1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/prefetch.h> 75 #include <linux/export.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 int plen; 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 115 struct list_head falh; 116 struct rcu_head rcu; 117 }; 118 119 struct tnode { 120 unsigned long parent; 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned int full_children; /* KEYLENGTH bits needed */ 125 unsigned int empty_children; /* KEYLENGTH bits needed */ 126 union { 127 struct rcu_head rcu; 128 struct work_struct work; 129 struct tnode *tnode_free; 130 }; 131 struct rt_trie_node __rcu *child[0]; 132 }; 133 134 #ifdef CONFIG_IP_FIB_TRIE_STATS 135 struct trie_use_stats { 136 unsigned int gets; 137 unsigned int backtrack; 138 unsigned int semantic_match_passed; 139 unsigned int semantic_match_miss; 140 unsigned int null_node_hit; 141 unsigned int resize_node_skipped; 142 }; 143 #endif 144 145 struct trie_stat { 146 unsigned int totdepth; 147 unsigned int maxdepth; 148 unsigned int tnodes; 149 unsigned int leaves; 150 unsigned int nullpointers; 151 unsigned int prefixes; 152 unsigned int nodesizes[MAX_STAT_DEPTH]; 153 }; 154 155 struct trie { 156 struct rt_trie_node __rcu *trie; 157 #ifdef CONFIG_IP_FIB_TRIE_STATS 158 struct trie_use_stats stats; 159 #endif 160 }; 161 162 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 163 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 164 int wasfull); 165 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 166 static struct tnode *inflate(struct trie *t, struct tnode *tn); 167 static struct tnode *halve(struct trie *t, struct tnode *tn); 168 /* tnodes to free after resize(); protected by RTNL */ 169 static struct tnode *tnode_free_head; 170 static size_t tnode_free_size; 171 172 /* 173 * synchronize_rcu after call_rcu for that many pages; it should be especially 174 * useful before resizing the root node with PREEMPT_NONE configs; the value was 175 * obtained experimentally, aiming to avoid visible slowdown. 176 */ 177 static const int sync_pages = 128; 178 179 static struct kmem_cache *fn_alias_kmem __read_mostly; 180 static struct kmem_cache *trie_leaf_kmem __read_mostly; 181 182 /* 183 * caller must hold RTNL 184 */ 185 static inline struct tnode *node_parent(const struct rt_trie_node *node) 186 { 187 unsigned long parent; 188 189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 190 191 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 192 } 193 194 /* 195 * caller must hold RCU read lock or RTNL 196 */ 197 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 198 { 199 unsigned long parent; 200 201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 202 lockdep_rtnl_is_held()); 203 204 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 205 } 206 207 /* Same as rcu_assign_pointer 208 * but that macro() assumes that value is a pointer. 209 */ 210 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 211 { 212 smp_wmb(); 213 node->parent = (unsigned long)ptr | NODE_TYPE(node); 214 } 215 216 /* 217 * caller must hold RTNL 218 */ 219 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 220 { 221 BUG_ON(i >= 1U << tn->bits); 222 223 return rtnl_dereference(tn->child[i]); 224 } 225 226 /* 227 * caller must hold RCU read lock or RTNL 228 */ 229 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 230 { 231 BUG_ON(i >= 1U << tn->bits); 232 233 return rcu_dereference_rtnl(tn->child[i]); 234 } 235 236 static inline int tnode_child_length(const struct tnode *tn) 237 { 238 return 1 << tn->bits; 239 } 240 241 static inline t_key mask_pfx(t_key k, unsigned int l) 242 { 243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 244 } 245 246 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 247 { 248 if (offset < KEYLENGTH) 249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 250 else 251 return 0; 252 } 253 254 static inline int tkey_equals(t_key a, t_key b) 255 { 256 return a == b; 257 } 258 259 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 260 { 261 if (bits == 0 || offset >= KEYLENGTH) 262 return 1; 263 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 265 } 266 267 static inline int tkey_mismatch(t_key a, int offset, t_key b) 268 { 269 t_key diff = a ^ b; 270 int i = offset; 271 272 if (!diff) 273 return 0; 274 while ((diff << i) >> (KEYLENGTH-1) == 0) 275 i++; 276 return i; 277 } 278 279 /* 280 To understand this stuff, an understanding of keys and all their bits is 281 necessary. Every node in the trie has a key associated with it, but not 282 all of the bits in that key are significant. 283 284 Consider a node 'n' and its parent 'tp'. 285 286 If n is a leaf, every bit in its key is significant. Its presence is 287 necessitated by path compression, since during a tree traversal (when 288 searching for a leaf - unless we are doing an insertion) we will completely 289 ignore all skipped bits we encounter. Thus we need to verify, at the end of 290 a potentially successful search, that we have indeed been walking the 291 correct key path. 292 293 Note that we can never "miss" the correct key in the tree if present by 294 following the wrong path. Path compression ensures that segments of the key 295 that are the same for all keys with a given prefix are skipped, but the 296 skipped part *is* identical for each node in the subtrie below the skipped 297 bit! trie_insert() in this implementation takes care of that - note the 298 call to tkey_sub_equals() in trie_insert(). 299 300 if n is an internal node - a 'tnode' here, the various parts of its key 301 have many different meanings. 302 303 Example: 304 _________________________________________________________________ 305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 306 ----------------------------------------------------------------- 307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 308 309 _________________________________________________________________ 310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 311 ----------------------------------------------------------------- 312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 313 314 tp->pos = 7 315 tp->bits = 3 316 n->pos = 15 317 n->bits = 4 318 319 First, let's just ignore the bits that come before the parent tp, that is 320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 321 not use them for anything. 322 323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 324 index into the parent's child array. That is, they will be used to find 325 'n' among tp's children. 326 327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 328 for the node n. 329 330 All the bits we have seen so far are significant to the node n. The rest 331 of the bits are really not needed or indeed known in n->key. 332 333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 334 n's child array, and will of course be different for each child. 335 336 337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 338 at this point. 339 340 */ 341 342 static inline void check_tnode(const struct tnode *tn) 343 { 344 WARN_ON(tn && tn->pos+tn->bits > 32); 345 } 346 347 static const int halve_threshold = 25; 348 static const int inflate_threshold = 50; 349 static const int halve_threshold_root = 15; 350 static const int inflate_threshold_root = 30; 351 352 static void __alias_free_mem(struct rcu_head *head) 353 { 354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 355 kmem_cache_free(fn_alias_kmem, fa); 356 } 357 358 static inline void alias_free_mem_rcu(struct fib_alias *fa) 359 { 360 call_rcu(&fa->rcu, __alias_free_mem); 361 } 362 363 static void __leaf_free_rcu(struct rcu_head *head) 364 { 365 struct leaf *l = container_of(head, struct leaf, rcu); 366 kmem_cache_free(trie_leaf_kmem, l); 367 } 368 369 static inline void free_leaf(struct leaf *l) 370 { 371 call_rcu_bh(&l->rcu, __leaf_free_rcu); 372 } 373 374 static inline void free_leaf_info(struct leaf_info *leaf) 375 { 376 kfree_rcu(leaf, rcu); 377 } 378 379 static struct tnode *tnode_alloc(size_t size) 380 { 381 if (size <= PAGE_SIZE) 382 return kzalloc(size, GFP_KERNEL); 383 else 384 return vzalloc(size); 385 } 386 387 static void __tnode_vfree(struct work_struct *arg) 388 { 389 struct tnode *tn = container_of(arg, struct tnode, work); 390 vfree(tn); 391 } 392 393 static void __tnode_free_rcu(struct rcu_head *head) 394 { 395 struct tnode *tn = container_of(head, struct tnode, rcu); 396 size_t size = sizeof(struct tnode) + 397 (sizeof(struct rt_trie_node *) << tn->bits); 398 399 if (size <= PAGE_SIZE) 400 kfree(tn); 401 else { 402 INIT_WORK(&tn->work, __tnode_vfree); 403 schedule_work(&tn->work); 404 } 405 } 406 407 static inline void tnode_free(struct tnode *tn) 408 { 409 if (IS_LEAF(tn)) 410 free_leaf((struct leaf *) tn); 411 else 412 call_rcu(&tn->rcu, __tnode_free_rcu); 413 } 414 415 static void tnode_free_safe(struct tnode *tn) 416 { 417 BUG_ON(IS_LEAF(tn)); 418 tn->tnode_free = tnode_free_head; 419 tnode_free_head = tn; 420 tnode_free_size += sizeof(struct tnode) + 421 (sizeof(struct rt_trie_node *) << tn->bits); 422 } 423 424 static void tnode_free_flush(void) 425 { 426 struct tnode *tn; 427 428 while ((tn = tnode_free_head)) { 429 tnode_free_head = tn->tnode_free; 430 tn->tnode_free = NULL; 431 tnode_free(tn); 432 } 433 434 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 435 tnode_free_size = 0; 436 synchronize_rcu(); 437 } 438 } 439 440 static struct leaf *leaf_new(void) 441 { 442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 443 if (l) { 444 l->parent = T_LEAF; 445 INIT_HLIST_HEAD(&l->list); 446 } 447 return l; 448 } 449 450 static struct leaf_info *leaf_info_new(int plen) 451 { 452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 453 if (li) { 454 li->plen = plen; 455 li->mask_plen = ntohl(inet_make_mask(plen)); 456 INIT_LIST_HEAD(&li->falh); 457 } 458 return li; 459 } 460 461 static struct tnode *tnode_new(t_key key, int pos, int bits) 462 { 463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 464 struct tnode *tn = tnode_alloc(sz); 465 466 if (tn) { 467 tn->parent = T_TNODE; 468 tn->pos = pos; 469 tn->bits = bits; 470 tn->key = key; 471 tn->full_children = 0; 472 tn->empty_children = 1<<bits; 473 } 474 475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 476 sizeof(struct rt_trie_node) << bits); 477 return tn; 478 } 479 480 /* 481 * Check whether a tnode 'n' is "full", i.e. it is an internal node 482 * and no bits are skipped. See discussion in dyntree paper p. 6 483 */ 484 485 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 486 { 487 if (n == NULL || IS_LEAF(n)) 488 return 0; 489 490 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 491 } 492 493 static inline void put_child(struct trie *t, struct tnode *tn, int i, 494 struct rt_trie_node *n) 495 { 496 tnode_put_child_reorg(tn, i, n, -1); 497 } 498 499 /* 500 * Add a child at position i overwriting the old value. 501 * Update the value of full_children and empty_children. 502 */ 503 504 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 505 int wasfull) 506 { 507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 508 int isfull; 509 510 BUG_ON(i >= 1<<tn->bits); 511 512 /* update emptyChildren */ 513 if (n == NULL && chi != NULL) 514 tn->empty_children++; 515 else if (n != NULL && chi == NULL) 516 tn->empty_children--; 517 518 /* update fullChildren */ 519 if (wasfull == -1) 520 wasfull = tnode_full(tn, chi); 521 522 isfull = tnode_full(tn, n); 523 if (wasfull && !isfull) 524 tn->full_children--; 525 else if (!wasfull && isfull) 526 tn->full_children++; 527 528 if (n) 529 node_set_parent(n, tn); 530 531 rcu_assign_pointer(tn->child[i], n); 532 } 533 534 #define MAX_WORK 10 535 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 536 { 537 int i; 538 struct tnode *old_tn; 539 int inflate_threshold_use; 540 int halve_threshold_use; 541 int max_work; 542 543 if (!tn) 544 return NULL; 545 546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 547 tn, inflate_threshold, halve_threshold); 548 549 /* No children */ 550 if (tn->empty_children == tnode_child_length(tn)) { 551 tnode_free_safe(tn); 552 return NULL; 553 } 554 /* One child */ 555 if (tn->empty_children == tnode_child_length(tn) - 1) 556 goto one_child; 557 /* 558 * Double as long as the resulting node has a number of 559 * nonempty nodes that are above the threshold. 560 */ 561 562 /* 563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 564 * the Helsinki University of Technology and Matti Tikkanen of Nokia 565 * Telecommunications, page 6: 566 * "A node is doubled if the ratio of non-empty children to all 567 * children in the *doubled* node is at least 'high'." 568 * 569 * 'high' in this instance is the variable 'inflate_threshold'. It 570 * is expressed as a percentage, so we multiply it with 571 * tnode_child_length() and instead of multiplying by 2 (since the 572 * child array will be doubled by inflate()) and multiplying 573 * the left-hand side by 100 (to handle the percentage thing) we 574 * multiply the left-hand side by 50. 575 * 576 * The left-hand side may look a bit weird: tnode_child_length(tn) 577 * - tn->empty_children is of course the number of non-null children 578 * in the current node. tn->full_children is the number of "full" 579 * children, that is non-null tnodes with a skip value of 0. 580 * All of those will be doubled in the resulting inflated tnode, so 581 * we just count them one extra time here. 582 * 583 * A clearer way to write this would be: 584 * 585 * to_be_doubled = tn->full_children; 586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 587 * tn->full_children; 588 * 589 * new_child_length = tnode_child_length(tn) * 2; 590 * 591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 592 * new_child_length; 593 * if (new_fill_factor >= inflate_threshold) 594 * 595 * ...and so on, tho it would mess up the while () loop. 596 * 597 * anyway, 598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 599 * inflate_threshold 600 * 601 * avoid a division: 602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 603 * inflate_threshold * new_child_length 604 * 605 * expand not_to_be_doubled and to_be_doubled, and shorten: 606 * 100 * (tnode_child_length(tn) - tn->empty_children + 607 * tn->full_children) >= inflate_threshold * new_child_length 608 * 609 * expand new_child_length: 610 * 100 * (tnode_child_length(tn) - tn->empty_children + 611 * tn->full_children) >= 612 * inflate_threshold * tnode_child_length(tn) * 2 613 * 614 * shorten again: 615 * 50 * (tn->full_children + tnode_child_length(tn) - 616 * tn->empty_children) >= inflate_threshold * 617 * tnode_child_length(tn) 618 * 619 */ 620 621 check_tnode(tn); 622 623 /* Keep root node larger */ 624 625 if (!node_parent((struct rt_trie_node *)tn)) { 626 inflate_threshold_use = inflate_threshold_root; 627 halve_threshold_use = halve_threshold_root; 628 } else { 629 inflate_threshold_use = inflate_threshold; 630 halve_threshold_use = halve_threshold; 631 } 632 633 max_work = MAX_WORK; 634 while ((tn->full_children > 0 && max_work-- && 635 50 * (tn->full_children + tnode_child_length(tn) 636 - tn->empty_children) 637 >= inflate_threshold_use * tnode_child_length(tn))) { 638 639 old_tn = tn; 640 tn = inflate(t, tn); 641 642 if (IS_ERR(tn)) { 643 tn = old_tn; 644 #ifdef CONFIG_IP_FIB_TRIE_STATS 645 t->stats.resize_node_skipped++; 646 #endif 647 break; 648 } 649 } 650 651 check_tnode(tn); 652 653 /* Return if at least one inflate is run */ 654 if (max_work != MAX_WORK) 655 return (struct rt_trie_node *) tn; 656 657 /* 658 * Halve as long as the number of empty children in this 659 * node is above threshold. 660 */ 661 662 max_work = MAX_WORK; 663 while (tn->bits > 1 && max_work-- && 664 100 * (tnode_child_length(tn) - tn->empty_children) < 665 halve_threshold_use * tnode_child_length(tn)) { 666 667 old_tn = tn; 668 tn = halve(t, tn); 669 if (IS_ERR(tn)) { 670 tn = old_tn; 671 #ifdef CONFIG_IP_FIB_TRIE_STATS 672 t->stats.resize_node_skipped++; 673 #endif 674 break; 675 } 676 } 677 678 679 /* Only one child remains */ 680 if (tn->empty_children == tnode_child_length(tn) - 1) { 681 one_child: 682 for (i = 0; i < tnode_child_length(tn); i++) { 683 struct rt_trie_node *n; 684 685 n = rtnl_dereference(tn->child[i]); 686 if (!n) 687 continue; 688 689 /* compress one level */ 690 691 node_set_parent(n, NULL); 692 tnode_free_safe(tn); 693 return n; 694 } 695 } 696 return (struct rt_trie_node *) tn; 697 } 698 699 700 static void tnode_clean_free(struct tnode *tn) 701 { 702 int i; 703 struct tnode *tofree; 704 705 for (i = 0; i < tnode_child_length(tn); i++) { 706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 707 if (tofree) 708 tnode_free(tofree); 709 } 710 tnode_free(tn); 711 } 712 713 static struct tnode *inflate(struct trie *t, struct tnode *tn) 714 { 715 struct tnode *oldtnode = tn; 716 int olen = tnode_child_length(tn); 717 int i; 718 719 pr_debug("In inflate\n"); 720 721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 722 723 if (!tn) 724 return ERR_PTR(-ENOMEM); 725 726 /* 727 * Preallocate and store tnodes before the actual work so we 728 * don't get into an inconsistent state if memory allocation 729 * fails. In case of failure we return the oldnode and inflate 730 * of tnode is ignored. 731 */ 732 733 for (i = 0; i < olen; i++) { 734 struct tnode *inode; 735 736 inode = (struct tnode *) tnode_get_child(oldtnode, i); 737 if (inode && 738 IS_TNODE(inode) && 739 inode->pos == oldtnode->pos + oldtnode->bits && 740 inode->bits > 1) { 741 struct tnode *left, *right; 742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 743 744 left = tnode_new(inode->key&(~m), inode->pos + 1, 745 inode->bits - 1); 746 if (!left) 747 goto nomem; 748 749 right = tnode_new(inode->key|m, inode->pos + 1, 750 inode->bits - 1); 751 752 if (!right) { 753 tnode_free(left); 754 goto nomem; 755 } 756 757 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 759 } 760 } 761 762 for (i = 0; i < olen; i++) { 763 struct tnode *inode; 764 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 765 struct tnode *left, *right; 766 int size, j; 767 768 /* An empty child */ 769 if (node == NULL) 770 continue; 771 772 /* A leaf or an internal node with skipped bits */ 773 774 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 775 tn->pos + tn->bits - 1) { 776 if (tkey_extract_bits(node->key, 777 oldtnode->pos + oldtnode->bits, 778 1) == 0) 779 put_child(t, tn, 2*i, node); 780 else 781 put_child(t, tn, 2*i+1, node); 782 continue; 783 } 784 785 /* An internal node with two children */ 786 inode = (struct tnode *) node; 787 788 if (inode->bits == 1) { 789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); 790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); 791 792 tnode_free_safe(inode); 793 continue; 794 } 795 796 /* An internal node with more than two children */ 797 798 /* We will replace this node 'inode' with two new 799 * ones, 'left' and 'right', each with half of the 800 * original children. The two new nodes will have 801 * a position one bit further down the key and this 802 * means that the "significant" part of their keys 803 * (see the discussion near the top of this file) 804 * will differ by one bit, which will be "0" in 805 * left's key and "1" in right's key. Since we are 806 * moving the key position by one step, the bit that 807 * we are moving away from - the bit at position 808 * (inode->pos) - is the one that will differ between 809 * left and right. So... we synthesize that bit in the 810 * two new keys. 811 * The mask 'm' below will be a single "one" bit at 812 * the position (inode->pos) 813 */ 814 815 /* Use the old key, but set the new significant 816 * bit to zero. 817 */ 818 819 left = (struct tnode *) tnode_get_child(tn, 2*i); 820 put_child(t, tn, 2*i, NULL); 821 822 BUG_ON(!left); 823 824 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 825 put_child(t, tn, 2*i+1, NULL); 826 827 BUG_ON(!right); 828 829 size = tnode_child_length(left); 830 for (j = 0; j < size; j++) { 831 put_child(t, left, j, rtnl_dereference(inode->child[j])); 832 put_child(t, right, j, rtnl_dereference(inode->child[j + size])); 833 } 834 put_child(t, tn, 2*i, resize(t, left)); 835 put_child(t, tn, 2*i+1, resize(t, right)); 836 837 tnode_free_safe(inode); 838 } 839 tnode_free_safe(oldtnode); 840 return tn; 841 nomem: 842 tnode_clean_free(tn); 843 return ERR_PTR(-ENOMEM); 844 } 845 846 static struct tnode *halve(struct trie *t, struct tnode *tn) 847 { 848 struct tnode *oldtnode = tn; 849 struct rt_trie_node *left, *right; 850 int i; 851 int olen = tnode_child_length(tn); 852 853 pr_debug("In halve\n"); 854 855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 856 857 if (!tn) 858 return ERR_PTR(-ENOMEM); 859 860 /* 861 * Preallocate and store tnodes before the actual work so we 862 * don't get into an inconsistent state if memory allocation 863 * fails. In case of failure we return the oldnode and halve 864 * of tnode is ignored. 865 */ 866 867 for (i = 0; i < olen; i += 2) { 868 left = tnode_get_child(oldtnode, i); 869 right = tnode_get_child(oldtnode, i+1); 870 871 /* Two nonempty children */ 872 if (left && right) { 873 struct tnode *newn; 874 875 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 876 877 if (!newn) 878 goto nomem; 879 880 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 881 } 882 883 } 884 885 for (i = 0; i < olen; i += 2) { 886 struct tnode *newBinNode; 887 888 left = tnode_get_child(oldtnode, i); 889 right = tnode_get_child(oldtnode, i+1); 890 891 /* At least one of the children is empty */ 892 if (left == NULL) { 893 if (right == NULL) /* Both are empty */ 894 continue; 895 put_child(t, tn, i/2, right); 896 continue; 897 } 898 899 if (right == NULL) { 900 put_child(t, tn, i/2, left); 901 continue; 902 } 903 904 /* Two nonempty children */ 905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 906 put_child(t, tn, i/2, NULL); 907 put_child(t, newBinNode, 0, left); 908 put_child(t, newBinNode, 1, right); 909 put_child(t, tn, i/2, resize(t, newBinNode)); 910 } 911 tnode_free_safe(oldtnode); 912 return tn; 913 nomem: 914 tnode_clean_free(tn); 915 return ERR_PTR(-ENOMEM); 916 } 917 918 /* readside must use rcu_read_lock currently dump routines 919 via get_fa_head and dump */ 920 921 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 922 { 923 struct hlist_head *head = &l->list; 924 struct hlist_node *node; 925 struct leaf_info *li; 926 927 hlist_for_each_entry_rcu(li, node, head, hlist) 928 if (li->plen == plen) 929 return li; 930 931 return NULL; 932 } 933 934 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 935 { 936 struct leaf_info *li = find_leaf_info(l, plen); 937 938 if (!li) 939 return NULL; 940 941 return &li->falh; 942 } 943 944 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 945 { 946 struct leaf_info *li = NULL, *last = NULL; 947 struct hlist_node *node; 948 949 if (hlist_empty(head)) { 950 hlist_add_head_rcu(&new->hlist, head); 951 } else { 952 hlist_for_each_entry(li, node, head, hlist) { 953 if (new->plen > li->plen) 954 break; 955 956 last = li; 957 } 958 if (last) 959 hlist_add_after_rcu(&last->hlist, &new->hlist); 960 else 961 hlist_add_before_rcu(&new->hlist, &li->hlist); 962 } 963 } 964 965 /* rcu_read_lock needs to be hold by caller from readside */ 966 967 static struct leaf * 968 fib_find_node(struct trie *t, u32 key) 969 { 970 int pos; 971 struct tnode *tn; 972 struct rt_trie_node *n; 973 974 pos = 0; 975 n = rcu_dereference_rtnl(t->trie); 976 977 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 978 tn = (struct tnode *) n; 979 980 check_tnode(tn); 981 982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 983 pos = tn->pos + tn->bits; 984 n = tnode_get_child_rcu(tn, 985 tkey_extract_bits(key, 986 tn->pos, 987 tn->bits)); 988 } else 989 break; 990 } 991 /* Case we have found a leaf. Compare prefixes */ 992 993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 994 return (struct leaf *)n; 995 996 return NULL; 997 } 998 999 static void trie_rebalance(struct trie *t, struct tnode *tn) 1000 { 1001 int wasfull; 1002 t_key cindex, key; 1003 struct tnode *tp; 1004 1005 key = tn->key; 1006 1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1010 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1011 1012 tnode_put_child_reorg((struct tnode *)tp, cindex, 1013 (struct rt_trie_node *)tn, wasfull); 1014 1015 tp = node_parent((struct rt_trie_node *) tn); 1016 if (!tp) 1017 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1018 1019 tnode_free_flush(); 1020 if (!tp) 1021 break; 1022 tn = tp; 1023 } 1024 1025 /* Handle last (top) tnode */ 1026 if (IS_TNODE(tn)) 1027 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1028 1029 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1030 tnode_free_flush(); 1031 } 1032 1033 /* only used from updater-side */ 1034 1035 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1036 { 1037 int pos, newpos; 1038 struct tnode *tp = NULL, *tn = NULL; 1039 struct rt_trie_node *n; 1040 struct leaf *l; 1041 int missbit; 1042 struct list_head *fa_head = NULL; 1043 struct leaf_info *li; 1044 t_key cindex; 1045 1046 pos = 0; 1047 n = rtnl_dereference(t->trie); 1048 1049 /* If we point to NULL, stop. Either the tree is empty and we should 1050 * just put a new leaf in if, or we have reached an empty child slot, 1051 * and we should just put our new leaf in that. 1052 * If we point to a T_TNODE, check if it matches our key. Note that 1053 * a T_TNODE might be skipping any number of bits - its 'pos' need 1054 * not be the parent's 'pos'+'bits'! 1055 * 1056 * If it does match the current key, get pos/bits from it, extract 1057 * the index from our key, push the T_TNODE and walk the tree. 1058 * 1059 * If it doesn't, we have to replace it with a new T_TNODE. 1060 * 1061 * If we point to a T_LEAF, it might or might not have the same key 1062 * as we do. If it does, just change the value, update the T_LEAF's 1063 * value, and return it. 1064 * If it doesn't, we need to replace it with a T_TNODE. 1065 */ 1066 1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1068 tn = (struct tnode *) n; 1069 1070 check_tnode(tn); 1071 1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1073 tp = tn; 1074 pos = tn->pos + tn->bits; 1075 n = tnode_get_child(tn, 1076 tkey_extract_bits(key, 1077 tn->pos, 1078 tn->bits)); 1079 1080 BUG_ON(n && node_parent(n) != tn); 1081 } else 1082 break; 1083 } 1084 1085 /* 1086 * n ----> NULL, LEAF or TNODE 1087 * 1088 * tp is n's (parent) ----> NULL or TNODE 1089 */ 1090 1091 BUG_ON(tp && IS_LEAF(tp)); 1092 1093 /* Case 1: n is a leaf. Compare prefixes */ 1094 1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1096 l = (struct leaf *) n; 1097 li = leaf_info_new(plen); 1098 1099 if (!li) 1100 return NULL; 1101 1102 fa_head = &li->falh; 1103 insert_leaf_info(&l->list, li); 1104 goto done; 1105 } 1106 l = leaf_new(); 1107 1108 if (!l) 1109 return NULL; 1110 1111 l->key = key; 1112 li = leaf_info_new(plen); 1113 1114 if (!li) { 1115 free_leaf(l); 1116 return NULL; 1117 } 1118 1119 fa_head = &li->falh; 1120 insert_leaf_info(&l->list, li); 1121 1122 if (t->trie && n == NULL) { 1123 /* Case 2: n is NULL, and will just insert a new leaf */ 1124 1125 node_set_parent((struct rt_trie_node *)l, tp); 1126 1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1128 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); 1129 } else { 1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1131 /* 1132 * Add a new tnode here 1133 * first tnode need some special handling 1134 */ 1135 1136 if (tp) 1137 pos = tp->pos+tp->bits; 1138 else 1139 pos = 0; 1140 1141 if (n) { 1142 newpos = tkey_mismatch(key, pos, n->key); 1143 tn = tnode_new(n->key, newpos, 1); 1144 } else { 1145 newpos = 0; 1146 tn = tnode_new(key, newpos, 1); /* First tnode */ 1147 } 1148 1149 if (!tn) { 1150 free_leaf_info(li); 1151 free_leaf(l); 1152 return NULL; 1153 } 1154 1155 node_set_parent((struct rt_trie_node *)tn, tp); 1156 1157 missbit = tkey_extract_bits(key, newpos, 1); 1158 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1159 put_child(t, tn, 1-missbit, n); 1160 1161 if (tp) { 1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1163 put_child(t, (struct tnode *)tp, cindex, 1164 (struct rt_trie_node *)tn); 1165 } else { 1166 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1167 tp = tn; 1168 } 1169 } 1170 1171 if (tp && tp->pos + tp->bits > 32) 1172 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1173 tp, tp->pos, tp->bits, key, plen); 1174 1175 /* Rebalance the trie */ 1176 1177 trie_rebalance(t, tp); 1178 done: 1179 return fa_head; 1180 } 1181 1182 /* 1183 * Caller must hold RTNL. 1184 */ 1185 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1186 { 1187 struct trie *t = (struct trie *) tb->tb_data; 1188 struct fib_alias *fa, *new_fa; 1189 struct list_head *fa_head = NULL; 1190 struct fib_info *fi; 1191 int plen = cfg->fc_dst_len; 1192 u8 tos = cfg->fc_tos; 1193 u32 key, mask; 1194 int err; 1195 struct leaf *l; 1196 1197 if (plen > 32) 1198 return -EINVAL; 1199 1200 key = ntohl(cfg->fc_dst); 1201 1202 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1203 1204 mask = ntohl(inet_make_mask(plen)); 1205 1206 if (key & ~mask) 1207 return -EINVAL; 1208 1209 key = key & mask; 1210 1211 fi = fib_create_info(cfg); 1212 if (IS_ERR(fi)) { 1213 err = PTR_ERR(fi); 1214 goto err; 1215 } 1216 1217 l = fib_find_node(t, key); 1218 fa = NULL; 1219 1220 if (l) { 1221 fa_head = get_fa_head(l, plen); 1222 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1223 } 1224 1225 /* Now fa, if non-NULL, points to the first fib alias 1226 * with the same keys [prefix,tos,priority], if such key already 1227 * exists or to the node before which we will insert new one. 1228 * 1229 * If fa is NULL, we will need to allocate a new one and 1230 * insert to the head of f. 1231 * 1232 * If f is NULL, no fib node matched the destination key 1233 * and we need to allocate a new one of those as well. 1234 */ 1235 1236 if (fa && fa->fa_tos == tos && 1237 fa->fa_info->fib_priority == fi->fib_priority) { 1238 struct fib_alias *fa_first, *fa_match; 1239 1240 err = -EEXIST; 1241 if (cfg->fc_nlflags & NLM_F_EXCL) 1242 goto out; 1243 1244 /* We have 2 goals: 1245 * 1. Find exact match for type, scope, fib_info to avoid 1246 * duplicate routes 1247 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1248 */ 1249 fa_match = NULL; 1250 fa_first = fa; 1251 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1252 list_for_each_entry_continue(fa, fa_head, fa_list) { 1253 if (fa->fa_tos != tos) 1254 break; 1255 if (fa->fa_info->fib_priority != fi->fib_priority) 1256 break; 1257 if (fa->fa_type == cfg->fc_type && 1258 fa->fa_info == fi) { 1259 fa_match = fa; 1260 break; 1261 } 1262 } 1263 1264 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1265 struct fib_info *fi_drop; 1266 u8 state; 1267 1268 fa = fa_first; 1269 if (fa_match) { 1270 if (fa == fa_match) 1271 err = 0; 1272 goto out; 1273 } 1274 err = -ENOBUFS; 1275 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1276 if (new_fa == NULL) 1277 goto out; 1278 1279 fi_drop = fa->fa_info; 1280 new_fa->fa_tos = fa->fa_tos; 1281 new_fa->fa_info = fi; 1282 new_fa->fa_type = cfg->fc_type; 1283 state = fa->fa_state; 1284 new_fa->fa_state = state & ~FA_S_ACCESSED; 1285 1286 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1287 alias_free_mem_rcu(fa); 1288 1289 fib_release_info(fi_drop); 1290 if (state & FA_S_ACCESSED) 1291 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1292 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1293 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1294 1295 goto succeeded; 1296 } 1297 /* Error if we find a perfect match which 1298 * uses the same scope, type, and nexthop 1299 * information. 1300 */ 1301 if (fa_match) 1302 goto out; 1303 1304 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1305 fa = fa_first; 1306 } 1307 err = -ENOENT; 1308 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1309 goto out; 1310 1311 err = -ENOBUFS; 1312 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1313 if (new_fa == NULL) 1314 goto out; 1315 1316 new_fa->fa_info = fi; 1317 new_fa->fa_tos = tos; 1318 new_fa->fa_type = cfg->fc_type; 1319 new_fa->fa_state = 0; 1320 /* 1321 * Insert new entry to the list. 1322 */ 1323 1324 if (!fa_head) { 1325 fa_head = fib_insert_node(t, key, plen); 1326 if (unlikely(!fa_head)) { 1327 err = -ENOMEM; 1328 goto out_free_new_fa; 1329 } 1330 } 1331 1332 if (!plen) 1333 tb->tb_num_default++; 1334 1335 list_add_tail_rcu(&new_fa->fa_list, 1336 (fa ? &fa->fa_list : fa_head)); 1337 1338 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1339 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1340 &cfg->fc_nlinfo, 0); 1341 succeeded: 1342 return 0; 1343 1344 out_free_new_fa: 1345 kmem_cache_free(fn_alias_kmem, new_fa); 1346 out: 1347 fib_release_info(fi); 1348 err: 1349 return err; 1350 } 1351 1352 /* should be called with rcu_read_lock */ 1353 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1354 t_key key, const struct flowi4 *flp, 1355 struct fib_result *res, int fib_flags) 1356 { 1357 struct leaf_info *li; 1358 struct hlist_head *hhead = &l->list; 1359 struct hlist_node *node; 1360 1361 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1362 struct fib_alias *fa; 1363 1364 if (l->key != (key & li->mask_plen)) 1365 continue; 1366 1367 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1368 struct fib_info *fi = fa->fa_info; 1369 int nhsel, err; 1370 1371 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1372 continue; 1373 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1374 continue; 1375 fib_alias_accessed(fa); 1376 err = fib_props[fa->fa_type].error; 1377 if (err) { 1378 #ifdef CONFIG_IP_FIB_TRIE_STATS 1379 t->stats.semantic_match_passed++; 1380 #endif 1381 return err; 1382 } 1383 if (fi->fib_flags & RTNH_F_DEAD) 1384 continue; 1385 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1386 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1387 1388 if (nh->nh_flags & RTNH_F_DEAD) 1389 continue; 1390 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1391 continue; 1392 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 t->stats.semantic_match_passed++; 1395 #endif 1396 res->prefixlen = li->plen; 1397 res->nh_sel = nhsel; 1398 res->type = fa->fa_type; 1399 res->scope = fa->fa_info->fib_scope; 1400 res->fi = fi; 1401 res->table = tb; 1402 res->fa_head = &li->falh; 1403 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1404 atomic_inc(&fi->fib_clntref); 1405 return 0; 1406 } 1407 } 1408 1409 #ifdef CONFIG_IP_FIB_TRIE_STATS 1410 t->stats.semantic_match_miss++; 1411 #endif 1412 } 1413 1414 return 1; 1415 } 1416 1417 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1418 struct fib_result *res, int fib_flags) 1419 { 1420 struct trie *t = (struct trie *) tb->tb_data; 1421 int ret; 1422 struct rt_trie_node *n; 1423 struct tnode *pn; 1424 unsigned int pos, bits; 1425 t_key key = ntohl(flp->daddr); 1426 unsigned int chopped_off; 1427 t_key cindex = 0; 1428 unsigned int current_prefix_length = KEYLENGTH; 1429 struct tnode *cn; 1430 t_key pref_mismatch; 1431 1432 rcu_read_lock(); 1433 1434 n = rcu_dereference(t->trie); 1435 if (!n) 1436 goto failed; 1437 1438 #ifdef CONFIG_IP_FIB_TRIE_STATS 1439 t->stats.gets++; 1440 #endif 1441 1442 /* Just a leaf? */ 1443 if (IS_LEAF(n)) { 1444 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1445 goto found; 1446 } 1447 1448 pn = (struct tnode *) n; 1449 chopped_off = 0; 1450 1451 while (pn) { 1452 pos = pn->pos; 1453 bits = pn->bits; 1454 1455 if (!chopped_off) 1456 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1457 pos, bits); 1458 1459 n = tnode_get_child_rcu(pn, cindex); 1460 1461 if (n == NULL) { 1462 #ifdef CONFIG_IP_FIB_TRIE_STATS 1463 t->stats.null_node_hit++; 1464 #endif 1465 goto backtrace; 1466 } 1467 1468 if (IS_LEAF(n)) { 1469 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1470 if (ret > 0) 1471 goto backtrace; 1472 goto found; 1473 } 1474 1475 cn = (struct tnode *)n; 1476 1477 /* 1478 * It's a tnode, and we can do some extra checks here if we 1479 * like, to avoid descending into a dead-end branch. 1480 * This tnode is in the parent's child array at index 1481 * key[p_pos..p_pos+p_bits] but potentially with some bits 1482 * chopped off, so in reality the index may be just a 1483 * subprefix, padded with zero at the end. 1484 * We can also take a look at any skipped bits in this 1485 * tnode - everything up to p_pos is supposed to be ok, 1486 * and the non-chopped bits of the index (se previous 1487 * paragraph) are also guaranteed ok, but the rest is 1488 * considered unknown. 1489 * 1490 * The skipped bits are key[pos+bits..cn->pos]. 1491 */ 1492 1493 /* If current_prefix_length < pos+bits, we are already doing 1494 * actual prefix matching, which means everything from 1495 * pos+(bits-chopped_off) onward must be zero along some 1496 * branch of this subtree - otherwise there is *no* valid 1497 * prefix present. Here we can only check the skipped 1498 * bits. Remember, since we have already indexed into the 1499 * parent's child array, we know that the bits we chopped of 1500 * *are* zero. 1501 */ 1502 1503 /* NOTA BENE: Checking only skipped bits 1504 for the new node here */ 1505 1506 if (current_prefix_length < pos+bits) { 1507 if (tkey_extract_bits(cn->key, current_prefix_length, 1508 cn->pos - current_prefix_length) 1509 || !(cn->child[0])) 1510 goto backtrace; 1511 } 1512 1513 /* 1514 * If chopped_off=0, the index is fully validated and we 1515 * only need to look at the skipped bits for this, the new, 1516 * tnode. What we actually want to do is to find out if 1517 * these skipped bits match our key perfectly, or if we will 1518 * have to count on finding a matching prefix further down, 1519 * because if we do, we would like to have some way of 1520 * verifying the existence of such a prefix at this point. 1521 */ 1522 1523 /* The only thing we can do at this point is to verify that 1524 * any such matching prefix can indeed be a prefix to our 1525 * key, and if the bits in the node we are inspecting that 1526 * do not match our key are not ZERO, this cannot be true. 1527 * Thus, find out where there is a mismatch (before cn->pos) 1528 * and verify that all the mismatching bits are zero in the 1529 * new tnode's key. 1530 */ 1531 1532 /* 1533 * Note: We aren't very concerned about the piece of 1534 * the key that precede pn->pos+pn->bits, since these 1535 * have already been checked. The bits after cn->pos 1536 * aren't checked since these are by definition 1537 * "unknown" at this point. Thus, what we want to see 1538 * is if we are about to enter the "prefix matching" 1539 * state, and in that case verify that the skipped 1540 * bits that will prevail throughout this subtree are 1541 * zero, as they have to be if we are to find a 1542 * matching prefix. 1543 */ 1544 1545 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1546 1547 /* 1548 * In short: If skipped bits in this node do not match 1549 * the search key, enter the "prefix matching" 1550 * state.directly. 1551 */ 1552 if (pref_mismatch) { 1553 int mp = KEYLENGTH - fls(pref_mismatch); 1554 1555 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1556 goto backtrace; 1557 1558 if (current_prefix_length >= cn->pos) 1559 current_prefix_length = mp; 1560 } 1561 1562 pn = (struct tnode *)n; /* Descend */ 1563 chopped_off = 0; 1564 continue; 1565 1566 backtrace: 1567 chopped_off++; 1568 1569 /* As zero don't change the child key (cindex) */ 1570 while ((chopped_off <= pn->bits) 1571 && !(cindex & (1<<(chopped_off-1)))) 1572 chopped_off++; 1573 1574 /* Decrease current_... with bits chopped off */ 1575 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1576 current_prefix_length = pn->pos + pn->bits 1577 - chopped_off; 1578 1579 /* 1580 * Either we do the actual chop off according or if we have 1581 * chopped off all bits in this tnode walk up to our parent. 1582 */ 1583 1584 if (chopped_off <= pn->bits) { 1585 cindex &= ~(1 << (chopped_off-1)); 1586 } else { 1587 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1588 if (!parent) 1589 goto failed; 1590 1591 /* Get Child's index */ 1592 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1593 pn = parent; 1594 chopped_off = 0; 1595 1596 #ifdef CONFIG_IP_FIB_TRIE_STATS 1597 t->stats.backtrack++; 1598 #endif 1599 goto backtrace; 1600 } 1601 } 1602 failed: 1603 ret = 1; 1604 found: 1605 rcu_read_unlock(); 1606 return ret; 1607 } 1608 EXPORT_SYMBOL_GPL(fib_table_lookup); 1609 1610 /* 1611 * Remove the leaf and return parent. 1612 */ 1613 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1614 { 1615 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1616 1617 pr_debug("entering trie_leaf_remove(%p)\n", l); 1618 1619 if (tp) { 1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1621 put_child(t, (struct tnode *)tp, cindex, NULL); 1622 trie_rebalance(t, tp); 1623 } else 1624 RCU_INIT_POINTER(t->trie, NULL); 1625 1626 free_leaf(l); 1627 } 1628 1629 /* 1630 * Caller must hold RTNL. 1631 */ 1632 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1633 { 1634 struct trie *t = (struct trie *) tb->tb_data; 1635 u32 key, mask; 1636 int plen = cfg->fc_dst_len; 1637 u8 tos = cfg->fc_tos; 1638 struct fib_alias *fa, *fa_to_delete; 1639 struct list_head *fa_head; 1640 struct leaf *l; 1641 struct leaf_info *li; 1642 1643 if (plen > 32) 1644 return -EINVAL; 1645 1646 key = ntohl(cfg->fc_dst); 1647 mask = ntohl(inet_make_mask(plen)); 1648 1649 if (key & ~mask) 1650 return -EINVAL; 1651 1652 key = key & mask; 1653 l = fib_find_node(t, key); 1654 1655 if (!l) 1656 return -ESRCH; 1657 1658 fa_head = get_fa_head(l, plen); 1659 fa = fib_find_alias(fa_head, tos, 0); 1660 1661 if (!fa) 1662 return -ESRCH; 1663 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1665 1666 fa_to_delete = NULL; 1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1668 list_for_each_entry_continue(fa, fa_head, fa_list) { 1669 struct fib_info *fi = fa->fa_info; 1670 1671 if (fa->fa_tos != tos) 1672 break; 1673 1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1675 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1676 fa->fa_info->fib_scope == cfg->fc_scope) && 1677 (!cfg->fc_prefsrc || 1678 fi->fib_prefsrc == cfg->fc_prefsrc) && 1679 (!cfg->fc_protocol || 1680 fi->fib_protocol == cfg->fc_protocol) && 1681 fib_nh_match(cfg, fi) == 0) { 1682 fa_to_delete = fa; 1683 break; 1684 } 1685 } 1686 1687 if (!fa_to_delete) 1688 return -ESRCH; 1689 1690 fa = fa_to_delete; 1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1692 &cfg->fc_nlinfo, 0); 1693 1694 l = fib_find_node(t, key); 1695 li = find_leaf_info(l, plen); 1696 1697 list_del_rcu(&fa->fa_list); 1698 1699 if (!plen) 1700 tb->tb_num_default--; 1701 1702 if (list_empty(fa_head)) { 1703 hlist_del_rcu(&li->hlist); 1704 free_leaf_info(li); 1705 } 1706 1707 if (hlist_empty(&l->list)) 1708 trie_leaf_remove(t, l); 1709 1710 if (fa->fa_state & FA_S_ACCESSED) 1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1712 1713 fib_release_info(fa->fa_info); 1714 alias_free_mem_rcu(fa); 1715 return 0; 1716 } 1717 1718 static int trie_flush_list(struct list_head *head) 1719 { 1720 struct fib_alias *fa, *fa_node; 1721 int found = 0; 1722 1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1724 struct fib_info *fi = fa->fa_info; 1725 1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1727 list_del_rcu(&fa->fa_list); 1728 fib_release_info(fa->fa_info); 1729 alias_free_mem_rcu(fa); 1730 found++; 1731 } 1732 } 1733 return found; 1734 } 1735 1736 static int trie_flush_leaf(struct leaf *l) 1737 { 1738 int found = 0; 1739 struct hlist_head *lih = &l->list; 1740 struct hlist_node *node, *tmp; 1741 struct leaf_info *li = NULL; 1742 1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1744 found += trie_flush_list(&li->falh); 1745 1746 if (list_empty(&li->falh)) { 1747 hlist_del_rcu(&li->hlist); 1748 free_leaf_info(li); 1749 } 1750 } 1751 return found; 1752 } 1753 1754 /* 1755 * Scan for the next right leaf starting at node p->child[idx] 1756 * Since we have back pointer, no recursion necessary. 1757 */ 1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1759 { 1760 do { 1761 t_key idx; 1762 1763 if (c) 1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1765 else 1766 idx = 0; 1767 1768 while (idx < 1u << p->bits) { 1769 c = tnode_get_child_rcu(p, idx++); 1770 if (!c) 1771 continue; 1772 1773 if (IS_LEAF(c)) { 1774 prefetch(rcu_dereference_rtnl(p->child[idx])); 1775 return (struct leaf *) c; 1776 } 1777 1778 /* Rescan start scanning in new node */ 1779 p = (struct tnode *) c; 1780 idx = 0; 1781 } 1782 1783 /* Node empty, walk back up to parent */ 1784 c = (struct rt_trie_node *) p; 1785 } while ((p = node_parent_rcu(c)) != NULL); 1786 1787 return NULL; /* Root of trie */ 1788 } 1789 1790 static struct leaf *trie_firstleaf(struct trie *t) 1791 { 1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1793 1794 if (!n) 1795 return NULL; 1796 1797 if (IS_LEAF(n)) /* trie is just a leaf */ 1798 return (struct leaf *) n; 1799 1800 return leaf_walk_rcu(n, NULL); 1801 } 1802 1803 static struct leaf *trie_nextleaf(struct leaf *l) 1804 { 1805 struct rt_trie_node *c = (struct rt_trie_node *) l; 1806 struct tnode *p = node_parent_rcu(c); 1807 1808 if (!p) 1809 return NULL; /* trie with just one leaf */ 1810 1811 return leaf_walk_rcu(p, c); 1812 } 1813 1814 static struct leaf *trie_leafindex(struct trie *t, int index) 1815 { 1816 struct leaf *l = trie_firstleaf(t); 1817 1818 while (l && index-- > 0) 1819 l = trie_nextleaf(l); 1820 1821 return l; 1822 } 1823 1824 1825 /* 1826 * Caller must hold RTNL. 1827 */ 1828 int fib_table_flush(struct fib_table *tb) 1829 { 1830 struct trie *t = (struct trie *) tb->tb_data; 1831 struct leaf *l, *ll = NULL; 1832 int found = 0; 1833 1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1835 found += trie_flush_leaf(l); 1836 1837 if (ll && hlist_empty(&ll->list)) 1838 trie_leaf_remove(t, ll); 1839 ll = l; 1840 } 1841 1842 if (ll && hlist_empty(&ll->list)) 1843 trie_leaf_remove(t, ll); 1844 1845 pr_debug("trie_flush found=%d\n", found); 1846 return found; 1847 } 1848 1849 void fib_free_table(struct fib_table *tb) 1850 { 1851 kfree(tb); 1852 } 1853 1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1855 struct fib_table *tb, 1856 struct sk_buff *skb, struct netlink_callback *cb) 1857 { 1858 int i, s_i; 1859 struct fib_alias *fa; 1860 __be32 xkey = htonl(key); 1861 1862 s_i = cb->args[5]; 1863 i = 0; 1864 1865 /* rcu_read_lock is hold by caller */ 1866 1867 list_for_each_entry_rcu(fa, fah, fa_list) { 1868 if (i < s_i) { 1869 i++; 1870 continue; 1871 } 1872 1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1874 cb->nlh->nlmsg_seq, 1875 RTM_NEWROUTE, 1876 tb->tb_id, 1877 fa->fa_type, 1878 xkey, 1879 plen, 1880 fa->fa_tos, 1881 fa->fa_info, NLM_F_MULTI) < 0) { 1882 cb->args[5] = i; 1883 return -1; 1884 } 1885 i++; 1886 } 1887 cb->args[5] = i; 1888 return skb->len; 1889 } 1890 1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1892 struct sk_buff *skb, struct netlink_callback *cb) 1893 { 1894 struct leaf_info *li; 1895 struct hlist_node *node; 1896 int i, s_i; 1897 1898 s_i = cb->args[4]; 1899 i = 0; 1900 1901 /* rcu_read_lock is hold by caller */ 1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1903 if (i < s_i) { 1904 i++; 1905 continue; 1906 } 1907 1908 if (i > s_i) 1909 cb->args[5] = 0; 1910 1911 if (list_empty(&li->falh)) 1912 continue; 1913 1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1915 cb->args[4] = i; 1916 return -1; 1917 } 1918 i++; 1919 } 1920 1921 cb->args[4] = i; 1922 return skb->len; 1923 } 1924 1925 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1926 struct netlink_callback *cb) 1927 { 1928 struct leaf *l; 1929 struct trie *t = (struct trie *) tb->tb_data; 1930 t_key key = cb->args[2]; 1931 int count = cb->args[3]; 1932 1933 rcu_read_lock(); 1934 /* Dump starting at last key. 1935 * Note: 0.0.0.0/0 (ie default) is first key. 1936 */ 1937 if (count == 0) 1938 l = trie_firstleaf(t); 1939 else { 1940 /* Normally, continue from last key, but if that is missing 1941 * fallback to using slow rescan 1942 */ 1943 l = fib_find_node(t, key); 1944 if (!l) 1945 l = trie_leafindex(t, count); 1946 } 1947 1948 while (l) { 1949 cb->args[2] = l->key; 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1951 cb->args[3] = count; 1952 rcu_read_unlock(); 1953 return -1; 1954 } 1955 1956 ++count; 1957 l = trie_nextleaf(l); 1958 memset(&cb->args[4], 0, 1959 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1960 } 1961 cb->args[3] = count; 1962 rcu_read_unlock(); 1963 1964 return skb->len; 1965 } 1966 1967 void __init fib_trie_init(void) 1968 { 1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1970 sizeof(struct fib_alias), 1971 0, SLAB_PANIC, NULL); 1972 1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1974 max(sizeof(struct leaf), 1975 sizeof(struct leaf_info)), 1976 0, SLAB_PANIC, NULL); 1977 } 1978 1979 1980 struct fib_table *fib_trie_table(u32 id) 1981 { 1982 struct fib_table *tb; 1983 struct trie *t; 1984 1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1986 GFP_KERNEL); 1987 if (tb == NULL) 1988 return NULL; 1989 1990 tb->tb_id = id; 1991 tb->tb_default = -1; 1992 tb->tb_num_default = 0; 1993 1994 t = (struct trie *) tb->tb_data; 1995 memset(t, 0, sizeof(*t)); 1996 1997 return tb; 1998 } 1999 2000 #ifdef CONFIG_PROC_FS 2001 /* Depth first Trie walk iterator */ 2002 struct fib_trie_iter { 2003 struct seq_net_private p; 2004 struct fib_table *tb; 2005 struct tnode *tnode; 2006 unsigned int index; 2007 unsigned int depth; 2008 }; 2009 2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2011 { 2012 struct tnode *tn = iter->tnode; 2013 unsigned int cindex = iter->index; 2014 struct tnode *p; 2015 2016 /* A single entry routing table */ 2017 if (!tn) 2018 return NULL; 2019 2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2021 iter->tnode, iter->index, iter->depth); 2022 rescan: 2023 while (cindex < (1<<tn->bits)) { 2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2025 2026 if (n) { 2027 if (IS_LEAF(n)) { 2028 iter->tnode = tn; 2029 iter->index = cindex + 1; 2030 } else { 2031 /* push down one level */ 2032 iter->tnode = (struct tnode *) n; 2033 iter->index = 0; 2034 ++iter->depth; 2035 } 2036 return n; 2037 } 2038 2039 ++cindex; 2040 } 2041 2042 /* Current node exhausted, pop back up */ 2043 p = node_parent_rcu((struct rt_trie_node *)tn); 2044 if (p) { 2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2046 tn = p; 2047 --iter->depth; 2048 goto rescan; 2049 } 2050 2051 /* got root? */ 2052 return NULL; 2053 } 2054 2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2056 struct trie *t) 2057 { 2058 struct rt_trie_node *n; 2059 2060 if (!t) 2061 return NULL; 2062 2063 n = rcu_dereference(t->trie); 2064 if (!n) 2065 return NULL; 2066 2067 if (IS_TNODE(n)) { 2068 iter->tnode = (struct tnode *) n; 2069 iter->index = 0; 2070 iter->depth = 1; 2071 } else { 2072 iter->tnode = NULL; 2073 iter->index = 0; 2074 iter->depth = 0; 2075 } 2076 2077 return n; 2078 } 2079 2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2081 { 2082 struct rt_trie_node *n; 2083 struct fib_trie_iter iter; 2084 2085 memset(s, 0, sizeof(*s)); 2086 2087 rcu_read_lock(); 2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2089 if (IS_LEAF(n)) { 2090 struct leaf *l = (struct leaf *)n; 2091 struct leaf_info *li; 2092 struct hlist_node *tmp; 2093 2094 s->leaves++; 2095 s->totdepth += iter.depth; 2096 if (iter.depth > s->maxdepth) 2097 s->maxdepth = iter.depth; 2098 2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2100 ++s->prefixes; 2101 } else { 2102 const struct tnode *tn = (const struct tnode *) n; 2103 int i; 2104 2105 s->tnodes++; 2106 if (tn->bits < MAX_STAT_DEPTH) 2107 s->nodesizes[tn->bits]++; 2108 2109 for (i = 0; i < (1<<tn->bits); i++) 2110 if (!tn->child[i]) 2111 s->nullpointers++; 2112 } 2113 } 2114 rcu_read_unlock(); 2115 } 2116 2117 /* 2118 * This outputs /proc/net/fib_triestats 2119 */ 2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2121 { 2122 unsigned int i, max, pointers, bytes, avdepth; 2123 2124 if (stat->leaves) 2125 avdepth = stat->totdepth*100 / stat->leaves; 2126 else 2127 avdepth = 0; 2128 2129 seq_printf(seq, "\tAver depth: %u.%02d\n", 2130 avdepth / 100, avdepth % 100); 2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2132 2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2134 bytes = sizeof(struct leaf) * stat->leaves; 2135 2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2137 bytes += sizeof(struct leaf_info) * stat->prefixes; 2138 2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2140 bytes += sizeof(struct tnode) * stat->tnodes; 2141 2142 max = MAX_STAT_DEPTH; 2143 while (max > 0 && stat->nodesizes[max-1] == 0) 2144 max--; 2145 2146 pointers = 0; 2147 for (i = 1; i <= max; i++) 2148 if (stat->nodesizes[i] != 0) { 2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2150 pointers += (1<<i) * stat->nodesizes[i]; 2151 } 2152 seq_putc(seq, '\n'); 2153 seq_printf(seq, "\tPointers: %u\n", pointers); 2154 2155 bytes += sizeof(struct rt_trie_node *) * pointers; 2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2158 } 2159 2160 #ifdef CONFIG_IP_FIB_TRIE_STATS 2161 static void trie_show_usage(struct seq_file *seq, 2162 const struct trie_use_stats *stats) 2163 { 2164 seq_printf(seq, "\nCounters:\n---------\n"); 2165 seq_printf(seq, "gets = %u\n", stats->gets); 2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2167 seq_printf(seq, "semantic match passed = %u\n", 2168 stats->semantic_match_passed); 2169 seq_printf(seq, "semantic match miss = %u\n", 2170 stats->semantic_match_miss); 2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2172 seq_printf(seq, "skipped node resize = %u\n\n", 2173 stats->resize_node_skipped); 2174 } 2175 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2176 2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2178 { 2179 if (tb->tb_id == RT_TABLE_LOCAL) 2180 seq_puts(seq, "Local:\n"); 2181 else if (tb->tb_id == RT_TABLE_MAIN) 2182 seq_puts(seq, "Main:\n"); 2183 else 2184 seq_printf(seq, "Id %d:\n", tb->tb_id); 2185 } 2186 2187 2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2189 { 2190 struct net *net = (struct net *)seq->private; 2191 unsigned int h; 2192 2193 seq_printf(seq, 2194 "Basic info: size of leaf:" 2195 " %Zd bytes, size of tnode: %Zd bytes.\n", 2196 sizeof(struct leaf), sizeof(struct tnode)); 2197 2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2200 struct hlist_node *node; 2201 struct fib_table *tb; 2202 2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2204 struct trie *t = (struct trie *) tb->tb_data; 2205 struct trie_stat stat; 2206 2207 if (!t) 2208 continue; 2209 2210 fib_table_print(seq, tb); 2211 2212 trie_collect_stats(t, &stat); 2213 trie_show_stats(seq, &stat); 2214 #ifdef CONFIG_IP_FIB_TRIE_STATS 2215 trie_show_usage(seq, &t->stats); 2216 #endif 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2224 { 2225 return single_open_net(inode, file, fib_triestat_seq_show); 2226 } 2227 2228 static const struct file_operations fib_triestat_fops = { 2229 .owner = THIS_MODULE, 2230 .open = fib_triestat_seq_open, 2231 .read = seq_read, 2232 .llseek = seq_lseek, 2233 .release = single_release_net, 2234 }; 2235 2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2237 { 2238 struct fib_trie_iter *iter = seq->private; 2239 struct net *net = seq_file_net(seq); 2240 loff_t idx = 0; 2241 unsigned int h; 2242 2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2245 struct hlist_node *node; 2246 struct fib_table *tb; 2247 2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2249 struct rt_trie_node *n; 2250 2251 for (n = fib_trie_get_first(iter, 2252 (struct trie *) tb->tb_data); 2253 n; n = fib_trie_get_next(iter)) 2254 if (pos == idx++) { 2255 iter->tb = tb; 2256 return n; 2257 } 2258 } 2259 } 2260 2261 return NULL; 2262 } 2263 2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2265 __acquires(RCU) 2266 { 2267 rcu_read_lock(); 2268 return fib_trie_get_idx(seq, *pos); 2269 } 2270 2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2272 { 2273 struct fib_trie_iter *iter = seq->private; 2274 struct net *net = seq_file_net(seq); 2275 struct fib_table *tb = iter->tb; 2276 struct hlist_node *tb_node; 2277 unsigned int h; 2278 struct rt_trie_node *n; 2279 2280 ++*pos; 2281 /* next node in same table */ 2282 n = fib_trie_get_next(iter); 2283 if (n) 2284 return n; 2285 2286 /* walk rest of this hash chain */ 2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2291 if (n) 2292 goto found; 2293 } 2294 2295 /* new hash chain */ 2296 while (++h < FIB_TABLE_HASHSZ) { 2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2300 if (n) 2301 goto found; 2302 } 2303 } 2304 return NULL; 2305 2306 found: 2307 iter->tb = tb; 2308 return n; 2309 } 2310 2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2312 __releases(RCU) 2313 { 2314 rcu_read_unlock(); 2315 } 2316 2317 static void seq_indent(struct seq_file *seq, int n) 2318 { 2319 while (n-- > 0) 2320 seq_puts(seq, " "); 2321 } 2322 2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2324 { 2325 switch (s) { 2326 case RT_SCOPE_UNIVERSE: return "universe"; 2327 case RT_SCOPE_SITE: return "site"; 2328 case RT_SCOPE_LINK: return "link"; 2329 case RT_SCOPE_HOST: return "host"; 2330 case RT_SCOPE_NOWHERE: return "nowhere"; 2331 default: 2332 snprintf(buf, len, "scope=%d", s); 2333 return buf; 2334 } 2335 } 2336 2337 static const char *const rtn_type_names[__RTN_MAX] = { 2338 [RTN_UNSPEC] = "UNSPEC", 2339 [RTN_UNICAST] = "UNICAST", 2340 [RTN_LOCAL] = "LOCAL", 2341 [RTN_BROADCAST] = "BROADCAST", 2342 [RTN_ANYCAST] = "ANYCAST", 2343 [RTN_MULTICAST] = "MULTICAST", 2344 [RTN_BLACKHOLE] = "BLACKHOLE", 2345 [RTN_UNREACHABLE] = "UNREACHABLE", 2346 [RTN_PROHIBIT] = "PROHIBIT", 2347 [RTN_THROW] = "THROW", 2348 [RTN_NAT] = "NAT", 2349 [RTN_XRESOLVE] = "XRESOLVE", 2350 }; 2351 2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2353 { 2354 if (t < __RTN_MAX && rtn_type_names[t]) 2355 return rtn_type_names[t]; 2356 snprintf(buf, len, "type %u", t); 2357 return buf; 2358 } 2359 2360 /* Pretty print the trie */ 2361 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2362 { 2363 const struct fib_trie_iter *iter = seq->private; 2364 struct rt_trie_node *n = v; 2365 2366 if (!node_parent_rcu(n)) 2367 fib_table_print(seq, iter->tb); 2368 2369 if (IS_TNODE(n)) { 2370 struct tnode *tn = (struct tnode *) n; 2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2372 2373 seq_indent(seq, iter->depth-1); 2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2375 &prf, tn->pos, tn->bits, tn->full_children, 2376 tn->empty_children); 2377 2378 } else { 2379 struct leaf *l = (struct leaf *) n; 2380 struct leaf_info *li; 2381 struct hlist_node *node; 2382 __be32 val = htonl(l->key); 2383 2384 seq_indent(seq, iter->depth); 2385 seq_printf(seq, " |-- %pI4\n", &val); 2386 2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2388 struct fib_alias *fa; 2389 2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2391 char buf1[32], buf2[32]; 2392 2393 seq_indent(seq, iter->depth+1); 2394 seq_printf(seq, " /%d %s %s", li->plen, 2395 rtn_scope(buf1, sizeof(buf1), 2396 fa->fa_info->fib_scope), 2397 rtn_type(buf2, sizeof(buf2), 2398 fa->fa_type)); 2399 if (fa->fa_tos) 2400 seq_printf(seq, " tos=%d", fa->fa_tos); 2401 seq_putc(seq, '\n'); 2402 } 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static const struct seq_operations fib_trie_seq_ops = { 2410 .start = fib_trie_seq_start, 2411 .next = fib_trie_seq_next, 2412 .stop = fib_trie_seq_stop, 2413 .show = fib_trie_seq_show, 2414 }; 2415 2416 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2417 { 2418 return seq_open_net(inode, file, &fib_trie_seq_ops, 2419 sizeof(struct fib_trie_iter)); 2420 } 2421 2422 static const struct file_operations fib_trie_fops = { 2423 .owner = THIS_MODULE, 2424 .open = fib_trie_seq_open, 2425 .read = seq_read, 2426 .llseek = seq_lseek, 2427 .release = seq_release_net, 2428 }; 2429 2430 struct fib_route_iter { 2431 struct seq_net_private p; 2432 struct trie *main_trie; 2433 loff_t pos; 2434 t_key key; 2435 }; 2436 2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2438 { 2439 struct leaf *l = NULL; 2440 struct trie *t = iter->main_trie; 2441 2442 /* use cache location of last found key */ 2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2444 pos -= iter->pos; 2445 else { 2446 iter->pos = 0; 2447 l = trie_firstleaf(t); 2448 } 2449 2450 while (l && pos-- > 0) { 2451 iter->pos++; 2452 l = trie_nextleaf(l); 2453 } 2454 2455 if (l) 2456 iter->key = pos; /* remember it */ 2457 else 2458 iter->pos = 0; /* forget it */ 2459 2460 return l; 2461 } 2462 2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2464 __acquires(RCU) 2465 { 2466 struct fib_route_iter *iter = seq->private; 2467 struct fib_table *tb; 2468 2469 rcu_read_lock(); 2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2471 if (!tb) 2472 return NULL; 2473 2474 iter->main_trie = (struct trie *) tb->tb_data; 2475 if (*pos == 0) 2476 return SEQ_START_TOKEN; 2477 else 2478 return fib_route_get_idx(iter, *pos - 1); 2479 } 2480 2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2482 { 2483 struct fib_route_iter *iter = seq->private; 2484 struct leaf *l = v; 2485 2486 ++*pos; 2487 if (v == SEQ_START_TOKEN) { 2488 iter->pos = 0; 2489 l = trie_firstleaf(iter->main_trie); 2490 } else { 2491 iter->pos++; 2492 l = trie_nextleaf(l); 2493 } 2494 2495 if (l) 2496 iter->key = l->key; 2497 else 2498 iter->pos = 0; 2499 return l; 2500 } 2501 2502 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2503 __releases(RCU) 2504 { 2505 rcu_read_unlock(); 2506 } 2507 2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2509 { 2510 unsigned int flags = 0; 2511 2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2513 flags = RTF_REJECT; 2514 if (fi && fi->fib_nh->nh_gw) 2515 flags |= RTF_GATEWAY; 2516 if (mask == htonl(0xFFFFFFFF)) 2517 flags |= RTF_HOST; 2518 flags |= RTF_UP; 2519 return flags; 2520 } 2521 2522 /* 2523 * This outputs /proc/net/route. 2524 * The format of the file is not supposed to be changed 2525 * and needs to be same as fib_hash output to avoid breaking 2526 * legacy utilities 2527 */ 2528 static int fib_route_seq_show(struct seq_file *seq, void *v) 2529 { 2530 struct leaf *l = v; 2531 struct leaf_info *li; 2532 struct hlist_node *node; 2533 2534 if (v == SEQ_START_TOKEN) { 2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2537 "\tWindow\tIRTT"); 2538 return 0; 2539 } 2540 2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2542 struct fib_alias *fa; 2543 __be32 mask, prefix; 2544 2545 mask = inet_make_mask(li->plen); 2546 prefix = htonl(l->key); 2547 2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2549 const struct fib_info *fi = fa->fa_info; 2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2551 int len; 2552 2553 if (fa->fa_type == RTN_BROADCAST 2554 || fa->fa_type == RTN_MULTICAST) 2555 continue; 2556 2557 if (fi) 2558 seq_printf(seq, 2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2560 "%d\t%08X\t%d\t%u\t%u%n", 2561 fi->fib_dev ? fi->fib_dev->name : "*", 2562 prefix, 2563 fi->fib_nh->nh_gw, flags, 0, 0, 2564 fi->fib_priority, 2565 mask, 2566 (fi->fib_advmss ? 2567 fi->fib_advmss + 40 : 0), 2568 fi->fib_window, 2569 fi->fib_rtt >> 3, &len); 2570 else 2571 seq_printf(seq, 2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2573 "%d\t%08X\t%d\t%u\t%u%n", 2574 prefix, 0, flags, 0, 0, 0, 2575 mask, 0, 0, 0, &len); 2576 2577 seq_printf(seq, "%*s\n", 127 - len, ""); 2578 } 2579 } 2580 2581 return 0; 2582 } 2583 2584 static const struct seq_operations fib_route_seq_ops = { 2585 .start = fib_route_seq_start, 2586 .next = fib_route_seq_next, 2587 .stop = fib_route_seq_stop, 2588 .show = fib_route_seq_show, 2589 }; 2590 2591 static int fib_route_seq_open(struct inode *inode, struct file *file) 2592 { 2593 return seq_open_net(inode, file, &fib_route_seq_ops, 2594 sizeof(struct fib_route_iter)); 2595 } 2596 2597 static const struct file_operations fib_route_fops = { 2598 .owner = THIS_MODULE, 2599 .open = fib_route_seq_open, 2600 .read = seq_read, 2601 .llseek = seq_lseek, 2602 .release = seq_release_net, 2603 }; 2604 2605 int __net_init fib_proc_init(struct net *net) 2606 { 2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2608 goto out1; 2609 2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2611 &fib_triestat_fops)) 2612 goto out2; 2613 2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2615 goto out3; 2616 2617 return 0; 2618 2619 out3: 2620 proc_net_remove(net, "fib_triestat"); 2621 out2: 2622 proc_net_remove(net, "fib_trie"); 2623 out1: 2624 return -ENOMEM; 2625 } 2626 2627 void __net_exit fib_proc_exit(struct net *net) 2628 { 2629 proc_net_remove(net, "fib_trie"); 2630 proc_net_remove(net, "fib_triestat"); 2631 proc_net_remove(net, "route"); 2632 } 2633 2634 #endif /* CONFIG_PROC_FS */ 2635