gw = 0; 2950 2951 if (nhc->nhc_gw_family == AF_INET) 2952 gw = nhc->nhc_gw.ipv4; 2953 2954 seq_printf(seq, 2955 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2956 "%d\t%08X\t%d\t%u\t%u", 2957 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2958 prefix, gw, flags, 0, 0, 2959 fi->fib_priority, 2960 mask, 2961 (fi->fib_advmss ? 2962 fi->fib_advmss + 40 : 0), 2963 fi->fib_window, 2964 fi->fib_rtt >> 3); 2965 } else { 2966 seq_printf(seq, 2967 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2968 "%d\t%08X\t%d\t%u\t%u", 2969 prefix, 0, flags, 0, 0, 0, 2970 mask, 0, 0, 0); 2971 } 2972 seq_pad(seq, '\n'); 2973 } 2974 2975 return 0; 2976 } 2977 2978 static const struct seq_operations fib_route_seq_ops = { 2979 .start = fib_route_seq_start, 2980 .next = fib_route_seq_next, 2981 .stop = fib_route_seq_stop, 2982 .show = fib_route_seq_show, 2983 }; 2984 2985 int __net_init fib_proc_init(struct net *net) 2986 { 2987 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2988 sizeof(struct fib_trie_iter))) 2989 goto out1; 2990 2991 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2992 fib_triestat_seq_show, NULL)) 2993 goto out2; 2994 2995 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2996 sizeof(struct fib_route_iter))) 2997 goto out3; 2998 2999 return 0; 3000 3001 out3: 3002 remove_proc_entry("fib_triestat", net->proc_net); 3003 out2: 3004 remove_proc_entry("fib_trie", net->proc_net); 3005 out1: 3006 return -ENOMEM; 3007 } 3008 3009 void __net_exit fib_proc_exit(struct net *net) 3010 { 3011 remove_proc_entry("fib_trie", net->proc_net); 3012 remove_proc_entry("fib_triestat", net->proc_net); 3013 remove_proc_entry("route", net->proc_net); 3014 } 3015 3016 #endif /* CONFIG_PROC_FS */ 3017