1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 39 #define VERSION "0.409" 40 41 #include <linux/cache.h> 42 #include <linux/uaccess.h> 43 #include <linux/bitops.h> 44 #include <linux/types.h> 45 #include <linux/kernel.h> 46 #include <linux/mm.h> 47 #include <linux/string.h> 48 #include <linux/socket.h> 49 #include <linux/sockios.h> 50 #include <linux/errno.h> 51 #include <linux/in.h> 52 #include <linux/inet.h> 53 #include <linux/inetdevice.h> 54 #include <linux/netdevice.h> 55 #include <linux/if_arp.h> 56 #include <linux/proc_fs.h> 57 #include <linux/rcupdate.h> 58 #include <linux/skbuff.h> 59 #include <linux/netlink.h> 60 #include <linux/init.h> 61 #include <linux/list.h> 62 #include <linux/slab.h> 63 #include <linux/export.h> 64 #include <linux/vmalloc.h> 65 #include <linux/notifier.h> 66 #include <net/net_namespace.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/tcp.h> 71 #include <net/sock.h> 72 #include <net/ip_fib.h> 73 #include <net/fib_notifier.h> 74 #include <trace/events/fib.h> 75 #include "fib_lookup.h" 76 77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 78 enum fib_event_type event_type, u32 dst, 79 int dst_len, struct fib_alias *fa) 80 { 81 struct fib_entry_notifier_info info = { 82 .dst = dst, 83 .dst_len = dst_len, 84 .fi = fa->fa_info, 85 .tos = fa->fa_tos, 86 .type = fa->fa_type, 87 .tb_id = fa->tb_id, 88 }; 89 return call_fib4_notifier(nb, net, event_type, &info.info); 90 } 91 92 static int call_fib_entry_notifiers(struct net *net, 93 enum fib_event_type event_type, u32 dst, 94 int dst_len, struct fib_alias *fa, 95 struct netlink_ext_ack *extack) 96 { 97 struct fib_entry_notifier_info info = { 98 .info.extack = extack, 99 .dst = dst, 100 .dst_len = dst_len, 101 .fi = fa->fa_info, 102 .tos = fa->fa_tos, 103 .type = fa->fa_type, 104 .tb_id = fa->tb_id, 105 }; 106 return call_fib4_notifiers(net, event_type, &info.info); 107 } 108 109 #define MAX_STAT_DEPTH 32 110 111 #define KEYLENGTH (8*sizeof(t_key)) 112 #define KEY_MAX ((t_key)~0) 113 114 typedef unsigned int t_key; 115 116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 117 #define IS_TNODE(n) ((n)->bits) 118 #define IS_LEAF(n) (!(n)->bits) 119 120 struct key_vector { 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char slen; 125 union { 126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 127 struct hlist_head leaf; 128 /* This array is valid if (pos | bits) > 0 (TNODE) */ 129 struct key_vector __rcu *tnode[0]; 130 }; 131 }; 132 133 struct tnode { 134 struct rcu_head rcu; 135 t_key empty_children; /* KEYLENGTH bits needed */ 136 t_key full_children; /* KEYLENGTH bits needed */ 137 struct key_vector __rcu *parent; 138 struct key_vector kv[1]; 139 #define tn_bits kv[0].bits 140 }; 141 142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 143 #define LEAF_SIZE TNODE_SIZE(1) 144 145 #ifdef CONFIG_IP_FIB_TRIE_STATS 146 struct trie_use_stats { 147 unsigned int gets; 148 unsigned int backtrack; 149 unsigned int semantic_match_passed; 150 unsigned int semantic_match_miss; 151 unsigned int null_node_hit; 152 unsigned int resize_node_skipped; 153 }; 154 #endif 155 156 struct trie_stat { 157 unsigned int totdepth; 158 unsigned int maxdepth; 159 unsigned int tnodes; 160 unsigned int leaves; 161 unsigned int nullpointers; 162 unsigned int prefixes; 163 unsigned int nodesizes[MAX_STAT_DEPTH]; 164 }; 165 166 struct trie { 167 struct key_vector kv[1]; 168 #ifdef CONFIG_IP_FIB_TRIE_STATS 169 struct trie_use_stats __percpu *stats; 170 #endif 171 }; 172 173 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 174 static unsigned int tnode_free_size; 175 176 /* 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 178 * especially useful before resizing the root node with PREEMPT_NONE configs; 179 * the value was obtained experimentally, aiming to avoid visible slowdown. 180 */ 181 unsigned int sysctl_fib_sync_mem = 512 * 1024; 182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 184 185 static struct kmem_cache *fn_alias_kmem __ro_after_init; 186 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 187 188 static inline struct tnode *tn_info(struct key_vector *kv) 189 { 190 return container_of(kv, struct tnode, kv[0]); 191 } 192 193 /* caller must hold RTNL */ 194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 196 197 /* caller must hold RCU read lock or RTNL */ 198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 200 201 /* wrapper for rcu_assign_pointer */ 202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 203 { 204 if (n) 205 rcu_assign_pointer(tn_info(n)->parent, tp); 206 } 207 208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 209 210 /* This provides us with the number of children in this node, in the case of a 211 * leaf this will return 0 meaning none of the children are accessible. 212 */ 213 static inline unsigned long child_length(const struct key_vector *tn) 214 { 215 return (1ul << tn->bits) & ~(1ul); 216 } 217 218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 219 220 static inline unsigned long get_index(t_key key, struct key_vector *kv) 221 { 222 unsigned long index = key ^ kv->key; 223 224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 225 return 0; 226 227 return index >> kv->pos; 228 } 229 230 /* To understand this stuff, an understanding of keys and all their bits is 231 * necessary. Every node in the trie has a key associated with it, but not 232 * all of the bits in that key are significant. 233 * 234 * Consider a node 'n' and its parent 'tp'. 235 * 236 * If n is a leaf, every bit in its key is significant. Its presence is 237 * necessitated by path compression, since during a tree traversal (when 238 * searching for a leaf - unless we are doing an insertion) we will completely 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 240 * a potentially successful search, that we have indeed been walking the 241 * correct key path. 242 * 243 * Note that we can never "miss" the correct key in the tree if present by 244 * following the wrong path. Path compression ensures that segments of the key 245 * that are the same for all keys with a given prefix are skipped, but the 246 * skipped part *is* identical for each node in the subtrie below the skipped 247 * bit! trie_insert() in this implementation takes care of that. 248 * 249 * if n is an internal node - a 'tnode' here, the various parts of its key 250 * have many different meanings. 251 * 252 * Example: 253 * _________________________________________________________________ 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 255 * ----------------------------------------------------------------- 256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 257 * 258 * _________________________________________________________________ 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 260 * ----------------------------------------------------------------- 261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 262 * 263 * tp->pos = 22 264 * tp->bits = 3 265 * n->pos = 13 266 * n->bits = 4 267 * 268 * First, let's just ignore the bits that come before the parent tp, that is 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 270 * point we do not use them for anything. 271 * 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 273 * index into the parent's child array. That is, they will be used to find 274 * 'n' among tp's children. 275 * 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 277 * for the node n. 278 * 279 * All the bits we have seen so far are significant to the node n. The rest 280 * of the bits are really not needed or indeed known in n->key. 281 * 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 283 * n's child array, and will of course be different for each child. 284 * 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 286 * at this point. 287 */ 288 289 static const int halve_threshold = 25; 290 static const int inflate_threshold = 50; 291 static const int halve_threshold_root = 15; 292 static const int inflate_threshold_root = 30; 293 294 static void __alias_free_mem(struct rcu_head *head) 295 { 296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 297 kmem_cache_free(fn_alias_kmem, fa); 298 } 299 300 static inline void alias_free_mem_rcu(struct fib_alias *fa) 301 { 302 call_rcu(&fa->rcu, __alias_free_mem); 303 } 304 305 #define TNODE_KMALLOC_MAX \ 306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 307 #define TNODE_VMALLOC_MAX \ 308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 309 310 static void __node_free_rcu(struct rcu_head *head) 311 { 312 struct tnode *n = container_of(head, struct tnode, rcu); 313 314 if (!n->tn_bits) 315 kmem_cache_free(trie_leaf_kmem, n); 316 else 317 kvfree(n); 318 } 319 320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 321 322 static struct tnode *tnode_alloc(int bits) 323 { 324 size_t size; 325 326 /* verify bits is within bounds */ 327 if (bits > TNODE_VMALLOC_MAX) 328 return NULL; 329 330 /* determine size and verify it is non-zero and didn't overflow */ 331 size = TNODE_SIZE(1ul << bits); 332 333 if (size <= PAGE_SIZE) 334 return kzalloc(size, GFP_KERNEL); 335 else 336 return vzalloc(size); 337 } 338 339 static inline void empty_child_inc(struct key_vector *n) 340 { 341 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 347 } 348 349 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 350 { 351 struct key_vector *l; 352 struct tnode *kv; 353 354 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 355 if (!kv) 356 return NULL; 357 358 /* initialize key vector */ 359 l = kv->kv; 360 l->key = key; 361 l->pos = 0; 362 l->bits = 0; 363 l->slen = fa->fa_slen; 364 365 /* link leaf to fib alias */ 366 INIT_HLIST_HEAD(&l->leaf); 367 hlist_add_head(&fa->fa_list, &l->leaf); 368 369 return l; 370 } 371 372 static struct key_vector *tnode_new(t_key key, int pos, int bits) 373 { 374 unsigned int shift = pos + bits; 375 struct key_vector *tn; 376 struct tnode *tnode; 377 378 /* verify bits and pos their msb bits clear and values are valid */ 379 BUG_ON(!bits || (shift > KEYLENGTH)); 380 381 tnode = tnode_alloc(bits); 382 if (!tnode) 383 return NULL; 384 385 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 386 sizeof(struct key_vector *) << bits); 387 388 if (bits == KEYLENGTH) 389 tnode->full_children = 1; 390 else 391 tnode->empty_children = 1ul << bits; 392 393 tn = tnode->kv; 394 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 395 tn->pos = pos; 396 tn->bits = bits; 397 tn->slen = pos; 398 399 return tn; 400 } 401 402 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 403 * and no bits are skipped. See discussion in dyntree paper p. 6 404 */ 405 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 406 { 407 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 408 } 409 410 /* Add a child at position i overwriting the old value. 411 * Update the value of full_children and empty_children. 412 */ 413 static void put_child(struct key_vector *tn, unsigned long i, 414 struct key_vector *n) 415 { 416 struct key_vector *chi = get_child(tn, i); 417 int isfull, wasfull; 418 419 BUG_ON(i >= child_length(tn)); 420 421 /* update emptyChildren, overflow into fullChildren */ 422 if (!n && chi) 423 empty_child_inc(tn); 424 if (n && !chi) 425 empty_child_dec(tn); 426 427 /* update fullChildren */ 428 wasfull = tnode_full(tn, chi); 429 isfull = tnode_full(tn, n); 430 431 if (wasfull && !isfull) 432 tn_info(tn)->full_children--; 433 else if (!wasfull && isfull) 434 tn_info(tn)->full_children++; 435 436 if (n && (tn->slen < n->slen)) 437 tn->slen = n->slen; 438 439 rcu_assign_pointer(tn->tnode[i], n); 440 } 441 442 static void update_children(struct key_vector *tn) 443 { 444 unsigned long i; 445 446 /* update all of the child parent pointers */ 447 for (i = child_length(tn); i;) { 448 struct key_vector *inode = get_child(tn, --i); 449 450 if (!inode) 451 continue; 452 453 /* Either update the children of a tnode that 454 * already belongs to us or update the child 455 * to point to ourselves. 456 */ 457 if (node_parent(inode) == tn) 458 update_children(inode); 459 else 460 node_set_parent(inode, tn); 461 } 462 } 463 464 static inline void put_child_root(struct key_vector *tp, t_key key, 465 struct key_vector *n) 466 { 467 if (IS_TRIE(tp)) 468 rcu_assign_pointer(tp->tnode[0], n); 469 else 470 put_child(tp, get_index(key, tp), n); 471 } 472 473 static inline void tnode_free_init(struct key_vector *tn) 474 { 475 tn_info(tn)->rcu.next = NULL; 476 } 477 478 static inline void tnode_free_append(struct key_vector *tn, 479 struct key_vector *n) 480 { 481 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 482 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 483 } 484 485 static void tnode_free(struct key_vector *tn) 486 { 487 struct callback_head *head = &tn_info(tn)->rcu; 488 489 while (head) { 490 head = head->next; 491 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 492 node_free(tn); 493 494 tn = container_of(head, struct tnode, rcu)->kv; 495 } 496 497 if (tnode_free_size >= sysctl_fib_sync_mem) { 498 tnode_free_size = 0; 499 synchronize_rcu(); 500 } 501 } 502 503 static struct key_vector *replace(struct trie *t, 504 struct key_vector *oldtnode, 505 struct key_vector *tn) 506 { 507 struct key_vector *tp = node_parent(oldtnode); 508 unsigned long i; 509 510 /* setup the parent pointer out of and back into this node */ 511 NODE_INIT_PARENT(tn, tp); 512 put_child_root(tp, tn->key, tn); 513 514 /* update all of the child parent pointers */ 515 update_children(tn); 516 517 /* all pointers should be clean so we are done */ 518 tnode_free(oldtnode); 519 520 /* resize children now that oldtnode is freed */ 521 for (i = child_length(tn); i;) { 522 struct key_vector *inode = get_child(tn, --i); 523 524 /* resize child node */ 525 if (tnode_full(tn, inode)) 526 tn = resize(t, inode); 527 } 528 529 return tp; 530 } 531 532 static struct key_vector *inflate(struct trie *t, 533 struct key_vector *oldtnode) 534 { 535 struct key_vector *tn; 536 unsigned long i; 537 t_key m; 538 539 pr_debug("In inflate\n"); 540 541 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 542 if (!tn) 543 goto notnode; 544 545 /* prepare oldtnode to be freed */ 546 tnode_free_init(oldtnode); 547 548 /* Assemble all of the pointers in our cluster, in this case that 549 * represents all of the pointers out of our allocated nodes that 550 * point to existing tnodes and the links between our allocated 551 * nodes. 552 */ 553 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 554 struct key_vector *inode = get_child(oldtnode, --i); 555 struct key_vector *node0, *node1; 556 unsigned long j, k; 557 558 /* An empty child */ 559 if (!inode) 560 continue; 561 562 /* A leaf or an internal node with skipped bits */ 563 if (!tnode_full(oldtnode, inode)) { 564 put_child(tn, get_index(inode->key, tn), inode); 565 continue; 566 } 567 568 /* drop the node in the old tnode free list */ 569 tnode_free_append(oldtnode, inode); 570 571 /* An internal node with two children */ 572 if (inode->bits == 1) { 573 put_child(tn, 2 * i + 1, get_child(inode, 1)); 574 put_child(tn, 2 * i, get_child(inode, 0)); 575 continue; 576 } 577 578 /* We will replace this node 'inode' with two new 579 * ones, 'node0' and 'node1', each with half of the 580 * original children. The two new nodes will have 581 * a position one bit further down the key and this 582 * means that the "significant" part of their keys 583 * (see the discussion near the top of this file) 584 * will differ by one bit, which will be "0" in 585 * node0's key and "1" in node1's key. Since we are 586 * moving the key position by one step, the bit that 587 * we are moving away from - the bit at position 588 * (tn->pos) - is the one that will differ between 589 * node0 and node1. So... we synthesize that bit in the 590 * two new keys. 591 */ 592 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 593 if (!node1) 594 goto nomem; 595 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 596 597 tnode_free_append(tn, node1); 598 if (!node0) 599 goto nomem; 600 tnode_free_append(tn, node0); 601 602 /* populate child pointers in new nodes */ 603 for (k = child_length(inode), j = k / 2; j;) { 604 put_child(node1, --j, get_child(inode, --k)); 605 put_child(node0, j, get_child(inode, j)); 606 put_child(node1, --j, get_child(inode, --k)); 607 put_child(node0, j, get_child(inode, j)); 608 } 609 610 /* link new nodes to parent */ 611 NODE_INIT_PARENT(node1, tn); 612 NODE_INIT_PARENT(node0, tn); 613 614 /* link parent to nodes */ 615 put_child(tn, 2 * i + 1, node1); 616 put_child(tn, 2 * i, node0); 617 } 618 619 /* setup the parent pointers into and out of this node */ 620 return replace(t, oldtnode, tn); 621 nomem: 622 /* all pointers should be clean so we are done */ 623 tnode_free(tn); 624 notnode: 625 return NULL; 626 } 627 628 static struct key_vector *halve(struct trie *t, 629 struct key_vector *oldtnode) 630 { 631 struct key_vector *tn; 632 unsigned long i; 633 634 pr_debug("In halve\n"); 635 636 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 637 if (!tn) 638 goto notnode; 639 640 /* prepare oldtnode to be freed */ 641 tnode_free_init(oldtnode); 642 643 /* Assemble all of the pointers in our cluster, in this case that 644 * represents all of the pointers out of our allocated nodes that 645 * point to existing tnodes and the links between our allocated 646 * nodes. 647 */ 648 for (i = child_length(oldtnode); i;) { 649 struct key_vector *node1 = get_child(oldtnode, --i); 650 struct key_vector *node0 = get_child(oldtnode, --i); 651 struct key_vector *inode; 652 653 /* At least one of the children is empty */ 654 if (!node1 || !node0) { 655 put_child(tn, i / 2, node1 ? : node0); 656 continue; 657 } 658 659 /* Two nonempty children */ 660 inode = tnode_new(node0->key, oldtnode->pos, 1); 661 if (!inode) 662 goto nomem; 663 tnode_free_append(tn, inode); 664 665 /* initialize pointers out of node */ 666 put_child(inode, 1, node1); 667 put_child(inode, 0, node0); 668 NODE_INIT_PARENT(inode, tn); 669 670 /* link parent to node */ 671 put_child(tn, i / 2, inode); 672 } 673 674 /* setup the parent pointers into and out of this node */ 675 return replace(t, oldtnode, tn); 676 nomem: 677 /* all pointers should be clean so we are done */ 678 tnode_free(tn); 679 notnode: 680 return NULL; 681 } 682 683 static struct key_vector *collapse(struct trie *t, 684 struct key_vector *oldtnode) 685 { 686 struct key_vector *n, *tp; 687 unsigned long i; 688 689 /* scan the tnode looking for that one child that might still exist */ 690 for (n = NULL, i = child_length(oldtnode); !n && i;) 691 n = get_child(oldtnode, --i); 692 693 /* compress one level */ 694 tp = node_parent(oldtnode); 695 put_child_root(tp, oldtnode->key, n); 696 node_set_parent(n, tp); 697 698 /* drop dead node */ 699 node_free(oldtnode); 700 701 return tp; 702 } 703 704 static unsigned char update_suffix(struct key_vector *tn) 705 { 706 unsigned char slen = tn->pos; 707 unsigned long stride, i; 708 unsigned char slen_max; 709 710 /* only vector 0 can have a suffix length greater than or equal to 711 * tn->pos + tn->bits, the second highest node will have a suffix 712 * length at most of tn->pos + tn->bits - 1 713 */ 714 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 715 716 /* search though the list of children looking for nodes that might 717 * have a suffix greater than the one we currently have. This is 718 * why we start with a stride of 2 since a stride of 1 would 719 * represent the nodes with suffix length equal to tn->pos 720 */ 721 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 722 struct key_vector *n = get_child(tn, i); 723 724 if (!n || (n->slen <= slen)) 725 continue; 726 727 /* update stride and slen based on new value */ 728 stride <<= (n->slen - slen); 729 slen = n->slen; 730 i &= ~(stride - 1); 731 732 /* stop searching if we have hit the maximum possible value */ 733 if (slen >= slen_max) 734 break; 735 } 736 737 tn->slen = slen; 738 739 return slen; 740 } 741 742 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 743 * the Helsinki University of Technology and Matti Tikkanen of Nokia 744 * Telecommunications, page 6: 745 * "A node is doubled if the ratio of non-empty children to all 746 * children in the *doubled* node is at least 'high'." 747 * 748 * 'high' in this instance is the variable 'inflate_threshold'. It 749 * is expressed as a percentage, so we multiply it with 750 * child_length() and instead of multiplying by 2 (since the 751 * child array will be doubled by inflate()) and multiplying 752 * the left-hand side by 100 (to handle the percentage thing) we 753 * multiply the left-hand side by 50. 754 * 755 * The left-hand side may look a bit weird: child_length(tn) 756 * - tn->empty_children is of course the number of non-null children 757 * in the current node. tn->full_children is the number of "full" 758 * children, that is non-null tnodes with a skip value of 0. 759 * All of those will be doubled in the resulting inflated tnode, so 760 * we just count them one extra time here. 761 * 762 * A clearer way to write this would be: 763 * 764 * to_be_doubled = tn->full_children; 765 * not_to_be_doubled = child_length(tn) - tn->empty_children - 766 * tn->full_children; 767 * 768 * new_child_length = child_length(tn) * 2; 769 * 770 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 771 * new_child_length; 772 * if (new_fill_factor >= inflate_threshold) 773 * 774 * ...and so on, tho it would mess up the while () loop. 775 * 776 * anyway, 777 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 778 * inflate_threshold 779 * 780 * avoid a division: 781 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 782 * inflate_threshold * new_child_length 783 * 784 * expand not_to_be_doubled and to_be_doubled, and shorten: 785 * 100 * (child_length(tn) - tn->empty_children + 786 * tn->full_children) >= inflate_threshold * new_child_length 787 * 788 * expand new_child_length: 789 * 100 * (child_length(tn) - tn->empty_children + 790 * tn->full_children) >= 791 * inflate_threshold * child_length(tn) * 2 792 * 793 * shorten again: 794 * 50 * (tn->full_children + child_length(tn) - 795 * tn->empty_children) >= inflate_threshold * 796 * child_length(tn) 797 * 798 */ 799 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 800 { 801 unsigned long used = child_length(tn); 802 unsigned long threshold = used; 803 804 /* Keep root node larger */ 805 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 806 used -= tn_info(tn)->empty_children; 807 used += tn_info(tn)->full_children; 808 809 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 810 811 return (used > 1) && tn->pos && ((50 * used) >= threshold); 812 } 813 814 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 815 { 816 unsigned long used = child_length(tn); 817 unsigned long threshold = used; 818 819 /* Keep root node larger */ 820 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 821 used -= tn_info(tn)->empty_children; 822 823 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 824 825 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 826 } 827 828 static inline bool should_collapse(struct key_vector *tn) 829 { 830 unsigned long used = child_length(tn); 831 832 used -= tn_info(tn)->empty_children; 833 834 /* account for bits == KEYLENGTH case */ 835 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 836 used -= KEY_MAX; 837 838 /* One child or none, time to drop us from the trie */ 839 return used < 2; 840 } 841 842 #define MAX_WORK 10 843 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 844 { 845 #ifdef CONFIG_IP_FIB_TRIE_STATS 846 struct trie_use_stats __percpu *stats = t->stats; 847 #endif 848 struct key_vector *tp = node_parent(tn); 849 unsigned long cindex = get_index(tn->key, tp); 850 int max_work = MAX_WORK; 851 852 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 853 tn, inflate_threshold, halve_threshold); 854 855 /* track the tnode via the pointer from the parent instead of 856 * doing it ourselves. This way we can let RCU fully do its 857 * thing without us interfering 858 */ 859 BUG_ON(tn != get_child(tp, cindex)); 860 861 /* Double as long as the resulting node has a number of 862 * nonempty nodes that are above the threshold. 863 */ 864 while (should_inflate(tp, tn) && max_work) { 865 tp = inflate(t, tn); 866 if (!tp) { 867 #ifdef CONFIG_IP_FIB_TRIE_STATS 868 this_cpu_inc(stats->resize_node_skipped); 869 #endif 870 break; 871 } 872 873 max_work--; 874 tn = get_child(tp, cindex); 875 } 876 877 /* update parent in case inflate failed */ 878 tp = node_parent(tn); 879 880 /* Return if at least one inflate is run */ 881 if (max_work != MAX_WORK) 882 return tp; 883 884 /* Halve as long as the number of empty children in this 885 * node is above threshold. 886 */ 887 while (should_halve(tp, tn) && max_work) { 888 tp = halve(t, tn); 889 if (!tp) { 890 #ifdef CONFIG_IP_FIB_TRIE_STATS 891 this_cpu_inc(stats->resize_node_skipped); 892 #endif 893 break; 894 } 895 896 max_work--; 897 tn = get_child(tp, cindex); 898 } 899 900 /* Only one child remains */ 901 if (should_collapse(tn)) 902 return collapse(t, tn); 903 904 /* update parent in case halve failed */ 905 return node_parent(tn); 906 } 907 908 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 909 { 910 unsigned char node_slen = tn->slen; 911 912 while ((node_slen > tn->pos) && (node_slen > slen)) { 913 slen = update_suffix(tn); 914 if (node_slen == slen) 915 break; 916 917 tn = node_parent(tn); 918 node_slen = tn->slen; 919 } 920 } 921 922 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 923 { 924 while (tn->slen < slen) { 925 tn->slen = slen; 926 tn = node_parent(tn); 927 } 928 } 929 930 /* rcu_read_lock needs to be hold by caller from readside */ 931 static struct key_vector *fib_find_node(struct trie *t, 932 struct key_vector **tp, u32 key) 933 { 934 struct key_vector *pn, *n = t->kv; 935 unsigned long index = 0; 936 937 do { 938 pn = n; 939 n = get_child_rcu(n, index); 940 941 if (!n) 942 break; 943 944 index = get_cindex(key, n); 945 946 /* This bit of code is a bit tricky but it combines multiple 947 * checks into a single check. The prefix consists of the 948 * prefix plus zeros for the bits in the cindex. The index 949 * is the difference between the key and this value. From 950 * this we can actually derive several pieces of data. 951 * if (index >= (1ul << bits)) 952 * we have a mismatch in skip bits and failed 953 * else 954 * we know the value is cindex 955 * 956 * This check is safe even if bits == KEYLENGTH due to the 957 * fact that we can only allocate a node with 32 bits if a 958 * long is greater than 32 bits. 959 */ 960 if (index >= (1ul << n->bits)) { 961 n = NULL; 962 break; 963 } 964 965 /* keep searching until we find a perfect match leaf or NULL */ 966 } while (IS_TNODE(n)); 967 968 *tp = pn; 969 970 return n; 971 } 972 973 /* Return the first fib alias matching TOS with 974 * priority less than or equal to PRIO. 975 */ 976 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 977 u8 tos, u32 prio, u32 tb_id) 978 { 979 struct fib_alias *fa; 980 981 if (!fah) 982 return NULL; 983 984 hlist_for_each_entry(fa, fah, fa_list) { 985 if (fa->fa_slen < slen) 986 continue; 987 if (fa->fa_slen != slen) 988 break; 989 if (fa->tb_id > tb_id) 990 continue; 991 if (fa->tb_id != tb_id) 992 break; 993 if (fa->fa_tos > tos) 994 continue; 995 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 996 return fa; 997 } 998 999 return NULL; 1000 } 1001 1002 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1003 { 1004 while (!IS_TRIE(tn)) 1005 tn = resize(t, tn); 1006 } 1007 1008 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1009 struct fib_alias *new, t_key key) 1010 { 1011 struct key_vector *n, *l; 1012 1013 l = leaf_new(key, new); 1014 if (!l) 1015 goto noleaf; 1016 1017 /* retrieve child from parent node */ 1018 n = get_child(tp, get_index(key, tp)); 1019 1020 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1021 * 1022 * Add a new tnode here 1023 * first tnode need some special handling 1024 * leaves us in position for handling as case 3 1025 */ 1026 if (n) { 1027 struct key_vector *tn; 1028 1029 tn = tnode_new(key, __fls(key ^ n->key), 1); 1030 if (!tn) 1031 goto notnode; 1032 1033 /* initialize routes out of node */ 1034 NODE_INIT_PARENT(tn, tp); 1035 put_child(tn, get_index(key, tn) ^ 1, n); 1036 1037 /* start adding routes into the node */ 1038 put_child_root(tp, key, tn); 1039 node_set_parent(n, tn); 1040 1041 /* parent now has a NULL spot where the leaf can go */ 1042 tp = tn; 1043 } 1044 1045 /* Case 3: n is NULL, and will just insert a new leaf */ 1046 node_push_suffix(tp, new->fa_slen); 1047 NODE_INIT_PARENT(l, tp); 1048 put_child_root(tp, key, l); 1049 trie_rebalance(t, tp); 1050 1051 return 0; 1052 notnode: 1053 node_free(l); 1054 noleaf: 1055 return -ENOMEM; 1056 } 1057 1058 /* fib notifier for ADD is sent before calling fib_insert_alias with 1059 * the expectation that the only possible failure ENOMEM 1060 */ 1061 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1062 struct key_vector *l, struct fib_alias *new, 1063 struct fib_alias *fa, t_key key) 1064 { 1065 if (!l) 1066 return fib_insert_node(t, tp, new, key); 1067 1068 if (fa) { 1069 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1070 } else { 1071 struct fib_alias *last; 1072 1073 hlist_for_each_entry(last, &l->leaf, fa_list) { 1074 if (new->fa_slen < last->fa_slen) 1075 break; 1076 if ((new->fa_slen == last->fa_slen) && 1077 (new->tb_id > last->tb_id)) 1078 break; 1079 fa = last; 1080 } 1081 1082 if (fa) 1083 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1084 else 1085 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1086 } 1087 1088 /* if we added to the tail node then we need to update slen */ 1089 if (l->slen < new->fa_slen) { 1090 l->slen = new->fa_slen; 1091 node_push_suffix(tp, new->fa_slen); 1092 } 1093 1094 return 0; 1095 } 1096 1097 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1098 { 1099 if (plen > KEYLENGTH) { 1100 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1101 return false; 1102 } 1103 1104 if ((plen < KEYLENGTH) && (key << plen)) { 1105 NL_SET_ERR_MSG(extack, 1106 "Invalid prefix for given prefix length"); 1107 return false; 1108 } 1109 1110 return true; 1111 } 1112 1113 /* Caller must hold RTNL. */ 1114 int fib_table_insert(struct net *net, struct fib_table *tb, 1115 struct fib_config *cfg, struct netlink_ext_ack *extack) 1116 { 1117 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1118 struct trie *t = (struct trie *)tb->tb_data; 1119 struct fib_alias *fa, *new_fa; 1120 struct key_vector *l, *tp; 1121 u16 nlflags = NLM_F_EXCL; 1122 struct fib_info *fi; 1123 u8 plen = cfg->fc_dst_len; 1124 u8 slen = KEYLENGTH - plen; 1125 u8 tos = cfg->fc_tos; 1126 u32 key; 1127 int err; 1128 1129 key = ntohl(cfg->fc_dst); 1130 1131 if (!fib_valid_key_len(key, plen, extack)) 1132 return -EINVAL; 1133 1134 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1135 1136 fi = fib_create_info(cfg, extack); 1137 if (IS_ERR(fi)) { 1138 err = PTR_ERR(fi); 1139 goto err; 1140 } 1141 1142 l = fib_find_node(t, &tp, key); 1143 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1144 tb->tb_id) : NULL; 1145 1146 /* Now fa, if non-NULL, points to the first fib alias 1147 * with the same keys [prefix,tos,priority], if such key already 1148 * exists or to the node before which we will insert new one. 1149 * 1150 * If fa is NULL, we will need to allocate a new one and 1151 * insert to the tail of the section matching the suffix length 1152 * of the new alias. 1153 */ 1154 1155 if (fa && fa->fa_tos == tos && 1156 fa->fa_info->fib_priority == fi->fib_priority) { 1157 struct fib_alias *fa_first, *fa_match; 1158 1159 err = -EEXIST; 1160 if (cfg->fc_nlflags & NLM_F_EXCL) 1161 goto out; 1162 1163 nlflags &= ~NLM_F_EXCL; 1164 1165 /* We have 2 goals: 1166 * 1. Find exact match for type, scope, fib_info to avoid 1167 * duplicate routes 1168 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1169 */ 1170 fa_match = NULL; 1171 fa_first = fa; 1172 hlist_for_each_entry_from(fa, fa_list) { 1173 if ((fa->fa_slen != slen) || 1174 (fa->tb_id != tb->tb_id) || 1175 (fa->fa_tos != tos)) 1176 break; 1177 if (fa->fa_info->fib_priority != fi->fib_priority) 1178 break; 1179 if (fa->fa_type == cfg->fc_type && 1180 fa->fa_info == fi) { 1181 fa_match = fa; 1182 break; 1183 } 1184 } 1185 1186 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1187 struct fib_info *fi_drop; 1188 u8 state; 1189 1190 nlflags |= NLM_F_REPLACE; 1191 fa = fa_first; 1192 if (fa_match) { 1193 if (fa == fa_match) 1194 err = 0; 1195 goto out; 1196 } 1197 err = -ENOBUFS; 1198 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1199 if (!new_fa) 1200 goto out; 1201 1202 fi_drop = fa->fa_info; 1203 new_fa->fa_tos = fa->fa_tos; 1204 new_fa->fa_info = fi; 1205 new_fa->fa_type = cfg->fc_type; 1206 state = fa->fa_state; 1207 new_fa->fa_state = state & ~FA_S_ACCESSED; 1208 new_fa->fa_slen = fa->fa_slen; 1209 new_fa->tb_id = tb->tb_id; 1210 new_fa->fa_default = -1; 1211 1212 err = call_fib_entry_notifiers(net, 1213 FIB_EVENT_ENTRY_REPLACE, 1214 key, plen, new_fa, 1215 extack); 1216 if (err) 1217 goto out_free_new_fa; 1218 1219 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1220 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1221 1222 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1223 1224 alias_free_mem_rcu(fa); 1225 1226 fib_release_info(fi_drop); 1227 if (state & FA_S_ACCESSED) 1228 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1229 1230 goto succeeded; 1231 } 1232 /* Error if we find a perfect match which 1233 * uses the same scope, type, and nexthop 1234 * information. 1235 */ 1236 if (fa_match) 1237 goto out; 1238 1239 if (cfg->fc_nlflags & NLM_F_APPEND) { 1240 event = FIB_EVENT_ENTRY_APPEND; 1241 nlflags |= NLM_F_APPEND; 1242 } else { 1243 fa = fa_first; 1244 } 1245 } 1246 err = -ENOENT; 1247 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1248 goto out; 1249 1250 nlflags |= NLM_F_CREATE; 1251 err = -ENOBUFS; 1252 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1253 if (!new_fa) 1254 goto out; 1255 1256 new_fa->fa_info = fi; 1257 new_fa->fa_tos = tos; 1258 new_fa->fa_type = cfg->fc_type; 1259 new_fa->fa_state = 0; 1260 new_fa->fa_slen = slen; 1261 new_fa->tb_id = tb->tb_id; 1262 new_fa->fa_default = -1; 1263 1264 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); 1265 if (err) 1266 goto out_free_new_fa; 1267 1268 /* Insert new entry to the list. */ 1269 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1270 if (err) 1271 goto out_fib_notif; 1272 1273 if (!plen) 1274 tb->tb_num_default++; 1275 1276 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1278 &cfg->fc_nlinfo, nlflags); 1279 succeeded: 1280 return 0; 1281 1282 out_fib_notif: 1283 /* notifier was sent that entry would be added to trie, but 1284 * the add failed and need to recover. Only failure for 1285 * fib_insert_alias is ENOMEM. 1286 */ 1287 NL_SET_ERR_MSG(extack, "Failed to insert route into trie"); 1288 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, 1289 plen, new_fa, NULL); 1290 out_free_new_fa: 1291 kmem_cache_free(fn_alias_kmem, new_fa); 1292 out: 1293 fib_release_info(fi); 1294 err: 1295 return err; 1296 } 1297 1298 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1299 { 1300 t_key prefix = n->key; 1301 1302 return (key ^ prefix) & (prefix | -prefix); 1303 } 1304 1305 /* should be called with rcu_read_lock */ 1306 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1307 struct fib_result *res, int fib_flags) 1308 { 1309 struct trie *t = (struct trie *) tb->tb_data; 1310 #ifdef CONFIG_IP_FIB_TRIE_STATS 1311 struct trie_use_stats __percpu *stats = t->stats; 1312 #endif 1313 const t_key key = ntohl(flp->daddr); 1314 struct key_vector *n, *pn; 1315 struct fib_alias *fa; 1316 unsigned long index; 1317 t_key cindex; 1318 1319 pn = t->kv; 1320 cindex = 0; 1321 1322 n = get_child_rcu(pn, cindex); 1323 if (!n) { 1324 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1325 return -EAGAIN; 1326 } 1327 1328 #ifdef CONFIG_IP_FIB_TRIE_STATS 1329 this_cpu_inc(stats->gets); 1330 #endif 1331 1332 /* Step 1: Travel to the longest prefix match in the trie */ 1333 for (;;) { 1334 index = get_cindex(key, n); 1335 1336 /* This bit of code is a bit tricky but it combines multiple 1337 * checks into a single check. The prefix consists of the 1338 * prefix plus zeros for the "bits" in the prefix. The index 1339 * is the difference between the key and this value. From 1340 * this we can actually derive several pieces of data. 1341 * if (index >= (1ul << bits)) 1342 * we have a mismatch in skip bits and failed 1343 * else 1344 * we know the value is cindex 1345 * 1346 * This check is safe even if bits == KEYLENGTH due to the 1347 * fact that we can only allocate a node with 32 bits if a 1348 * long is greater than 32 bits. 1349 */ 1350 if (index >= (1ul << n->bits)) 1351 break; 1352 1353 /* we have found a leaf. Prefixes have already been compared */ 1354 if (IS_LEAF(n)) 1355 goto found; 1356 1357 /* only record pn and cindex if we are going to be chopping 1358 * bits later. Otherwise we are just wasting cycles. 1359 */ 1360 if (n->slen > n->pos) { 1361 pn = n; 1362 cindex = index; 1363 } 1364 1365 n = get_child_rcu(n, index); 1366 if (unlikely(!n)) 1367 goto backtrace; 1368 } 1369 1370 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1371 for (;;) { 1372 /* record the pointer where our next node pointer is stored */ 1373 struct key_vector __rcu **cptr = n->tnode; 1374 1375 /* This test verifies that none of the bits that differ 1376 * between the key and the prefix exist in the region of 1377 * the lsb and higher in the prefix. 1378 */ 1379 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1380 goto backtrace; 1381 1382 /* exit out and process leaf */ 1383 if (unlikely(IS_LEAF(n))) 1384 break; 1385 1386 /* Don't bother recording parent info. Since we are in 1387 * prefix match mode we will have to come back to wherever 1388 * we started this traversal anyway 1389 */ 1390 1391 while ((n = rcu_dereference(*cptr)) == NULL) { 1392 backtrace: 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 if (!n) 1395 this_cpu_inc(stats->null_node_hit); 1396 #endif 1397 /* If we are at cindex 0 there are no more bits for 1398 * us to strip at this level so we must ascend back 1399 * up one level to see if there are any more bits to 1400 * be stripped there. 1401 */ 1402 while (!cindex) { 1403 t_key pkey = pn->key; 1404 1405 /* If we don't have a parent then there is 1406 * nothing for us to do as we do not have any 1407 * further nodes to parse. 1408 */ 1409 if (IS_TRIE(pn)) { 1410 trace_fib_table_lookup(tb->tb_id, flp, 1411 NULL, -EAGAIN); 1412 return -EAGAIN; 1413 } 1414 #ifdef CONFIG_IP_FIB_TRIE_STATS 1415 this_cpu_inc(stats->backtrack); 1416 #endif 1417 /* Get Child's index */ 1418 pn = node_parent_rcu(pn); 1419 cindex = get_index(pkey, pn); 1420 } 1421 1422 /* strip the least significant bit from the cindex */ 1423 cindex &= cindex - 1; 1424 1425 /* grab pointer for next child node */ 1426 cptr = &pn->tnode[cindex]; 1427 } 1428 } 1429 1430 found: 1431 /* this line carries forward the xor from earlier in the function */ 1432 index = key ^ n->key; 1433 1434 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1435 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1436 struct fib_info *fi = fa->fa_info; 1437 int nhsel, err; 1438 1439 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1440 if (index >= (1ul << fa->fa_slen)) 1441 continue; 1442 } 1443 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1444 continue; 1445 if (fi->fib_dead) 1446 continue; 1447 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1448 continue; 1449 fib_alias_accessed(fa); 1450 err = fib_props[fa->fa_type].error; 1451 if (unlikely(err < 0)) { 1452 #ifdef CONFIG_IP_FIB_TRIE_STATS 1453 this_cpu_inc(stats->semantic_match_passed); 1454 #endif 1455 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1456 return err; 1457 } 1458 if (fi->fib_flags & RTNH_F_DEAD) 1459 continue; 1460 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1461 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); 1462 1463 if (nhc->nhc_flags & RTNH_F_DEAD) 1464 continue; 1465 if (ip_ignore_linkdown(nhc->nhc_dev) && 1466 nhc->nhc_flags & RTNH_F_LINKDOWN && 1467 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1468 continue; 1469 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1470 if (flp->flowi4_oif && 1471 flp->flowi4_oif != nhc->nhc_oif) 1472 continue; 1473 } 1474 1475 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1476 refcount_inc(&fi->fib_clntref); 1477 1478 res->prefix = htonl(n->key); 1479 res->prefixlen = KEYLENGTH - fa->fa_slen; 1480 res->nh_sel = nhsel; 1481 res->nhc = nhc; 1482 res->type = fa->fa_type; 1483 res->scope = fi->fib_scope; 1484 res->fi = fi; 1485 res->table = tb; 1486 res->fa_head = &n->leaf; 1487 #ifdef CONFIG_IP_FIB_TRIE_STATS 1488 this_cpu_inc(stats->semantic_match_passed); 1489 #endif 1490 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1491 1492 return err; 1493 } 1494 } 1495 #ifdef CONFIG_IP_FIB_TRIE_STATS 1496 this_cpu_inc(stats->semantic_match_miss); 1497 #endif 1498 goto backtrace; 1499 } 1500 EXPORT_SYMBOL_GPL(fib_table_lookup); 1501 1502 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1503 struct key_vector *l, struct fib_alias *old) 1504 { 1505 /* record the location of the previous list_info entry */ 1506 struct hlist_node **pprev = old->fa_list.pprev; 1507 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1508 1509 /* remove the fib_alias from the list */ 1510 hlist_del_rcu(&old->fa_list); 1511 1512 /* if we emptied the list this leaf will be freed and we can sort 1513 * out parent suffix lengths as a part of trie_rebalance 1514 */ 1515 if (hlist_empty(&l->leaf)) { 1516 if (tp->slen == l->slen) 1517 node_pull_suffix(tp, tp->pos); 1518 put_child_root(tp, l->key, NULL); 1519 node_free(l); 1520 trie_rebalance(t, tp); 1521 return; 1522 } 1523 1524 /* only access fa if it is pointing at the last valid hlist_node */ 1525 if (*pprev) 1526 return; 1527 1528 /* update the trie with the latest suffix length */ 1529 l->slen = fa->fa_slen; 1530 node_pull_suffix(tp, fa->fa_slen); 1531 } 1532 1533 /* Caller must hold RTNL. */ 1534 int fib_table_delete(struct net *net, struct fib_table *tb, 1535 struct fib_config *cfg, struct netlink_ext_ack *extack) 1536 { 1537 struct trie *t = (struct trie *) tb->tb_data; 1538 struct fib_alias *fa, *fa_to_delete; 1539 struct key_vector *l, *tp; 1540 u8 plen = cfg->fc_dst_len; 1541 u8 slen = KEYLENGTH - plen; 1542 u8 tos = cfg->fc_tos; 1543 u32 key; 1544 1545 key = ntohl(cfg->fc_dst); 1546 1547 if (!fib_valid_key_len(key, plen, extack)) 1548 return -EINVAL; 1549 1550 l = fib_find_node(t, &tp, key); 1551 if (!l) 1552 return -ESRCH; 1553 1554 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1555 if (!fa) 1556 return -ESRCH; 1557 1558 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1559 1560 fa_to_delete = NULL; 1561 hlist_for_each_entry_from(fa, fa_list) { 1562 struct fib_info *fi = fa->fa_info; 1563 1564 if ((fa->fa_slen != slen) || 1565 (fa->tb_id != tb->tb_id) || 1566 (fa->fa_tos != tos)) 1567 break; 1568 1569 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1570 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1571 fa->fa_info->fib_scope == cfg->fc_scope) && 1572 (!cfg->fc_prefsrc || 1573 fi->fib_prefsrc == cfg->fc_prefsrc) && 1574 (!cfg->fc_protocol || 1575 fi->fib_protocol == cfg->fc_protocol) && 1576 fib_nh_match(cfg, fi, extack) == 0 && 1577 fib_metrics_match(cfg, fi)) { 1578 fa_to_delete = fa; 1579 break; 1580 } 1581 } 1582 1583 if (!fa_to_delete) 1584 return -ESRCH; 1585 1586 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1587 fa_to_delete, extack); 1588 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1589 &cfg->fc_nlinfo, 0); 1590 1591 if (!plen) 1592 tb->tb_num_default--; 1593 1594 fib_remove_alias(t, tp, l, fa_to_delete); 1595 1596 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1597 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1598 1599 fib_release_info(fa_to_delete->fa_info); 1600 alias_free_mem_rcu(fa_to_delete); 1601 return 0; 1602 } 1603 1604 /* Scan for the next leaf starting at the provided key value */ 1605 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1606 { 1607 struct key_vector *pn, *n = *tn; 1608 unsigned long cindex; 1609 1610 /* this loop is meant to try and find the key in the trie */ 1611 do { 1612 /* record parent and next child index */ 1613 pn = n; 1614 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1615 1616 if (cindex >> pn->bits) 1617 break; 1618 1619 /* descend into the next child */ 1620 n = get_child_rcu(pn, cindex++); 1621 if (!n) 1622 break; 1623 1624 /* guarantee forward progress on the keys */ 1625 if (IS_LEAF(n) && (n->key >= key)) 1626 goto found; 1627 } while (IS_TNODE(n)); 1628 1629 /* this loop will search for the next leaf with a greater key */ 1630 while (!IS_TRIE(pn)) { 1631 /* if we exhausted the parent node we will need to climb */ 1632 if (cindex >= (1ul << pn->bits)) { 1633 t_key pkey = pn->key; 1634 1635 pn = node_parent_rcu(pn); 1636 cindex = get_index(pkey, pn) + 1; 1637 continue; 1638 } 1639 1640 /* grab the next available node */ 1641 n = get_child_rcu(pn, cindex++); 1642 if (!n) 1643 continue; 1644 1645 /* no need to compare keys since we bumped the index */ 1646 if (IS_LEAF(n)) 1647 goto found; 1648 1649 /* Rescan start scanning in new node */ 1650 pn = n; 1651 cindex = 0; 1652 } 1653 1654 *tn = pn; 1655 return NULL; /* Root of trie */ 1656 found: 1657 /* if we are at the limit for keys just return NULL for the tnode */ 1658 *tn = pn; 1659 return n; 1660 } 1661 1662 static void fib_trie_free(struct fib_table *tb) 1663 { 1664 struct trie *t = (struct trie *)tb->tb_data; 1665 struct key_vector *pn = t->kv; 1666 unsigned long cindex = 1; 1667 struct hlist_node *tmp; 1668 struct fib_alias *fa; 1669 1670 /* walk trie in reverse order and free everything */ 1671 for (;;) { 1672 struct key_vector *n; 1673 1674 if (!(cindex--)) { 1675 t_key pkey = pn->key; 1676 1677 if (IS_TRIE(pn)) 1678 break; 1679 1680 n = pn; 1681 pn = node_parent(pn); 1682 1683 /* drop emptied tnode */ 1684 put_child_root(pn, n->key, NULL); 1685 node_free(n); 1686 1687 cindex = get_index(pkey, pn); 1688 1689 continue; 1690 } 1691 1692 /* grab the next available node */ 1693 n = get_child(pn, cindex); 1694 if (!n) 1695 continue; 1696 1697 if (IS_TNODE(n)) { 1698 /* record pn and cindex for leaf walking */ 1699 pn = n; 1700 cindex = 1ul << n->bits; 1701 1702 continue; 1703 } 1704 1705 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1706 hlist_del_rcu(&fa->fa_list); 1707 alias_free_mem_rcu(fa); 1708 } 1709 1710 put_child_root(pn, n->key, NULL); 1711 node_free(n); 1712 } 1713 1714 #ifdef CONFIG_IP_FIB_TRIE_STATS 1715 free_percpu(t->stats); 1716 #endif 1717 kfree(tb); 1718 } 1719 1720 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1721 { 1722 struct trie *ot = (struct trie *)oldtb->tb_data; 1723 struct key_vector *l, *tp = ot->kv; 1724 struct fib_table *local_tb; 1725 struct fib_alias *fa; 1726 struct trie *lt; 1727 t_key key = 0; 1728 1729 if (oldtb->tb_data == oldtb->__data) 1730 return oldtb; 1731 1732 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1733 if (!local_tb) 1734 return NULL; 1735 1736 lt = (struct trie *)local_tb->tb_data; 1737 1738 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1739 struct key_vector *local_l = NULL, *local_tp; 1740 1741 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1742 struct fib_alias *new_fa; 1743 1744 if (local_tb->tb_id != fa->tb_id) 1745 continue; 1746 1747 /* clone fa for new local table */ 1748 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1749 if (!new_fa) 1750 goto out; 1751 1752 memcpy(new_fa, fa, sizeof(*fa)); 1753 1754 /* insert clone into table */ 1755 if (!local_l) 1756 local_l = fib_find_node(lt, &local_tp, l->key); 1757 1758 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1759 NULL, l->key)) { 1760 kmem_cache_free(fn_alias_kmem, new_fa); 1761 goto out; 1762 } 1763 } 1764 1765 /* stop loop if key wrapped back to 0 */ 1766 key = l->key + 1; 1767 if (key < l->key) 1768 break; 1769 } 1770 1771 return local_tb; 1772 out: 1773 fib_trie_free(local_tb); 1774 1775 return NULL; 1776 } 1777 1778 /* Caller must hold RTNL */ 1779 void fib_table_flush_external(struct fib_table *tb) 1780 { 1781 struct trie *t = (struct trie *)tb->tb_data; 1782 struct key_vector *pn = t->kv; 1783 unsigned long cindex = 1; 1784 struct hlist_node *tmp; 1785 struct fib_alias *fa; 1786 1787 /* walk trie in reverse order */ 1788 for (;;) { 1789 unsigned char slen = 0; 1790 struct key_vector *n; 1791 1792 if (!(cindex--)) { 1793 t_key pkey = pn->key; 1794 1795 /* cannot resize the trie vector */ 1796 if (IS_TRIE(pn)) 1797 break; 1798 1799 /* update the suffix to address pulled leaves */ 1800 if (pn->slen > pn->pos) 1801 update_suffix(pn); 1802 1803 /* resize completed node */ 1804 pn = resize(t, pn); 1805 cindex = get_index(pkey, pn); 1806 1807 continue; 1808 } 1809 1810 /* grab the next available node */ 1811 n = get_child(pn, cindex); 1812 if (!n) 1813 continue; 1814 1815 if (IS_TNODE(n)) { 1816 /* record pn and cindex for leaf walking */ 1817 pn = n; 1818 cindex = 1ul << n->bits; 1819 1820 continue; 1821 } 1822 1823 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1824 /* if alias was cloned to local then we just 1825 * need to remove the local copy from main 1826 */ 1827 if (tb->tb_id != fa->tb_id) { 1828 hlist_del_rcu(&fa->fa_list); 1829 alias_free_mem_rcu(fa); 1830 continue; 1831 } 1832 1833 /* record local slen */ 1834 slen = fa->fa_slen; 1835 } 1836 1837 /* update leaf slen */ 1838 n->slen = slen; 1839 1840 if (hlist_empty(&n->leaf)) { 1841 put_child_root(pn, n->key, NULL); 1842 node_free(n); 1843 } 1844 } 1845 } 1846 1847 /* Caller must hold RTNL. */ 1848 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1849 { 1850 struct trie *t = (struct trie *)tb->tb_data; 1851 struct key_vector *pn = t->kv; 1852 unsigned long cindex = 1; 1853 struct hlist_node *tmp; 1854 struct fib_alias *fa; 1855 int found = 0; 1856 1857 /* walk trie in reverse order */ 1858 for (;;) { 1859 unsigned char slen = 0; 1860 struct key_vector *n; 1861 1862 if (!(cindex--)) { 1863 t_key pkey = pn->key; 1864 1865 /* cannot resize the trie vector */ 1866 if (IS_TRIE(pn)) 1867 break; 1868 1869 /* update the suffix to address pulled leaves */ 1870 if (pn->slen > pn->pos) 1871 update_suffix(pn); 1872 1873 /* resize completed node */ 1874 pn = resize(t, pn); 1875 cindex = get_index(pkey, pn); 1876 1877 continue; 1878 } 1879 1880 /* grab the next available node */ 1881 n = get_child(pn, cindex); 1882 if (!n) 1883 continue; 1884 1885 if (IS_TNODE(n)) { 1886 /* record pn and cindex for leaf walking */ 1887 pn = n; 1888 cindex = 1ul << n->bits; 1889 1890 continue; 1891 } 1892 1893 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1894 struct fib_info *fi = fa->fa_info; 1895 1896 if (!fi || tb->tb_id != fa->tb_id || 1897 (!(fi->fib_flags & RTNH_F_DEAD) && 1898 !fib_props[fa->fa_type].error)) { 1899 slen = fa->fa_slen; 1900 continue; 1901 } 1902 1903 /* Do not flush error routes if network namespace is 1904 * not being dismantled 1905 */ 1906 if (!flush_all && fib_props[fa->fa_type].error) { 1907 slen = fa->fa_slen; 1908 continue; 1909 } 1910 1911 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1912 n->key, 1913 KEYLENGTH - fa->fa_slen, fa, 1914 NULL); 1915 hlist_del_rcu(&fa->fa_list); 1916 fib_release_info(fa->fa_info); 1917 alias_free_mem_rcu(fa); 1918 found++; 1919 } 1920 1921 /* update leaf slen */ 1922 n->slen = slen; 1923 1924 if (hlist_empty(&n->leaf)) { 1925 put_child_root(pn, n->key, NULL); 1926 node_free(n); 1927 } 1928 } 1929 1930 pr_debug("trie_flush found=%d\n", found); 1931 return found; 1932 } 1933 1934 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1935 struct fib_table *tb, struct notifier_block *nb) 1936 { 1937 struct fib_alias *fa; 1938 1939 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1940 struct fib_info *fi = fa->fa_info; 1941 1942 if (!fi) 1943 continue; 1944 1945 /* local and main table can share the same trie, 1946 * so don't notify twice for the same entry. 1947 */ 1948 if (tb->tb_id != fa->tb_id) 1949 continue; 1950 1951 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1952 KEYLENGTH - fa->fa_slen, fa); 1953 } 1954 } 1955 1956 static void fib_table_notify(struct net *net, struct fib_table *tb, 1957 struct notifier_block *nb) 1958 { 1959 struct trie *t = (struct trie *)tb->tb_data; 1960 struct key_vector *l, *tp = t->kv; 1961 t_key key = 0; 1962 1963 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1964 fib_leaf_notify(net, l, tb, nb); 1965 1966 key = l->key + 1; 1967 /* stop in case of wrap around */ 1968 if (key < l->key) 1969 break; 1970 } 1971 } 1972 1973 void fib_notify(struct net *net, struct notifier_block *nb) 1974 { 1975 unsigned int h; 1976 1977 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1978 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1979 struct fib_table *tb; 1980 1981 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1982 fib_table_notify(net, tb, nb); 1983 } 1984 } 1985 1986 static void __trie_free_rcu(struct rcu_head *head) 1987 { 1988 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1989 #ifdef CONFIG_IP_FIB_TRIE_STATS 1990 struct trie *t = (struct trie *)tb->tb_data; 1991 1992 if (tb->tb_data == tb->__data) 1993 free_percpu(t->stats); 1994 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1995 kfree(tb); 1996 } 1997 1998 void fib_free_table(struct fib_table *tb) 1999 { 2000 call_rcu(&tb->rcu, __trie_free_rcu); 2001 } 2002 2003 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2004 struct sk_buff *skb, struct netlink_callback *cb, 2005 struct fib_dump_filter *filter) 2006 { 2007 unsigned int flags = NLM_F_MULTI; 2008 __be32 xkey = htonl(l->key); 2009 struct fib_alias *fa; 2010 int i, s_i; 2011 2012 if (filter->filter_set) 2013 flags |= NLM_F_DUMP_FILTERED; 2014 2015 s_i = cb->args[4]; 2016 i = 0; 2017 2018 /* rcu_read_lock is hold by caller */ 2019 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2020 int err; 2021 2022 if (i < s_i) 2023 goto next; 2024 2025 if (tb->tb_id != fa->tb_id) 2026 goto next; 2027 2028 if (filter->filter_set) { 2029 if (filter->rt_type && fa->fa_type != filter->rt_type) 2030 goto next; 2031 2032 if ((filter->protocol && 2033 fa->fa_info->fib_protocol != filter->protocol)) 2034 goto next; 2035 2036 if (filter->dev && 2037 !fib_info_nh_uses_dev(fa->fa_info, filter->dev)) 2038 goto next; 2039 } 2040 2041 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2042 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2043 tb->tb_id, fa->fa_type, 2044 xkey, KEYLENGTH - fa->fa_slen, 2045 fa->fa_tos, fa->fa_info, flags); 2046 if (err < 0) { 2047 cb->args[4] = i; 2048 return err; 2049 } 2050 next: 2051 i++; 2052 } 2053 2054 cb->args[4] = i; 2055 return skb->len; 2056 } 2057 2058 /* rcu_read_lock needs to be hold by caller from readside */ 2059 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2060 struct netlink_callback *cb, struct fib_dump_filter *filter) 2061 { 2062 struct trie *t = (struct trie *)tb->tb_data; 2063 struct key_vector *l, *tp = t->kv; 2064 /* Dump starting at last key. 2065 * Note: 0.0.0.0/0 (ie default) is first key. 2066 */ 2067 int count = cb->args[2]; 2068 t_key key = cb->args[3]; 2069 2070 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2071 int err; 2072 2073 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2074 if (err < 0) { 2075 cb->args[3] = key; 2076 cb->args[2] = count; 2077 return err; 2078 } 2079 2080 ++count; 2081 key = l->key + 1; 2082 2083 memset(&cb->args[4], 0, 2084 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2085 2086 /* stop loop if key wrapped back to 0 */ 2087 if (key < l->key) 2088 break; 2089 } 2090 2091 cb->args[3] = key; 2092 cb->args[2] = count; 2093 2094 return skb->len; 2095 } 2096 2097 void __init fib_trie_init(void) 2098 { 2099 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2100 sizeof(struct fib_alias), 2101 0, SLAB_PANIC, NULL); 2102 2103 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2104 LEAF_SIZE, 2105 0, SLAB_PANIC, NULL); 2106 } 2107 2108 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2109 { 2110 struct fib_table *tb; 2111 struct trie *t; 2112 size_t sz = sizeof(*tb); 2113 2114 if (!alias) 2115 sz += sizeof(struct trie); 2116 2117 tb = kzalloc(sz, GFP_KERNEL); 2118 if (!tb) 2119 return NULL; 2120 2121 tb->tb_id = id; 2122 tb->tb_num_default = 0; 2123 tb->tb_data = (alias ? alias->__data : tb->__data); 2124 2125 if (alias) 2126 return tb; 2127 2128 t = (struct trie *) tb->tb_data; 2129 t->kv[0].pos = KEYLENGTH; 2130 t->kv[0].slen = KEYLENGTH; 2131 #ifdef CONFIG_IP_FIB_TRIE_STATS 2132 t->stats = alloc_percpu(struct trie_use_stats); 2133 if (!t->stats) { 2134 kfree(tb); 2135 tb = NULL; 2136 } 2137 #endif 2138 2139 return tb; 2140 } 2141 2142 #ifdef CONFIG_PROC_FS 2143 /* Depth first Trie walk iterator */ 2144 struct fib_trie_iter { 2145 struct seq_net_private p; 2146 struct fib_table *tb; 2147 struct key_vector *tnode; 2148 unsigned int index; 2149 unsigned int depth; 2150 }; 2151 2152 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2153 { 2154 unsigned long cindex = iter->index; 2155 struct key_vector *pn = iter->tnode; 2156 t_key pkey; 2157 2158 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2159 iter->tnode, iter->index, iter->depth); 2160 2161 while (!IS_TRIE(pn)) { 2162 while (cindex < child_length(pn)) { 2163 struct key_vector *n = get_child_rcu(pn, cindex++); 2164 2165 if (!n) 2166 continue; 2167 2168 if (IS_LEAF(n)) { 2169 iter->tnode = pn; 2170 iter->index = cindex; 2171 } else { 2172 /* push down one level */ 2173 iter->tnode = n; 2174 iter->index = 0; 2175 ++iter->depth; 2176 } 2177 2178 return n; 2179 } 2180 2181 /* Current node exhausted, pop back up */ 2182 pkey = pn->key; 2183 pn = node_parent_rcu(pn); 2184 cindex = get_index(pkey, pn) + 1; 2185 --iter->depth; 2186 } 2187 2188 /* record root node so further searches know we are done */ 2189 iter->tnode = pn; 2190 iter->index = 0; 2191 2192 return NULL; 2193 } 2194 2195 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2196 struct trie *t) 2197 { 2198 struct key_vector *n, *pn; 2199 2200 if (!t) 2201 return NULL; 2202 2203 pn = t->kv; 2204 n = rcu_dereference(pn->tnode[0]); 2205 if (!n) 2206 return NULL; 2207 2208 if (IS_TNODE(n)) { 2209 iter->tnode = n; 2210 iter->index = 0; 2211 iter->depth = 1; 2212 } else { 2213 iter->tnode = pn; 2214 iter->index = 0; 2215 iter->depth = 0; 2216 } 2217 2218 return n; 2219 } 2220 2221 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2222 { 2223 struct key_vector *n; 2224 struct fib_trie_iter iter; 2225 2226 memset(s, 0, sizeof(*s)); 2227 2228 rcu_read_lock(); 2229 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2230 if (IS_LEAF(n)) { 2231 struct fib_alias *fa; 2232 2233 s->leaves++; 2234 s->totdepth += iter.depth; 2235 if (iter.depth > s->maxdepth) 2236 s->maxdepth = iter.depth; 2237 2238 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2239 ++s->prefixes; 2240 } else { 2241 s->tnodes++; 2242 if (n->bits < MAX_STAT_DEPTH) 2243 s->nodesizes[n->bits]++; 2244 s->nullpointers += tn_info(n)->empty_children; 2245 } 2246 } 2247 rcu_read_unlock(); 2248 } 2249 2250 /* 2251 * This outputs /proc/net/fib_triestats 2252 */ 2253 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2254 { 2255 unsigned int i, max, pointers, bytes, avdepth; 2256 2257 if (stat->leaves) 2258 avdepth = stat->totdepth*100 / stat->leaves; 2259 else 2260 avdepth = 0; 2261 2262 seq_printf(seq, "\tAver depth: %u.%02d\n", 2263 avdepth / 100, avdepth % 100); 2264 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2265 2266 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2267 bytes = LEAF_SIZE * stat->leaves; 2268 2269 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2270 bytes += sizeof(struct fib_alias) * stat->prefixes; 2271 2272 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2273 bytes += TNODE_SIZE(0) * stat->tnodes; 2274 2275 max = MAX_STAT_DEPTH; 2276 while (max > 0 && stat->nodesizes[max-1] == 0) 2277 max--; 2278 2279 pointers = 0; 2280 for (i = 1; i < max; i++) 2281 if (stat->nodesizes[i] != 0) { 2282 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2283 pointers += (1<<i) * stat->nodesizes[i]; 2284 } 2285 seq_putc(seq, '\n'); 2286 seq_printf(seq, "\tPointers: %u\n", pointers); 2287 2288 bytes += sizeof(struct key_vector *) * pointers; 2289 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2290 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2291 } 2292 2293 #ifdef CONFIG_IP_FIB_TRIE_STATS 2294 static void trie_show_usage(struct seq_file *seq, 2295 const struct trie_use_stats __percpu *stats) 2296 { 2297 struct trie_use_stats s = { 0 }; 2298 int cpu; 2299 2300 /* loop through all of the CPUs and gather up the stats */ 2301 for_each_possible_cpu(cpu) { 2302 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2303 2304 s.gets += pcpu->gets; 2305 s.backtrack += pcpu->backtrack; 2306 s.semantic_match_passed += pcpu->semantic_match_passed; 2307 s.semantic_match_miss += pcpu->semantic_match_miss; 2308 s.null_node_hit += pcpu->null_node_hit; 2309 s.resize_node_skipped += pcpu->resize_node_skipped; 2310 } 2311 2312 seq_printf(seq, "\nCounters:\n---------\n"); 2313 seq_printf(seq, "gets = %u\n", s.gets); 2314 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2315 seq_printf(seq, "semantic match passed = %u\n", 2316 s.semantic_match_passed); 2317 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2318 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2319 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2320 } 2321 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2322 2323 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2324 { 2325 if (tb->tb_id == RT_TABLE_LOCAL) 2326 seq_puts(seq, "Local:\n"); 2327 else if (tb->tb_id == RT_TABLE_MAIN) 2328 seq_puts(seq, "Main:\n"); 2329 else 2330 seq_printf(seq, "Id %d:\n", tb->tb_id); 2331 } 2332 2333 2334 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2335 { 2336 struct net *net = (struct net *)seq->private; 2337 unsigned int h; 2338 2339 seq_printf(seq, 2340 "Basic info: size of leaf:" 2341 " %zd bytes, size of tnode: %zd bytes.\n", 2342 LEAF_SIZE, TNODE_SIZE(0)); 2343 2344 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2345 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2346 struct fib_table *tb; 2347 2348 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2349 struct trie *t = (struct trie *) tb->tb_data; 2350 struct trie_stat stat; 2351 2352 if (!t) 2353 continue; 2354 2355 fib_table_print(seq, tb); 2356 2357 trie_collect_stats(t, &stat); 2358 trie_show_stats(seq, &stat); 2359 #ifdef CONFIG_IP_FIB_TRIE_STATS 2360 trie_show_usage(seq, t->stats); 2361 #endif 2362 } 2363 } 2364 2365 return 0; 2366 } 2367 2368 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2369 { 2370 struct fib_trie_iter *iter = seq->private; 2371 struct net *net = seq_file_net(seq); 2372 loff_t idx = 0; 2373 unsigned int h; 2374 2375 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2376 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2377 struct fib_table *tb; 2378 2379 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2380 struct key_vector *n; 2381 2382 for (n = fib_trie_get_first(iter, 2383 (struct trie *) tb->tb_data); 2384 n; n = fib_trie_get_next(iter)) 2385 if (pos == idx++) { 2386 iter->tb = tb; 2387 return n; 2388 } 2389 } 2390 } 2391 2392 return NULL; 2393 } 2394 2395 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2396 __acquires(RCU) 2397 { 2398 rcu_read_lock(); 2399 return fib_trie_get_idx(seq, *pos); 2400 } 2401 2402 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2403 { 2404 struct fib_trie_iter *iter = seq->private; 2405 struct net *net = seq_file_net(seq); 2406 struct fib_table *tb = iter->tb; 2407 struct hlist_node *tb_node; 2408 unsigned int h; 2409 struct key_vector *n; 2410 2411 ++*pos; 2412 /* next node in same table */ 2413 n = fib_trie_get_next(iter); 2414 if (n) 2415 return n; 2416 2417 /* walk rest of this hash chain */ 2418 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2419 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2420 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2421 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2422 if (n) 2423 goto found; 2424 } 2425 2426 /* new hash chain */ 2427 while (++h < FIB_TABLE_HASHSZ) { 2428 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2429 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2430 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2431 if (n) 2432 goto found; 2433 } 2434 } 2435 return NULL; 2436 2437 found: 2438 iter->tb = tb; 2439 return n; 2440 } 2441 2442 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2443 __releases(RCU) 2444 { 2445 rcu_read_unlock(); 2446 } 2447 2448 static void seq_indent(struct seq_file *seq, int n) 2449 { 2450 while (n-- > 0) 2451 seq_puts(seq, " "); 2452 } 2453 2454 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2455 { 2456 switch (s) { 2457 case RT_SCOPE_UNIVERSE: return "universe"; 2458 case RT_SCOPE_SITE: return "site"; 2459 case RT_SCOPE_LINK: return "link"; 2460 case RT_SCOPE_HOST: return "host"; 2461 case RT_SCOPE_NOWHERE: return "nowhere"; 2462 default: 2463 snprintf(buf, len, "scope=%d", s); 2464 return buf; 2465 } 2466 } 2467 2468 static const char *const rtn_type_names[__RTN_MAX] = { 2469 [RTN_UNSPEC] = "UNSPEC", 2470 [RTN_UNICAST] = "UNICAST", 2471 [RTN_LOCAL] = "LOCAL", 2472 [RTN_BROADCAST] = "BROADCAST", 2473 [RTN_ANYCAST] = "ANYCAST", 2474 [RTN_MULTICAST] = "MULTICAST", 2475 [RTN_BLACKHOLE] = "BLACKHOLE", 2476 [RTN_UNREACHABLE] = "UNREACHABLE", 2477 [RTN_PROHIBIT] = "PROHIBIT", 2478 [RTN_THROW] = "THROW", 2479 [RTN_NAT] = "NAT", 2480 [RTN_XRESOLVE] = "XRESOLVE", 2481 }; 2482 2483 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2484 { 2485 if (t < __RTN_MAX && rtn_type_names[t]) 2486 return rtn_type_names[t]; 2487 snprintf(buf, len, "type %u", t); 2488 return buf; 2489 } 2490 2491 /* Pretty print the trie */ 2492 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2493 { 2494 const struct fib_trie_iter *iter = seq->private; 2495 struct key_vector *n = v; 2496 2497 if (IS_TRIE(node_parent_rcu(n))) 2498 fib_table_print(seq, iter->tb); 2499 2500 if (IS_TNODE(n)) { 2501 __be32 prf = htonl(n->key); 2502 2503 seq_indent(seq, iter->depth-1); 2504 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2505 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2506 tn_info(n)->full_children, 2507 tn_info(n)->empty_children); 2508 } else { 2509 __be32 val = htonl(n->key); 2510 struct fib_alias *fa; 2511 2512 seq_indent(seq, iter->depth); 2513 seq_printf(seq, " |-- %pI4\n", &val); 2514 2515 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2516 char buf1[32], buf2[32]; 2517 2518 seq_indent(seq, iter->depth + 1); 2519 seq_printf(seq, " /%zu %s %s", 2520 KEYLENGTH - fa->fa_slen, 2521 rtn_scope(buf1, sizeof(buf1), 2522 fa->fa_info->fib_scope), 2523 rtn_type(buf2, sizeof(buf2), 2524 fa->fa_type)); 2525 if (fa->fa_tos) 2526 seq_printf(seq, " tos=%d", fa->fa_tos); 2527 seq_putc(seq, '\n'); 2528 } 2529 } 2530 2531 return 0; 2532 } 2533 2534 static const struct seq_operations fib_trie_seq_ops = { 2535 .start = fib_trie_seq_start, 2536 .next = fib_trie_seq_next, 2537 .stop = fib_trie_seq_stop, 2538 .show = fib_trie_seq_show, 2539 }; 2540 2541 struct fib_route_iter { 2542 struct seq_net_private p; 2543 struct fib_table *main_tb; 2544 struct key_vector *tnode; 2545 loff_t pos; 2546 t_key key; 2547 }; 2548 2549 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2550 loff_t pos) 2551 { 2552 struct key_vector *l, **tp = &iter->tnode; 2553 t_key key; 2554 2555 /* use cached location of previously found key */ 2556 if (iter->pos > 0 && pos >= iter->pos) { 2557 key = iter->key; 2558 } else { 2559 iter->pos = 1; 2560 key = 0; 2561 } 2562 2563 pos -= iter->pos; 2564 2565 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2566 key = l->key + 1; 2567 iter->pos++; 2568 l = NULL; 2569 2570 /* handle unlikely case of a key wrap */ 2571 if (!key) 2572 break; 2573 } 2574 2575 if (l) 2576 iter->key = l->key; /* remember it */ 2577 else 2578 iter->pos = 0; /* forget it */ 2579 2580 return l; 2581 } 2582 2583 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2584 __acquires(RCU) 2585 { 2586 struct fib_route_iter *iter = seq->private; 2587 struct fib_table *tb; 2588 struct trie *t; 2589 2590 rcu_read_lock(); 2591 2592 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2593 if (!tb) 2594 return NULL; 2595 2596 iter->main_tb = tb; 2597 t = (struct trie *)tb->tb_data; 2598 iter->tnode = t->kv; 2599 2600 if (*pos != 0) 2601 return fib_route_get_idx(iter, *pos); 2602 2603 iter->pos = 0; 2604 iter->key = KEY_MAX; 2605 2606 return SEQ_START_TOKEN; 2607 } 2608 2609 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2610 { 2611 struct fib_route_iter *iter = seq->private; 2612 struct key_vector *l = NULL; 2613 t_key key = iter->key + 1; 2614 2615 ++*pos; 2616 2617 /* only allow key of 0 for start of sequence */ 2618 if ((v == SEQ_START_TOKEN) || key) 2619 l = leaf_walk_rcu(&iter->tnode, key); 2620 2621 if (l) { 2622 iter->key = l->key; 2623 iter->pos++; 2624 } else { 2625 iter->pos = 0; 2626 } 2627 2628 return l; 2629 } 2630 2631 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2632 __releases(RCU) 2633 { 2634 rcu_read_unlock(); 2635 } 2636 2637 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2638 { 2639 unsigned int flags = 0; 2640 2641 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2642 flags = RTF_REJECT; 2643 if (fi && fi->fib_nh->fib_nh_gw4) 2644 flags |= RTF_GATEWAY; 2645 if (mask == htonl(0xFFFFFFFF)) 2646 flags |= RTF_HOST; 2647 flags |= RTF_UP; 2648 return flags; 2649 } 2650 2651 /* 2652 * This outputs /proc/net/route. 2653 * The format of the file is not supposed to be changed 2654 * and needs to be same as fib_hash output to avoid breaking 2655 * legacy utilities 2656 */ 2657 static int fib_route_seq_show(struct seq_file *seq, void *v) 2658 { 2659 struct fib_route_iter *iter = seq->private; 2660 struct fib_table *tb = iter->main_tb; 2661 struct fib_alias *fa; 2662 struct key_vector *l = v; 2663 __be32 prefix; 2664 2665 if (v == SEQ_START_TOKEN) { 2666 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2667 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2668 "\tWindow\tIRTT"); 2669 return 0; 2670 } 2671 2672 prefix = htonl(l->key); 2673 2674 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2675 const struct fib_info *fi = fa->fa_info; 2676 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2677 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2678 2679 if ((fa->fa_type == RTN_BROADCAST) || 2680 (fa->fa_type == RTN_MULTICAST)) 2681 continue; 2682 2683 if (fa->tb_id != tb->tb_id) 2684 continue; 2685 2686 seq_setwidth(seq, 127); 2687 2688 if (fi) 2689 seq_printf(seq, 2690 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2691 "%d\t%08X\t%d\t%u\t%u", 2692 fi->fib_dev ? fi->fib_dev->name : "*", 2693 prefix, 2694 fi->fib_nh->fib_nh_gw4, flags, 0, 0, 2695 fi->fib_priority, 2696 mask, 2697 (fi->fib_advmss ? 2698 fi->fib_advmss + 40 : 0), 2699 fi->fib_window, 2700 fi->fib_rtt >> 3); 2701 else 2702 seq_printf(seq, 2703 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2704 "%d\t%08X\t%d\t%u\t%u", 2705 prefix, 0, flags, 0, 0, 0, 2706 mask, 0, 0, 0); 2707 2708 seq_pad(seq, '\n'); 2709 } 2710 2711 return 0; 2712 } 2713 2714 static const struct seq_operations fib_route_seq_ops = { 2715 .start = fib_route_seq_start, 2716 .next = fib_route_seq_next, 2717 .stop = fib_route_seq_stop, 2718 .show = fib_route_seq_show, 2719 }; 2720 2721 int __net_init fib_proc_init(struct net *net) 2722 { 2723 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2724 sizeof(struct fib_trie_iter))) 2725 goto out1; 2726 2727 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2728 fib_triestat_seq_show, NULL)) 2729 goto out2; 2730 2731 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2732 sizeof(struct fib_route_iter))) 2733 goto out3; 2734 2735 return 0; 2736 2737 out3: 2738 remove_proc_entry("fib_triestat", net->proc_net); 2739 out2: 2740 remove_proc_entry("fib_trie", net->proc_net); 2741 out1: 2742 return -ENOMEM; 2743 } 2744 2745 void __net_exit fib_proc_exit(struct net *net) 2746 { 2747 remove_proc_entry("fib_trie", net->proc_net); 2748 remove_proc_entry("fib_triestat", net->proc_net); 2749 remove_proc_entry("route", net->proc_net); 2750 } 2751 2752 #endif /* CONFIG_PROC_FS */ 2753