1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/skbuff.h> 56 #include <linux/netlink.h> 57 #include <linux/init.h> 58 #include <linux/list.h> 59 #include <linux/slab.h> 60 #include <linux/export.h> 61 #include <linux/vmalloc.h> 62 #include <linux/notifier.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <net/route.h> 67 #include <net/tcp.h> 68 #include <net/sock.h> 69 #include <net/ip_fib.h> 70 #include <net/fib_notifier.h> 71 #include <trace/events/fib.h> 72 #include "fib_lookup.h" 73 74 static int call_fib_entry_notifier(struct notifier_block *nb, 75 enum fib_event_type event_type, u32 dst, 76 int dst_len, struct fib_alias *fa, 77 struct netlink_ext_ack *extack) 78 { 79 struct fib_entry_notifier_info info = { 80 .info.extack = extack, 81 .dst = dst, 82 .dst_len = dst_len, 83 .fi = fa->fa_info, 84 .tos = fa->fa_tos, 85 .type = fa->fa_type, 86 .tb_id = fa->tb_id, 87 }; 88 return call_fib4_notifier(nb, event_type, &info.info); 89 } 90 91 static int call_fib_entry_notifiers(struct net *net, 92 enum fib_event_type event_type, u32 dst, 93 int dst_len, struct fib_alias *fa, 94 struct netlink_ext_ack *extack) 95 { 96 struct fib_entry_notifier_info info = { 97 .info.extack = extack, 98 .dst = dst, 99 .dst_len = dst_len, 100 .fi = fa->fa_info, 101 .tos = fa->fa_tos, 102 .type = fa->fa_type, 103 .tb_id = fa->tb_id, 104 }; 105 return call_fib4_notifiers(net, event_type, &info.info); 106 } 107 108 #define MAX_STAT_DEPTH 32 109 110 #define KEYLENGTH (8*sizeof(t_key)) 111 #define KEY_MAX ((t_key)~0) 112 113 typedef unsigned int t_key; 114 115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 116 #define IS_TNODE(n) ((n)->bits) 117 #define IS_LEAF(n) (!(n)->bits) 118 119 struct key_vector { 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char slen; 124 union { 125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 126 struct hlist_head leaf; 127 /* This array is valid if (pos | bits) > 0 (TNODE) */ 128 struct key_vector __rcu *tnode[0]; 129 }; 130 }; 131 132 struct tnode { 133 struct rcu_head rcu; 134 t_key empty_children; /* KEYLENGTH bits needed */ 135 t_key full_children; /* KEYLENGTH bits needed */ 136 struct key_vector __rcu *parent; 137 struct key_vector kv[1]; 138 #define tn_bits kv[0].bits 139 }; 140 141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 142 #define LEAF_SIZE TNODE_SIZE(1) 143 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats { 146 unsigned int gets; 147 unsigned int backtrack; 148 unsigned int semantic_match_passed; 149 unsigned int semantic_match_miss; 150 unsigned int null_node_hit; 151 unsigned int resize_node_skipped; 152 }; 153 #endif 154 155 struct trie_stat { 156 unsigned int totdepth; 157 unsigned int maxdepth; 158 unsigned int tnodes; 159 unsigned int leaves; 160 unsigned int nullpointers; 161 unsigned int prefixes; 162 unsigned int nodesizes[MAX_STAT_DEPTH]; 163 }; 164 165 struct trie { 166 struct key_vector kv[1]; 167 #ifdef CONFIG_IP_FIB_TRIE_STATS 168 struct trie_use_stats __percpu *stats; 169 #endif 170 }; 171 172 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 173 static unsigned int tnode_free_size; 174 175 /* 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 177 * especially useful before resizing the root node with PREEMPT_NONE configs; 178 * the value was obtained experimentally, aiming to avoid visible slowdown. 179 */ 180 unsigned int sysctl_fib_sync_mem = 512 * 1024; 181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 183 184 static struct kmem_cache *fn_alias_kmem __ro_after_init; 185 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 186 187 static inline struct tnode *tn_info(struct key_vector *kv) 188 { 189 return container_of(kv, struct tnode, kv[0]); 190 } 191 192 /* caller must hold RTNL */ 193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 195 196 /* caller must hold RCU read lock or RTNL */ 197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 199 200 /* wrapper for rcu_assign_pointer */ 201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 202 { 203 if (n) 204 rcu_assign_pointer(tn_info(n)->parent, tp); 205 } 206 207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 208 209 /* This provides us with the number of children in this node, in the case of a 210 * leaf this will return 0 meaning none of the children are accessible. 211 */ 212 static inline unsigned long child_length(const struct key_vector *tn) 213 { 214 return (1ul << tn->bits) & ~(1ul); 215 } 216 217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 218 219 static inline unsigned long get_index(t_key key, struct key_vector *kv) 220 { 221 unsigned long index = key ^ kv->key; 222 223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 224 return 0; 225 226 return index >> kv->pos; 227 } 228 229 /* To understand this stuff, an understanding of keys and all their bits is 230 * necessary. Every node in the trie has a key associated with it, but not 231 * all of the bits in that key are significant. 232 * 233 * Consider a node 'n' and its parent 'tp'. 234 * 235 * If n is a leaf, every bit in its key is significant. Its presence is 236 * necessitated by path compression, since during a tree traversal (when 237 * searching for a leaf - unless we are doing an insertion) we will completely 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 239 * a potentially successful search, that we have indeed been walking the 240 * correct key path. 241 * 242 * Note that we can never "miss" the correct key in the tree if present by 243 * following the wrong path. Path compression ensures that segments of the key 244 * that are the same for all keys with a given prefix are skipped, but the 245 * skipped part *is* identical for each node in the subtrie below the skipped 246 * bit! trie_insert() in this implementation takes care of that. 247 * 248 * if n is an internal node - a 'tnode' here, the various parts of its key 249 * have many different meanings. 250 * 251 * Example: 252 * _________________________________________________________________ 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 254 * ----------------------------------------------------------------- 255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 256 * 257 * _________________________________________________________________ 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 259 * ----------------------------------------------------------------- 260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 * 262 * tp->pos = 22 263 * tp->bits = 3 264 * n->pos = 13 265 * n->bits = 4 266 * 267 * First, let's just ignore the bits that come before the parent tp, that is 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 269 * point we do not use them for anything. 270 * 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 272 * index into the parent's child array. That is, they will be used to find 273 * 'n' among tp's children. 274 * 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 276 * for the node n. 277 * 278 * All the bits we have seen so far are significant to the node n. The rest 279 * of the bits are really not needed or indeed known in n->key. 280 * 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 282 * n's child array, and will of course be different for each child. 283 * 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 285 * at this point. 286 */ 287 288 static const int halve_threshold = 25; 289 static const int inflate_threshold = 50; 290 static const int halve_threshold_root = 15; 291 static const int inflate_threshold_root = 30; 292 293 static void __alias_free_mem(struct rcu_head *head) 294 { 295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 296 kmem_cache_free(fn_alias_kmem, fa); 297 } 298 299 static inline void alias_free_mem_rcu(struct fib_alias *fa) 300 { 301 call_rcu(&fa->rcu, __alias_free_mem); 302 } 303 304 #define TNODE_VMALLOC_MAX \ 305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 306 307 static void __node_free_rcu(struct rcu_head *head) 308 { 309 struct tnode *n = container_of(head, struct tnode, rcu); 310 311 if (!n->tn_bits) 312 kmem_cache_free(trie_leaf_kmem, n); 313 else 314 kvfree(n); 315 } 316 317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 318 319 static struct tnode *tnode_alloc(int bits) 320 { 321 size_t size; 322 323 /* verify bits is within bounds */ 324 if (bits > TNODE_VMALLOC_MAX) 325 return NULL; 326 327 /* determine size and verify it is non-zero and didn't overflow */ 328 size = TNODE_SIZE(1ul << bits); 329 330 if (size <= PAGE_SIZE) 331 return kzalloc(size, GFP_KERNEL); 332 else 333 return vzalloc(size); 334 } 335 336 static inline void empty_child_inc(struct key_vector *n) 337 { 338 tn_info(n)->empty_children++; 339 340 if (!tn_info(n)->empty_children) 341 tn_info(n)->full_children++; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 if (!tn_info(n)->empty_children) 347 tn_info(n)->full_children--; 348 349 tn_info(n)->empty_children--; 350 } 351 352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 353 { 354 struct key_vector *l; 355 struct tnode *kv; 356 357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 358 if (!kv) 359 return NULL; 360 361 /* initialize key vector */ 362 l = kv->kv; 363 l->key = key; 364 l->pos = 0; 365 l->bits = 0; 366 l->slen = fa->fa_slen; 367 368 /* link leaf to fib alias */ 369 INIT_HLIST_HEAD(&l->leaf); 370 hlist_add_head(&fa->fa_list, &l->leaf); 371 372 return l; 373 } 374 375 static struct key_vector *tnode_new(t_key key, int pos, int bits) 376 { 377 unsigned int shift = pos + bits; 378 struct key_vector *tn; 379 struct tnode *tnode; 380 381 /* verify bits and pos their msb bits clear and values are valid */ 382 BUG_ON(!bits || (shift > KEYLENGTH)); 383 384 tnode = tnode_alloc(bits); 385 if (!tnode) 386 return NULL; 387 388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 389 sizeof(struct key_vector *) << bits); 390 391 if (bits == KEYLENGTH) 392 tnode->full_children = 1; 393 else 394 tnode->empty_children = 1ul << bits; 395 396 tn = tnode->kv; 397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 398 tn->pos = pos; 399 tn->bits = bits; 400 tn->slen = pos; 401 402 return tn; 403 } 404 405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 406 * and no bits are skipped. See discussion in dyntree paper p. 6 407 */ 408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 409 { 410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 411 } 412 413 /* Add a child at position i overwriting the old value. 414 * Update the value of full_children and empty_children. 415 */ 416 static void put_child(struct key_vector *tn, unsigned long i, 417 struct key_vector *n) 418 { 419 struct key_vector *chi = get_child(tn, i); 420 int isfull, wasfull; 421 422 BUG_ON(i >= child_length(tn)); 423 424 /* update emptyChildren, overflow into fullChildren */ 425 if (!n && chi) 426 empty_child_inc(tn); 427 if (n && !chi) 428 empty_child_dec(tn); 429 430 /* update fullChildren */ 431 wasfull = tnode_full(tn, chi); 432 isfull = tnode_full(tn, n); 433 434 if (wasfull && !isfull) 435 tn_info(tn)->full_children--; 436 else if (!wasfull && isfull) 437 tn_info(tn)->full_children++; 438 439 if (n && (tn->slen < n->slen)) 440 tn->slen = n->slen; 441 442 rcu_assign_pointer(tn->tnode[i], n); 443 } 444 445 static void update_children(struct key_vector *tn) 446 { 447 unsigned long i; 448 449 /* update all of the child parent pointers */ 450 for (i = child_length(tn); i;) { 451 struct key_vector *inode = get_child(tn, --i); 452 453 if (!inode) 454 continue; 455 456 /* Either update the children of a tnode that 457 * already belongs to us or update the child 458 * to point to ourselves. 459 */ 460 if (node_parent(inode) == tn) 461 update_children(inode); 462 else 463 node_set_parent(inode, tn); 464 } 465 } 466 467 static inline void put_child_root(struct key_vector *tp, t_key key, 468 struct key_vector *n) 469 { 470 if (IS_TRIE(tp)) 471 rcu_assign_pointer(tp->tnode[0], n); 472 else 473 put_child(tp, get_index(key, tp), n); 474 } 475 476 static inline void tnode_free_init(struct key_vector *tn) 477 { 478 tn_info(tn)->rcu.next = NULL; 479 } 480 481 static inline void tnode_free_append(struct key_vector *tn, 482 struct key_vector *n) 483 { 484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 485 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 486 } 487 488 static void tnode_free(struct key_vector *tn) 489 { 490 struct callback_head *head = &tn_info(tn)->rcu; 491 492 while (head) { 493 head = head->next; 494 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 495 node_free(tn); 496 497 tn = container_of(head, struct tnode, rcu)->kv; 498 } 499 500 if (tnode_free_size >= sysctl_fib_sync_mem) { 501 tnode_free_size = 0; 502 synchronize_rcu(); 503 } 504 } 505 506 static struct key_vector *replace(struct trie *t, 507 struct key_vector *oldtnode, 508 struct key_vector *tn) 509 { 510 struct key_vector *tp = node_parent(oldtnode); 511 unsigned long i; 512 513 /* setup the parent pointer out of and back into this node */ 514 NODE_INIT_PARENT(tn, tp); 515 put_child_root(tp, tn->key, tn); 516 517 /* update all of the child parent pointers */ 518 update_children(tn); 519 520 /* all pointers should be clean so we are done */ 521 tnode_free(oldtnode); 522 523 /* resize children now that oldtnode is freed */ 524 for (i = child_length(tn); i;) { 525 struct key_vector *inode = get_child(tn, --i); 526 527 /* resize child node */ 528 if (tnode_full(tn, inode)) 529 tn = resize(t, inode); 530 } 531 532 return tp; 533 } 534 535 static struct key_vector *inflate(struct trie *t, 536 struct key_vector *oldtnode) 537 { 538 struct key_vector *tn; 539 unsigned long i; 540 t_key m; 541 542 pr_debug("In inflate\n"); 543 544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 545 if (!tn) 546 goto notnode; 547 548 /* prepare oldtnode to be freed */ 549 tnode_free_init(oldtnode); 550 551 /* Assemble all of the pointers in our cluster, in this case that 552 * represents all of the pointers out of our allocated nodes that 553 * point to existing tnodes and the links between our allocated 554 * nodes. 555 */ 556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 557 struct key_vector *inode = get_child(oldtnode, --i); 558 struct key_vector *node0, *node1; 559 unsigned long j, k; 560 561 /* An empty child */ 562 if (!inode) 563 continue; 564 565 /* A leaf or an internal node with skipped bits */ 566 if (!tnode_full(oldtnode, inode)) { 567 put_child(tn, get_index(inode->key, tn), inode); 568 continue; 569 } 570 571 /* drop the node in the old tnode free list */ 572 tnode_free_append(oldtnode, inode); 573 574 /* An internal node with two children */ 575 if (inode->bits == 1) { 576 put_child(tn, 2 * i + 1, get_child(inode, 1)); 577 put_child(tn, 2 * i, get_child(inode, 0)); 578 continue; 579 } 580 581 /* We will replace this node 'inode' with two new 582 * ones, 'node0' and 'node1', each with half of the 583 * original children. The two new nodes will have 584 * a position one bit further down the key and this 585 * means that the "significant" part of their keys 586 * (see the discussion near the top of this file) 587 * will differ by one bit, which will be "0" in 588 * node0's key and "1" in node1's key. Since we are 589 * moving the key position by one step, the bit that 590 * we are moving away from - the bit at position 591 * (tn->pos) - is the one that will differ between 592 * node0 and node1. So... we synthesize that bit in the 593 * two new keys. 594 */ 595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 596 if (!node1) 597 goto nomem; 598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 599 600 tnode_free_append(tn, node1); 601 if (!node0) 602 goto nomem; 603 tnode_free_append(tn, node0); 604 605 /* populate child pointers in new nodes */ 606 for (k = child_length(inode), j = k / 2; j;) { 607 put_child(node1, --j, get_child(inode, --k)); 608 put_child(node0, j, get_child(inode, j)); 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 } 612 613 /* link new nodes to parent */ 614 NODE_INIT_PARENT(node1, tn); 615 NODE_INIT_PARENT(node0, tn); 616 617 /* link parent to nodes */ 618 put_child(tn, 2 * i + 1, node1); 619 put_child(tn, 2 * i, node0); 620 } 621 622 /* setup the parent pointers into and out of this node */ 623 return replace(t, oldtnode, tn); 624 nomem: 625 /* all pointers should be clean so we are done */ 626 tnode_free(tn); 627 notnode: 628 return NULL; 629 } 630 631 static struct key_vector *halve(struct trie *t, 632 struct key_vector *oldtnode) 633 { 634 struct key_vector *tn; 635 unsigned long i; 636 637 pr_debug("In halve\n"); 638 639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 640 if (!tn) 641 goto notnode; 642 643 /* prepare oldtnode to be freed */ 644 tnode_free_init(oldtnode); 645 646 /* Assemble all of the pointers in our cluster, in this case that 647 * represents all of the pointers out of our allocated nodes that 648 * point to existing tnodes and the links between our allocated 649 * nodes. 650 */ 651 for (i = child_length(oldtnode); i;) { 652 struct key_vector *node1 = get_child(oldtnode, --i); 653 struct key_vector *node0 = get_child(oldtnode, --i); 654 struct key_vector *inode; 655 656 /* At least one of the children is empty */ 657 if (!node1 || !node0) { 658 put_child(tn, i / 2, node1 ? : node0); 659 continue; 660 } 661 662 /* Two nonempty children */ 663 inode = tnode_new(node0->key, oldtnode->pos, 1); 664 if (!inode) 665 goto nomem; 666 tnode_free_append(tn, inode); 667 668 /* initialize pointers out of node */ 669 put_child(inode, 1, node1); 670 put_child(inode, 0, node0); 671 NODE_INIT_PARENT(inode, tn); 672 673 /* link parent to node */ 674 put_child(tn, i / 2, inode); 675 } 676 677 /* setup the parent pointers into and out of this node */ 678 return replace(t, oldtnode, tn); 679 nomem: 680 /* all pointers should be clean so we are done */ 681 tnode_free(tn); 682 notnode: 683 return NULL; 684 } 685 686 static struct key_vector *collapse(struct trie *t, 687 struct key_vector *oldtnode) 688 { 689 struct key_vector *n, *tp; 690 unsigned long i; 691 692 /* scan the tnode looking for that one child that might still exist */ 693 for (n = NULL, i = child_length(oldtnode); !n && i;) 694 n = get_child(oldtnode, --i); 695 696 /* compress one level */ 697 tp = node_parent(oldtnode); 698 put_child_root(tp, oldtnode->key, n); 699 node_set_parent(n, tp); 700 701 /* drop dead node */ 702 node_free(oldtnode); 703 704 return tp; 705 } 706 707 static unsigned char update_suffix(struct key_vector *tn) 708 { 709 unsigned char slen = tn->pos; 710 unsigned long stride, i; 711 unsigned char slen_max; 712 713 /* only vector 0 can have a suffix length greater than or equal to 714 * tn->pos + tn->bits, the second highest node will have a suffix 715 * length at most of tn->pos + tn->bits - 1 716 */ 717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 718 719 /* search though the list of children looking for nodes that might 720 * have a suffix greater than the one we currently have. This is 721 * why we start with a stride of 2 since a stride of 1 would 722 * represent the nodes with suffix length equal to tn->pos 723 */ 724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 725 struct key_vector *n = get_child(tn, i); 726 727 if (!n || (n->slen <= slen)) 728 continue; 729 730 /* update stride and slen based on new value */ 731 stride <<= (n->slen - slen); 732 slen = n->slen; 733 i &= ~(stride - 1); 734 735 /* stop searching if we have hit the maximum possible value */ 736 if (slen >= slen_max) 737 break; 738 } 739 740 tn->slen = slen; 741 742 return slen; 743 } 744 745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia 747 * Telecommunications, page 6: 748 * "A node is doubled if the ratio of non-empty children to all 749 * children in the *doubled* node is at least 'high'." 750 * 751 * 'high' in this instance is the variable 'inflate_threshold'. It 752 * is expressed as a percentage, so we multiply it with 753 * child_length() and instead of multiplying by 2 (since the 754 * child array will be doubled by inflate()) and multiplying 755 * the left-hand side by 100 (to handle the percentage thing) we 756 * multiply the left-hand side by 50. 757 * 758 * The left-hand side may look a bit weird: child_length(tn) 759 * - tn->empty_children is of course the number of non-null children 760 * in the current node. tn->full_children is the number of "full" 761 * children, that is non-null tnodes with a skip value of 0. 762 * All of those will be doubled in the resulting inflated tnode, so 763 * we just count them one extra time here. 764 * 765 * A clearer way to write this would be: 766 * 767 * to_be_doubled = tn->full_children; 768 * not_to_be_doubled = child_length(tn) - tn->empty_children - 769 * tn->full_children; 770 * 771 * new_child_length = child_length(tn) * 2; 772 * 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 774 * new_child_length; 775 * if (new_fill_factor >= inflate_threshold) 776 * 777 * ...and so on, tho it would mess up the while () loop. 778 * 779 * anyway, 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 781 * inflate_threshold 782 * 783 * avoid a division: 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 785 * inflate_threshold * new_child_length 786 * 787 * expand not_to_be_doubled and to_be_doubled, and shorten: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= inflate_threshold * new_child_length 790 * 791 * expand new_child_length: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= 794 * inflate_threshold * child_length(tn) * 2 795 * 796 * shorten again: 797 * 50 * (tn->full_children + child_length(tn) - 798 * tn->empty_children) >= inflate_threshold * 799 * child_length(tn) 800 * 801 */ 802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 803 { 804 unsigned long used = child_length(tn); 805 unsigned long threshold = used; 806 807 /* Keep root node larger */ 808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 809 used -= tn_info(tn)->empty_children; 810 used += tn_info(tn)->full_children; 811 812 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 813 814 return (used > 1) && tn->pos && ((50 * used) >= threshold); 815 } 816 817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 818 { 819 unsigned long used = child_length(tn); 820 unsigned long threshold = used; 821 822 /* Keep root node larger */ 823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 824 used -= tn_info(tn)->empty_children; 825 826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 827 828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 829 } 830 831 static inline bool should_collapse(struct key_vector *tn) 832 { 833 unsigned long used = child_length(tn); 834 835 used -= tn_info(tn)->empty_children; 836 837 /* account for bits == KEYLENGTH case */ 838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 839 used -= KEY_MAX; 840 841 /* One child or none, time to drop us from the trie */ 842 return used < 2; 843 } 844 845 #define MAX_WORK 10 846 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 847 { 848 #ifdef CONFIG_IP_FIB_TRIE_STATS 849 struct trie_use_stats __percpu *stats = t->stats; 850 #endif 851 struct key_vector *tp = node_parent(tn); 852 unsigned long cindex = get_index(tn->key, tp); 853 int max_work = MAX_WORK; 854 855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 856 tn, inflate_threshold, halve_threshold); 857 858 /* track the tnode via the pointer from the parent instead of 859 * doing it ourselves. This way we can let RCU fully do its 860 * thing without us interfering 861 */ 862 BUG_ON(tn != get_child(tp, cindex)); 863 864 /* Double as long as the resulting node has a number of 865 * nonempty nodes that are above the threshold. 866 */ 867 while (should_inflate(tp, tn) && max_work) { 868 tp = inflate(t, tn); 869 if (!tp) { 870 #ifdef CONFIG_IP_FIB_TRIE_STATS 871 this_cpu_inc(stats->resize_node_skipped); 872 #endif 873 break; 874 } 875 876 max_work--; 877 tn = get_child(tp, cindex); 878 } 879 880 /* update parent in case inflate failed */ 881 tp = node_parent(tn); 882 883 /* Return if at least one inflate is run */ 884 if (max_work != MAX_WORK) 885 return tp; 886 887 /* Halve as long as the number of empty children in this 888 * node is above threshold. 889 */ 890 while (should_halve(tp, tn) && max_work) { 891 tp = halve(t, tn); 892 if (!tp) { 893 #ifdef CONFIG_IP_FIB_TRIE_STATS 894 this_cpu_inc(stats->resize_node_skipped); 895 #endif 896 break; 897 } 898 899 max_work--; 900 tn = get_child(tp, cindex); 901 } 902 903 /* Only one child remains */ 904 if (should_collapse(tn)) 905 return collapse(t, tn); 906 907 /* update parent in case halve failed */ 908 return node_parent(tn); 909 } 910 911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 912 { 913 unsigned char node_slen = tn->slen; 914 915 while ((node_slen > tn->pos) && (node_slen > slen)) { 916 slen = update_suffix(tn); 917 if (node_slen == slen) 918 break; 919 920 tn = node_parent(tn); 921 node_slen = tn->slen; 922 } 923 } 924 925 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 926 { 927 while (tn->slen < slen) { 928 tn->slen = slen; 929 tn = node_parent(tn); 930 } 931 } 932 933 /* rcu_read_lock needs to be hold by caller from readside */ 934 static struct key_vector *fib_find_node(struct trie *t, 935 struct key_vector **tp, u32 key) 936 { 937 struct key_vector *pn, *n = t->kv; 938 unsigned long index = 0; 939 940 do { 941 pn = n; 942 n = get_child_rcu(n, index); 943 944 if (!n) 945 break; 946 947 index = get_cindex(key, n); 948 949 /* This bit of code is a bit tricky but it combines multiple 950 * checks into a single check. The prefix consists of the 951 * prefix plus zeros for the bits in the cindex. The index 952 * is the difference between the key and this value. From 953 * this we can actually derive several pieces of data. 954 * if (index >= (1ul << bits)) 955 * we have a mismatch in skip bits and failed 956 * else 957 * we know the value is cindex 958 * 959 * This check is safe even if bits == KEYLENGTH due to the 960 * fact that we can only allocate a node with 32 bits if a 961 * long is greater than 32 bits. 962 */ 963 if (index >= (1ul << n->bits)) { 964 n = NULL; 965 break; 966 } 967 968 /* keep searching until we find a perfect match leaf or NULL */ 969 } while (IS_TNODE(n)); 970 971 *tp = pn; 972 973 return n; 974 } 975 976 /* Return the first fib alias matching TOS with 977 * priority less than or equal to PRIO. 978 * If 'find_first' is set, return the first matching 979 * fib alias, regardless of TOS and priority. 980 */ 981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 982 u8 tos, u32 prio, u32 tb_id, 983 bool find_first) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 struct fib_alias *fa_match; 1041 1042 rcu_read_lock(); 1043 1044 fa_match = fib_find_matching_alias(net, fri); 1045 if (!fa_match) 1046 goto out; 1047 1048 fa_match->offload = fri->offload; 1049 fa_match->trap = fri->trap; 1050 1051 out: 1052 rcu_read_unlock(); 1053 } 1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1055 1056 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1057 { 1058 while (!IS_TRIE(tn)) 1059 tn = resize(t, tn); 1060 } 1061 1062 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1063 struct fib_alias *new, t_key key) 1064 { 1065 struct key_vector *n, *l; 1066 1067 l = leaf_new(key, new); 1068 if (!l) 1069 goto noleaf; 1070 1071 /* retrieve child from parent node */ 1072 n = get_child(tp, get_index(key, tp)); 1073 1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1075 * 1076 * Add a new tnode here 1077 * first tnode need some special handling 1078 * leaves us in position for handling as case 3 1079 */ 1080 if (n) { 1081 struct key_vector *tn; 1082 1083 tn = tnode_new(key, __fls(key ^ n->key), 1); 1084 if (!tn) 1085 goto notnode; 1086 1087 /* initialize routes out of node */ 1088 NODE_INIT_PARENT(tn, tp); 1089 put_child(tn, get_index(key, tn) ^ 1, n); 1090 1091 /* start adding routes into the node */ 1092 put_child_root(tp, key, tn); 1093 node_set_parent(n, tn); 1094 1095 /* parent now has a NULL spot where the leaf can go */ 1096 tp = tn; 1097 } 1098 1099 /* Case 3: n is NULL, and will just insert a new leaf */ 1100 node_push_suffix(tp, new->fa_slen); 1101 NODE_INIT_PARENT(l, tp); 1102 put_child_root(tp, key, l); 1103 trie_rebalance(t, tp); 1104 1105 return 0; 1106 notnode: 1107 node_free(l); 1108 noleaf: 1109 return -ENOMEM; 1110 } 1111 1112 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1113 struct key_vector *l, struct fib_alias *new, 1114 struct fib_alias *fa, t_key key) 1115 { 1116 if (!l) 1117 return fib_insert_node(t, tp, new, key); 1118 1119 if (fa) { 1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1121 } else { 1122 struct fib_alias *last; 1123 1124 hlist_for_each_entry(last, &l->leaf, fa_list) { 1125 if (new->fa_slen < last->fa_slen) 1126 break; 1127 if ((new->fa_slen == last->fa_slen) && 1128 (new->tb_id > last->tb_id)) 1129 break; 1130 fa = last; 1131 } 1132 1133 if (fa) 1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1135 else 1136 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1137 } 1138 1139 /* if we added to the tail node then we need to update slen */ 1140 if (l->slen < new->fa_slen) { 1141 l->slen = new->fa_slen; 1142 node_push_suffix(tp, new->fa_slen); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1149 { 1150 if (plen > KEYLENGTH) { 1151 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1152 return false; 1153 } 1154 1155 if ((plen < KEYLENGTH) && (key << plen)) { 1156 NL_SET_ERR_MSG(extack, 1157 "Invalid prefix for given prefix length"); 1158 return false; 1159 } 1160 1161 return true; 1162 } 1163 1164 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1165 struct key_vector *l, struct fib_alias *old); 1166 1167 /* Caller must hold RTNL. */ 1168 int fib_table_insert(struct net *net, struct fib_table *tb, 1169 struct fib_config *cfg, struct netlink_ext_ack *extack) 1170 { 1171 struct trie *t = (struct trie *)tb->tb_data; 1172 struct fib_alias *fa, *new_fa; 1173 struct key_vector *l, *tp; 1174 u16 nlflags = NLM_F_EXCL; 1175 struct fib_info *fi; 1176 u8 plen = cfg->fc_dst_len; 1177 u8 slen = KEYLENGTH - plen; 1178 u8 tos = cfg->fc_tos; 1179 u32 key; 1180 int err; 1181 1182 key = ntohl(cfg->fc_dst); 1183 1184 if (!fib_valid_key_len(key, plen, extack)) 1185 return -EINVAL; 1186 1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1188 1189 fi = fib_create_info(cfg, extack); 1190 if (IS_ERR(fi)) { 1191 err = PTR_ERR(fi); 1192 goto err; 1193 } 1194 1195 l = fib_find_node(t, &tp, key); 1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1197 tb->tb_id, false) : NULL; 1198 1199 /* Now fa, if non-NULL, points to the first fib alias 1200 * with the same keys [prefix,tos,priority], if such key already 1201 * exists or to the node before which we will insert new one. 1202 * 1203 * If fa is NULL, we will need to allocate a new one and 1204 * insert to the tail of the section matching the suffix length 1205 * of the new alias. 1206 */ 1207 1208 if (fa && fa->fa_tos == tos && 1209 fa->fa_info->fib_priority == fi->fib_priority) { 1210 struct fib_alias *fa_first, *fa_match; 1211 1212 err = -EEXIST; 1213 if (cfg->fc_nlflags & NLM_F_EXCL) 1214 goto out; 1215 1216 nlflags &= ~NLM_F_EXCL; 1217 1218 /* We have 2 goals: 1219 * 1. Find exact match for type, scope, fib_info to avoid 1220 * duplicate routes 1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1222 */ 1223 fa_match = NULL; 1224 fa_first = fa; 1225 hlist_for_each_entry_from(fa, fa_list) { 1226 if ((fa->fa_slen != slen) || 1227 (fa->tb_id != tb->tb_id) || 1228 (fa->fa_tos != tos)) 1229 break; 1230 if (fa->fa_info->fib_priority != fi->fib_priority) 1231 break; 1232 if (fa->fa_type == cfg->fc_type && 1233 fa->fa_info == fi) { 1234 fa_match = fa; 1235 break; 1236 } 1237 } 1238 1239 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1240 struct fib_info *fi_drop; 1241 u8 state; 1242 1243 nlflags |= NLM_F_REPLACE; 1244 fa = fa_first; 1245 if (fa_match) { 1246 if (fa == fa_match) 1247 err = 0; 1248 goto out; 1249 } 1250 err = -ENOBUFS; 1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1252 if (!new_fa) 1253 goto out; 1254 1255 fi_drop = fa->fa_info; 1256 new_fa->fa_tos = fa->fa_tos; 1257 new_fa->fa_info = fi; 1258 new_fa->fa_type = cfg->fc_type; 1259 state = fa->fa_state; 1260 new_fa->fa_state = state & ~FA_S_ACCESSED; 1261 new_fa->fa_slen = fa->fa_slen; 1262 new_fa->tb_id = tb->tb_id; 1263 new_fa->fa_default = -1; 1264 new_fa->offload = 0; 1265 new_fa->trap = 0; 1266 1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1268 1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1270 tb->tb_id, true) == new_fa) { 1271 enum fib_event_type fib_event; 1272 1273 fib_event = FIB_EVENT_ENTRY_REPLACE; 1274 err = call_fib_entry_notifiers(net, fib_event, 1275 key, plen, 1276 new_fa, extack); 1277 if (err) { 1278 hlist_replace_rcu(&new_fa->fa_list, 1279 &fa->fa_list); 1280 goto out_free_new_fa; 1281 } 1282 } 1283 1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1285 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1286 1287 alias_free_mem_rcu(fa); 1288 1289 fib_release_info(fi_drop); 1290 if (state & FA_S_ACCESSED) 1291 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1292 1293 goto succeeded; 1294 } 1295 /* Error if we find a perfect match which 1296 * uses the same scope, type, and nexthop 1297 * information. 1298 */ 1299 if (fa_match) 1300 goto out; 1301 1302 if (cfg->fc_nlflags & NLM_F_APPEND) 1303 nlflags |= NLM_F_APPEND; 1304 else 1305 fa = fa_first; 1306 } 1307 err = -ENOENT; 1308 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1309 goto out; 1310 1311 nlflags |= NLM_F_CREATE; 1312 err = -ENOBUFS; 1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1314 if (!new_fa) 1315 goto out; 1316 1317 new_fa->fa_info = fi; 1318 new_fa->fa_tos = tos; 1319 new_fa->fa_type = cfg->fc_type; 1320 new_fa->fa_state = 0; 1321 new_fa->fa_slen = slen; 1322 new_fa->tb_id = tb->tb_id; 1323 new_fa->fa_default = -1; 1324 new_fa->offload = 0; 1325 new_fa->trap = 0; 1326 1327 /* Insert new entry to the list. */ 1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1329 if (err) 1330 goto out_free_new_fa; 1331 1332 /* The alias was already inserted, so the node must exist. */ 1333 l = l ? l : fib_find_node(t, &tp, key); 1334 if (WARN_ON_ONCE(!l)) 1335 goto out_free_new_fa; 1336 1337 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1338 new_fa) { 1339 enum fib_event_type fib_event; 1340 1341 fib_event = FIB_EVENT_ENTRY_REPLACE; 1342 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1343 new_fa, extack); 1344 if (err) 1345 goto out_remove_new_fa; 1346 } 1347 1348 if (!plen) 1349 tb->tb_num_default++; 1350 1351 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1352 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1353 &cfg->fc_nlinfo, nlflags); 1354 succeeded: 1355 return 0; 1356 1357 out_remove_new_fa: 1358 fib_remove_alias(t, tp, l, new_fa); 1359 out_free_new_fa: 1360 kmem_cache_free(fn_alias_kmem, new_fa); 1361 out: 1362 fib_release_info(fi); 1363 err: 1364 return err; 1365 } 1366 1367 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1368 { 1369 t_key prefix = n->key; 1370 1371 return (key ^ prefix) & (prefix | -prefix); 1372 } 1373 1374 /* should be called with rcu_read_lock */ 1375 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1376 struct fib_result *res, int fib_flags) 1377 { 1378 struct trie *t = (struct trie *) tb->tb_data; 1379 #ifdef CONFIG_IP_FIB_TRIE_STATS 1380 struct trie_use_stats __percpu *stats = t->stats; 1381 #endif 1382 const t_key key = ntohl(flp->daddr); 1383 struct key_vector *n, *pn; 1384 struct fib_alias *fa; 1385 unsigned long index; 1386 t_key cindex; 1387 1388 pn = t->kv; 1389 cindex = 0; 1390 1391 n = get_child_rcu(pn, cindex); 1392 if (!n) { 1393 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1394 return -EAGAIN; 1395 } 1396 1397 #ifdef CONFIG_IP_FIB_TRIE_STATS 1398 this_cpu_inc(stats->gets); 1399 #endif 1400 1401 /* Step 1: Travel to the longest prefix match in the trie */ 1402 for (;;) { 1403 index = get_cindex(key, n); 1404 1405 /* This bit of code is a bit tricky but it combines multiple 1406 * checks into a single check. The prefix consists of the 1407 * prefix plus zeros for the "bits" in the prefix. The index 1408 * is the difference between the key and this value. From 1409 * this we can actually derive several pieces of data. 1410 * if (index >= (1ul << bits)) 1411 * we have a mismatch in skip bits and failed 1412 * else 1413 * we know the value is cindex 1414 * 1415 * This check is safe even if bits == KEYLENGTH due to the 1416 * fact that we can only allocate a node with 32 bits if a 1417 * long is greater than 32 bits. 1418 */ 1419 if (index >= (1ul << n->bits)) 1420 break; 1421 1422 /* we have found a leaf. Prefixes have already been compared */ 1423 if (IS_LEAF(n)) 1424 goto found; 1425 1426 /* only record pn and cindex if we are going to be chopping 1427 * bits later. Otherwise we are just wasting cycles. 1428 */ 1429 if (n->slen > n->pos) { 1430 pn = n; 1431 cindex = index; 1432 } 1433 1434 n = get_child_rcu(n, index); 1435 if (unlikely(!n)) 1436 goto backtrace; 1437 } 1438 1439 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1440 for (;;) { 1441 /* record the pointer where our next node pointer is stored */ 1442 struct key_vector __rcu **cptr = n->tnode; 1443 1444 /* This test verifies that none of the bits that differ 1445 * between the key and the prefix exist in the region of 1446 * the lsb and higher in the prefix. 1447 */ 1448 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1449 goto backtrace; 1450 1451 /* exit out and process leaf */ 1452 if (unlikely(IS_LEAF(n))) 1453 break; 1454 1455 /* Don't bother recording parent info. Since we are in 1456 * prefix match mode we will have to come back to wherever 1457 * we started this traversal anyway 1458 */ 1459 1460 while ((n = rcu_dereference(*cptr)) == NULL) { 1461 backtrace: 1462 #ifdef CONFIG_IP_FIB_TRIE_STATS 1463 if (!n) 1464 this_cpu_inc(stats->null_node_hit); 1465 #endif 1466 /* If we are at cindex 0 there are no more bits for 1467 * us to strip at this level so we must ascend back 1468 * up one level to see if there are any more bits to 1469 * be stripped there. 1470 */ 1471 while (!cindex) { 1472 t_key pkey = pn->key; 1473 1474 /* If we don't have a parent then there is 1475 * nothing for us to do as we do not have any 1476 * further nodes to parse. 1477 */ 1478 if (IS_TRIE(pn)) { 1479 trace_fib_table_lookup(tb->tb_id, flp, 1480 NULL, -EAGAIN); 1481 return -EAGAIN; 1482 } 1483 #ifdef CONFIG_IP_FIB_TRIE_STATS 1484 this_cpu_inc(stats->backtrack); 1485 #endif 1486 /* Get Child's index */ 1487 pn = node_parent_rcu(pn); 1488 cindex = get_index(pkey, pn); 1489 } 1490 1491 /* strip the least significant bit from the cindex */ 1492 cindex &= cindex - 1; 1493 1494 /* grab pointer for next child node */ 1495 cptr = &pn->tnode[cindex]; 1496 } 1497 } 1498 1499 found: 1500 /* this line carries forward the xor from earlier in the function */ 1501 index = key ^ n->key; 1502 1503 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1504 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1505 struct fib_info *fi = fa->fa_info; 1506 int nhsel, err; 1507 1508 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1509 if (index >= (1ul << fa->fa_slen)) 1510 continue; 1511 } 1512 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1513 continue; 1514 if (fi->fib_dead) 1515 continue; 1516 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1517 continue; 1518 fib_alias_accessed(fa); 1519 err = fib_props[fa->fa_type].error; 1520 if (unlikely(err < 0)) { 1521 out_reject: 1522 #ifdef CONFIG_IP_FIB_TRIE_STATS 1523 this_cpu_inc(stats->semantic_match_passed); 1524 #endif 1525 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1526 return err; 1527 } 1528 if (fi->fib_flags & RTNH_F_DEAD) 1529 continue; 1530 1531 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) { 1532 err = fib_props[RTN_BLACKHOLE].error; 1533 goto out_reject; 1534 } 1535 1536 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1537 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); 1538 1539 if (nhc->nhc_flags & RTNH_F_DEAD) 1540 continue; 1541 if (ip_ignore_linkdown(nhc->nhc_dev) && 1542 nhc->nhc_flags & RTNH_F_LINKDOWN && 1543 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1544 continue; 1545 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1546 if (flp->flowi4_oif && 1547 flp->flowi4_oif != nhc->nhc_oif) 1548 continue; 1549 } 1550 1551 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1552 refcount_inc(&fi->fib_clntref); 1553 1554 res->prefix = htonl(n->key); 1555 res->prefixlen = KEYLENGTH - fa->fa_slen; 1556 res->nh_sel = nhsel; 1557 res->nhc = nhc; 1558 res->type = fa->fa_type; 1559 res->scope = fi->fib_scope; 1560 res->fi = fi; 1561 res->table = tb; 1562 res->fa_head = &n->leaf; 1563 #ifdef CONFIG_IP_FIB_TRIE_STATS 1564 this_cpu_inc(stats->semantic_match_passed); 1565 #endif 1566 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1567 1568 return err; 1569 } 1570 } 1571 #ifdef CONFIG_IP_FIB_TRIE_STATS 1572 this_cpu_inc(stats->semantic_match_miss); 1573 #endif 1574 goto backtrace; 1575 } 1576 EXPORT_SYMBOL_GPL(fib_table_lookup); 1577 1578 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1579 struct key_vector *l, struct fib_alias *old) 1580 { 1581 /* record the location of the previous list_info entry */ 1582 struct hlist_node **pprev = old->fa_list.pprev; 1583 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1584 1585 /* remove the fib_alias from the list */ 1586 hlist_del_rcu(&old->fa_list); 1587 1588 /* if we emptied the list this leaf will be freed and we can sort 1589 * out parent suffix lengths as a part of trie_rebalance 1590 */ 1591 if (hlist_empty(&l->leaf)) { 1592 if (tp->slen == l->slen) 1593 node_pull_suffix(tp, tp->pos); 1594 put_child_root(tp, l->key, NULL); 1595 node_free(l); 1596 trie_rebalance(t, tp); 1597 return; 1598 } 1599 1600 /* only access fa if it is pointing at the last valid hlist_node */ 1601 if (*pprev) 1602 return; 1603 1604 /* update the trie with the latest suffix length */ 1605 l->slen = fa->fa_slen; 1606 node_pull_suffix(tp, fa->fa_slen); 1607 } 1608 1609 static void fib_notify_alias_delete(struct net *net, u32 key, 1610 struct hlist_head *fah, 1611 struct fib_alias *fa_to_delete, 1612 struct netlink_ext_ack *extack) 1613 { 1614 struct fib_alias *fa_next, *fa_to_notify; 1615 u32 tb_id = fa_to_delete->tb_id; 1616 u8 slen = fa_to_delete->fa_slen; 1617 enum fib_event_type fib_event; 1618 1619 /* Do not notify if we do not care about the route. */ 1620 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1621 return; 1622 1623 /* Determine if the route should be replaced by the next route in the 1624 * list. 1625 */ 1626 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1627 struct fib_alias, fa_list); 1628 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1629 fib_event = FIB_EVENT_ENTRY_REPLACE; 1630 fa_to_notify = fa_next; 1631 } else { 1632 fib_event = FIB_EVENT_ENTRY_DEL; 1633 fa_to_notify = fa_to_delete; 1634 } 1635 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1636 fa_to_notify, extack); 1637 } 1638 1639 /* Caller must hold RTNL. */ 1640 int fib_table_delete(struct net *net, struct fib_table *tb, 1641 struct fib_config *cfg, struct netlink_ext_ack *extack) 1642 { 1643 struct trie *t = (struct trie *) tb->tb_data; 1644 struct fib_alias *fa, *fa_to_delete; 1645 struct key_vector *l, *tp; 1646 u8 plen = cfg->fc_dst_len; 1647 u8 slen = KEYLENGTH - plen; 1648 u8 tos = cfg->fc_tos; 1649 u32 key; 1650 1651 key = ntohl(cfg->fc_dst); 1652 1653 if (!fib_valid_key_len(key, plen, extack)) 1654 return -EINVAL; 1655 1656 l = fib_find_node(t, &tp, key); 1657 if (!l) 1658 return -ESRCH; 1659 1660 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1661 if (!fa) 1662 return -ESRCH; 1663 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1665 1666 fa_to_delete = NULL; 1667 hlist_for_each_entry_from(fa, fa_list) { 1668 struct fib_info *fi = fa->fa_info; 1669 1670 if ((fa->fa_slen != slen) || 1671 (fa->tb_id != tb->tb_id) || 1672 (fa->fa_tos != tos)) 1673 break; 1674 1675 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1676 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1677 fa->fa_info->fib_scope == cfg->fc_scope) && 1678 (!cfg->fc_prefsrc || 1679 fi->fib_prefsrc == cfg->fc_prefsrc) && 1680 (!cfg->fc_protocol || 1681 fi->fib_protocol == cfg->fc_protocol) && 1682 fib_nh_match(net, cfg, fi, extack) == 0 && 1683 fib_metrics_match(cfg, fi)) { 1684 fa_to_delete = fa; 1685 break; 1686 } 1687 } 1688 1689 if (!fa_to_delete) 1690 return -ESRCH; 1691 1692 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1694 &cfg->fc_nlinfo, 0); 1695 1696 if (!plen) 1697 tb->tb_num_default--; 1698 1699 fib_remove_alias(t, tp, l, fa_to_delete); 1700 1701 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1702 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1703 1704 fib_release_info(fa_to_delete->fa_info); 1705 alias_free_mem_rcu(fa_to_delete); 1706 return 0; 1707 } 1708 1709 /* Scan for the next leaf starting at the provided key value */ 1710 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1711 { 1712 struct key_vector *pn, *n = *tn; 1713 unsigned long cindex; 1714 1715 /* this loop is meant to try and find the key in the trie */ 1716 do { 1717 /* record parent and next child index */ 1718 pn = n; 1719 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1720 1721 if (cindex >> pn->bits) 1722 break; 1723 1724 /* descend into the next child */ 1725 n = get_child_rcu(pn, cindex++); 1726 if (!n) 1727 break; 1728 1729 /* guarantee forward progress on the keys */ 1730 if (IS_LEAF(n) && (n->key >= key)) 1731 goto found; 1732 } while (IS_TNODE(n)); 1733 1734 /* this loop will search for the next leaf with a greater key */ 1735 while (!IS_TRIE(pn)) { 1736 /* if we exhausted the parent node we will need to climb */ 1737 if (cindex >= (1ul << pn->bits)) { 1738 t_key pkey = pn->key; 1739 1740 pn = node_parent_rcu(pn); 1741 cindex = get_index(pkey, pn) + 1; 1742 continue; 1743 } 1744 1745 /* grab the next available node */ 1746 n = get_child_rcu(pn, cindex++); 1747 if (!n) 1748 continue; 1749 1750 /* no need to compare keys since we bumped the index */ 1751 if (IS_LEAF(n)) 1752 goto found; 1753 1754 /* Rescan start scanning in new node */ 1755 pn = n; 1756 cindex = 0; 1757 } 1758 1759 *tn = pn; 1760 return NULL; /* Root of trie */ 1761 found: 1762 /* if we are at the limit for keys just return NULL for the tnode */ 1763 *tn = pn; 1764 return n; 1765 } 1766 1767 static void fib_trie_free(struct fib_table *tb) 1768 { 1769 struct trie *t = (struct trie *)tb->tb_data; 1770 struct key_vector *pn = t->kv; 1771 unsigned long cindex = 1; 1772 struct hlist_node *tmp; 1773 struct fib_alias *fa; 1774 1775 /* walk trie in reverse order and free everything */ 1776 for (;;) { 1777 struct key_vector *n; 1778 1779 if (!(cindex--)) { 1780 t_key pkey = pn->key; 1781 1782 if (IS_TRIE(pn)) 1783 break; 1784 1785 n = pn; 1786 pn = node_parent(pn); 1787 1788 /* drop emptied tnode */ 1789 put_child_root(pn, n->key, NULL); 1790 node_free(n); 1791 1792 cindex = get_index(pkey, pn); 1793 1794 continue; 1795 } 1796 1797 /* grab the next available node */ 1798 n = get_child(pn, cindex); 1799 if (!n) 1800 continue; 1801 1802 if (IS_TNODE(n)) { 1803 /* record pn and cindex for leaf walking */ 1804 pn = n; 1805 cindex = 1ul << n->bits; 1806 1807 continue; 1808 } 1809 1810 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1811 hlist_del_rcu(&fa->fa_list); 1812 alias_free_mem_rcu(fa); 1813 } 1814 1815 put_child_root(pn, n->key, NULL); 1816 node_free(n); 1817 } 1818 1819 #ifdef CONFIG_IP_FIB_TRIE_STATS 1820 free_percpu(t->stats); 1821 #endif 1822 kfree(tb); 1823 } 1824 1825 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1826 { 1827 struct trie *ot = (struct trie *)oldtb->tb_data; 1828 struct key_vector *l, *tp = ot->kv; 1829 struct fib_table *local_tb; 1830 struct fib_alias *fa; 1831 struct trie *lt; 1832 t_key key = 0; 1833 1834 if (oldtb->tb_data == oldtb->__data) 1835 return oldtb; 1836 1837 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1838 if (!local_tb) 1839 return NULL; 1840 1841 lt = (struct trie *)local_tb->tb_data; 1842 1843 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1844 struct key_vector *local_l = NULL, *local_tp; 1845 1846 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1847 struct fib_alias *new_fa; 1848 1849 if (local_tb->tb_id != fa->tb_id) 1850 continue; 1851 1852 /* clone fa for new local table */ 1853 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1854 if (!new_fa) 1855 goto out; 1856 1857 memcpy(new_fa, fa, sizeof(*fa)); 1858 1859 /* insert clone into table */ 1860 if (!local_l) 1861 local_l = fib_find_node(lt, &local_tp, l->key); 1862 1863 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1864 NULL, l->key)) { 1865 kmem_cache_free(fn_alias_kmem, new_fa); 1866 goto out; 1867 } 1868 } 1869 1870 /* stop loop if key wrapped back to 0 */ 1871 key = l->key + 1; 1872 if (key < l->key) 1873 break; 1874 } 1875 1876 return local_tb; 1877 out: 1878 fib_trie_free(local_tb); 1879 1880 return NULL; 1881 } 1882 1883 /* Caller must hold RTNL */ 1884 void fib_table_flush_external(struct fib_table *tb) 1885 { 1886 struct trie *t = (struct trie *)tb->tb_data; 1887 struct key_vector *pn = t->kv; 1888 unsigned long cindex = 1; 1889 struct hlist_node *tmp; 1890 struct fib_alias *fa; 1891 1892 /* walk trie in reverse order */ 1893 for (;;) { 1894 unsigned char slen = 0; 1895 struct key_vector *n; 1896 1897 if (!(cindex--)) { 1898 t_key pkey = pn->key; 1899 1900 /* cannot resize the trie vector */ 1901 if (IS_TRIE(pn)) 1902 break; 1903 1904 /* update the suffix to address pulled leaves */ 1905 if (pn->slen > pn->pos) 1906 update_suffix(pn); 1907 1908 /* resize completed node */ 1909 pn = resize(t, pn); 1910 cindex = get_index(pkey, pn); 1911 1912 continue; 1913 } 1914 1915 /* grab the next available node */ 1916 n = get_child(pn, cindex); 1917 if (!n) 1918 continue; 1919 1920 if (IS_TNODE(n)) { 1921 /* record pn and cindex for leaf walking */ 1922 pn = n; 1923 cindex = 1ul << n->bits; 1924 1925 continue; 1926 } 1927 1928 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1929 /* if alias was cloned to local then we just 1930 * need to remove the local copy from main 1931 */ 1932 if (tb->tb_id != fa->tb_id) { 1933 hlist_del_rcu(&fa->fa_list); 1934 alias_free_mem_rcu(fa); 1935 continue; 1936 } 1937 1938 /* record local slen */ 1939 slen = fa->fa_slen; 1940 } 1941 1942 /* update leaf slen */ 1943 n->slen = slen; 1944 1945 if (hlist_empty(&n->leaf)) { 1946 put_child_root(pn, n->key, NULL); 1947 node_free(n); 1948 } 1949 } 1950 } 1951 1952 /* Caller must hold RTNL. */ 1953 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1954 { 1955 struct trie *t = (struct trie *)tb->tb_data; 1956 struct key_vector *pn = t->kv; 1957 unsigned long cindex = 1; 1958 struct hlist_node *tmp; 1959 struct fib_alias *fa; 1960 int found = 0; 1961 1962 /* walk trie in reverse order */ 1963 for (;;) { 1964 unsigned char slen = 0; 1965 struct key_vector *n; 1966 1967 if (!(cindex--)) { 1968 t_key pkey = pn->key; 1969 1970 /* cannot resize the trie vector */ 1971 if (IS_TRIE(pn)) 1972 break; 1973 1974 /* update the suffix to address pulled leaves */ 1975 if (pn->slen > pn->pos) 1976 update_suffix(pn); 1977 1978 /* resize completed node */ 1979 pn = resize(t, pn); 1980 cindex = get_index(pkey, pn); 1981 1982 continue; 1983 } 1984 1985 /* grab the next available node */ 1986 n = get_child(pn, cindex); 1987 if (!n) 1988 continue; 1989 1990 if (IS_TNODE(n)) { 1991 /* record pn and cindex for leaf walking */ 1992 pn = n; 1993 cindex = 1ul << n->bits; 1994 1995 continue; 1996 } 1997 1998 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1999 struct fib_info *fi = fa->fa_info; 2000 2001 if (!fi || tb->tb_id != fa->tb_id || 2002 (!(fi->fib_flags & RTNH_F_DEAD) && 2003 !fib_props[fa->fa_type].error)) { 2004 slen = fa->fa_slen; 2005 continue; 2006 } 2007 2008 /* Do not flush error routes if network namespace is 2009 * not being dismantled 2010 */ 2011 if (!flush_all && fib_props[fa->fa_type].error) { 2012 slen = fa->fa_slen; 2013 continue; 2014 } 2015 2016 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2017 NULL); 2018 hlist_del_rcu(&fa->fa_list); 2019 fib_release_info(fa->fa_info); 2020 alias_free_mem_rcu(fa); 2021 found++; 2022 } 2023 2024 /* update leaf slen */ 2025 n->slen = slen; 2026 2027 if (hlist_empty(&n->leaf)) { 2028 put_child_root(pn, n->key, NULL); 2029 node_free(n); 2030 } 2031 } 2032 2033 pr_debug("trie_flush found=%d\n", found); 2034 return found; 2035 } 2036 2037 /* derived from fib_trie_free */ 2038 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2039 struct nl_info *info) 2040 { 2041 struct trie *t = (struct trie *)tb->tb_data; 2042 struct key_vector *pn = t->kv; 2043 unsigned long cindex = 1; 2044 struct fib_alias *fa; 2045 2046 for (;;) { 2047 struct key_vector *n; 2048 2049 if (!(cindex--)) { 2050 t_key pkey = pn->key; 2051 2052 if (IS_TRIE(pn)) 2053 break; 2054 2055 pn = node_parent(pn); 2056 cindex = get_index(pkey, pn); 2057 continue; 2058 } 2059 2060 /* grab the next available node */ 2061 n = get_child(pn, cindex); 2062 if (!n) 2063 continue; 2064 2065 if (IS_TNODE(n)) { 2066 /* record pn and cindex for leaf walking */ 2067 pn = n; 2068 cindex = 1ul << n->bits; 2069 2070 continue; 2071 } 2072 2073 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2074 struct fib_info *fi = fa->fa_info; 2075 2076 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2077 continue; 2078 2079 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2080 KEYLENGTH - fa->fa_slen, tb->tb_id, 2081 info, NLM_F_REPLACE); 2082 2083 /* call_fib_entry_notifiers will be removed when 2084 * in-kernel notifier is implemented and supported 2085 * for nexthop objects 2086 */ 2087 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 2088 n->key, 2089 KEYLENGTH - fa->fa_slen, fa, 2090 NULL); 2091 } 2092 } 2093 } 2094 2095 void fib_info_notify_update(struct net *net, struct nl_info *info) 2096 { 2097 unsigned int h; 2098 2099 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2100 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2101 struct fib_table *tb; 2102 2103 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2104 __fib_info_notify_update(net, tb, info); 2105 } 2106 } 2107 2108 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2109 struct notifier_block *nb, 2110 struct netlink_ext_ack *extack) 2111 { 2112 struct fib_alias *fa; 2113 int last_slen = -1; 2114 int err; 2115 2116 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2117 struct fib_info *fi = fa->fa_info; 2118 2119 if (!fi) 2120 continue; 2121 2122 /* local and main table can share the same trie, 2123 * so don't notify twice for the same entry. 2124 */ 2125 if (tb->tb_id != fa->tb_id) 2126 continue; 2127 2128 if (fa->fa_slen == last_slen) 2129 continue; 2130 2131 last_slen = fa->fa_slen; 2132 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2133 l->key, KEYLENGTH - fa->fa_slen, 2134 fa, extack); 2135 if (err) 2136 return err; 2137 } 2138 return 0; 2139 } 2140 2141 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2142 struct netlink_ext_ack *extack) 2143 { 2144 struct trie *t = (struct trie *)tb->tb_data; 2145 struct key_vector *l, *tp = t->kv; 2146 t_key key = 0; 2147 int err; 2148 2149 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2150 err = fib_leaf_notify(l, tb, nb, extack); 2151 if (err) 2152 return err; 2153 2154 key = l->key + 1; 2155 /* stop in case of wrap around */ 2156 if (key < l->key) 2157 break; 2158 } 2159 return 0; 2160 } 2161 2162 int fib_notify(struct net *net, struct notifier_block *nb, 2163 struct netlink_ext_ack *extack) 2164 { 2165 unsigned int h; 2166 int err; 2167 2168 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2169 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2170 struct fib_table *tb; 2171 2172 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2173 err = fib_table_notify(tb, nb, extack); 2174 if (err) 2175 return err; 2176 } 2177 } 2178 return 0; 2179 } 2180 2181 static void __trie_free_rcu(struct rcu_head *head) 2182 { 2183 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2184 #ifdef CONFIG_IP_FIB_TRIE_STATS 2185 struct trie *t = (struct trie *)tb->tb_data; 2186 2187 if (tb->tb_data == tb->__data) 2188 free_percpu(t->stats); 2189 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2190 kfree(tb); 2191 } 2192 2193 void fib_free_table(struct fib_table *tb) 2194 { 2195 call_rcu(&tb->rcu, __trie_free_rcu); 2196 } 2197 2198 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2199 struct sk_buff *skb, struct netlink_callback *cb, 2200 struct fib_dump_filter *filter) 2201 { 2202 unsigned int flags = NLM_F_MULTI; 2203 __be32 xkey = htonl(l->key); 2204 int i, s_i, i_fa, s_fa, err; 2205 struct fib_alias *fa; 2206 2207 if (filter->filter_set || 2208 !filter->dump_exceptions || !filter->dump_routes) 2209 flags |= NLM_F_DUMP_FILTERED; 2210 2211 s_i = cb->args[4]; 2212 s_fa = cb->args[5]; 2213 i = 0; 2214 2215 /* rcu_read_lock is hold by caller */ 2216 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2217 struct fib_info *fi = fa->fa_info; 2218 2219 if (i < s_i) 2220 goto next; 2221 2222 i_fa = 0; 2223 2224 if (tb->tb_id != fa->tb_id) 2225 goto next; 2226 2227 if (filter->filter_set) { 2228 if (filter->rt_type && fa->fa_type != filter->rt_type) 2229 goto next; 2230 2231 if ((filter->protocol && 2232 fi->fib_protocol != filter->protocol)) 2233 goto next; 2234 2235 if (filter->dev && 2236 !fib_info_nh_uses_dev(fi, filter->dev)) 2237 goto next; 2238 } 2239 2240 if (filter->dump_routes) { 2241 if (!s_fa) { 2242 struct fib_rt_info fri; 2243 2244 fri.fi = fi; 2245 fri.tb_id = tb->tb_id; 2246 fri.dst = xkey; 2247 fri.dst_len = KEYLENGTH - fa->fa_slen; 2248 fri.tos = fa->fa_tos; 2249 fri.type = fa->fa_type; 2250 fri.offload = fa->offload; 2251 fri.trap = fa->trap; 2252 err = fib_dump_info(skb, 2253 NETLINK_CB(cb->skb).portid, 2254 cb->nlh->nlmsg_seq, 2255 RTM_NEWROUTE, &fri, flags); 2256 if (err < 0) 2257 goto stop; 2258 } 2259 2260 i_fa++; 2261 } 2262 2263 if (filter->dump_exceptions) { 2264 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2265 &i_fa, s_fa, flags); 2266 if (err < 0) 2267 goto stop; 2268 } 2269 2270 next: 2271 i++; 2272 } 2273 2274 cb->args[4] = i; 2275 return skb->len; 2276 2277 stop: 2278 cb->args[4] = i; 2279 cb->args[5] = i_fa; 2280 return err; 2281 } 2282 2283 /* rcu_read_lock needs to be hold by caller from readside */ 2284 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2285 struct netlink_callback *cb, struct fib_dump_filter *filter) 2286 { 2287 struct trie *t = (struct trie *)tb->tb_data; 2288 struct key_vector *l, *tp = t->kv; 2289 /* Dump starting at last key. 2290 * Note: 0.0.0.0/0 (ie default) is first key. 2291 */ 2292 int count = cb->args[2]; 2293 t_key key = cb->args[3]; 2294 2295 /* First time here, count and key are both always 0. Count > 0 2296 * and key == 0 means the dump has wrapped around and we are done. 2297 */ 2298 if (count && !key) 2299 return skb->len; 2300 2301 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2302 int err; 2303 2304 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2305 if (err < 0) { 2306 cb->args[3] = key; 2307 cb->args[2] = count; 2308 return err; 2309 } 2310 2311 ++count; 2312 key = l->key + 1; 2313 2314 memset(&cb->args[4], 0, 2315 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2316 2317 /* stop loop if key wrapped back to 0 */ 2318 if (key < l->key) 2319 break; 2320 } 2321 2322 cb->args[3] = key; 2323 cb->args[2] = count; 2324 2325 return skb->len; 2326 } 2327 2328 void __init fib_trie_init(void) 2329 { 2330 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2331 sizeof(struct fib_alias), 2332 0, SLAB_PANIC, NULL); 2333 2334 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2335 LEAF_SIZE, 2336 0, SLAB_PANIC, NULL); 2337 } 2338 2339 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2340 { 2341 struct fib_table *tb; 2342 struct trie *t; 2343 size_t sz = sizeof(*tb); 2344 2345 if (!alias) 2346 sz += sizeof(struct trie); 2347 2348 tb = kzalloc(sz, GFP_KERNEL); 2349 if (!tb) 2350 return NULL; 2351 2352 tb->tb_id = id; 2353 tb->tb_num_default = 0; 2354 tb->tb_data = (alias ? alias->__data : tb->__data); 2355 2356 if (alias) 2357 return tb; 2358 2359 t = (struct trie *) tb->tb_data; 2360 t->kv[0].pos = KEYLENGTH; 2361 t->kv[0].slen = KEYLENGTH; 2362 #ifdef CONFIG_IP_FIB_TRIE_STATS 2363 t->stats = alloc_percpu(struct trie_use_stats); 2364 if (!t->stats) { 2365 kfree(tb); 2366 tb = NULL; 2367 } 2368 #endif 2369 2370 return tb; 2371 } 2372 2373 #ifdef CONFIG_PROC_FS 2374 /* Depth first Trie walk iterator */ 2375 struct fib_trie_iter { 2376 struct seq_net_private p; 2377 struct fib_table *tb; 2378 struct key_vector *tnode; 2379 unsigned int index; 2380 unsigned int depth; 2381 }; 2382 2383 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2384 { 2385 unsigned long cindex = iter->index; 2386 struct key_vector *pn = iter->tnode; 2387 t_key pkey; 2388 2389 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2390 iter->tnode, iter->index, iter->depth); 2391 2392 while (!IS_TRIE(pn)) { 2393 while (cindex < child_length(pn)) { 2394 struct key_vector *n = get_child_rcu(pn, cindex++); 2395 2396 if (!n) 2397 continue; 2398 2399 if (IS_LEAF(n)) { 2400 iter->tnode = pn; 2401 iter->index = cindex; 2402 } else { 2403 /* push down one level */ 2404 iter->tnode = n; 2405 iter->index = 0; 2406 ++iter->depth; 2407 } 2408 2409 return n; 2410 } 2411 2412 /* Current node exhausted, pop back up */ 2413 pkey = pn->key; 2414 pn = node_parent_rcu(pn); 2415 cindex = get_index(pkey, pn) + 1; 2416 --iter->depth; 2417 } 2418 2419 /* record root node so further searches know we are done */ 2420 iter->tnode = pn; 2421 iter->index = 0; 2422 2423 return NULL; 2424 } 2425 2426 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2427 struct trie *t) 2428 { 2429 struct key_vector *n, *pn; 2430 2431 if (!t) 2432 return NULL; 2433 2434 pn = t->kv; 2435 n = rcu_dereference(pn->tnode[0]); 2436 if (!n) 2437 return NULL; 2438 2439 if (IS_TNODE(n)) { 2440 iter->tnode = n; 2441 iter->index = 0; 2442 iter->depth = 1; 2443 } else { 2444 iter->tnode = pn; 2445 iter->index = 0; 2446 iter->depth = 0; 2447 } 2448 2449 return n; 2450 } 2451 2452 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2453 { 2454 struct key_vector *n; 2455 struct fib_trie_iter iter; 2456 2457 memset(s, 0, sizeof(*s)); 2458 2459 rcu_read_lock(); 2460 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2461 if (IS_LEAF(n)) { 2462 struct fib_alias *fa; 2463 2464 s->leaves++; 2465 s->totdepth += iter.depth; 2466 if (iter.depth > s->maxdepth) 2467 s->maxdepth = iter.depth; 2468 2469 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2470 ++s->prefixes; 2471 } else { 2472 s->tnodes++; 2473 if (n->bits < MAX_STAT_DEPTH) 2474 s->nodesizes[n->bits]++; 2475 s->nullpointers += tn_info(n)->empty_children; 2476 } 2477 } 2478 rcu_read_unlock(); 2479 } 2480 2481 /* 2482 * This outputs /proc/net/fib_triestats 2483 */ 2484 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2485 { 2486 unsigned int i, max, pointers, bytes, avdepth; 2487 2488 if (stat->leaves) 2489 avdepth = stat->totdepth*100 / stat->leaves; 2490 else 2491 avdepth = 0; 2492 2493 seq_printf(seq, "\tAver depth: %u.%02d\n", 2494 avdepth / 100, avdepth % 100); 2495 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2496 2497 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2498 bytes = LEAF_SIZE * stat->leaves; 2499 2500 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2501 bytes += sizeof(struct fib_alias) * stat->prefixes; 2502 2503 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2504 bytes += TNODE_SIZE(0) * stat->tnodes; 2505 2506 max = MAX_STAT_DEPTH; 2507 while (max > 0 && stat->nodesizes[max-1] == 0) 2508 max--; 2509 2510 pointers = 0; 2511 for (i = 1; i < max; i++) 2512 if (stat->nodesizes[i] != 0) { 2513 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2514 pointers += (1<<i) * stat->nodesizes[i]; 2515 } 2516 seq_putc(seq, '\n'); 2517 seq_printf(seq, "\tPointers: %u\n", pointers); 2518 2519 bytes += sizeof(struct key_vector *) * pointers; 2520 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2521 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2522 } 2523 2524 #ifdef CONFIG_IP_FIB_TRIE_STATS 2525 static void trie_show_usage(struct seq_file *seq, 2526 const struct trie_use_stats __percpu *stats) 2527 { 2528 struct trie_use_stats s = { 0 }; 2529 int cpu; 2530 2531 /* loop through all of the CPUs and gather up the stats */ 2532 for_each_possible_cpu(cpu) { 2533 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2534 2535 s.gets += pcpu->gets; 2536 s.backtrack += pcpu->backtrack; 2537 s.semantic_match_passed += pcpu->semantic_match_passed; 2538 s.semantic_match_miss += pcpu->semantic_match_miss; 2539 s.null_node_hit += pcpu->null_node_hit; 2540 s.resize_node_skipped += pcpu->resize_node_skipped; 2541 } 2542 2543 seq_printf(seq, "\nCounters:\n---------\n"); 2544 seq_printf(seq, "gets = %u\n", s.gets); 2545 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2546 seq_printf(seq, "semantic match passed = %u\n", 2547 s.semantic_match_passed); 2548 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2549 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2550 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2551 } 2552 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2553 2554 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2555 { 2556 if (tb->tb_id == RT_TABLE_LOCAL) 2557 seq_puts(seq, "Local:\n"); 2558 else if (tb->tb_id == RT_TABLE_MAIN) 2559 seq_puts(seq, "Main:\n"); 2560 else 2561 seq_printf(seq, "Id %d:\n", tb->tb_id); 2562 } 2563 2564 2565 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2566 { 2567 struct net *net = (struct net *)seq->private; 2568 unsigned int h; 2569 2570 seq_printf(seq, 2571 "Basic info: size of leaf:" 2572 " %zd bytes, size of tnode: %zd bytes.\n", 2573 LEAF_SIZE, TNODE_SIZE(0)); 2574 2575 rcu_read_lock(); 2576 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2577 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2578 struct fib_table *tb; 2579 2580 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2581 struct trie *t = (struct trie *) tb->tb_data; 2582 struct trie_stat stat; 2583 2584 if (!t) 2585 continue; 2586 2587 fib_table_print(seq, tb); 2588 2589 trie_collect_stats(t, &stat); 2590 trie_show_stats(seq, &stat); 2591 #ifdef CONFIG_IP_FIB_TRIE_STATS 2592 trie_show_usage(seq, t->stats); 2593 #endif 2594 } 2595 cond_resched_rcu(); 2596 } 2597 rcu_read_unlock(); 2598 2599 return 0; 2600 } 2601 2602 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2603 { 2604 struct fib_trie_iter *iter = seq->private; 2605 struct net *net = seq_file_net(seq); 2606 loff_t idx = 0; 2607 unsigned int h; 2608 2609 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2610 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2611 struct fib_table *tb; 2612 2613 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2614 struct key_vector *n; 2615 2616 for (n = fib_trie_get_first(iter, 2617 (struct trie *) tb->tb_data); 2618 n; n = fib_trie_get_next(iter)) 2619 if (pos == idx++) { 2620 iter->tb = tb; 2621 return n; 2622 } 2623 } 2624 } 2625 2626 return NULL; 2627 } 2628 2629 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2630 __acquires(RCU) 2631 { 2632 rcu_read_lock(); 2633 return fib_trie_get_idx(seq, *pos); 2634 } 2635 2636 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2637 { 2638 struct fib_trie_iter *iter = seq->private; 2639 struct net *net = seq_file_net(seq); 2640 struct fib_table *tb = iter->tb; 2641 struct hlist_node *tb_node; 2642 unsigned int h; 2643 struct key_vector *n; 2644 2645 ++*pos; 2646 /* next node in same table */ 2647 n = fib_trie_get_next(iter); 2648 if (n) 2649 return n; 2650 2651 /* walk rest of this hash chain */ 2652 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2653 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2654 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2655 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2656 if (n) 2657 goto found; 2658 } 2659 2660 /* new hash chain */ 2661 while (++h < FIB_TABLE_HASHSZ) { 2662 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2663 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2664 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2665 if (n) 2666 goto found; 2667 } 2668 } 2669 return NULL; 2670 2671 found: 2672 iter->tb = tb; 2673 return n; 2674 } 2675 2676 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2677 __releases(RCU) 2678 { 2679 rcu_read_unlock(); 2680 } 2681 2682 static void seq_indent(struct seq_file *seq, int n) 2683 { 2684 while (n-- > 0) 2685 seq_puts(seq, " "); 2686 } 2687 2688 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2689 { 2690 switch (s) { 2691 case RT_SCOPE_UNIVERSE: return "universe"; 2692 case RT_SCOPE_SITE: return "site"; 2693 case RT_SCOPE_LINK: return "link"; 2694 case RT_SCOPE_HOST: return "host"; 2695 case RT_SCOPE_NOWHERE: return "nowhere"; 2696 default: 2697 snprintf(buf, len, "scope=%d", s); 2698 return buf; 2699 } 2700 } 2701 2702 static const char *const rtn_type_names[__RTN_MAX] = { 2703 [RTN_UNSPEC] = "UNSPEC", 2704 [RTN_UNICAST] = "UNICAST", 2705 [RTN_LOCAL] = "LOCAL", 2706 [RTN_BROADCAST] = "BROADCAST", 2707 [RTN_ANYCAST] = "ANYCAST", 2708 [RTN_MULTICAST] = "MULTICAST", 2709 [RTN_BLACKHOLE] = "BLACKHOLE", 2710 [RTN_UNREACHABLE] = "UNREACHABLE", 2711 [RTN_PROHIBIT] = "PROHIBIT", 2712 [RTN_THROW] = "THROW", 2713 [RTN_NAT] = "NAT", 2714 [RTN_XRESOLVE] = "XRESOLVE", 2715 }; 2716 2717 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2718 { 2719 if (t < __RTN_MAX && rtn_type_names[t]) 2720 return rtn_type_names[t]; 2721 snprintf(buf, len, "type %u", t); 2722 return buf; 2723 } 2724 2725 /* Pretty print the trie */ 2726 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2727 { 2728 const struct fib_trie_iter *iter = seq->private; 2729 struct key_vector *n = v; 2730 2731 if (IS_TRIE(node_parent_rcu(n))) 2732 fib_table_print(seq, iter->tb); 2733 2734 if (IS_TNODE(n)) { 2735 __be32 prf = htonl(n->key); 2736 2737 seq_indent(seq, iter->depth-1); 2738 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2739 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2740 tn_info(n)->full_children, 2741 tn_info(n)->empty_children); 2742 } else { 2743 __be32 val = htonl(n->key); 2744 struct fib_alias *fa; 2745 2746 seq_indent(seq, iter->depth); 2747 seq_printf(seq, " |-- %pI4\n", &val); 2748 2749 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2750 char buf1[32], buf2[32]; 2751 2752 seq_indent(seq, iter->depth + 1); 2753 seq_printf(seq, " /%zu %s %s", 2754 KEYLENGTH - fa->fa_slen, 2755 rtn_scope(buf1, sizeof(buf1), 2756 fa->fa_info->fib_scope), 2757 rtn_type(buf2, sizeof(buf2), 2758 fa->fa_type)); 2759 if (fa->fa_tos) 2760 seq_printf(seq, " tos=%d", fa->fa_tos); 2761 seq_putc(seq, '\n'); 2762 } 2763 } 2764 2765 return 0; 2766 } 2767 2768 static const struct seq_operations fib_trie_seq_ops = { 2769 .start = fib_trie_seq_start, 2770 .next = fib_trie_seq_next, 2771 .stop = fib_trie_seq_stop, 2772 .show = fib_trie_seq_show, 2773 }; 2774 2775 struct fib_route_iter { 2776 struct seq_net_private p; 2777 struct fib_table *main_tb; 2778 struct key_vector *tnode; 2779 loff_t pos; 2780 t_key key; 2781 }; 2782 2783 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2784 loff_t pos) 2785 { 2786 struct key_vector *l, **tp = &iter->tnode; 2787 t_key key; 2788 2789 /* use cached location of previously found key */ 2790 if (iter->pos > 0 && pos >= iter->pos) { 2791 key = iter->key; 2792 } else { 2793 iter->pos = 1; 2794 key = 0; 2795 } 2796 2797 pos -= iter->pos; 2798 2799 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2800 key = l->key + 1; 2801 iter->pos++; 2802 l = NULL; 2803 2804 /* handle unlikely case of a key wrap */ 2805 if (!key) 2806 break; 2807 } 2808 2809 if (l) 2810 iter->key = l->key; /* remember it */ 2811 else 2812 iter->pos = 0; /* forget it */ 2813 2814 return l; 2815 } 2816 2817 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2818 __acquires(RCU) 2819 { 2820 struct fib_route_iter *iter = seq->private; 2821 struct fib_table *tb; 2822 struct trie *t; 2823 2824 rcu_read_lock(); 2825 2826 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2827 if (!tb) 2828 return NULL; 2829 2830 iter->main_tb = tb; 2831 t = (struct trie *)tb->tb_data; 2832 iter->tnode = t->kv; 2833 2834 if (*pos != 0) 2835 return fib_route_get_idx(iter, *pos); 2836 2837 iter->pos = 0; 2838 iter->key = KEY_MAX; 2839 2840 return SEQ_START_TOKEN; 2841 } 2842 2843 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2844 { 2845 struct fib_route_iter *iter = seq->private; 2846 struct key_vector *l = NULL; 2847 t_key key = iter->key + 1; 2848 2849 ++*pos; 2850 2851 /* only allow key of 0 for start of sequence */ 2852 if ((v == SEQ_START_TOKEN) || key) 2853 l = leaf_walk_rcu(&iter->tnode, key); 2854 2855 if (l) { 2856 iter->key = l->key; 2857 iter->pos++; 2858 } else { 2859 iter->pos = 0; 2860 } 2861 2862 return l; 2863 } 2864 2865 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2866 __releases(RCU) 2867 { 2868 rcu_read_unlock(); 2869 } 2870 2871 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2872 { 2873 unsigned int flags = 0; 2874 2875 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2876 flags = RTF_REJECT; 2877 if (fi) { 2878 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2879 2880 if (nhc->nhc_gw.ipv4) 2881 flags |= RTF_GATEWAY; 2882 } 2883 if (mask == htonl(0xFFFFFFFF)) 2884 flags |= RTF_HOST; 2885 flags |= RTF_UP; 2886 return flags; 2887 } 2888 2889 /* 2890 * This outputs /proc/net/route. 2891 * The format of the file is not supposed to be changed 2892 * and needs to be same as fib_hash output to avoid breaking 2893 * legacy utilities 2894 */ 2895 static int fib_route_seq_show(struct seq_file *seq, void *v) 2896 { 2897 struct fib_route_iter *iter = seq->private; 2898 struct fib_table *tb = iter->main_tb; 2899 struct fib_alias *fa; 2900 struct key_vector *l = v; 2901 __be32 prefix; 2902 2903 if (v == SEQ_START_TOKEN) { 2904 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2905 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2906 "\tWindow\tIRTT"); 2907 return 0; 2908 } 2909 2910 prefix = htonl(l->key); 2911 2912 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2913 struct fib_info *fi = fa->fa_info; 2914 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2915 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2916 2917 if ((fa->fa_type == RTN_BROADCAST) || 2918 (fa->fa_type == RTN_MULTICAST)) 2919 continue; 2920 2921 if (fa->tb_id != tb->tb_id) 2922 continue; 2923 2924 seq_setwidth(seq, 127); 2925 2926 if (fi) { 2927 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2928 __be32 gw = 0; 2929 2930 if (nhc->nhc_gw_family == AF_INET) 2931 gw = nhc->nhc_gw.ipv4; 2932 2933 seq_printf(seq, 2934 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2935 "%d\t%08X\t%d\t%u\t%u", 2936 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2937 prefix, gw, flags, 0, 0, 2938 fi->fib_priority, 2939 mask, 2940 (fi->fib_advmss ? 2941 fi->fib_advmss + 40 : 0), 2942 fi->fib_window, 2943 fi->fib_rtt >> 3); 2944 } else { 2945 seq_printf(seq, 2946 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2947 "%d\t%08X\t%d\t%u\t%u", 2948 prefix, 0, flags, 0, 0, 0, 2949 mask, 0, 0, 0); 2950 } 2951 seq_pad(seq, '\n'); 2952 } 2953 2954 return 0; 2955 } 2956 2957 static const struct seq_operations fib_route_seq_ops = { 2958 .start = fib_route_seq_start, 2959 .next = fib_route_seq_next, 2960 .stop = fib_route_seq_stop, 2961 .show = fib_route_seq_show, 2962 }; 2963 2964 int __net_init fib_proc_init(struct net *net) 2965 { 2966 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2967 sizeof(struct fib_trie_iter))) 2968 goto out1; 2969 2970 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2971 fib_triestat_seq_show, NULL)) 2972 goto out2; 2973 2974 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2975 sizeof(struct fib_route_iter))) 2976 goto out3; 2977 2978 return 0; 2979 2980 out3: 2981 remove_proc_entry("fib_triestat", net->proc_net); 2982 out2: 2983 remove_proc_entry("fib_trie", net->proc_net); 2984 out1: 2985 return -ENOMEM; 2986 } 2987 2988 void __net_exit fib_proc_exit(struct net *net) 2989 { 2990 remove_proc_entry("fib_trie", net->proc_net); 2991 remove_proc_entry("fib_triestat", net->proc_net); 2992 remove_proc_entry("route", net->proc_net); 2993 } 2994 2995 #endif /* CONFIG_PROC_FS */ 2996