xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 10c1d542)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <net/fib_notifier.h>
85 #include <trace/events/fib.h>
86 #include "fib_lookup.h"
87 
88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
89 				   enum fib_event_type event_type, u32 dst,
90 				   int dst_len, struct fib_alias *fa)
91 {
92 	struct fib_entry_notifier_info info = {
93 		.dst = dst,
94 		.dst_len = dst_len,
95 		.fi = fa->fa_info,
96 		.tos = fa->fa_tos,
97 		.type = fa->fa_type,
98 		.tb_id = fa->tb_id,
99 	};
100 	return call_fib4_notifier(nb, net, event_type, &info.info);
101 }
102 
103 static int call_fib_entry_notifiers(struct net *net,
104 				    enum fib_event_type event_type, u32 dst,
105 				    int dst_len, struct fib_alias *fa,
106 				    struct netlink_ext_ack *extack)
107 {
108 	struct fib_entry_notifier_info info = {
109 		.info.extack = extack,
110 		.dst = dst,
111 		.dst_len = dst_len,
112 		.fi = fa->fa_info,
113 		.tos = fa->fa_tos,
114 		.type = fa->fa_type,
115 		.tb_id = fa->tb_id,
116 	};
117 	return call_fib4_notifiers(net, event_type, &info.info);
118 }
119 
120 #define MAX_STAT_DEPTH 32
121 
122 #define KEYLENGTH	(8*sizeof(t_key))
123 #define KEY_MAX		((t_key)~0)
124 
125 typedef unsigned int t_key;
126 
127 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
128 #define IS_TNODE(n)	((n)->bits)
129 #define IS_LEAF(n)	(!(n)->bits)
130 
131 struct key_vector {
132 	t_key key;
133 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
134 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
135 	unsigned char slen;
136 	union {
137 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
138 		struct hlist_head leaf;
139 		/* This array is valid if (pos | bits) > 0 (TNODE) */
140 		struct key_vector __rcu *tnode[0];
141 	};
142 };
143 
144 struct tnode {
145 	struct rcu_head rcu;
146 	t_key empty_children;		/* KEYLENGTH bits needed */
147 	t_key full_children;		/* KEYLENGTH bits needed */
148 	struct key_vector __rcu *parent;
149 	struct key_vector kv[1];
150 #define tn_bits kv[0].bits
151 };
152 
153 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
154 #define LEAF_SIZE	TNODE_SIZE(1)
155 
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 struct trie_use_stats {
158 	unsigned int gets;
159 	unsigned int backtrack;
160 	unsigned int semantic_match_passed;
161 	unsigned int semantic_match_miss;
162 	unsigned int null_node_hit;
163 	unsigned int resize_node_skipped;
164 };
165 #endif
166 
167 struct trie_stat {
168 	unsigned int totdepth;
169 	unsigned int maxdepth;
170 	unsigned int tnodes;
171 	unsigned int leaves;
172 	unsigned int nullpointers;
173 	unsigned int prefixes;
174 	unsigned int nodesizes[MAX_STAT_DEPTH];
175 };
176 
177 struct trie {
178 	struct key_vector kv[1];
179 #ifdef CONFIG_IP_FIB_TRIE_STATS
180 	struct trie_use_stats __percpu *stats;
181 #endif
182 };
183 
184 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
185 static size_t tnode_free_size;
186 
187 /*
188  * synchronize_rcu after call_rcu for that many pages; it should be especially
189  * useful before resizing the root node with PREEMPT_NONE configs; the value was
190  * obtained experimentally, aiming to avoid visible slowdown.
191  */
192 static const int sync_pages = 128;
193 
194 static struct kmem_cache *fn_alias_kmem __read_mostly;
195 static struct kmem_cache *trie_leaf_kmem __read_mostly;
196 
197 static inline struct tnode *tn_info(struct key_vector *kv)
198 {
199 	return container_of(kv, struct tnode, kv[0]);
200 }
201 
202 /* caller must hold RTNL */
203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
205 
206 /* caller must hold RCU read lock or RTNL */
207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
209 
210 /* wrapper for rcu_assign_pointer */
211 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
212 {
213 	if (n)
214 		rcu_assign_pointer(tn_info(n)->parent, tp);
215 }
216 
217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
218 
219 /* This provides us with the number of children in this node, in the case of a
220  * leaf this will return 0 meaning none of the children are accessible.
221  */
222 static inline unsigned long child_length(const struct key_vector *tn)
223 {
224 	return (1ul << tn->bits) & ~(1ul);
225 }
226 
227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
228 
229 static inline unsigned long get_index(t_key key, struct key_vector *kv)
230 {
231 	unsigned long index = key ^ kv->key;
232 
233 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
234 		return 0;
235 
236 	return index >> kv->pos;
237 }
238 
239 /* To understand this stuff, an understanding of keys and all their bits is
240  * necessary. Every node in the trie has a key associated with it, but not
241  * all of the bits in that key are significant.
242  *
243  * Consider a node 'n' and its parent 'tp'.
244  *
245  * If n is a leaf, every bit in its key is significant. Its presence is
246  * necessitated by path compression, since during a tree traversal (when
247  * searching for a leaf - unless we are doing an insertion) we will completely
248  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
249  * a potentially successful search, that we have indeed been walking the
250  * correct key path.
251  *
252  * Note that we can never "miss" the correct key in the tree if present by
253  * following the wrong path. Path compression ensures that segments of the key
254  * that are the same for all keys with a given prefix are skipped, but the
255  * skipped part *is* identical for each node in the subtrie below the skipped
256  * bit! trie_insert() in this implementation takes care of that.
257  *
258  * if n is an internal node - a 'tnode' here, the various parts of its key
259  * have many different meanings.
260  *
261  * Example:
262  * _________________________________________________________________
263  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
264  * -----------------------------------------------------------------
265  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
266  *
267  * _________________________________________________________________
268  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
269  * -----------------------------------------------------------------
270  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
271  *
272  * tp->pos = 22
273  * tp->bits = 3
274  * n->pos = 13
275  * n->bits = 4
276  *
277  * First, let's just ignore the bits that come before the parent tp, that is
278  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
279  * point we do not use them for anything.
280  *
281  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
282  * index into the parent's child array. That is, they will be used to find
283  * 'n' among tp's children.
284  *
285  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
286  * for the node n.
287  *
288  * All the bits we have seen so far are significant to the node n. The rest
289  * of the bits are really not needed or indeed known in n->key.
290  *
291  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
292  * n's child array, and will of course be different for each child.
293  *
294  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
295  * at this point.
296  */
297 
298 static const int halve_threshold = 25;
299 static const int inflate_threshold = 50;
300 static const int halve_threshold_root = 15;
301 static const int inflate_threshold_root = 30;
302 
303 static void __alias_free_mem(struct rcu_head *head)
304 {
305 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
306 	kmem_cache_free(fn_alias_kmem, fa);
307 }
308 
309 static inline void alias_free_mem_rcu(struct fib_alias *fa)
310 {
311 	call_rcu(&fa->rcu, __alias_free_mem);
312 }
313 
314 #define TNODE_KMALLOC_MAX \
315 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316 #define TNODE_VMALLOC_MAX \
317 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
318 
319 static void __node_free_rcu(struct rcu_head *head)
320 {
321 	struct tnode *n = container_of(head, struct tnode, rcu);
322 
323 	if (!n->tn_bits)
324 		kmem_cache_free(trie_leaf_kmem, n);
325 	else
326 		kvfree(n);
327 }
328 
329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
330 
331 static struct tnode *tnode_alloc(int bits)
332 {
333 	size_t size;
334 
335 	/* verify bits is within bounds */
336 	if (bits > TNODE_VMALLOC_MAX)
337 		return NULL;
338 
339 	/* determine size and verify it is non-zero and didn't overflow */
340 	size = TNODE_SIZE(1ul << bits);
341 
342 	if (size <= PAGE_SIZE)
343 		return kzalloc(size, GFP_KERNEL);
344 	else
345 		return vzalloc(size);
346 }
347 
348 static inline void empty_child_inc(struct key_vector *n)
349 {
350 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
351 }
352 
353 static inline void empty_child_dec(struct key_vector *n)
354 {
355 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
356 }
357 
358 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
359 {
360 	struct key_vector *l;
361 	struct tnode *kv;
362 
363 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
364 	if (!kv)
365 		return NULL;
366 
367 	/* initialize key vector */
368 	l = kv->kv;
369 	l->key = key;
370 	l->pos = 0;
371 	l->bits = 0;
372 	l->slen = fa->fa_slen;
373 
374 	/* link leaf to fib alias */
375 	INIT_HLIST_HEAD(&l->leaf);
376 	hlist_add_head(&fa->fa_list, &l->leaf);
377 
378 	return l;
379 }
380 
381 static struct key_vector *tnode_new(t_key key, int pos, int bits)
382 {
383 	unsigned int shift = pos + bits;
384 	struct key_vector *tn;
385 	struct tnode *tnode;
386 
387 	/* verify bits and pos their msb bits clear and values are valid */
388 	BUG_ON(!bits || (shift > KEYLENGTH));
389 
390 	tnode = tnode_alloc(bits);
391 	if (!tnode)
392 		return NULL;
393 
394 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
395 		 sizeof(struct key_vector *) << bits);
396 
397 	if (bits == KEYLENGTH)
398 		tnode->full_children = 1;
399 	else
400 		tnode->empty_children = 1ul << bits;
401 
402 	tn = tnode->kv;
403 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
404 	tn->pos = pos;
405 	tn->bits = bits;
406 	tn->slen = pos;
407 
408 	return tn;
409 }
410 
411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
412  * and no bits are skipped. See discussion in dyntree paper p. 6
413  */
414 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
415 {
416 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
417 }
418 
419 /* Add a child at position i overwriting the old value.
420  * Update the value of full_children and empty_children.
421  */
422 static void put_child(struct key_vector *tn, unsigned long i,
423 		      struct key_vector *n)
424 {
425 	struct key_vector *chi = get_child(tn, i);
426 	int isfull, wasfull;
427 
428 	BUG_ON(i >= child_length(tn));
429 
430 	/* update emptyChildren, overflow into fullChildren */
431 	if (!n && chi)
432 		empty_child_inc(tn);
433 	if (n && !chi)
434 		empty_child_dec(tn);
435 
436 	/* update fullChildren */
437 	wasfull = tnode_full(tn, chi);
438 	isfull = tnode_full(tn, n);
439 
440 	if (wasfull && !isfull)
441 		tn_info(tn)->full_children--;
442 	else if (!wasfull && isfull)
443 		tn_info(tn)->full_children++;
444 
445 	if (n && (tn->slen < n->slen))
446 		tn->slen = n->slen;
447 
448 	rcu_assign_pointer(tn->tnode[i], n);
449 }
450 
451 static void update_children(struct key_vector *tn)
452 {
453 	unsigned long i;
454 
455 	/* update all of the child parent pointers */
456 	for (i = child_length(tn); i;) {
457 		struct key_vector *inode = get_child(tn, --i);
458 
459 		if (!inode)
460 			continue;
461 
462 		/* Either update the children of a tnode that
463 		 * already belongs to us or update the child
464 		 * to point to ourselves.
465 		 */
466 		if (node_parent(inode) == tn)
467 			update_children(inode);
468 		else
469 			node_set_parent(inode, tn);
470 	}
471 }
472 
473 static inline void put_child_root(struct key_vector *tp, t_key key,
474 				  struct key_vector *n)
475 {
476 	if (IS_TRIE(tp))
477 		rcu_assign_pointer(tp->tnode[0], n);
478 	else
479 		put_child(tp, get_index(key, tp), n);
480 }
481 
482 static inline void tnode_free_init(struct key_vector *tn)
483 {
484 	tn_info(tn)->rcu.next = NULL;
485 }
486 
487 static inline void tnode_free_append(struct key_vector *tn,
488 				     struct key_vector *n)
489 {
490 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
491 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
492 }
493 
494 static void tnode_free(struct key_vector *tn)
495 {
496 	struct callback_head *head = &tn_info(tn)->rcu;
497 
498 	while (head) {
499 		head = head->next;
500 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
501 		node_free(tn);
502 
503 		tn = container_of(head, struct tnode, rcu)->kv;
504 	}
505 
506 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
507 		tnode_free_size = 0;
508 		synchronize_rcu();
509 	}
510 }
511 
512 static struct key_vector *replace(struct trie *t,
513 				  struct key_vector *oldtnode,
514 				  struct key_vector *tn)
515 {
516 	struct key_vector *tp = node_parent(oldtnode);
517 	unsigned long i;
518 
519 	/* setup the parent pointer out of and back into this node */
520 	NODE_INIT_PARENT(tn, tp);
521 	put_child_root(tp, tn->key, tn);
522 
523 	/* update all of the child parent pointers */
524 	update_children(tn);
525 
526 	/* all pointers should be clean so we are done */
527 	tnode_free(oldtnode);
528 
529 	/* resize children now that oldtnode is freed */
530 	for (i = child_length(tn); i;) {
531 		struct key_vector *inode = get_child(tn, --i);
532 
533 		/* resize child node */
534 		if (tnode_full(tn, inode))
535 			tn = resize(t, inode);
536 	}
537 
538 	return tp;
539 }
540 
541 static struct key_vector *inflate(struct trie *t,
542 				  struct key_vector *oldtnode)
543 {
544 	struct key_vector *tn;
545 	unsigned long i;
546 	t_key m;
547 
548 	pr_debug("In inflate\n");
549 
550 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
551 	if (!tn)
552 		goto notnode;
553 
554 	/* prepare oldtnode to be freed */
555 	tnode_free_init(oldtnode);
556 
557 	/* Assemble all of the pointers in our cluster, in this case that
558 	 * represents all of the pointers out of our allocated nodes that
559 	 * point to existing tnodes and the links between our allocated
560 	 * nodes.
561 	 */
562 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
563 		struct key_vector *inode = get_child(oldtnode, --i);
564 		struct key_vector *node0, *node1;
565 		unsigned long j, k;
566 
567 		/* An empty child */
568 		if (!inode)
569 			continue;
570 
571 		/* A leaf or an internal node with skipped bits */
572 		if (!tnode_full(oldtnode, inode)) {
573 			put_child(tn, get_index(inode->key, tn), inode);
574 			continue;
575 		}
576 
577 		/* drop the node in the old tnode free list */
578 		tnode_free_append(oldtnode, inode);
579 
580 		/* An internal node with two children */
581 		if (inode->bits == 1) {
582 			put_child(tn, 2 * i + 1, get_child(inode, 1));
583 			put_child(tn, 2 * i, get_child(inode, 0));
584 			continue;
585 		}
586 
587 		/* We will replace this node 'inode' with two new
588 		 * ones, 'node0' and 'node1', each with half of the
589 		 * original children. The two new nodes will have
590 		 * a position one bit further down the key and this
591 		 * means that the "significant" part of their keys
592 		 * (see the discussion near the top of this file)
593 		 * will differ by one bit, which will be "0" in
594 		 * node0's key and "1" in node1's key. Since we are
595 		 * moving the key position by one step, the bit that
596 		 * we are moving away from - the bit at position
597 		 * (tn->pos) - is the one that will differ between
598 		 * node0 and node1. So... we synthesize that bit in the
599 		 * two new keys.
600 		 */
601 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
602 		if (!node1)
603 			goto nomem;
604 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
605 
606 		tnode_free_append(tn, node1);
607 		if (!node0)
608 			goto nomem;
609 		tnode_free_append(tn, node0);
610 
611 		/* populate child pointers in new nodes */
612 		for (k = child_length(inode), j = k / 2; j;) {
613 			put_child(node1, --j, get_child(inode, --k));
614 			put_child(node0, j, get_child(inode, j));
615 			put_child(node1, --j, get_child(inode, --k));
616 			put_child(node0, j, get_child(inode, j));
617 		}
618 
619 		/* link new nodes to parent */
620 		NODE_INIT_PARENT(node1, tn);
621 		NODE_INIT_PARENT(node0, tn);
622 
623 		/* link parent to nodes */
624 		put_child(tn, 2 * i + 1, node1);
625 		put_child(tn, 2 * i, node0);
626 	}
627 
628 	/* setup the parent pointers into and out of this node */
629 	return replace(t, oldtnode, tn);
630 nomem:
631 	/* all pointers should be clean so we are done */
632 	tnode_free(tn);
633 notnode:
634 	return NULL;
635 }
636 
637 static struct key_vector *halve(struct trie *t,
638 				struct key_vector *oldtnode)
639 {
640 	struct key_vector *tn;
641 	unsigned long i;
642 
643 	pr_debug("In halve\n");
644 
645 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
646 	if (!tn)
647 		goto notnode;
648 
649 	/* prepare oldtnode to be freed */
650 	tnode_free_init(oldtnode);
651 
652 	/* Assemble all of the pointers in our cluster, in this case that
653 	 * represents all of the pointers out of our allocated nodes that
654 	 * point to existing tnodes and the links between our allocated
655 	 * nodes.
656 	 */
657 	for (i = child_length(oldtnode); i;) {
658 		struct key_vector *node1 = get_child(oldtnode, --i);
659 		struct key_vector *node0 = get_child(oldtnode, --i);
660 		struct key_vector *inode;
661 
662 		/* At least one of the children is empty */
663 		if (!node1 || !node0) {
664 			put_child(tn, i / 2, node1 ? : node0);
665 			continue;
666 		}
667 
668 		/* Two nonempty children */
669 		inode = tnode_new(node0->key, oldtnode->pos, 1);
670 		if (!inode)
671 			goto nomem;
672 		tnode_free_append(tn, inode);
673 
674 		/* initialize pointers out of node */
675 		put_child(inode, 1, node1);
676 		put_child(inode, 0, node0);
677 		NODE_INIT_PARENT(inode, tn);
678 
679 		/* link parent to node */
680 		put_child(tn, i / 2, inode);
681 	}
682 
683 	/* setup the parent pointers into and out of this node */
684 	return replace(t, oldtnode, tn);
685 nomem:
686 	/* all pointers should be clean so we are done */
687 	tnode_free(tn);
688 notnode:
689 	return NULL;
690 }
691 
692 static struct key_vector *collapse(struct trie *t,
693 				   struct key_vector *oldtnode)
694 {
695 	struct key_vector *n, *tp;
696 	unsigned long i;
697 
698 	/* scan the tnode looking for that one child that might still exist */
699 	for (n = NULL, i = child_length(oldtnode); !n && i;)
700 		n = get_child(oldtnode, --i);
701 
702 	/* compress one level */
703 	tp = node_parent(oldtnode);
704 	put_child_root(tp, oldtnode->key, n);
705 	node_set_parent(n, tp);
706 
707 	/* drop dead node */
708 	node_free(oldtnode);
709 
710 	return tp;
711 }
712 
713 static unsigned char update_suffix(struct key_vector *tn)
714 {
715 	unsigned char slen = tn->pos;
716 	unsigned long stride, i;
717 	unsigned char slen_max;
718 
719 	/* only vector 0 can have a suffix length greater than or equal to
720 	 * tn->pos + tn->bits, the second highest node will have a suffix
721 	 * length at most of tn->pos + tn->bits - 1
722 	 */
723 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
724 
725 	/* search though the list of children looking for nodes that might
726 	 * have a suffix greater than the one we currently have.  This is
727 	 * why we start with a stride of 2 since a stride of 1 would
728 	 * represent the nodes with suffix length equal to tn->pos
729 	 */
730 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
731 		struct key_vector *n = get_child(tn, i);
732 
733 		if (!n || (n->slen <= slen))
734 			continue;
735 
736 		/* update stride and slen based on new value */
737 		stride <<= (n->slen - slen);
738 		slen = n->slen;
739 		i &= ~(stride - 1);
740 
741 		/* stop searching if we have hit the maximum possible value */
742 		if (slen >= slen_max)
743 			break;
744 	}
745 
746 	tn->slen = slen;
747 
748 	return slen;
749 }
750 
751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
752  * the Helsinki University of Technology and Matti Tikkanen of Nokia
753  * Telecommunications, page 6:
754  * "A node is doubled if the ratio of non-empty children to all
755  * children in the *doubled* node is at least 'high'."
756  *
757  * 'high' in this instance is the variable 'inflate_threshold'. It
758  * is expressed as a percentage, so we multiply it with
759  * child_length() and instead of multiplying by 2 (since the
760  * child array will be doubled by inflate()) and multiplying
761  * the left-hand side by 100 (to handle the percentage thing) we
762  * multiply the left-hand side by 50.
763  *
764  * The left-hand side may look a bit weird: child_length(tn)
765  * - tn->empty_children is of course the number of non-null children
766  * in the current node. tn->full_children is the number of "full"
767  * children, that is non-null tnodes with a skip value of 0.
768  * All of those will be doubled in the resulting inflated tnode, so
769  * we just count them one extra time here.
770  *
771  * A clearer way to write this would be:
772  *
773  * to_be_doubled = tn->full_children;
774  * not_to_be_doubled = child_length(tn) - tn->empty_children -
775  *     tn->full_children;
776  *
777  * new_child_length = child_length(tn) * 2;
778  *
779  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
780  *      new_child_length;
781  * if (new_fill_factor >= inflate_threshold)
782  *
783  * ...and so on, tho it would mess up the while () loop.
784  *
785  * anyway,
786  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
787  *      inflate_threshold
788  *
789  * avoid a division:
790  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
791  *      inflate_threshold * new_child_length
792  *
793  * expand not_to_be_doubled and to_be_doubled, and shorten:
794  * 100 * (child_length(tn) - tn->empty_children +
795  *    tn->full_children) >= inflate_threshold * new_child_length
796  *
797  * expand new_child_length:
798  * 100 * (child_length(tn) - tn->empty_children +
799  *    tn->full_children) >=
800  *      inflate_threshold * child_length(tn) * 2
801  *
802  * shorten again:
803  * 50 * (tn->full_children + child_length(tn) -
804  *    tn->empty_children) >= inflate_threshold *
805  *    child_length(tn)
806  *
807  */
808 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
809 {
810 	unsigned long used = child_length(tn);
811 	unsigned long threshold = used;
812 
813 	/* Keep root node larger */
814 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
815 	used -= tn_info(tn)->empty_children;
816 	used += tn_info(tn)->full_children;
817 
818 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
819 
820 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
821 }
822 
823 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
824 {
825 	unsigned long used = child_length(tn);
826 	unsigned long threshold = used;
827 
828 	/* Keep root node larger */
829 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
830 	used -= tn_info(tn)->empty_children;
831 
832 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833 
834 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
835 }
836 
837 static inline bool should_collapse(struct key_vector *tn)
838 {
839 	unsigned long used = child_length(tn);
840 
841 	used -= tn_info(tn)->empty_children;
842 
843 	/* account for bits == KEYLENGTH case */
844 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
845 		used -= KEY_MAX;
846 
847 	/* One child or none, time to drop us from the trie */
848 	return used < 2;
849 }
850 
851 #define MAX_WORK 10
852 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
853 {
854 #ifdef CONFIG_IP_FIB_TRIE_STATS
855 	struct trie_use_stats __percpu *stats = t->stats;
856 #endif
857 	struct key_vector *tp = node_parent(tn);
858 	unsigned long cindex = get_index(tn->key, tp);
859 	int max_work = MAX_WORK;
860 
861 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
862 		 tn, inflate_threshold, halve_threshold);
863 
864 	/* track the tnode via the pointer from the parent instead of
865 	 * doing it ourselves.  This way we can let RCU fully do its
866 	 * thing without us interfering
867 	 */
868 	BUG_ON(tn != get_child(tp, cindex));
869 
870 	/* Double as long as the resulting node has a number of
871 	 * nonempty nodes that are above the threshold.
872 	 */
873 	while (should_inflate(tp, tn) && max_work) {
874 		tp = inflate(t, tn);
875 		if (!tp) {
876 #ifdef CONFIG_IP_FIB_TRIE_STATS
877 			this_cpu_inc(stats->resize_node_skipped);
878 #endif
879 			break;
880 		}
881 
882 		max_work--;
883 		tn = get_child(tp, cindex);
884 	}
885 
886 	/* update parent in case inflate failed */
887 	tp = node_parent(tn);
888 
889 	/* Return if at least one inflate is run */
890 	if (max_work != MAX_WORK)
891 		return tp;
892 
893 	/* Halve as long as the number of empty children in this
894 	 * node is above threshold.
895 	 */
896 	while (should_halve(tp, tn) && max_work) {
897 		tp = halve(t, tn);
898 		if (!tp) {
899 #ifdef CONFIG_IP_FIB_TRIE_STATS
900 			this_cpu_inc(stats->resize_node_skipped);
901 #endif
902 			break;
903 		}
904 
905 		max_work--;
906 		tn = get_child(tp, cindex);
907 	}
908 
909 	/* Only one child remains */
910 	if (should_collapse(tn))
911 		return collapse(t, tn);
912 
913 	/* update parent in case halve failed */
914 	return node_parent(tn);
915 }
916 
917 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
918 {
919 	unsigned char node_slen = tn->slen;
920 
921 	while ((node_slen > tn->pos) && (node_slen > slen)) {
922 		slen = update_suffix(tn);
923 		if (node_slen == slen)
924 			break;
925 
926 		tn = node_parent(tn);
927 		node_slen = tn->slen;
928 	}
929 }
930 
931 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
932 {
933 	while (tn->slen < slen) {
934 		tn->slen = slen;
935 		tn = node_parent(tn);
936 	}
937 }
938 
939 /* rcu_read_lock needs to be hold by caller from readside */
940 static struct key_vector *fib_find_node(struct trie *t,
941 					struct key_vector **tp, u32 key)
942 {
943 	struct key_vector *pn, *n = t->kv;
944 	unsigned long index = 0;
945 
946 	do {
947 		pn = n;
948 		n = get_child_rcu(n, index);
949 
950 		if (!n)
951 			break;
952 
953 		index = get_cindex(key, n);
954 
955 		/* This bit of code is a bit tricky but it combines multiple
956 		 * checks into a single check.  The prefix consists of the
957 		 * prefix plus zeros for the bits in the cindex. The index
958 		 * is the difference between the key and this value.  From
959 		 * this we can actually derive several pieces of data.
960 		 *   if (index >= (1ul << bits))
961 		 *     we have a mismatch in skip bits and failed
962 		 *   else
963 		 *     we know the value is cindex
964 		 *
965 		 * This check is safe even if bits == KEYLENGTH due to the
966 		 * fact that we can only allocate a node with 32 bits if a
967 		 * long is greater than 32 bits.
968 		 */
969 		if (index >= (1ul << n->bits)) {
970 			n = NULL;
971 			break;
972 		}
973 
974 		/* keep searching until we find a perfect match leaf or NULL */
975 	} while (IS_TNODE(n));
976 
977 	*tp = pn;
978 
979 	return n;
980 }
981 
982 /* Return the first fib alias matching TOS with
983  * priority less than or equal to PRIO.
984  */
985 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
986 					u8 tos, u32 prio, u32 tb_id)
987 {
988 	struct fib_alias *fa;
989 
990 	if (!fah)
991 		return NULL;
992 
993 	hlist_for_each_entry(fa, fah, fa_list) {
994 		if (fa->fa_slen < slen)
995 			continue;
996 		if (fa->fa_slen != slen)
997 			break;
998 		if (fa->tb_id > tb_id)
999 			continue;
1000 		if (fa->tb_id != tb_id)
1001 			break;
1002 		if (fa->fa_tos > tos)
1003 			continue;
1004 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1005 			return fa;
1006 	}
1007 
1008 	return NULL;
1009 }
1010 
1011 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1012 {
1013 	while (!IS_TRIE(tn))
1014 		tn = resize(t, tn);
1015 }
1016 
1017 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1018 			   struct fib_alias *new, t_key key)
1019 {
1020 	struct key_vector *n, *l;
1021 
1022 	l = leaf_new(key, new);
1023 	if (!l)
1024 		goto noleaf;
1025 
1026 	/* retrieve child from parent node */
1027 	n = get_child(tp, get_index(key, tp));
1028 
1029 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 	 *
1031 	 *  Add a new tnode here
1032 	 *  first tnode need some special handling
1033 	 *  leaves us in position for handling as case 3
1034 	 */
1035 	if (n) {
1036 		struct key_vector *tn;
1037 
1038 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1039 		if (!tn)
1040 			goto notnode;
1041 
1042 		/* initialize routes out of node */
1043 		NODE_INIT_PARENT(tn, tp);
1044 		put_child(tn, get_index(key, tn) ^ 1, n);
1045 
1046 		/* start adding routes into the node */
1047 		put_child_root(tp, key, tn);
1048 		node_set_parent(n, tn);
1049 
1050 		/* parent now has a NULL spot where the leaf can go */
1051 		tp = tn;
1052 	}
1053 
1054 	/* Case 3: n is NULL, and will just insert a new leaf */
1055 	node_push_suffix(tp, new->fa_slen);
1056 	NODE_INIT_PARENT(l, tp);
1057 	put_child_root(tp, key, l);
1058 	trie_rebalance(t, tp);
1059 
1060 	return 0;
1061 notnode:
1062 	node_free(l);
1063 noleaf:
1064 	return -ENOMEM;
1065 }
1066 
1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 			    struct key_vector *l, struct fib_alias *new,
1069 			    struct fib_alias *fa, t_key key)
1070 {
1071 	if (!l)
1072 		return fib_insert_node(t, tp, new, key);
1073 
1074 	if (fa) {
1075 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076 	} else {
1077 		struct fib_alias *last;
1078 
1079 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 			if (new->fa_slen < last->fa_slen)
1081 				break;
1082 			if ((new->fa_slen == last->fa_slen) &&
1083 			    (new->tb_id > last->tb_id))
1084 				break;
1085 			fa = last;
1086 		}
1087 
1088 		if (fa)
1089 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 		else
1091 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092 	}
1093 
1094 	/* if we added to the tail node then we need to update slen */
1095 	if (l->slen < new->fa_slen) {
1096 		l->slen = new->fa_slen;
1097 		node_push_suffix(tp, new->fa_slen);
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104 {
1105 	if (plen > KEYLENGTH) {
1106 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107 		return false;
1108 	}
1109 
1110 	if ((plen < KEYLENGTH) && (key << plen)) {
1111 		NL_SET_ERR_MSG(extack,
1112 			       "Invalid prefix for given prefix length");
1113 		return false;
1114 	}
1115 
1116 	return true;
1117 }
1118 
1119 /* Caller must hold RTNL. */
1120 int fib_table_insert(struct net *net, struct fib_table *tb,
1121 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122 {
1123 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124 	struct trie *t = (struct trie *)tb->tb_data;
1125 	struct fib_alias *fa, *new_fa;
1126 	struct key_vector *l, *tp;
1127 	u16 nlflags = NLM_F_EXCL;
1128 	struct fib_info *fi;
1129 	u8 plen = cfg->fc_dst_len;
1130 	u8 slen = KEYLENGTH - plen;
1131 	u8 tos = cfg->fc_tos;
1132 	u32 key;
1133 	int err;
1134 
1135 	key = ntohl(cfg->fc_dst);
1136 
1137 	if (!fib_valid_key_len(key, plen, extack))
1138 		return -EINVAL;
1139 
1140 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141 
1142 	fi = fib_create_info(cfg, extack);
1143 	if (IS_ERR(fi)) {
1144 		err = PTR_ERR(fi);
1145 		goto err;
1146 	}
1147 
1148 	l = fib_find_node(t, &tp, key);
1149 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 				tb->tb_id) : NULL;
1151 
1152 	/* Now fa, if non-NULL, points to the first fib alias
1153 	 * with the same keys [prefix,tos,priority], if such key already
1154 	 * exists or to the node before which we will insert new one.
1155 	 *
1156 	 * If fa is NULL, we will need to allocate a new one and
1157 	 * insert to the tail of the section matching the suffix length
1158 	 * of the new alias.
1159 	 */
1160 
1161 	if (fa && fa->fa_tos == tos &&
1162 	    fa->fa_info->fib_priority == fi->fib_priority) {
1163 		struct fib_alias *fa_first, *fa_match;
1164 
1165 		err = -EEXIST;
1166 		if (cfg->fc_nlflags & NLM_F_EXCL)
1167 			goto out;
1168 
1169 		nlflags &= ~NLM_F_EXCL;
1170 
1171 		/* We have 2 goals:
1172 		 * 1. Find exact match for type, scope, fib_info to avoid
1173 		 * duplicate routes
1174 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 		 */
1176 		fa_match = NULL;
1177 		fa_first = fa;
1178 		hlist_for_each_entry_from(fa, fa_list) {
1179 			if ((fa->fa_slen != slen) ||
1180 			    (fa->tb_id != tb->tb_id) ||
1181 			    (fa->fa_tos != tos))
1182 				break;
1183 			if (fa->fa_info->fib_priority != fi->fib_priority)
1184 				break;
1185 			if (fa->fa_type == cfg->fc_type &&
1186 			    fa->fa_info == fi) {
1187 				fa_match = fa;
1188 				break;
1189 			}
1190 		}
1191 
1192 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 			struct fib_info *fi_drop;
1194 			u8 state;
1195 
1196 			nlflags |= NLM_F_REPLACE;
1197 			fa = fa_first;
1198 			if (fa_match) {
1199 				if (fa == fa_match)
1200 					err = 0;
1201 				goto out;
1202 			}
1203 			err = -ENOBUFS;
1204 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 			if (!new_fa)
1206 				goto out;
1207 
1208 			fi_drop = fa->fa_info;
1209 			new_fa->fa_tos = fa->fa_tos;
1210 			new_fa->fa_info = fi;
1211 			new_fa->fa_type = cfg->fc_type;
1212 			state = fa->fa_state;
1213 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214 			new_fa->fa_slen = fa->fa_slen;
1215 			new_fa->tb_id = tb->tb_id;
1216 			new_fa->fa_default = -1;
1217 
1218 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1219 						 key, plen, new_fa, extack);
1220 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1221 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1222 
1223 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1224 
1225 			alias_free_mem_rcu(fa);
1226 
1227 			fib_release_info(fi_drop);
1228 			if (state & FA_S_ACCESSED)
1229 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1230 
1231 			goto succeeded;
1232 		}
1233 		/* Error if we find a perfect match which
1234 		 * uses the same scope, type, and nexthop
1235 		 * information.
1236 		 */
1237 		if (fa_match)
1238 			goto out;
1239 
1240 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1241 			event = FIB_EVENT_ENTRY_APPEND;
1242 			nlflags |= NLM_F_APPEND;
1243 		} else {
1244 			fa = fa_first;
1245 		}
1246 	}
1247 	err = -ENOENT;
1248 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1249 		goto out;
1250 
1251 	nlflags |= NLM_F_CREATE;
1252 	err = -ENOBUFS;
1253 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1254 	if (!new_fa)
1255 		goto out;
1256 
1257 	new_fa->fa_info = fi;
1258 	new_fa->fa_tos = tos;
1259 	new_fa->fa_type = cfg->fc_type;
1260 	new_fa->fa_state = 0;
1261 	new_fa->fa_slen = slen;
1262 	new_fa->tb_id = tb->tb_id;
1263 	new_fa->fa_default = -1;
1264 
1265 	/* Insert new entry to the list. */
1266 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1267 	if (err)
1268 		goto out_free_new_fa;
1269 
1270 	if (!plen)
1271 		tb->tb_num_default++;
1272 
1273 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1274 	call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1276 		  &cfg->fc_nlinfo, nlflags);
1277 succeeded:
1278 	return 0;
1279 
1280 out_free_new_fa:
1281 	kmem_cache_free(fn_alias_kmem, new_fa);
1282 out:
1283 	fib_release_info(fi);
1284 err:
1285 	return err;
1286 }
1287 
1288 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1289 {
1290 	t_key prefix = n->key;
1291 
1292 	return (key ^ prefix) & (prefix | -prefix);
1293 }
1294 
1295 /* should be called with rcu_read_lock */
1296 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1297 		     struct fib_result *res, int fib_flags)
1298 {
1299 	struct trie *t = (struct trie *) tb->tb_data;
1300 #ifdef CONFIG_IP_FIB_TRIE_STATS
1301 	struct trie_use_stats __percpu *stats = t->stats;
1302 #endif
1303 	const t_key key = ntohl(flp->daddr);
1304 	struct key_vector *n, *pn;
1305 	struct fib_alias *fa;
1306 	unsigned long index;
1307 	t_key cindex;
1308 
1309 	trace_fib_table_lookup(tb->tb_id, flp);
1310 
1311 	pn = t->kv;
1312 	cindex = 0;
1313 
1314 	n = get_child_rcu(pn, cindex);
1315 	if (!n)
1316 		return -EAGAIN;
1317 
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 	this_cpu_inc(stats->gets);
1320 #endif
1321 
1322 	/* Step 1: Travel to the longest prefix match in the trie */
1323 	for (;;) {
1324 		index = get_cindex(key, n);
1325 
1326 		/* This bit of code is a bit tricky but it combines multiple
1327 		 * checks into a single check.  The prefix consists of the
1328 		 * prefix plus zeros for the "bits" in the prefix. The index
1329 		 * is the difference between the key and this value.  From
1330 		 * this we can actually derive several pieces of data.
1331 		 *   if (index >= (1ul << bits))
1332 		 *     we have a mismatch in skip bits and failed
1333 		 *   else
1334 		 *     we know the value is cindex
1335 		 *
1336 		 * This check is safe even if bits == KEYLENGTH due to the
1337 		 * fact that we can only allocate a node with 32 bits if a
1338 		 * long is greater than 32 bits.
1339 		 */
1340 		if (index >= (1ul << n->bits))
1341 			break;
1342 
1343 		/* we have found a leaf. Prefixes have already been compared */
1344 		if (IS_LEAF(n))
1345 			goto found;
1346 
1347 		/* only record pn and cindex if we are going to be chopping
1348 		 * bits later.  Otherwise we are just wasting cycles.
1349 		 */
1350 		if (n->slen > n->pos) {
1351 			pn = n;
1352 			cindex = index;
1353 		}
1354 
1355 		n = get_child_rcu(n, index);
1356 		if (unlikely(!n))
1357 			goto backtrace;
1358 	}
1359 
1360 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1361 	for (;;) {
1362 		/* record the pointer where our next node pointer is stored */
1363 		struct key_vector __rcu **cptr = n->tnode;
1364 
1365 		/* This test verifies that none of the bits that differ
1366 		 * between the key and the prefix exist in the region of
1367 		 * the lsb and higher in the prefix.
1368 		 */
1369 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1370 			goto backtrace;
1371 
1372 		/* exit out and process leaf */
1373 		if (unlikely(IS_LEAF(n)))
1374 			break;
1375 
1376 		/* Don't bother recording parent info.  Since we are in
1377 		 * prefix match mode we will have to come back to wherever
1378 		 * we started this traversal anyway
1379 		 */
1380 
1381 		while ((n = rcu_dereference(*cptr)) == NULL) {
1382 backtrace:
1383 #ifdef CONFIG_IP_FIB_TRIE_STATS
1384 			if (!n)
1385 				this_cpu_inc(stats->null_node_hit);
1386 #endif
1387 			/* If we are at cindex 0 there are no more bits for
1388 			 * us to strip at this level so we must ascend back
1389 			 * up one level to see if there are any more bits to
1390 			 * be stripped there.
1391 			 */
1392 			while (!cindex) {
1393 				t_key pkey = pn->key;
1394 
1395 				/* If we don't have a parent then there is
1396 				 * nothing for us to do as we do not have any
1397 				 * further nodes to parse.
1398 				 */
1399 				if (IS_TRIE(pn))
1400 					return -EAGAIN;
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 				this_cpu_inc(stats->backtrack);
1403 #endif
1404 				/* Get Child's index */
1405 				pn = node_parent_rcu(pn);
1406 				cindex = get_index(pkey, pn);
1407 			}
1408 
1409 			/* strip the least significant bit from the cindex */
1410 			cindex &= cindex - 1;
1411 
1412 			/* grab pointer for next child node */
1413 			cptr = &pn->tnode[cindex];
1414 		}
1415 	}
1416 
1417 found:
1418 	/* this line carries forward the xor from earlier in the function */
1419 	index = key ^ n->key;
1420 
1421 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1422 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1423 		struct fib_info *fi = fa->fa_info;
1424 		int nhsel, err;
1425 
1426 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1427 			if (index >= (1ul << fa->fa_slen))
1428 				continue;
1429 		}
1430 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1431 			continue;
1432 		if (fi->fib_dead)
1433 			continue;
1434 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1435 			continue;
1436 		fib_alias_accessed(fa);
1437 		err = fib_props[fa->fa_type].error;
1438 		if (unlikely(err < 0)) {
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 			this_cpu_inc(stats->semantic_match_passed);
1441 #endif
1442 			return err;
1443 		}
1444 		if (fi->fib_flags & RTNH_F_DEAD)
1445 			continue;
1446 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1447 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1448 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1449 
1450 			if (nh->nh_flags & RTNH_F_DEAD)
1451 				continue;
1452 			if (in_dev &&
1453 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1454 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1455 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1456 				continue;
1457 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1458 				if (flp->flowi4_oif &&
1459 				    flp->flowi4_oif != nh->nh_oif)
1460 					continue;
1461 			}
1462 
1463 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1464 				refcount_inc(&fi->fib_clntref);
1465 
1466 			res->prefix = htonl(n->key);
1467 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1468 			res->nh_sel = nhsel;
1469 			res->type = fa->fa_type;
1470 			res->scope = fi->fib_scope;
1471 			res->fi = fi;
1472 			res->table = tb;
1473 			res->fa_head = &n->leaf;
1474 #ifdef CONFIG_IP_FIB_TRIE_STATS
1475 			this_cpu_inc(stats->semantic_match_passed);
1476 #endif
1477 			trace_fib_table_lookup_nh(nh);
1478 
1479 			return err;
1480 		}
1481 	}
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 	this_cpu_inc(stats->semantic_match_miss);
1484 #endif
1485 	goto backtrace;
1486 }
1487 EXPORT_SYMBOL_GPL(fib_table_lookup);
1488 
1489 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1490 			     struct key_vector *l, struct fib_alias *old)
1491 {
1492 	/* record the location of the previous list_info entry */
1493 	struct hlist_node **pprev = old->fa_list.pprev;
1494 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1495 
1496 	/* remove the fib_alias from the list */
1497 	hlist_del_rcu(&old->fa_list);
1498 
1499 	/* if we emptied the list this leaf will be freed and we can sort
1500 	 * out parent suffix lengths as a part of trie_rebalance
1501 	 */
1502 	if (hlist_empty(&l->leaf)) {
1503 		if (tp->slen == l->slen)
1504 			node_pull_suffix(tp, tp->pos);
1505 		put_child_root(tp, l->key, NULL);
1506 		node_free(l);
1507 		trie_rebalance(t, tp);
1508 		return;
1509 	}
1510 
1511 	/* only access fa if it is pointing at the last valid hlist_node */
1512 	if (*pprev)
1513 		return;
1514 
1515 	/* update the trie with the latest suffix length */
1516 	l->slen = fa->fa_slen;
1517 	node_pull_suffix(tp, fa->fa_slen);
1518 }
1519 
1520 /* Caller must hold RTNL. */
1521 int fib_table_delete(struct net *net, struct fib_table *tb,
1522 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1523 {
1524 	struct trie *t = (struct trie *) tb->tb_data;
1525 	struct fib_alias *fa, *fa_to_delete;
1526 	struct key_vector *l, *tp;
1527 	u8 plen = cfg->fc_dst_len;
1528 	u8 slen = KEYLENGTH - plen;
1529 	u8 tos = cfg->fc_tos;
1530 	u32 key;
1531 
1532 	key = ntohl(cfg->fc_dst);
1533 
1534 	if (!fib_valid_key_len(key, plen, extack))
1535 		return -EINVAL;
1536 
1537 	l = fib_find_node(t, &tp, key);
1538 	if (!l)
1539 		return -ESRCH;
1540 
1541 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1542 	if (!fa)
1543 		return -ESRCH;
1544 
1545 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1546 
1547 	fa_to_delete = NULL;
1548 	hlist_for_each_entry_from(fa, fa_list) {
1549 		struct fib_info *fi = fa->fa_info;
1550 
1551 		if ((fa->fa_slen != slen) ||
1552 		    (fa->tb_id != tb->tb_id) ||
1553 		    (fa->fa_tos != tos))
1554 			break;
1555 
1556 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1557 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1558 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1559 		    (!cfg->fc_prefsrc ||
1560 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1561 		    (!cfg->fc_protocol ||
1562 		     fi->fib_protocol == cfg->fc_protocol) &&
1563 		    fib_nh_match(cfg, fi, extack) == 0 &&
1564 		    fib_metrics_match(cfg, fi)) {
1565 			fa_to_delete = fa;
1566 			break;
1567 		}
1568 	}
1569 
1570 	if (!fa_to_delete)
1571 		return -ESRCH;
1572 
1573 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1574 				 fa_to_delete, extack);
1575 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1576 		  &cfg->fc_nlinfo, 0);
1577 
1578 	if (!plen)
1579 		tb->tb_num_default--;
1580 
1581 	fib_remove_alias(t, tp, l, fa_to_delete);
1582 
1583 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1584 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1585 
1586 	fib_release_info(fa_to_delete->fa_info);
1587 	alias_free_mem_rcu(fa_to_delete);
1588 	return 0;
1589 }
1590 
1591 /* Scan for the next leaf starting at the provided key value */
1592 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1593 {
1594 	struct key_vector *pn, *n = *tn;
1595 	unsigned long cindex;
1596 
1597 	/* this loop is meant to try and find the key in the trie */
1598 	do {
1599 		/* record parent and next child index */
1600 		pn = n;
1601 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1602 
1603 		if (cindex >> pn->bits)
1604 			break;
1605 
1606 		/* descend into the next child */
1607 		n = get_child_rcu(pn, cindex++);
1608 		if (!n)
1609 			break;
1610 
1611 		/* guarantee forward progress on the keys */
1612 		if (IS_LEAF(n) && (n->key >= key))
1613 			goto found;
1614 	} while (IS_TNODE(n));
1615 
1616 	/* this loop will search for the next leaf with a greater key */
1617 	while (!IS_TRIE(pn)) {
1618 		/* if we exhausted the parent node we will need to climb */
1619 		if (cindex >= (1ul << pn->bits)) {
1620 			t_key pkey = pn->key;
1621 
1622 			pn = node_parent_rcu(pn);
1623 			cindex = get_index(pkey, pn) + 1;
1624 			continue;
1625 		}
1626 
1627 		/* grab the next available node */
1628 		n = get_child_rcu(pn, cindex++);
1629 		if (!n)
1630 			continue;
1631 
1632 		/* no need to compare keys since we bumped the index */
1633 		if (IS_LEAF(n))
1634 			goto found;
1635 
1636 		/* Rescan start scanning in new node */
1637 		pn = n;
1638 		cindex = 0;
1639 	}
1640 
1641 	*tn = pn;
1642 	return NULL; /* Root of trie */
1643 found:
1644 	/* if we are at the limit for keys just return NULL for the tnode */
1645 	*tn = pn;
1646 	return n;
1647 }
1648 
1649 static void fib_trie_free(struct fib_table *tb)
1650 {
1651 	struct trie *t = (struct trie *)tb->tb_data;
1652 	struct key_vector *pn = t->kv;
1653 	unsigned long cindex = 1;
1654 	struct hlist_node *tmp;
1655 	struct fib_alias *fa;
1656 
1657 	/* walk trie in reverse order and free everything */
1658 	for (;;) {
1659 		struct key_vector *n;
1660 
1661 		if (!(cindex--)) {
1662 			t_key pkey = pn->key;
1663 
1664 			if (IS_TRIE(pn))
1665 				break;
1666 
1667 			n = pn;
1668 			pn = node_parent(pn);
1669 
1670 			/* drop emptied tnode */
1671 			put_child_root(pn, n->key, NULL);
1672 			node_free(n);
1673 
1674 			cindex = get_index(pkey, pn);
1675 
1676 			continue;
1677 		}
1678 
1679 		/* grab the next available node */
1680 		n = get_child(pn, cindex);
1681 		if (!n)
1682 			continue;
1683 
1684 		if (IS_TNODE(n)) {
1685 			/* record pn and cindex for leaf walking */
1686 			pn = n;
1687 			cindex = 1ul << n->bits;
1688 
1689 			continue;
1690 		}
1691 
1692 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1693 			hlist_del_rcu(&fa->fa_list);
1694 			alias_free_mem_rcu(fa);
1695 		}
1696 
1697 		put_child_root(pn, n->key, NULL);
1698 		node_free(n);
1699 	}
1700 
1701 #ifdef CONFIG_IP_FIB_TRIE_STATS
1702 	free_percpu(t->stats);
1703 #endif
1704 	kfree(tb);
1705 }
1706 
1707 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1708 {
1709 	struct trie *ot = (struct trie *)oldtb->tb_data;
1710 	struct key_vector *l, *tp = ot->kv;
1711 	struct fib_table *local_tb;
1712 	struct fib_alias *fa;
1713 	struct trie *lt;
1714 	t_key key = 0;
1715 
1716 	if (oldtb->tb_data == oldtb->__data)
1717 		return oldtb;
1718 
1719 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1720 	if (!local_tb)
1721 		return NULL;
1722 
1723 	lt = (struct trie *)local_tb->tb_data;
1724 
1725 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1726 		struct key_vector *local_l = NULL, *local_tp;
1727 
1728 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1729 			struct fib_alias *new_fa;
1730 
1731 			if (local_tb->tb_id != fa->tb_id)
1732 				continue;
1733 
1734 			/* clone fa for new local table */
1735 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1736 			if (!new_fa)
1737 				goto out;
1738 
1739 			memcpy(new_fa, fa, sizeof(*fa));
1740 
1741 			/* insert clone into table */
1742 			if (!local_l)
1743 				local_l = fib_find_node(lt, &local_tp, l->key);
1744 
1745 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1746 					     NULL, l->key)) {
1747 				kmem_cache_free(fn_alias_kmem, new_fa);
1748 				goto out;
1749 			}
1750 		}
1751 
1752 		/* stop loop if key wrapped back to 0 */
1753 		key = l->key + 1;
1754 		if (key < l->key)
1755 			break;
1756 	}
1757 
1758 	return local_tb;
1759 out:
1760 	fib_trie_free(local_tb);
1761 
1762 	return NULL;
1763 }
1764 
1765 /* Caller must hold RTNL */
1766 void fib_table_flush_external(struct fib_table *tb)
1767 {
1768 	struct trie *t = (struct trie *)tb->tb_data;
1769 	struct key_vector *pn = t->kv;
1770 	unsigned long cindex = 1;
1771 	struct hlist_node *tmp;
1772 	struct fib_alias *fa;
1773 
1774 	/* walk trie in reverse order */
1775 	for (;;) {
1776 		unsigned char slen = 0;
1777 		struct key_vector *n;
1778 
1779 		if (!(cindex--)) {
1780 			t_key pkey = pn->key;
1781 
1782 			/* cannot resize the trie vector */
1783 			if (IS_TRIE(pn))
1784 				break;
1785 
1786 			/* update the suffix to address pulled leaves */
1787 			if (pn->slen > pn->pos)
1788 				update_suffix(pn);
1789 
1790 			/* resize completed node */
1791 			pn = resize(t, pn);
1792 			cindex = get_index(pkey, pn);
1793 
1794 			continue;
1795 		}
1796 
1797 		/* grab the next available node */
1798 		n = get_child(pn, cindex);
1799 		if (!n)
1800 			continue;
1801 
1802 		if (IS_TNODE(n)) {
1803 			/* record pn and cindex for leaf walking */
1804 			pn = n;
1805 			cindex = 1ul << n->bits;
1806 
1807 			continue;
1808 		}
1809 
1810 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1811 			/* if alias was cloned to local then we just
1812 			 * need to remove the local copy from main
1813 			 */
1814 			if (tb->tb_id != fa->tb_id) {
1815 				hlist_del_rcu(&fa->fa_list);
1816 				alias_free_mem_rcu(fa);
1817 				continue;
1818 			}
1819 
1820 			/* record local slen */
1821 			slen = fa->fa_slen;
1822 		}
1823 
1824 		/* update leaf slen */
1825 		n->slen = slen;
1826 
1827 		if (hlist_empty(&n->leaf)) {
1828 			put_child_root(pn, n->key, NULL);
1829 			node_free(n);
1830 		}
1831 	}
1832 }
1833 
1834 /* Caller must hold RTNL. */
1835 int fib_table_flush(struct net *net, struct fib_table *tb)
1836 {
1837 	struct trie *t = (struct trie *)tb->tb_data;
1838 	struct key_vector *pn = t->kv;
1839 	unsigned long cindex = 1;
1840 	struct hlist_node *tmp;
1841 	struct fib_alias *fa;
1842 	int found = 0;
1843 
1844 	/* walk trie in reverse order */
1845 	for (;;) {
1846 		unsigned char slen = 0;
1847 		struct key_vector *n;
1848 
1849 		if (!(cindex--)) {
1850 			t_key pkey = pn->key;
1851 
1852 			/* cannot resize the trie vector */
1853 			if (IS_TRIE(pn))
1854 				break;
1855 
1856 			/* update the suffix to address pulled leaves */
1857 			if (pn->slen > pn->pos)
1858 				update_suffix(pn);
1859 
1860 			/* resize completed node */
1861 			pn = resize(t, pn);
1862 			cindex = get_index(pkey, pn);
1863 
1864 			continue;
1865 		}
1866 
1867 		/* grab the next available node */
1868 		n = get_child(pn, cindex);
1869 		if (!n)
1870 			continue;
1871 
1872 		if (IS_TNODE(n)) {
1873 			/* record pn and cindex for leaf walking */
1874 			pn = n;
1875 			cindex = 1ul << n->bits;
1876 
1877 			continue;
1878 		}
1879 
1880 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1881 			struct fib_info *fi = fa->fa_info;
1882 
1883 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1884 			    tb->tb_id != fa->tb_id) {
1885 				slen = fa->fa_slen;
1886 				continue;
1887 			}
1888 
1889 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1890 						 n->key,
1891 						 KEYLENGTH - fa->fa_slen, fa,
1892 						 NULL);
1893 			hlist_del_rcu(&fa->fa_list);
1894 			fib_release_info(fa->fa_info);
1895 			alias_free_mem_rcu(fa);
1896 			found++;
1897 		}
1898 
1899 		/* update leaf slen */
1900 		n->slen = slen;
1901 
1902 		if (hlist_empty(&n->leaf)) {
1903 			put_child_root(pn, n->key, NULL);
1904 			node_free(n);
1905 		}
1906 	}
1907 
1908 	pr_debug("trie_flush found=%d\n", found);
1909 	return found;
1910 }
1911 
1912 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1913 			    struct fib_table *tb, struct notifier_block *nb)
1914 {
1915 	struct fib_alias *fa;
1916 
1917 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1918 		struct fib_info *fi = fa->fa_info;
1919 
1920 		if (!fi)
1921 			continue;
1922 
1923 		/* local and main table can share the same trie,
1924 		 * so don't notify twice for the same entry.
1925 		 */
1926 		if (tb->tb_id != fa->tb_id)
1927 			continue;
1928 
1929 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1930 					KEYLENGTH - fa->fa_slen, fa);
1931 	}
1932 }
1933 
1934 static void fib_table_notify(struct net *net, struct fib_table *tb,
1935 			     struct notifier_block *nb)
1936 {
1937 	struct trie *t = (struct trie *)tb->tb_data;
1938 	struct key_vector *l, *tp = t->kv;
1939 	t_key key = 0;
1940 
1941 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1942 		fib_leaf_notify(net, l, tb, nb);
1943 
1944 		key = l->key + 1;
1945 		/* stop in case of wrap around */
1946 		if (key < l->key)
1947 			break;
1948 	}
1949 }
1950 
1951 void fib_notify(struct net *net, struct notifier_block *nb)
1952 {
1953 	unsigned int h;
1954 
1955 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1956 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1957 		struct fib_table *tb;
1958 
1959 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1960 			fib_table_notify(net, tb, nb);
1961 	}
1962 }
1963 
1964 static void __trie_free_rcu(struct rcu_head *head)
1965 {
1966 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1967 #ifdef CONFIG_IP_FIB_TRIE_STATS
1968 	struct trie *t = (struct trie *)tb->tb_data;
1969 
1970 	if (tb->tb_data == tb->__data)
1971 		free_percpu(t->stats);
1972 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1973 	kfree(tb);
1974 }
1975 
1976 void fib_free_table(struct fib_table *tb)
1977 {
1978 	call_rcu(&tb->rcu, __trie_free_rcu);
1979 }
1980 
1981 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1982 			     struct sk_buff *skb, struct netlink_callback *cb)
1983 {
1984 	__be32 xkey = htonl(l->key);
1985 	struct fib_alias *fa;
1986 	int i, s_i;
1987 
1988 	s_i = cb->args[4];
1989 	i = 0;
1990 
1991 	/* rcu_read_lock is hold by caller */
1992 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1993 		int err;
1994 
1995 		if (i < s_i) {
1996 			i++;
1997 			continue;
1998 		}
1999 
2000 		if (tb->tb_id != fa->tb_id) {
2001 			i++;
2002 			continue;
2003 		}
2004 
2005 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2006 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2007 				    tb->tb_id, fa->fa_type,
2008 				    xkey, KEYLENGTH - fa->fa_slen,
2009 				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2010 		if (err < 0) {
2011 			cb->args[4] = i;
2012 			return err;
2013 		}
2014 		i++;
2015 	}
2016 
2017 	cb->args[4] = i;
2018 	return skb->len;
2019 }
2020 
2021 /* rcu_read_lock needs to be hold by caller from readside */
2022 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2023 		   struct netlink_callback *cb)
2024 {
2025 	struct trie *t = (struct trie *)tb->tb_data;
2026 	struct key_vector *l, *tp = t->kv;
2027 	/* Dump starting at last key.
2028 	 * Note: 0.0.0.0/0 (ie default) is first key.
2029 	 */
2030 	int count = cb->args[2];
2031 	t_key key = cb->args[3];
2032 
2033 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2034 		int err;
2035 
2036 		err = fn_trie_dump_leaf(l, tb, skb, cb);
2037 		if (err < 0) {
2038 			cb->args[3] = key;
2039 			cb->args[2] = count;
2040 			return err;
2041 		}
2042 
2043 		++count;
2044 		key = l->key + 1;
2045 
2046 		memset(&cb->args[4], 0,
2047 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2048 
2049 		/* stop loop if key wrapped back to 0 */
2050 		if (key < l->key)
2051 			break;
2052 	}
2053 
2054 	cb->args[3] = key;
2055 	cb->args[2] = count;
2056 
2057 	return skb->len;
2058 }
2059 
2060 void __init fib_trie_init(void)
2061 {
2062 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2063 					  sizeof(struct fib_alias),
2064 					  0, SLAB_PANIC, NULL);
2065 
2066 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2067 					   LEAF_SIZE,
2068 					   0, SLAB_PANIC, NULL);
2069 }
2070 
2071 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2072 {
2073 	struct fib_table *tb;
2074 	struct trie *t;
2075 	size_t sz = sizeof(*tb);
2076 
2077 	if (!alias)
2078 		sz += sizeof(struct trie);
2079 
2080 	tb = kzalloc(sz, GFP_KERNEL);
2081 	if (!tb)
2082 		return NULL;
2083 
2084 	tb->tb_id = id;
2085 	tb->tb_num_default = 0;
2086 	tb->tb_data = (alias ? alias->__data : tb->__data);
2087 
2088 	if (alias)
2089 		return tb;
2090 
2091 	t = (struct trie *) tb->tb_data;
2092 	t->kv[0].pos = KEYLENGTH;
2093 	t->kv[0].slen = KEYLENGTH;
2094 #ifdef CONFIG_IP_FIB_TRIE_STATS
2095 	t->stats = alloc_percpu(struct trie_use_stats);
2096 	if (!t->stats) {
2097 		kfree(tb);
2098 		tb = NULL;
2099 	}
2100 #endif
2101 
2102 	return tb;
2103 }
2104 
2105 #ifdef CONFIG_PROC_FS
2106 /* Depth first Trie walk iterator */
2107 struct fib_trie_iter {
2108 	struct seq_net_private p;
2109 	struct fib_table *tb;
2110 	struct key_vector *tnode;
2111 	unsigned int index;
2112 	unsigned int depth;
2113 };
2114 
2115 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2116 {
2117 	unsigned long cindex = iter->index;
2118 	struct key_vector *pn = iter->tnode;
2119 	t_key pkey;
2120 
2121 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2122 		 iter->tnode, iter->index, iter->depth);
2123 
2124 	while (!IS_TRIE(pn)) {
2125 		while (cindex < child_length(pn)) {
2126 			struct key_vector *n = get_child_rcu(pn, cindex++);
2127 
2128 			if (!n)
2129 				continue;
2130 
2131 			if (IS_LEAF(n)) {
2132 				iter->tnode = pn;
2133 				iter->index = cindex;
2134 			} else {
2135 				/* push down one level */
2136 				iter->tnode = n;
2137 				iter->index = 0;
2138 				++iter->depth;
2139 			}
2140 
2141 			return n;
2142 		}
2143 
2144 		/* Current node exhausted, pop back up */
2145 		pkey = pn->key;
2146 		pn = node_parent_rcu(pn);
2147 		cindex = get_index(pkey, pn) + 1;
2148 		--iter->depth;
2149 	}
2150 
2151 	/* record root node so further searches know we are done */
2152 	iter->tnode = pn;
2153 	iter->index = 0;
2154 
2155 	return NULL;
2156 }
2157 
2158 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2159 					     struct trie *t)
2160 {
2161 	struct key_vector *n, *pn;
2162 
2163 	if (!t)
2164 		return NULL;
2165 
2166 	pn = t->kv;
2167 	n = rcu_dereference(pn->tnode[0]);
2168 	if (!n)
2169 		return NULL;
2170 
2171 	if (IS_TNODE(n)) {
2172 		iter->tnode = n;
2173 		iter->index = 0;
2174 		iter->depth = 1;
2175 	} else {
2176 		iter->tnode = pn;
2177 		iter->index = 0;
2178 		iter->depth = 0;
2179 	}
2180 
2181 	return n;
2182 }
2183 
2184 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2185 {
2186 	struct key_vector *n;
2187 	struct fib_trie_iter iter;
2188 
2189 	memset(s, 0, sizeof(*s));
2190 
2191 	rcu_read_lock();
2192 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2193 		if (IS_LEAF(n)) {
2194 			struct fib_alias *fa;
2195 
2196 			s->leaves++;
2197 			s->totdepth += iter.depth;
2198 			if (iter.depth > s->maxdepth)
2199 				s->maxdepth = iter.depth;
2200 
2201 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2202 				++s->prefixes;
2203 		} else {
2204 			s->tnodes++;
2205 			if (n->bits < MAX_STAT_DEPTH)
2206 				s->nodesizes[n->bits]++;
2207 			s->nullpointers += tn_info(n)->empty_children;
2208 		}
2209 	}
2210 	rcu_read_unlock();
2211 }
2212 
2213 /*
2214  *	This outputs /proc/net/fib_triestats
2215  */
2216 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2217 {
2218 	unsigned int i, max, pointers, bytes, avdepth;
2219 
2220 	if (stat->leaves)
2221 		avdepth = stat->totdepth*100 / stat->leaves;
2222 	else
2223 		avdepth = 0;
2224 
2225 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2226 		   avdepth / 100, avdepth % 100);
2227 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2228 
2229 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2230 	bytes = LEAF_SIZE * stat->leaves;
2231 
2232 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2233 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2234 
2235 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2236 	bytes += TNODE_SIZE(0) * stat->tnodes;
2237 
2238 	max = MAX_STAT_DEPTH;
2239 	while (max > 0 && stat->nodesizes[max-1] == 0)
2240 		max--;
2241 
2242 	pointers = 0;
2243 	for (i = 1; i < max; i++)
2244 		if (stat->nodesizes[i] != 0) {
2245 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2246 			pointers += (1<<i) * stat->nodesizes[i];
2247 		}
2248 	seq_putc(seq, '\n');
2249 	seq_printf(seq, "\tPointers: %u\n", pointers);
2250 
2251 	bytes += sizeof(struct key_vector *) * pointers;
2252 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2253 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2254 }
2255 
2256 #ifdef CONFIG_IP_FIB_TRIE_STATS
2257 static void trie_show_usage(struct seq_file *seq,
2258 			    const struct trie_use_stats __percpu *stats)
2259 {
2260 	struct trie_use_stats s = { 0 };
2261 	int cpu;
2262 
2263 	/* loop through all of the CPUs and gather up the stats */
2264 	for_each_possible_cpu(cpu) {
2265 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2266 
2267 		s.gets += pcpu->gets;
2268 		s.backtrack += pcpu->backtrack;
2269 		s.semantic_match_passed += pcpu->semantic_match_passed;
2270 		s.semantic_match_miss += pcpu->semantic_match_miss;
2271 		s.null_node_hit += pcpu->null_node_hit;
2272 		s.resize_node_skipped += pcpu->resize_node_skipped;
2273 	}
2274 
2275 	seq_printf(seq, "\nCounters:\n---------\n");
2276 	seq_printf(seq, "gets = %u\n", s.gets);
2277 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2278 	seq_printf(seq, "semantic match passed = %u\n",
2279 		   s.semantic_match_passed);
2280 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2281 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2282 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2283 }
2284 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2285 
2286 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2287 {
2288 	if (tb->tb_id == RT_TABLE_LOCAL)
2289 		seq_puts(seq, "Local:\n");
2290 	else if (tb->tb_id == RT_TABLE_MAIN)
2291 		seq_puts(seq, "Main:\n");
2292 	else
2293 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2294 }
2295 
2296 
2297 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2298 {
2299 	struct net *net = (struct net *)seq->private;
2300 	unsigned int h;
2301 
2302 	seq_printf(seq,
2303 		   "Basic info: size of leaf:"
2304 		   " %zd bytes, size of tnode: %zd bytes.\n",
2305 		   LEAF_SIZE, TNODE_SIZE(0));
2306 
2307 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2308 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2309 		struct fib_table *tb;
2310 
2311 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2312 			struct trie *t = (struct trie *) tb->tb_data;
2313 			struct trie_stat stat;
2314 
2315 			if (!t)
2316 				continue;
2317 
2318 			fib_table_print(seq, tb);
2319 
2320 			trie_collect_stats(t, &stat);
2321 			trie_show_stats(seq, &stat);
2322 #ifdef CONFIG_IP_FIB_TRIE_STATS
2323 			trie_show_usage(seq, t->stats);
2324 #endif
2325 		}
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2332 {
2333 	return single_open_net(inode, file, fib_triestat_seq_show);
2334 }
2335 
2336 static const struct file_operations fib_triestat_fops = {
2337 	.open	= fib_triestat_seq_open,
2338 	.read	= seq_read,
2339 	.llseek	= seq_lseek,
2340 	.release = single_release_net,
2341 };
2342 
2343 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2344 {
2345 	struct fib_trie_iter *iter = seq->private;
2346 	struct net *net = seq_file_net(seq);
2347 	loff_t idx = 0;
2348 	unsigned int h;
2349 
2350 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2351 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2352 		struct fib_table *tb;
2353 
2354 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2355 			struct key_vector *n;
2356 
2357 			for (n = fib_trie_get_first(iter,
2358 						    (struct trie *) tb->tb_data);
2359 			     n; n = fib_trie_get_next(iter))
2360 				if (pos == idx++) {
2361 					iter->tb = tb;
2362 					return n;
2363 				}
2364 		}
2365 	}
2366 
2367 	return NULL;
2368 }
2369 
2370 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2371 	__acquires(RCU)
2372 {
2373 	rcu_read_lock();
2374 	return fib_trie_get_idx(seq, *pos);
2375 }
2376 
2377 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2378 {
2379 	struct fib_trie_iter *iter = seq->private;
2380 	struct net *net = seq_file_net(seq);
2381 	struct fib_table *tb = iter->tb;
2382 	struct hlist_node *tb_node;
2383 	unsigned int h;
2384 	struct key_vector *n;
2385 
2386 	++*pos;
2387 	/* next node in same table */
2388 	n = fib_trie_get_next(iter);
2389 	if (n)
2390 		return n;
2391 
2392 	/* walk rest of this hash chain */
2393 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2394 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2395 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2396 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2397 		if (n)
2398 			goto found;
2399 	}
2400 
2401 	/* new hash chain */
2402 	while (++h < FIB_TABLE_HASHSZ) {
2403 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2404 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2405 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2406 			if (n)
2407 				goto found;
2408 		}
2409 	}
2410 	return NULL;
2411 
2412 found:
2413 	iter->tb = tb;
2414 	return n;
2415 }
2416 
2417 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2418 	__releases(RCU)
2419 {
2420 	rcu_read_unlock();
2421 }
2422 
2423 static void seq_indent(struct seq_file *seq, int n)
2424 {
2425 	while (n-- > 0)
2426 		seq_puts(seq, "   ");
2427 }
2428 
2429 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2430 {
2431 	switch (s) {
2432 	case RT_SCOPE_UNIVERSE: return "universe";
2433 	case RT_SCOPE_SITE:	return "site";
2434 	case RT_SCOPE_LINK:	return "link";
2435 	case RT_SCOPE_HOST:	return "host";
2436 	case RT_SCOPE_NOWHERE:	return "nowhere";
2437 	default:
2438 		snprintf(buf, len, "scope=%d", s);
2439 		return buf;
2440 	}
2441 }
2442 
2443 static const char *const rtn_type_names[__RTN_MAX] = {
2444 	[RTN_UNSPEC] = "UNSPEC",
2445 	[RTN_UNICAST] = "UNICAST",
2446 	[RTN_LOCAL] = "LOCAL",
2447 	[RTN_BROADCAST] = "BROADCAST",
2448 	[RTN_ANYCAST] = "ANYCAST",
2449 	[RTN_MULTICAST] = "MULTICAST",
2450 	[RTN_BLACKHOLE] = "BLACKHOLE",
2451 	[RTN_UNREACHABLE] = "UNREACHABLE",
2452 	[RTN_PROHIBIT] = "PROHIBIT",
2453 	[RTN_THROW] = "THROW",
2454 	[RTN_NAT] = "NAT",
2455 	[RTN_XRESOLVE] = "XRESOLVE",
2456 };
2457 
2458 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2459 {
2460 	if (t < __RTN_MAX && rtn_type_names[t])
2461 		return rtn_type_names[t];
2462 	snprintf(buf, len, "type %u", t);
2463 	return buf;
2464 }
2465 
2466 /* Pretty print the trie */
2467 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2468 {
2469 	const struct fib_trie_iter *iter = seq->private;
2470 	struct key_vector *n = v;
2471 
2472 	if (IS_TRIE(node_parent_rcu(n)))
2473 		fib_table_print(seq, iter->tb);
2474 
2475 	if (IS_TNODE(n)) {
2476 		__be32 prf = htonl(n->key);
2477 
2478 		seq_indent(seq, iter->depth-1);
2479 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2480 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2481 			   tn_info(n)->full_children,
2482 			   tn_info(n)->empty_children);
2483 	} else {
2484 		__be32 val = htonl(n->key);
2485 		struct fib_alias *fa;
2486 
2487 		seq_indent(seq, iter->depth);
2488 		seq_printf(seq, "  |-- %pI4\n", &val);
2489 
2490 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2491 			char buf1[32], buf2[32];
2492 
2493 			seq_indent(seq, iter->depth + 1);
2494 			seq_printf(seq, "  /%zu %s %s",
2495 				   KEYLENGTH - fa->fa_slen,
2496 				   rtn_scope(buf1, sizeof(buf1),
2497 					     fa->fa_info->fib_scope),
2498 				   rtn_type(buf2, sizeof(buf2),
2499 					    fa->fa_type));
2500 			if (fa->fa_tos)
2501 				seq_printf(seq, " tos=%d", fa->fa_tos);
2502 			seq_putc(seq, '\n');
2503 		}
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static const struct seq_operations fib_trie_seq_ops = {
2510 	.start  = fib_trie_seq_start,
2511 	.next   = fib_trie_seq_next,
2512 	.stop   = fib_trie_seq_stop,
2513 	.show   = fib_trie_seq_show,
2514 };
2515 
2516 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2517 {
2518 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2519 			    sizeof(struct fib_trie_iter));
2520 }
2521 
2522 static const struct file_operations fib_trie_fops = {
2523 	.open   = fib_trie_seq_open,
2524 	.read   = seq_read,
2525 	.llseek = seq_lseek,
2526 	.release = seq_release_net,
2527 };
2528 
2529 struct fib_route_iter {
2530 	struct seq_net_private p;
2531 	struct fib_table *main_tb;
2532 	struct key_vector *tnode;
2533 	loff_t	pos;
2534 	t_key	key;
2535 };
2536 
2537 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2538 					    loff_t pos)
2539 {
2540 	struct key_vector *l, **tp = &iter->tnode;
2541 	t_key key;
2542 
2543 	/* use cached location of previously found key */
2544 	if (iter->pos > 0 && pos >= iter->pos) {
2545 		key = iter->key;
2546 	} else {
2547 		iter->pos = 1;
2548 		key = 0;
2549 	}
2550 
2551 	pos -= iter->pos;
2552 
2553 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2554 		key = l->key + 1;
2555 		iter->pos++;
2556 		l = NULL;
2557 
2558 		/* handle unlikely case of a key wrap */
2559 		if (!key)
2560 			break;
2561 	}
2562 
2563 	if (l)
2564 		iter->key = l->key;	/* remember it */
2565 	else
2566 		iter->pos = 0;		/* forget it */
2567 
2568 	return l;
2569 }
2570 
2571 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2572 	__acquires(RCU)
2573 {
2574 	struct fib_route_iter *iter = seq->private;
2575 	struct fib_table *tb;
2576 	struct trie *t;
2577 
2578 	rcu_read_lock();
2579 
2580 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2581 	if (!tb)
2582 		return NULL;
2583 
2584 	iter->main_tb = tb;
2585 	t = (struct trie *)tb->tb_data;
2586 	iter->tnode = t->kv;
2587 
2588 	if (*pos != 0)
2589 		return fib_route_get_idx(iter, *pos);
2590 
2591 	iter->pos = 0;
2592 	iter->key = KEY_MAX;
2593 
2594 	return SEQ_START_TOKEN;
2595 }
2596 
2597 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2598 {
2599 	struct fib_route_iter *iter = seq->private;
2600 	struct key_vector *l = NULL;
2601 	t_key key = iter->key + 1;
2602 
2603 	++*pos;
2604 
2605 	/* only allow key of 0 for start of sequence */
2606 	if ((v == SEQ_START_TOKEN) || key)
2607 		l = leaf_walk_rcu(&iter->tnode, key);
2608 
2609 	if (l) {
2610 		iter->key = l->key;
2611 		iter->pos++;
2612 	} else {
2613 		iter->pos = 0;
2614 	}
2615 
2616 	return l;
2617 }
2618 
2619 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2620 	__releases(RCU)
2621 {
2622 	rcu_read_unlock();
2623 }
2624 
2625 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2626 {
2627 	unsigned int flags = 0;
2628 
2629 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2630 		flags = RTF_REJECT;
2631 	if (fi && fi->fib_nh->nh_gw)
2632 		flags |= RTF_GATEWAY;
2633 	if (mask == htonl(0xFFFFFFFF))
2634 		flags |= RTF_HOST;
2635 	flags |= RTF_UP;
2636 	return flags;
2637 }
2638 
2639 /*
2640  *	This outputs /proc/net/route.
2641  *	The format of the file is not supposed to be changed
2642  *	and needs to be same as fib_hash output to avoid breaking
2643  *	legacy utilities
2644  */
2645 static int fib_route_seq_show(struct seq_file *seq, void *v)
2646 {
2647 	struct fib_route_iter *iter = seq->private;
2648 	struct fib_table *tb = iter->main_tb;
2649 	struct fib_alias *fa;
2650 	struct key_vector *l = v;
2651 	__be32 prefix;
2652 
2653 	if (v == SEQ_START_TOKEN) {
2654 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2655 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2656 			   "\tWindow\tIRTT");
2657 		return 0;
2658 	}
2659 
2660 	prefix = htonl(l->key);
2661 
2662 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2663 		const struct fib_info *fi = fa->fa_info;
2664 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2665 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2666 
2667 		if ((fa->fa_type == RTN_BROADCAST) ||
2668 		    (fa->fa_type == RTN_MULTICAST))
2669 			continue;
2670 
2671 		if (fa->tb_id != tb->tb_id)
2672 			continue;
2673 
2674 		seq_setwidth(seq, 127);
2675 
2676 		if (fi)
2677 			seq_printf(seq,
2678 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2679 				   "%d\t%08X\t%d\t%u\t%u",
2680 				   fi->fib_dev ? fi->fib_dev->name : "*",
2681 				   prefix,
2682 				   fi->fib_nh->nh_gw, flags, 0, 0,
2683 				   fi->fib_priority,
2684 				   mask,
2685 				   (fi->fib_advmss ?
2686 				    fi->fib_advmss + 40 : 0),
2687 				   fi->fib_window,
2688 				   fi->fib_rtt >> 3);
2689 		else
2690 			seq_printf(seq,
2691 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2692 				   "%d\t%08X\t%d\t%u\t%u",
2693 				   prefix, 0, flags, 0, 0, 0,
2694 				   mask, 0, 0, 0);
2695 
2696 		seq_pad(seq, '\n');
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 static const struct seq_operations fib_route_seq_ops = {
2703 	.start  = fib_route_seq_start,
2704 	.next   = fib_route_seq_next,
2705 	.stop   = fib_route_seq_stop,
2706 	.show   = fib_route_seq_show,
2707 };
2708 
2709 static int fib_route_seq_open(struct inode *inode, struct file *file)
2710 {
2711 	return seq_open_net(inode, file, &fib_route_seq_ops,
2712 			    sizeof(struct fib_route_iter));
2713 }
2714 
2715 static const struct file_operations fib_route_fops = {
2716 	.open   = fib_route_seq_open,
2717 	.read   = seq_read,
2718 	.llseek = seq_lseek,
2719 	.release = seq_release_net,
2720 };
2721 
2722 int __net_init fib_proc_init(struct net *net)
2723 {
2724 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2725 		goto out1;
2726 
2727 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2728 			 &fib_triestat_fops))
2729 		goto out2;
2730 
2731 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2732 		goto out3;
2733 
2734 	return 0;
2735 
2736 out3:
2737 	remove_proc_entry("fib_triestat", net->proc_net);
2738 out2:
2739 	remove_proc_entry("fib_trie", net->proc_net);
2740 out1:
2741 	return -ENOMEM;
2742 }
2743 
2744 void __net_exit fib_proc_exit(struct net *net)
2745 {
2746 	remove_proc_entry("fib_trie", net->proc_net);
2747 	remove_proc_entry("fib_triestat", net->proc_net);
2748 	remove_proc_entry("route", net->proc_net);
2749 }
2750 
2751 #endif /* CONFIG_PROC_FS */
2752