1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 39 #define VERSION "0.409" 40 41 #include <linux/cache.h> 42 #include <linux/uaccess.h> 43 #include <linux/bitops.h> 44 #include <linux/types.h> 45 #include <linux/kernel.h> 46 #include <linux/mm.h> 47 #include <linux/string.h> 48 #include <linux/socket.h> 49 #include <linux/sockios.h> 50 #include <linux/errno.h> 51 #include <linux/in.h> 52 #include <linux/inet.h> 53 #include <linux/inetdevice.h> 54 #include <linux/netdevice.h> 55 #include <linux/if_arp.h> 56 #include <linux/proc_fs.h> 57 #include <linux/rcupdate.h> 58 #include <linux/skbuff.h> 59 #include <linux/netlink.h> 60 #include <linux/init.h> 61 #include <linux/list.h> 62 #include <linux/slab.h> 63 #include <linux/export.h> 64 #include <linux/vmalloc.h> 65 #include <linux/notifier.h> 66 #include <net/net_namespace.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/tcp.h> 71 #include <net/sock.h> 72 #include <net/ip_fib.h> 73 #include <net/fib_notifier.h> 74 #include <trace/events/fib.h> 75 #include "fib_lookup.h" 76 77 static int call_fib_entry_notifier(struct notifier_block *nb, 78 enum fib_event_type event_type, u32 dst, 79 int dst_len, struct fib_alias *fa, 80 struct netlink_ext_ack *extack) 81 { 82 struct fib_entry_notifier_info info = { 83 .info.extack = extack, 84 .dst = dst, 85 .dst_len = dst_len, 86 .fi = fa->fa_info, 87 .tos = fa->fa_tos, 88 .type = fa->fa_type, 89 .tb_id = fa->tb_id, 90 }; 91 return call_fib4_notifier(nb, event_type, &info.info); 92 } 93 94 static int call_fib_entry_notifiers(struct net *net, 95 enum fib_event_type event_type, u32 dst, 96 int dst_len, struct fib_alias *fa, 97 struct netlink_ext_ack *extack) 98 { 99 struct fib_entry_notifier_info info = { 100 .info.extack = extack, 101 .dst = dst, 102 .dst_len = dst_len, 103 .fi = fa->fa_info, 104 .tos = fa->fa_tos, 105 .type = fa->fa_type, 106 .tb_id = fa->tb_id, 107 }; 108 return call_fib4_notifiers(net, event_type, &info.info); 109 } 110 111 #define MAX_STAT_DEPTH 32 112 113 #define KEYLENGTH (8*sizeof(t_key)) 114 #define KEY_MAX ((t_key)~0) 115 116 typedef unsigned int t_key; 117 118 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 119 #define IS_TNODE(n) ((n)->bits) 120 #define IS_LEAF(n) (!(n)->bits) 121 122 struct key_vector { 123 t_key key; 124 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 125 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 126 unsigned char slen; 127 union { 128 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 129 struct hlist_head leaf; 130 /* This array is valid if (pos | bits) > 0 (TNODE) */ 131 struct key_vector __rcu *tnode[0]; 132 }; 133 }; 134 135 struct tnode { 136 struct rcu_head rcu; 137 t_key empty_children; /* KEYLENGTH bits needed */ 138 t_key full_children; /* KEYLENGTH bits needed */ 139 struct key_vector __rcu *parent; 140 struct key_vector kv[1]; 141 #define tn_bits kv[0].bits 142 }; 143 144 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 145 #define LEAF_SIZE TNODE_SIZE(1) 146 147 #ifdef CONFIG_IP_FIB_TRIE_STATS 148 struct trie_use_stats { 149 unsigned int gets; 150 unsigned int backtrack; 151 unsigned int semantic_match_passed; 152 unsigned int semantic_match_miss; 153 unsigned int null_node_hit; 154 unsigned int resize_node_skipped; 155 }; 156 #endif 157 158 struct trie_stat { 159 unsigned int totdepth; 160 unsigned int maxdepth; 161 unsigned int tnodes; 162 unsigned int leaves; 163 unsigned int nullpointers; 164 unsigned int prefixes; 165 unsigned int nodesizes[MAX_STAT_DEPTH]; 166 }; 167 168 struct trie { 169 struct key_vector kv[1]; 170 #ifdef CONFIG_IP_FIB_TRIE_STATS 171 struct trie_use_stats __percpu *stats; 172 #endif 173 }; 174 175 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 176 static unsigned int tnode_free_size; 177 178 /* 179 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 180 * especially useful before resizing the root node with PREEMPT_NONE configs; 181 * the value was obtained experimentally, aiming to avoid visible slowdown. 182 */ 183 unsigned int sysctl_fib_sync_mem = 512 * 1024; 184 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 185 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 186 187 static struct kmem_cache *fn_alias_kmem __ro_after_init; 188 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 189 190 static inline struct tnode *tn_info(struct key_vector *kv) 191 { 192 return container_of(kv, struct tnode, kv[0]); 193 } 194 195 /* caller must hold RTNL */ 196 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 197 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 198 199 /* caller must hold RCU read lock or RTNL */ 200 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 201 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 202 203 /* wrapper for rcu_assign_pointer */ 204 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 205 { 206 if (n) 207 rcu_assign_pointer(tn_info(n)->parent, tp); 208 } 209 210 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 211 212 /* This provides us with the number of children in this node, in the case of a 213 * leaf this will return 0 meaning none of the children are accessible. 214 */ 215 static inline unsigned long child_length(const struct key_vector *tn) 216 { 217 return (1ul << tn->bits) & ~(1ul); 218 } 219 220 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 221 222 static inline unsigned long get_index(t_key key, struct key_vector *kv) 223 { 224 unsigned long index = key ^ kv->key; 225 226 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 227 return 0; 228 229 return index >> kv->pos; 230 } 231 232 /* To understand this stuff, an understanding of keys and all their bits is 233 * necessary. Every node in the trie has a key associated with it, but not 234 * all of the bits in that key are significant. 235 * 236 * Consider a node 'n' and its parent 'tp'. 237 * 238 * If n is a leaf, every bit in its key is significant. Its presence is 239 * necessitated by path compression, since during a tree traversal (when 240 * searching for a leaf - unless we are doing an insertion) we will completely 241 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 242 * a potentially successful search, that we have indeed been walking the 243 * correct key path. 244 * 245 * Note that we can never "miss" the correct key in the tree if present by 246 * following the wrong path. Path compression ensures that segments of the key 247 * that are the same for all keys with a given prefix are skipped, but the 248 * skipped part *is* identical for each node in the subtrie below the skipped 249 * bit! trie_insert() in this implementation takes care of that. 250 * 251 * if n is an internal node - a 'tnode' here, the various parts of its key 252 * have many different meanings. 253 * 254 * Example: 255 * _________________________________________________________________ 256 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 257 * ----------------------------------------------------------------- 258 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 259 * 260 * _________________________________________________________________ 261 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 262 * ----------------------------------------------------------------- 263 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 264 * 265 * tp->pos = 22 266 * tp->bits = 3 267 * n->pos = 13 268 * n->bits = 4 269 * 270 * First, let's just ignore the bits that come before the parent tp, that is 271 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 272 * point we do not use them for anything. 273 * 274 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 275 * index into the parent's child array. That is, they will be used to find 276 * 'n' among tp's children. 277 * 278 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 279 * for the node n. 280 * 281 * All the bits we have seen so far are significant to the node n. The rest 282 * of the bits are really not needed or indeed known in n->key. 283 * 284 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 285 * n's child array, and will of course be different for each child. 286 * 287 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 288 * at this point. 289 */ 290 291 static const int halve_threshold = 25; 292 static const int inflate_threshold = 50; 293 static const int halve_threshold_root = 15; 294 static const int inflate_threshold_root = 30; 295 296 static void __alias_free_mem(struct rcu_head *head) 297 { 298 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 299 kmem_cache_free(fn_alias_kmem, fa); 300 } 301 302 static inline void alias_free_mem_rcu(struct fib_alias *fa) 303 { 304 call_rcu(&fa->rcu, __alias_free_mem); 305 } 306 307 #define TNODE_KMALLOC_MAX \ 308 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 309 #define TNODE_VMALLOC_MAX \ 310 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 311 312 static void __node_free_rcu(struct rcu_head *head) 313 { 314 struct tnode *n = container_of(head, struct tnode, rcu); 315 316 if (!n->tn_bits) 317 kmem_cache_free(trie_leaf_kmem, n); 318 else 319 kvfree(n); 320 } 321 322 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 323 324 static struct tnode *tnode_alloc(int bits) 325 { 326 size_t size; 327 328 /* verify bits is within bounds */ 329 if (bits > TNODE_VMALLOC_MAX) 330 return NULL; 331 332 /* determine size and verify it is non-zero and didn't overflow */ 333 size = TNODE_SIZE(1ul << bits); 334 335 if (size <= PAGE_SIZE) 336 return kzalloc(size, GFP_KERNEL); 337 else 338 return vzalloc(size); 339 } 340 341 static inline void empty_child_inc(struct key_vector *n) 342 { 343 tn_info(n)->empty_children++; 344 345 if (!tn_info(n)->empty_children) 346 tn_info(n)->full_children++; 347 } 348 349 static inline void empty_child_dec(struct key_vector *n) 350 { 351 if (!tn_info(n)->empty_children) 352 tn_info(n)->full_children--; 353 354 tn_info(n)->empty_children--; 355 } 356 357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 358 { 359 struct key_vector *l; 360 struct tnode *kv; 361 362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 363 if (!kv) 364 return NULL; 365 366 /* initialize key vector */ 367 l = kv->kv; 368 l->key = key; 369 l->pos = 0; 370 l->bits = 0; 371 l->slen = fa->fa_slen; 372 373 /* link leaf to fib alias */ 374 INIT_HLIST_HEAD(&l->leaf); 375 hlist_add_head(&fa->fa_list, &l->leaf); 376 377 return l; 378 } 379 380 static struct key_vector *tnode_new(t_key key, int pos, int bits) 381 { 382 unsigned int shift = pos + bits; 383 struct key_vector *tn; 384 struct tnode *tnode; 385 386 /* verify bits and pos their msb bits clear and values are valid */ 387 BUG_ON(!bits || (shift > KEYLENGTH)); 388 389 tnode = tnode_alloc(bits); 390 if (!tnode) 391 return NULL; 392 393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 394 sizeof(struct key_vector *) << bits); 395 396 if (bits == KEYLENGTH) 397 tnode->full_children = 1; 398 else 399 tnode->empty_children = 1ul << bits; 400 401 tn = tnode->kv; 402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 403 tn->pos = pos; 404 tn->bits = bits; 405 tn->slen = pos; 406 407 return tn; 408 } 409 410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 411 * and no bits are skipped. See discussion in dyntree paper p. 6 412 */ 413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 414 { 415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 416 } 417 418 /* Add a child at position i overwriting the old value. 419 * Update the value of full_children and empty_children. 420 */ 421 static void put_child(struct key_vector *tn, unsigned long i, 422 struct key_vector *n) 423 { 424 struct key_vector *chi = get_child(tn, i); 425 int isfull, wasfull; 426 427 BUG_ON(i >= child_length(tn)); 428 429 /* update emptyChildren, overflow into fullChildren */ 430 if (!n && chi) 431 empty_child_inc(tn); 432 if (n && !chi) 433 empty_child_dec(tn); 434 435 /* update fullChildren */ 436 wasfull = tnode_full(tn, chi); 437 isfull = tnode_full(tn, n); 438 439 if (wasfull && !isfull) 440 tn_info(tn)->full_children--; 441 else if (!wasfull && isfull) 442 tn_info(tn)->full_children++; 443 444 if (n && (tn->slen < n->slen)) 445 tn->slen = n->slen; 446 447 rcu_assign_pointer(tn->tnode[i], n); 448 } 449 450 static void update_children(struct key_vector *tn) 451 { 452 unsigned long i; 453 454 /* update all of the child parent pointers */ 455 for (i = child_length(tn); i;) { 456 struct key_vector *inode = get_child(tn, --i); 457 458 if (!inode) 459 continue; 460 461 /* Either update the children of a tnode that 462 * already belongs to us or update the child 463 * to point to ourselves. 464 */ 465 if (node_parent(inode) == tn) 466 update_children(inode); 467 else 468 node_set_parent(inode, tn); 469 } 470 } 471 472 static inline void put_child_root(struct key_vector *tp, t_key key, 473 struct key_vector *n) 474 { 475 if (IS_TRIE(tp)) 476 rcu_assign_pointer(tp->tnode[0], n); 477 else 478 put_child(tp, get_index(key, tp), n); 479 } 480 481 static inline void tnode_free_init(struct key_vector *tn) 482 { 483 tn_info(tn)->rcu.next = NULL; 484 } 485 486 static inline void tnode_free_append(struct key_vector *tn, 487 struct key_vector *n) 488 { 489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 490 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 491 } 492 493 static void tnode_free(struct key_vector *tn) 494 { 495 struct callback_head *head = &tn_info(tn)->rcu; 496 497 while (head) { 498 head = head->next; 499 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 500 node_free(tn); 501 502 tn = container_of(head, struct tnode, rcu)->kv; 503 } 504 505 if (tnode_free_size >= sysctl_fib_sync_mem) { 506 tnode_free_size = 0; 507 synchronize_rcu(); 508 } 509 } 510 511 static struct key_vector *replace(struct trie *t, 512 struct key_vector *oldtnode, 513 struct key_vector *tn) 514 { 515 struct key_vector *tp = node_parent(oldtnode); 516 unsigned long i; 517 518 /* setup the parent pointer out of and back into this node */ 519 NODE_INIT_PARENT(tn, tp); 520 put_child_root(tp, tn->key, tn); 521 522 /* update all of the child parent pointers */ 523 update_children(tn); 524 525 /* all pointers should be clean so we are done */ 526 tnode_free(oldtnode); 527 528 /* resize children now that oldtnode is freed */ 529 for (i = child_length(tn); i;) { 530 struct key_vector *inode = get_child(tn, --i); 531 532 /* resize child node */ 533 if (tnode_full(tn, inode)) 534 tn = resize(t, inode); 535 } 536 537 return tp; 538 } 539 540 static struct key_vector *inflate(struct trie *t, 541 struct key_vector *oldtnode) 542 { 543 struct key_vector *tn; 544 unsigned long i; 545 t_key m; 546 547 pr_debug("In inflate\n"); 548 549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 550 if (!tn) 551 goto notnode; 552 553 /* prepare oldtnode to be freed */ 554 tnode_free_init(oldtnode); 555 556 /* Assemble all of the pointers in our cluster, in this case that 557 * represents all of the pointers out of our allocated nodes that 558 * point to existing tnodes and the links between our allocated 559 * nodes. 560 */ 561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 562 struct key_vector *inode = get_child(oldtnode, --i); 563 struct key_vector *node0, *node1; 564 unsigned long j, k; 565 566 /* An empty child */ 567 if (!inode) 568 continue; 569 570 /* A leaf or an internal node with skipped bits */ 571 if (!tnode_full(oldtnode, inode)) { 572 put_child(tn, get_index(inode->key, tn), inode); 573 continue; 574 } 575 576 /* drop the node in the old tnode free list */ 577 tnode_free_append(oldtnode, inode); 578 579 /* An internal node with two children */ 580 if (inode->bits == 1) { 581 put_child(tn, 2 * i + 1, get_child(inode, 1)); 582 put_child(tn, 2 * i, get_child(inode, 0)); 583 continue; 584 } 585 586 /* We will replace this node 'inode' with two new 587 * ones, 'node0' and 'node1', each with half of the 588 * original children. The two new nodes will have 589 * a position one bit further down the key and this 590 * means that the "significant" part of their keys 591 * (see the discussion near the top of this file) 592 * will differ by one bit, which will be "0" in 593 * node0's key and "1" in node1's key. Since we are 594 * moving the key position by one step, the bit that 595 * we are moving away from - the bit at position 596 * (tn->pos) - is the one that will differ between 597 * node0 and node1. So... we synthesize that bit in the 598 * two new keys. 599 */ 600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 601 if (!node1) 602 goto nomem; 603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 604 605 tnode_free_append(tn, node1); 606 if (!node0) 607 goto nomem; 608 tnode_free_append(tn, node0); 609 610 /* populate child pointers in new nodes */ 611 for (k = child_length(inode), j = k / 2; j;) { 612 put_child(node1, --j, get_child(inode, --k)); 613 put_child(node0, j, get_child(inode, j)); 614 put_child(node1, --j, get_child(inode, --k)); 615 put_child(node0, j, get_child(inode, j)); 616 } 617 618 /* link new nodes to parent */ 619 NODE_INIT_PARENT(node1, tn); 620 NODE_INIT_PARENT(node0, tn); 621 622 /* link parent to nodes */ 623 put_child(tn, 2 * i + 1, node1); 624 put_child(tn, 2 * i, node0); 625 } 626 627 /* setup the parent pointers into and out of this node */ 628 return replace(t, oldtnode, tn); 629 nomem: 630 /* all pointers should be clean so we are done */ 631 tnode_free(tn); 632 notnode: 633 return NULL; 634 } 635 636 static struct key_vector *halve(struct trie *t, 637 struct key_vector *oldtnode) 638 { 639 struct key_vector *tn; 640 unsigned long i; 641 642 pr_debug("In halve\n"); 643 644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 645 if (!tn) 646 goto notnode; 647 648 /* prepare oldtnode to be freed */ 649 tnode_free_init(oldtnode); 650 651 /* Assemble all of the pointers in our cluster, in this case that 652 * represents all of the pointers out of our allocated nodes that 653 * point to existing tnodes and the links between our allocated 654 * nodes. 655 */ 656 for (i = child_length(oldtnode); i;) { 657 struct key_vector *node1 = get_child(oldtnode, --i); 658 struct key_vector *node0 = get_child(oldtnode, --i); 659 struct key_vector *inode; 660 661 /* At least one of the children is empty */ 662 if (!node1 || !node0) { 663 put_child(tn, i / 2, node1 ? : node0); 664 continue; 665 } 666 667 /* Two nonempty children */ 668 inode = tnode_new(node0->key, oldtnode->pos, 1); 669 if (!inode) 670 goto nomem; 671 tnode_free_append(tn, inode); 672 673 /* initialize pointers out of node */ 674 put_child(inode, 1, node1); 675 put_child(inode, 0, node0); 676 NODE_INIT_PARENT(inode, tn); 677 678 /* link parent to node */ 679 put_child(tn, i / 2, inode); 680 } 681 682 /* setup the parent pointers into and out of this node */ 683 return replace(t, oldtnode, tn); 684 nomem: 685 /* all pointers should be clean so we are done */ 686 tnode_free(tn); 687 notnode: 688 return NULL; 689 } 690 691 static struct key_vector *collapse(struct trie *t, 692 struct key_vector *oldtnode) 693 { 694 struct key_vector *n, *tp; 695 unsigned long i; 696 697 /* scan the tnode looking for that one child that might still exist */ 698 for (n = NULL, i = child_length(oldtnode); !n && i;) 699 n = get_child(oldtnode, --i); 700 701 /* compress one level */ 702 tp = node_parent(oldtnode); 703 put_child_root(tp, oldtnode->key, n); 704 node_set_parent(n, tp); 705 706 /* drop dead node */ 707 node_free(oldtnode); 708 709 return tp; 710 } 711 712 static unsigned char update_suffix(struct key_vector *tn) 713 { 714 unsigned char slen = tn->pos; 715 unsigned long stride, i; 716 unsigned char slen_max; 717 718 /* only vector 0 can have a suffix length greater than or equal to 719 * tn->pos + tn->bits, the second highest node will have a suffix 720 * length at most of tn->pos + tn->bits - 1 721 */ 722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 723 724 /* search though the list of children looking for nodes that might 725 * have a suffix greater than the one we currently have. This is 726 * why we start with a stride of 2 since a stride of 1 would 727 * represent the nodes with suffix length equal to tn->pos 728 */ 729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 730 struct key_vector *n = get_child(tn, i); 731 732 if (!n || (n->slen <= slen)) 733 continue; 734 735 /* update stride and slen based on new value */ 736 stride <<= (n->slen - slen); 737 slen = n->slen; 738 i &= ~(stride - 1); 739 740 /* stop searching if we have hit the maximum possible value */ 741 if (slen >= slen_max) 742 break; 743 } 744 745 tn->slen = slen; 746 747 return slen; 748 } 749 750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 751 * the Helsinki University of Technology and Matti Tikkanen of Nokia 752 * Telecommunications, page 6: 753 * "A node is doubled if the ratio of non-empty children to all 754 * children in the *doubled* node is at least 'high'." 755 * 756 * 'high' in this instance is the variable 'inflate_threshold'. It 757 * is expressed as a percentage, so we multiply it with 758 * child_length() and instead of multiplying by 2 (since the 759 * child array will be doubled by inflate()) and multiplying 760 * the left-hand side by 100 (to handle the percentage thing) we 761 * multiply the left-hand side by 50. 762 * 763 * The left-hand side may look a bit weird: child_length(tn) 764 * - tn->empty_children is of course the number of non-null children 765 * in the current node. tn->full_children is the number of "full" 766 * children, that is non-null tnodes with a skip value of 0. 767 * All of those will be doubled in the resulting inflated tnode, so 768 * we just count them one extra time here. 769 * 770 * A clearer way to write this would be: 771 * 772 * to_be_doubled = tn->full_children; 773 * not_to_be_doubled = child_length(tn) - tn->empty_children - 774 * tn->full_children; 775 * 776 * new_child_length = child_length(tn) * 2; 777 * 778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 779 * new_child_length; 780 * if (new_fill_factor >= inflate_threshold) 781 * 782 * ...and so on, tho it would mess up the while () loop. 783 * 784 * anyway, 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 786 * inflate_threshold 787 * 788 * avoid a division: 789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 790 * inflate_threshold * new_child_length 791 * 792 * expand not_to_be_doubled and to_be_doubled, and shorten: 793 * 100 * (child_length(tn) - tn->empty_children + 794 * tn->full_children) >= inflate_threshold * new_child_length 795 * 796 * expand new_child_length: 797 * 100 * (child_length(tn) - tn->empty_children + 798 * tn->full_children) >= 799 * inflate_threshold * child_length(tn) * 2 800 * 801 * shorten again: 802 * 50 * (tn->full_children + child_length(tn) - 803 * tn->empty_children) >= inflate_threshold * 804 * child_length(tn) 805 * 806 */ 807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 808 { 809 unsigned long used = child_length(tn); 810 unsigned long threshold = used; 811 812 /* Keep root node larger */ 813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 814 used -= tn_info(tn)->empty_children; 815 used += tn_info(tn)->full_children; 816 817 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 818 819 return (used > 1) && tn->pos && ((50 * used) >= threshold); 820 } 821 822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 823 { 824 unsigned long used = child_length(tn); 825 unsigned long threshold = used; 826 827 /* Keep root node larger */ 828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 829 used -= tn_info(tn)->empty_children; 830 831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 832 833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 834 } 835 836 static inline bool should_collapse(struct key_vector *tn) 837 { 838 unsigned long used = child_length(tn); 839 840 used -= tn_info(tn)->empty_children; 841 842 /* account for bits == KEYLENGTH case */ 843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 844 used -= KEY_MAX; 845 846 /* One child or none, time to drop us from the trie */ 847 return used < 2; 848 } 849 850 #define MAX_WORK 10 851 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 852 { 853 #ifdef CONFIG_IP_FIB_TRIE_STATS 854 struct trie_use_stats __percpu *stats = t->stats; 855 #endif 856 struct key_vector *tp = node_parent(tn); 857 unsigned long cindex = get_index(tn->key, tp); 858 int max_work = MAX_WORK; 859 860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 861 tn, inflate_threshold, halve_threshold); 862 863 /* track the tnode via the pointer from the parent instead of 864 * doing it ourselves. This way we can let RCU fully do its 865 * thing without us interfering 866 */ 867 BUG_ON(tn != get_child(tp, cindex)); 868 869 /* Double as long as the resulting node has a number of 870 * nonempty nodes that are above the threshold. 871 */ 872 while (should_inflate(tp, tn) && max_work) { 873 tp = inflate(t, tn); 874 if (!tp) { 875 #ifdef CONFIG_IP_FIB_TRIE_STATS 876 this_cpu_inc(stats->resize_node_skipped); 877 #endif 878 break; 879 } 880 881 max_work--; 882 tn = get_child(tp, cindex); 883 } 884 885 /* update parent in case inflate failed */ 886 tp = node_parent(tn); 887 888 /* Return if at least one inflate is run */ 889 if (max_work != MAX_WORK) 890 return tp; 891 892 /* Halve as long as the number of empty children in this 893 * node is above threshold. 894 */ 895 while (should_halve(tp, tn) && max_work) { 896 tp = halve(t, tn); 897 if (!tp) { 898 #ifdef CONFIG_IP_FIB_TRIE_STATS 899 this_cpu_inc(stats->resize_node_skipped); 900 #endif 901 break; 902 } 903 904 max_work--; 905 tn = get_child(tp, cindex); 906 } 907 908 /* Only one child remains */ 909 if (should_collapse(tn)) 910 return collapse(t, tn); 911 912 /* update parent in case halve failed */ 913 return node_parent(tn); 914 } 915 916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 917 { 918 unsigned char node_slen = tn->slen; 919 920 while ((node_slen > tn->pos) && (node_slen > slen)) { 921 slen = update_suffix(tn); 922 if (node_slen == slen) 923 break; 924 925 tn = node_parent(tn); 926 node_slen = tn->slen; 927 } 928 } 929 930 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 931 { 932 while (tn->slen < slen) { 933 tn->slen = slen; 934 tn = node_parent(tn); 935 } 936 } 937 938 /* rcu_read_lock needs to be hold by caller from readside */ 939 static struct key_vector *fib_find_node(struct trie *t, 940 struct key_vector **tp, u32 key) 941 { 942 struct key_vector *pn, *n = t->kv; 943 unsigned long index = 0; 944 945 do { 946 pn = n; 947 n = get_child_rcu(n, index); 948 949 if (!n) 950 break; 951 952 index = get_cindex(key, n); 953 954 /* This bit of code is a bit tricky but it combines multiple 955 * checks into a single check. The prefix consists of the 956 * prefix plus zeros for the bits in the cindex. The index 957 * is the difference between the key and this value. From 958 * this we can actually derive several pieces of data. 959 * if (index >= (1ul << bits)) 960 * we have a mismatch in skip bits and failed 961 * else 962 * we know the value is cindex 963 * 964 * This check is safe even if bits == KEYLENGTH due to the 965 * fact that we can only allocate a node with 32 bits if a 966 * long is greater than 32 bits. 967 */ 968 if (index >= (1ul << n->bits)) { 969 n = NULL; 970 break; 971 } 972 973 /* keep searching until we find a perfect match leaf or NULL */ 974 } while (IS_TNODE(n)); 975 976 *tp = pn; 977 978 return n; 979 } 980 981 /* Return the first fib alias matching TOS with 982 * priority less than or equal to PRIO. 983 * If 'find_first' is set, return the first matching 984 * fib alias, regardless of TOS and priority. 985 */ 986 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 987 u8 tos, u32 prio, u32 tb_id, 988 bool find_first) 989 { 990 struct fib_alias *fa; 991 992 if (!fah) 993 return NULL; 994 995 hlist_for_each_entry(fa, fah, fa_list) { 996 if (fa->fa_slen < slen) 997 continue; 998 if (fa->fa_slen != slen) 999 break; 1000 if (fa->tb_id > tb_id) 1001 continue; 1002 if (fa->tb_id != tb_id) 1003 break; 1004 if (find_first) 1005 return fa; 1006 if (fa->fa_tos > tos) 1007 continue; 1008 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1009 return fa; 1010 } 1011 1012 return NULL; 1013 } 1014 1015 static struct fib_alias * 1016 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1017 { 1018 u8 slen = KEYLENGTH - fri->dst_len; 1019 struct key_vector *l, *tp; 1020 struct fib_table *tb; 1021 struct fib_alias *fa; 1022 struct trie *t; 1023 1024 tb = fib_get_table(net, fri->tb_id); 1025 if (!tb) 1026 return NULL; 1027 1028 t = (struct trie *)tb->tb_data; 1029 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1030 if (!l) 1031 return NULL; 1032 1033 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1034 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1035 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1036 fa->fa_type == fri->type) 1037 return fa; 1038 } 1039 1040 return NULL; 1041 } 1042 1043 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1044 { 1045 struct fib_alias *fa_match; 1046 1047 rcu_read_lock(); 1048 1049 fa_match = fib_find_matching_alias(net, fri); 1050 if (!fa_match) 1051 goto out; 1052 1053 fa_match->offload = fri->offload; 1054 fa_match->trap = fri->trap; 1055 1056 out: 1057 rcu_read_unlock(); 1058 } 1059 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1060 1061 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1062 { 1063 while (!IS_TRIE(tn)) 1064 tn = resize(t, tn); 1065 } 1066 1067 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1068 struct fib_alias *new, t_key key) 1069 { 1070 struct key_vector *n, *l; 1071 1072 l = leaf_new(key, new); 1073 if (!l) 1074 goto noleaf; 1075 1076 /* retrieve child from parent node */ 1077 n = get_child(tp, get_index(key, tp)); 1078 1079 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1080 * 1081 * Add a new tnode here 1082 * first tnode need some special handling 1083 * leaves us in position for handling as case 3 1084 */ 1085 if (n) { 1086 struct key_vector *tn; 1087 1088 tn = tnode_new(key, __fls(key ^ n->key), 1); 1089 if (!tn) 1090 goto notnode; 1091 1092 /* initialize routes out of node */ 1093 NODE_INIT_PARENT(tn, tp); 1094 put_child(tn, get_index(key, tn) ^ 1, n); 1095 1096 /* start adding routes into the node */ 1097 put_child_root(tp, key, tn); 1098 node_set_parent(n, tn); 1099 1100 /* parent now has a NULL spot where the leaf can go */ 1101 tp = tn; 1102 } 1103 1104 /* Case 3: n is NULL, and will just insert a new leaf */ 1105 node_push_suffix(tp, new->fa_slen); 1106 NODE_INIT_PARENT(l, tp); 1107 put_child_root(tp, key, l); 1108 trie_rebalance(t, tp); 1109 1110 return 0; 1111 notnode: 1112 node_free(l); 1113 noleaf: 1114 return -ENOMEM; 1115 } 1116 1117 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1118 struct key_vector *l, struct fib_alias *new, 1119 struct fib_alias *fa, t_key key) 1120 { 1121 if (!l) 1122 return fib_insert_node(t, tp, new, key); 1123 1124 if (fa) { 1125 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1126 } else { 1127 struct fib_alias *last; 1128 1129 hlist_for_each_entry(last, &l->leaf, fa_list) { 1130 if (new->fa_slen < last->fa_slen) 1131 break; 1132 if ((new->fa_slen == last->fa_slen) && 1133 (new->tb_id > last->tb_id)) 1134 break; 1135 fa = last; 1136 } 1137 1138 if (fa) 1139 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1140 else 1141 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1142 } 1143 1144 /* if we added to the tail node then we need to update slen */ 1145 if (l->slen < new->fa_slen) { 1146 l->slen = new->fa_slen; 1147 node_push_suffix(tp, new->fa_slen); 1148 } 1149 1150 return 0; 1151 } 1152 1153 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1154 { 1155 if (plen > KEYLENGTH) { 1156 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1157 return false; 1158 } 1159 1160 if ((plen < KEYLENGTH) && (key << plen)) { 1161 NL_SET_ERR_MSG(extack, 1162 "Invalid prefix for given prefix length"); 1163 return false; 1164 } 1165 1166 return true; 1167 } 1168 1169 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1170 struct key_vector *l, struct fib_alias *old); 1171 1172 /* Caller must hold RTNL. */ 1173 int fib_table_insert(struct net *net, struct fib_table *tb, 1174 struct fib_config *cfg, struct netlink_ext_ack *extack) 1175 { 1176 struct trie *t = (struct trie *)tb->tb_data; 1177 struct fib_alias *fa, *new_fa; 1178 struct key_vector *l, *tp; 1179 u16 nlflags = NLM_F_EXCL; 1180 struct fib_info *fi; 1181 u8 plen = cfg->fc_dst_len; 1182 u8 slen = KEYLENGTH - plen; 1183 u8 tos = cfg->fc_tos; 1184 u32 key; 1185 int err; 1186 1187 key = ntohl(cfg->fc_dst); 1188 1189 if (!fib_valid_key_len(key, plen, extack)) 1190 return -EINVAL; 1191 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1193 1194 fi = fib_create_info(cfg, extack); 1195 if (IS_ERR(fi)) { 1196 err = PTR_ERR(fi); 1197 goto err; 1198 } 1199 1200 l = fib_find_node(t, &tp, key); 1201 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1202 tb->tb_id, false) : NULL; 1203 1204 /* Now fa, if non-NULL, points to the first fib alias 1205 * with the same keys [prefix,tos,priority], if such key already 1206 * exists or to the node before which we will insert new one. 1207 * 1208 * If fa is NULL, we will need to allocate a new one and 1209 * insert to the tail of the section matching the suffix length 1210 * of the new alias. 1211 */ 1212 1213 if (fa && fa->fa_tos == tos && 1214 fa->fa_info->fib_priority == fi->fib_priority) { 1215 struct fib_alias *fa_first, *fa_match; 1216 1217 err = -EEXIST; 1218 if (cfg->fc_nlflags & NLM_F_EXCL) 1219 goto out; 1220 1221 nlflags &= ~NLM_F_EXCL; 1222 1223 /* We have 2 goals: 1224 * 1. Find exact match for type, scope, fib_info to avoid 1225 * duplicate routes 1226 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1227 */ 1228 fa_match = NULL; 1229 fa_first = fa; 1230 hlist_for_each_entry_from(fa, fa_list) { 1231 if ((fa->fa_slen != slen) || 1232 (fa->tb_id != tb->tb_id) || 1233 (fa->fa_tos != tos)) 1234 break; 1235 if (fa->fa_info->fib_priority != fi->fib_priority) 1236 break; 1237 if (fa->fa_type == cfg->fc_type && 1238 fa->fa_info == fi) { 1239 fa_match = fa; 1240 break; 1241 } 1242 } 1243 1244 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1245 struct fib_info *fi_drop; 1246 u8 state; 1247 1248 nlflags |= NLM_F_REPLACE; 1249 fa = fa_first; 1250 if (fa_match) { 1251 if (fa == fa_match) 1252 err = 0; 1253 goto out; 1254 } 1255 err = -ENOBUFS; 1256 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1257 if (!new_fa) 1258 goto out; 1259 1260 fi_drop = fa->fa_info; 1261 new_fa->fa_tos = fa->fa_tos; 1262 new_fa->fa_info = fi; 1263 new_fa->fa_type = cfg->fc_type; 1264 state = fa->fa_state; 1265 new_fa->fa_state = state & ~FA_S_ACCESSED; 1266 new_fa->fa_slen = fa->fa_slen; 1267 new_fa->tb_id = tb->tb_id; 1268 new_fa->fa_default = -1; 1269 new_fa->offload = 0; 1270 new_fa->trap = 0; 1271 1272 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1273 1274 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1275 tb->tb_id, true) == new_fa) { 1276 enum fib_event_type fib_event; 1277 1278 fib_event = FIB_EVENT_ENTRY_REPLACE; 1279 err = call_fib_entry_notifiers(net, fib_event, 1280 key, plen, 1281 new_fa, extack); 1282 if (err) { 1283 hlist_replace_rcu(&new_fa->fa_list, 1284 &fa->fa_list); 1285 goto out_free_new_fa; 1286 } 1287 } 1288 1289 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1290 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1291 1292 alias_free_mem_rcu(fa); 1293 1294 fib_release_info(fi_drop); 1295 if (state & FA_S_ACCESSED) 1296 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1297 1298 goto succeeded; 1299 } 1300 /* Error if we find a perfect match which 1301 * uses the same scope, type, and nexthop 1302 * information. 1303 */ 1304 if (fa_match) 1305 goto out; 1306 1307 if (cfg->fc_nlflags & NLM_F_APPEND) 1308 nlflags |= NLM_F_APPEND; 1309 else 1310 fa = fa_first; 1311 } 1312 err = -ENOENT; 1313 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1314 goto out; 1315 1316 nlflags |= NLM_F_CREATE; 1317 err = -ENOBUFS; 1318 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1319 if (!new_fa) 1320 goto out; 1321 1322 new_fa->fa_info = fi; 1323 new_fa->fa_tos = tos; 1324 new_fa->fa_type = cfg->fc_type; 1325 new_fa->fa_state = 0; 1326 new_fa->fa_slen = slen; 1327 new_fa->tb_id = tb->tb_id; 1328 new_fa->fa_default = -1; 1329 new_fa->offload = 0; 1330 new_fa->trap = 0; 1331 1332 /* Insert new entry to the list. */ 1333 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1334 if (err) 1335 goto out_free_new_fa; 1336 1337 /* The alias was already inserted, so the node must exist. */ 1338 l = l ? l : fib_find_node(t, &tp, key); 1339 if (WARN_ON_ONCE(!l)) 1340 goto out_free_new_fa; 1341 1342 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1343 new_fa) { 1344 enum fib_event_type fib_event; 1345 1346 fib_event = FIB_EVENT_ENTRY_REPLACE; 1347 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1348 new_fa, extack); 1349 if (err) 1350 goto out_remove_new_fa; 1351 } 1352 1353 if (!plen) 1354 tb->tb_num_default++; 1355 1356 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1357 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1358 &cfg->fc_nlinfo, nlflags); 1359 succeeded: 1360 return 0; 1361 1362 out_remove_new_fa: 1363 fib_remove_alias(t, tp, l, new_fa); 1364 out_free_new_fa: 1365 kmem_cache_free(fn_alias_kmem, new_fa); 1366 out: 1367 fib_release_info(fi); 1368 err: 1369 return err; 1370 } 1371 1372 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1373 { 1374 t_key prefix = n->key; 1375 1376 return (key ^ prefix) & (prefix | -prefix); 1377 } 1378 1379 /* should be called with rcu_read_lock */ 1380 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1381 struct fib_result *res, int fib_flags) 1382 { 1383 struct trie *t = (struct trie *) tb->tb_data; 1384 #ifdef CONFIG_IP_FIB_TRIE_STATS 1385 struct trie_use_stats __percpu *stats = t->stats; 1386 #endif 1387 const t_key key = ntohl(flp->daddr); 1388 struct key_vector *n, *pn; 1389 struct fib_alias *fa; 1390 unsigned long index; 1391 t_key cindex; 1392 1393 pn = t->kv; 1394 cindex = 0; 1395 1396 n = get_child_rcu(pn, cindex); 1397 if (!n) { 1398 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1399 return -EAGAIN; 1400 } 1401 1402 #ifdef CONFIG_IP_FIB_TRIE_STATS 1403 this_cpu_inc(stats->gets); 1404 #endif 1405 1406 /* Step 1: Travel to the longest prefix match in the trie */ 1407 for (;;) { 1408 index = get_cindex(key, n); 1409 1410 /* This bit of code is a bit tricky but it combines multiple 1411 * checks into a single check. The prefix consists of the 1412 * prefix plus zeros for the "bits" in the prefix. The index 1413 * is the difference between the key and this value. From 1414 * this we can actually derive several pieces of data. 1415 * if (index >= (1ul << bits)) 1416 * we have a mismatch in skip bits and failed 1417 * else 1418 * we know the value is cindex 1419 * 1420 * This check is safe even if bits == KEYLENGTH due to the 1421 * fact that we can only allocate a node with 32 bits if a 1422 * long is greater than 32 bits. 1423 */ 1424 if (index >= (1ul << n->bits)) 1425 break; 1426 1427 /* we have found a leaf. Prefixes have already been compared */ 1428 if (IS_LEAF(n)) 1429 goto found; 1430 1431 /* only record pn and cindex if we are going to be chopping 1432 * bits later. Otherwise we are just wasting cycles. 1433 */ 1434 if (n->slen > n->pos) { 1435 pn = n; 1436 cindex = index; 1437 } 1438 1439 n = get_child_rcu(n, index); 1440 if (unlikely(!n)) 1441 goto backtrace; 1442 } 1443 1444 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1445 for (;;) { 1446 /* record the pointer where our next node pointer is stored */ 1447 struct key_vector __rcu **cptr = n->tnode; 1448 1449 /* This test verifies that none of the bits that differ 1450 * between the key and the prefix exist in the region of 1451 * the lsb and higher in the prefix. 1452 */ 1453 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1454 goto backtrace; 1455 1456 /* exit out and process leaf */ 1457 if (unlikely(IS_LEAF(n))) 1458 break; 1459 1460 /* Don't bother recording parent info. Since we are in 1461 * prefix match mode we will have to come back to wherever 1462 * we started this traversal anyway 1463 */ 1464 1465 while ((n = rcu_dereference(*cptr)) == NULL) { 1466 backtrace: 1467 #ifdef CONFIG_IP_FIB_TRIE_STATS 1468 if (!n) 1469 this_cpu_inc(stats->null_node_hit); 1470 #endif 1471 /* If we are at cindex 0 there are no more bits for 1472 * us to strip at this level so we must ascend back 1473 * up one level to see if there are any more bits to 1474 * be stripped there. 1475 */ 1476 while (!cindex) { 1477 t_key pkey = pn->key; 1478 1479 /* If we don't have a parent then there is 1480 * nothing for us to do as we do not have any 1481 * further nodes to parse. 1482 */ 1483 if (IS_TRIE(pn)) { 1484 trace_fib_table_lookup(tb->tb_id, flp, 1485 NULL, -EAGAIN); 1486 return -EAGAIN; 1487 } 1488 #ifdef CONFIG_IP_FIB_TRIE_STATS 1489 this_cpu_inc(stats->backtrack); 1490 #endif 1491 /* Get Child's index */ 1492 pn = node_parent_rcu(pn); 1493 cindex = get_index(pkey, pn); 1494 } 1495 1496 /* strip the least significant bit from the cindex */ 1497 cindex &= cindex - 1; 1498 1499 /* grab pointer for next child node */ 1500 cptr = &pn->tnode[cindex]; 1501 } 1502 } 1503 1504 found: 1505 /* this line carries forward the xor from earlier in the function */ 1506 index = key ^ n->key; 1507 1508 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1509 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1510 struct fib_info *fi = fa->fa_info; 1511 int nhsel, err; 1512 1513 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1514 if (index >= (1ul << fa->fa_slen)) 1515 continue; 1516 } 1517 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1518 continue; 1519 if (fi->fib_dead) 1520 continue; 1521 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1522 continue; 1523 fib_alias_accessed(fa); 1524 err = fib_props[fa->fa_type].error; 1525 if (unlikely(err < 0)) { 1526 out_reject: 1527 #ifdef CONFIG_IP_FIB_TRIE_STATS 1528 this_cpu_inc(stats->semantic_match_passed); 1529 #endif 1530 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1531 return err; 1532 } 1533 if (fi->fib_flags & RTNH_F_DEAD) 1534 continue; 1535 1536 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) { 1537 err = fib_props[RTN_BLACKHOLE].error; 1538 goto out_reject; 1539 } 1540 1541 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1542 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); 1543 1544 if (nhc->nhc_flags & RTNH_F_DEAD) 1545 continue; 1546 if (ip_ignore_linkdown(nhc->nhc_dev) && 1547 nhc->nhc_flags & RTNH_F_LINKDOWN && 1548 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1549 continue; 1550 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1551 if (flp->flowi4_oif && 1552 flp->flowi4_oif != nhc->nhc_oif) 1553 continue; 1554 } 1555 1556 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1557 refcount_inc(&fi->fib_clntref); 1558 1559 res->prefix = htonl(n->key); 1560 res->prefixlen = KEYLENGTH - fa->fa_slen; 1561 res->nh_sel = nhsel; 1562 res->nhc = nhc; 1563 res->type = fa->fa_type; 1564 res->scope = fi->fib_scope; 1565 res->fi = fi; 1566 res->table = tb; 1567 res->fa_head = &n->leaf; 1568 #ifdef CONFIG_IP_FIB_TRIE_STATS 1569 this_cpu_inc(stats->semantic_match_passed); 1570 #endif 1571 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1572 1573 return err; 1574 } 1575 } 1576 #ifdef CONFIG_IP_FIB_TRIE_STATS 1577 this_cpu_inc(stats->semantic_match_miss); 1578 #endif 1579 goto backtrace; 1580 } 1581 EXPORT_SYMBOL_GPL(fib_table_lookup); 1582 1583 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1584 struct key_vector *l, struct fib_alias *old) 1585 { 1586 /* record the location of the previous list_info entry */ 1587 struct hlist_node **pprev = old->fa_list.pprev; 1588 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1589 1590 /* remove the fib_alias from the list */ 1591 hlist_del_rcu(&old->fa_list); 1592 1593 /* if we emptied the list this leaf will be freed and we can sort 1594 * out parent suffix lengths as a part of trie_rebalance 1595 */ 1596 if (hlist_empty(&l->leaf)) { 1597 if (tp->slen == l->slen) 1598 node_pull_suffix(tp, tp->pos); 1599 put_child_root(tp, l->key, NULL); 1600 node_free(l); 1601 trie_rebalance(t, tp); 1602 return; 1603 } 1604 1605 /* only access fa if it is pointing at the last valid hlist_node */ 1606 if (*pprev) 1607 return; 1608 1609 /* update the trie with the latest suffix length */ 1610 l->slen = fa->fa_slen; 1611 node_pull_suffix(tp, fa->fa_slen); 1612 } 1613 1614 static void fib_notify_alias_delete(struct net *net, u32 key, 1615 struct hlist_head *fah, 1616 struct fib_alias *fa_to_delete, 1617 struct netlink_ext_ack *extack) 1618 { 1619 struct fib_alias *fa_next, *fa_to_notify; 1620 u32 tb_id = fa_to_delete->tb_id; 1621 u8 slen = fa_to_delete->fa_slen; 1622 enum fib_event_type fib_event; 1623 1624 /* Do not notify if we do not care about the route. */ 1625 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1626 return; 1627 1628 /* Determine if the route should be replaced by the next route in the 1629 * list. 1630 */ 1631 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1632 struct fib_alias, fa_list); 1633 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1634 fib_event = FIB_EVENT_ENTRY_REPLACE; 1635 fa_to_notify = fa_next; 1636 } else { 1637 fib_event = FIB_EVENT_ENTRY_DEL; 1638 fa_to_notify = fa_to_delete; 1639 } 1640 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1641 fa_to_notify, extack); 1642 } 1643 1644 /* Caller must hold RTNL. */ 1645 int fib_table_delete(struct net *net, struct fib_table *tb, 1646 struct fib_config *cfg, struct netlink_ext_ack *extack) 1647 { 1648 struct trie *t = (struct trie *) tb->tb_data; 1649 struct fib_alias *fa, *fa_to_delete; 1650 struct key_vector *l, *tp; 1651 u8 plen = cfg->fc_dst_len; 1652 u8 slen = KEYLENGTH - plen; 1653 u8 tos = cfg->fc_tos; 1654 u32 key; 1655 1656 key = ntohl(cfg->fc_dst); 1657 1658 if (!fib_valid_key_len(key, plen, extack)) 1659 return -EINVAL; 1660 1661 l = fib_find_node(t, &tp, key); 1662 if (!l) 1663 return -ESRCH; 1664 1665 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1666 if (!fa) 1667 return -ESRCH; 1668 1669 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1670 1671 fa_to_delete = NULL; 1672 hlist_for_each_entry_from(fa, fa_list) { 1673 struct fib_info *fi = fa->fa_info; 1674 1675 if ((fa->fa_slen != slen) || 1676 (fa->tb_id != tb->tb_id) || 1677 (fa->fa_tos != tos)) 1678 break; 1679 1680 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1681 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1682 fa->fa_info->fib_scope == cfg->fc_scope) && 1683 (!cfg->fc_prefsrc || 1684 fi->fib_prefsrc == cfg->fc_prefsrc) && 1685 (!cfg->fc_protocol || 1686 fi->fib_protocol == cfg->fc_protocol) && 1687 fib_nh_match(cfg, fi, extack) == 0 && 1688 fib_metrics_match(cfg, fi)) { 1689 fa_to_delete = fa; 1690 break; 1691 } 1692 } 1693 1694 if (!fa_to_delete) 1695 return -ESRCH; 1696 1697 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1698 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1699 &cfg->fc_nlinfo, 0); 1700 1701 if (!plen) 1702 tb->tb_num_default--; 1703 1704 fib_remove_alias(t, tp, l, fa_to_delete); 1705 1706 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1707 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1708 1709 fib_release_info(fa_to_delete->fa_info); 1710 alias_free_mem_rcu(fa_to_delete); 1711 return 0; 1712 } 1713 1714 /* Scan for the next leaf starting at the provided key value */ 1715 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1716 { 1717 struct key_vector *pn, *n = *tn; 1718 unsigned long cindex; 1719 1720 /* this loop is meant to try and find the key in the trie */ 1721 do { 1722 /* record parent and next child index */ 1723 pn = n; 1724 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1725 1726 if (cindex >> pn->bits) 1727 break; 1728 1729 /* descend into the next child */ 1730 n = get_child_rcu(pn, cindex++); 1731 if (!n) 1732 break; 1733 1734 /* guarantee forward progress on the keys */ 1735 if (IS_LEAF(n) && (n->key >= key)) 1736 goto found; 1737 } while (IS_TNODE(n)); 1738 1739 /* this loop will search for the next leaf with a greater key */ 1740 while (!IS_TRIE(pn)) { 1741 /* if we exhausted the parent node we will need to climb */ 1742 if (cindex >= (1ul << pn->bits)) { 1743 t_key pkey = pn->key; 1744 1745 pn = node_parent_rcu(pn); 1746 cindex = get_index(pkey, pn) + 1; 1747 continue; 1748 } 1749 1750 /* grab the next available node */ 1751 n = get_child_rcu(pn, cindex++); 1752 if (!n) 1753 continue; 1754 1755 /* no need to compare keys since we bumped the index */ 1756 if (IS_LEAF(n)) 1757 goto found; 1758 1759 /* Rescan start scanning in new node */ 1760 pn = n; 1761 cindex = 0; 1762 } 1763 1764 *tn = pn; 1765 return NULL; /* Root of trie */ 1766 found: 1767 /* if we are at the limit for keys just return NULL for the tnode */ 1768 *tn = pn; 1769 return n; 1770 } 1771 1772 static void fib_trie_free(struct fib_table *tb) 1773 { 1774 struct trie *t = (struct trie *)tb->tb_data; 1775 struct key_vector *pn = t->kv; 1776 unsigned long cindex = 1; 1777 struct hlist_node *tmp; 1778 struct fib_alias *fa; 1779 1780 /* walk trie in reverse order and free everything */ 1781 for (;;) { 1782 struct key_vector *n; 1783 1784 if (!(cindex--)) { 1785 t_key pkey = pn->key; 1786 1787 if (IS_TRIE(pn)) 1788 break; 1789 1790 n = pn; 1791 pn = node_parent(pn); 1792 1793 /* drop emptied tnode */ 1794 put_child_root(pn, n->key, NULL); 1795 node_free(n); 1796 1797 cindex = get_index(pkey, pn); 1798 1799 continue; 1800 } 1801 1802 /* grab the next available node */ 1803 n = get_child(pn, cindex); 1804 if (!n) 1805 continue; 1806 1807 if (IS_TNODE(n)) { 1808 /* record pn and cindex for leaf walking */ 1809 pn = n; 1810 cindex = 1ul << n->bits; 1811 1812 continue; 1813 } 1814 1815 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1816 hlist_del_rcu(&fa->fa_list); 1817 alias_free_mem_rcu(fa); 1818 } 1819 1820 put_child_root(pn, n->key, NULL); 1821 node_free(n); 1822 } 1823 1824 #ifdef CONFIG_IP_FIB_TRIE_STATS 1825 free_percpu(t->stats); 1826 #endif 1827 kfree(tb); 1828 } 1829 1830 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1831 { 1832 struct trie *ot = (struct trie *)oldtb->tb_data; 1833 struct key_vector *l, *tp = ot->kv; 1834 struct fib_table *local_tb; 1835 struct fib_alias *fa; 1836 struct trie *lt; 1837 t_key key = 0; 1838 1839 if (oldtb->tb_data == oldtb->__data) 1840 return oldtb; 1841 1842 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1843 if (!local_tb) 1844 return NULL; 1845 1846 lt = (struct trie *)local_tb->tb_data; 1847 1848 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1849 struct key_vector *local_l = NULL, *local_tp; 1850 1851 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1852 struct fib_alias *new_fa; 1853 1854 if (local_tb->tb_id != fa->tb_id) 1855 continue; 1856 1857 /* clone fa for new local table */ 1858 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1859 if (!new_fa) 1860 goto out; 1861 1862 memcpy(new_fa, fa, sizeof(*fa)); 1863 1864 /* insert clone into table */ 1865 if (!local_l) 1866 local_l = fib_find_node(lt, &local_tp, l->key); 1867 1868 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1869 NULL, l->key)) { 1870 kmem_cache_free(fn_alias_kmem, new_fa); 1871 goto out; 1872 } 1873 } 1874 1875 /* stop loop if key wrapped back to 0 */ 1876 key = l->key + 1; 1877 if (key < l->key) 1878 break; 1879 } 1880 1881 return local_tb; 1882 out: 1883 fib_trie_free(local_tb); 1884 1885 return NULL; 1886 } 1887 1888 /* Caller must hold RTNL */ 1889 void fib_table_flush_external(struct fib_table *tb) 1890 { 1891 struct trie *t = (struct trie *)tb->tb_data; 1892 struct key_vector *pn = t->kv; 1893 unsigned long cindex = 1; 1894 struct hlist_node *tmp; 1895 struct fib_alias *fa; 1896 1897 /* walk trie in reverse order */ 1898 for (;;) { 1899 unsigned char slen = 0; 1900 struct key_vector *n; 1901 1902 if (!(cindex--)) { 1903 t_key pkey = pn->key; 1904 1905 /* cannot resize the trie vector */ 1906 if (IS_TRIE(pn)) 1907 break; 1908 1909 /* update the suffix to address pulled leaves */ 1910 if (pn->slen > pn->pos) 1911 update_suffix(pn); 1912 1913 /* resize completed node */ 1914 pn = resize(t, pn); 1915 cindex = get_index(pkey, pn); 1916 1917 continue; 1918 } 1919 1920 /* grab the next available node */ 1921 n = get_child(pn, cindex); 1922 if (!n) 1923 continue; 1924 1925 if (IS_TNODE(n)) { 1926 /* record pn and cindex for leaf walking */ 1927 pn = n; 1928 cindex = 1ul << n->bits; 1929 1930 continue; 1931 } 1932 1933 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1934 /* if alias was cloned to local then we just 1935 * need to remove the local copy from main 1936 */ 1937 if (tb->tb_id != fa->tb_id) { 1938 hlist_del_rcu(&fa->fa_list); 1939 alias_free_mem_rcu(fa); 1940 continue; 1941 } 1942 1943 /* record local slen */ 1944 slen = fa->fa_slen; 1945 } 1946 1947 /* update leaf slen */ 1948 n->slen = slen; 1949 1950 if (hlist_empty(&n->leaf)) { 1951 put_child_root(pn, n->key, NULL); 1952 node_free(n); 1953 } 1954 } 1955 } 1956 1957 /* Caller must hold RTNL. */ 1958 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1959 { 1960 struct trie *t = (struct trie *)tb->tb_data; 1961 struct key_vector *pn = t->kv; 1962 unsigned long cindex = 1; 1963 struct hlist_node *tmp; 1964 struct fib_alias *fa; 1965 int found = 0; 1966 1967 /* walk trie in reverse order */ 1968 for (;;) { 1969 unsigned char slen = 0; 1970 struct key_vector *n; 1971 1972 if (!(cindex--)) { 1973 t_key pkey = pn->key; 1974 1975 /* cannot resize the trie vector */ 1976 if (IS_TRIE(pn)) 1977 break; 1978 1979 /* update the suffix to address pulled leaves */ 1980 if (pn->slen > pn->pos) 1981 update_suffix(pn); 1982 1983 /* resize completed node */ 1984 pn = resize(t, pn); 1985 cindex = get_index(pkey, pn); 1986 1987 continue; 1988 } 1989 1990 /* grab the next available node */ 1991 n = get_child(pn, cindex); 1992 if (!n) 1993 continue; 1994 1995 if (IS_TNODE(n)) { 1996 /* record pn and cindex for leaf walking */ 1997 pn = n; 1998 cindex = 1ul << n->bits; 1999 2000 continue; 2001 } 2002 2003 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2004 struct fib_info *fi = fa->fa_info; 2005 2006 if (!fi || tb->tb_id != fa->tb_id || 2007 (!(fi->fib_flags & RTNH_F_DEAD) && 2008 !fib_props[fa->fa_type].error)) { 2009 slen = fa->fa_slen; 2010 continue; 2011 } 2012 2013 /* Do not flush error routes if network namespace is 2014 * not being dismantled 2015 */ 2016 if (!flush_all && fib_props[fa->fa_type].error) { 2017 slen = fa->fa_slen; 2018 continue; 2019 } 2020 2021 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2022 NULL); 2023 hlist_del_rcu(&fa->fa_list); 2024 fib_release_info(fa->fa_info); 2025 alias_free_mem_rcu(fa); 2026 found++; 2027 } 2028 2029 /* update leaf slen */ 2030 n->slen = slen; 2031 2032 if (hlist_empty(&n->leaf)) { 2033 put_child_root(pn, n->key, NULL); 2034 node_free(n); 2035 } 2036 } 2037 2038 pr_debug("trie_flush found=%d\n", found); 2039 return found; 2040 } 2041 2042 /* derived from fib_trie_free */ 2043 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2044 struct nl_info *info) 2045 { 2046 struct trie *t = (struct trie *)tb->tb_data; 2047 struct key_vector *pn = t->kv; 2048 unsigned long cindex = 1; 2049 struct fib_alias *fa; 2050 2051 for (;;) { 2052 struct key_vector *n; 2053 2054 if (!(cindex--)) { 2055 t_key pkey = pn->key; 2056 2057 if (IS_TRIE(pn)) 2058 break; 2059 2060 pn = node_parent(pn); 2061 cindex = get_index(pkey, pn); 2062 continue; 2063 } 2064 2065 /* grab the next available node */ 2066 n = get_child(pn, cindex); 2067 if (!n) 2068 continue; 2069 2070 if (IS_TNODE(n)) { 2071 /* record pn and cindex for leaf walking */ 2072 pn = n; 2073 cindex = 1ul << n->bits; 2074 2075 continue; 2076 } 2077 2078 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2079 struct fib_info *fi = fa->fa_info; 2080 2081 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2082 continue; 2083 2084 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2085 KEYLENGTH - fa->fa_slen, tb->tb_id, 2086 info, NLM_F_REPLACE); 2087 2088 /* call_fib_entry_notifiers will be removed when 2089 * in-kernel notifier is implemented and supported 2090 * for nexthop objects 2091 */ 2092 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 2093 n->key, 2094 KEYLENGTH - fa->fa_slen, fa, 2095 NULL); 2096 } 2097 } 2098 } 2099 2100 void fib_info_notify_update(struct net *net, struct nl_info *info) 2101 { 2102 unsigned int h; 2103 2104 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2105 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2106 struct fib_table *tb; 2107 2108 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2109 __fib_info_notify_update(net, tb, info); 2110 } 2111 } 2112 2113 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2114 struct notifier_block *nb, 2115 struct netlink_ext_ack *extack) 2116 { 2117 struct fib_alias *fa; 2118 int last_slen = -1; 2119 int err; 2120 2121 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2122 struct fib_info *fi = fa->fa_info; 2123 2124 if (!fi) 2125 continue; 2126 2127 /* local and main table can share the same trie, 2128 * so don't notify twice for the same entry. 2129 */ 2130 if (tb->tb_id != fa->tb_id) 2131 continue; 2132 2133 if (fa->fa_slen == last_slen) 2134 continue; 2135 2136 last_slen = fa->fa_slen; 2137 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2138 l->key, KEYLENGTH - fa->fa_slen, 2139 fa, extack); 2140 if (err) 2141 return err; 2142 } 2143 return 0; 2144 } 2145 2146 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2147 struct netlink_ext_ack *extack) 2148 { 2149 struct trie *t = (struct trie *)tb->tb_data; 2150 struct key_vector *l, *tp = t->kv; 2151 t_key key = 0; 2152 int err; 2153 2154 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2155 err = fib_leaf_notify(l, tb, nb, extack); 2156 if (err) 2157 return err; 2158 2159 key = l->key + 1; 2160 /* stop in case of wrap around */ 2161 if (key < l->key) 2162 break; 2163 } 2164 return 0; 2165 } 2166 2167 int fib_notify(struct net *net, struct notifier_block *nb, 2168 struct netlink_ext_ack *extack) 2169 { 2170 unsigned int h; 2171 int err; 2172 2173 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2174 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2175 struct fib_table *tb; 2176 2177 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2178 err = fib_table_notify(tb, nb, extack); 2179 if (err) 2180 return err; 2181 } 2182 } 2183 return 0; 2184 } 2185 2186 static void __trie_free_rcu(struct rcu_head *head) 2187 { 2188 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2189 #ifdef CONFIG_IP_FIB_TRIE_STATS 2190 struct trie *t = (struct trie *)tb->tb_data; 2191 2192 if (tb->tb_data == tb->__data) 2193 free_percpu(t->stats); 2194 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2195 kfree(tb); 2196 } 2197 2198 void fib_free_table(struct fib_table *tb) 2199 { 2200 call_rcu(&tb->rcu, __trie_free_rcu); 2201 } 2202 2203 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2204 struct sk_buff *skb, struct netlink_callback *cb, 2205 struct fib_dump_filter *filter) 2206 { 2207 unsigned int flags = NLM_F_MULTI; 2208 __be32 xkey = htonl(l->key); 2209 int i, s_i, i_fa, s_fa, err; 2210 struct fib_alias *fa; 2211 2212 if (filter->filter_set || 2213 !filter->dump_exceptions || !filter->dump_routes) 2214 flags |= NLM_F_DUMP_FILTERED; 2215 2216 s_i = cb->args[4]; 2217 s_fa = cb->args[5]; 2218 i = 0; 2219 2220 /* rcu_read_lock is hold by caller */ 2221 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2222 struct fib_info *fi = fa->fa_info; 2223 2224 if (i < s_i) 2225 goto next; 2226 2227 i_fa = 0; 2228 2229 if (tb->tb_id != fa->tb_id) 2230 goto next; 2231 2232 if (filter->filter_set) { 2233 if (filter->rt_type && fa->fa_type != filter->rt_type) 2234 goto next; 2235 2236 if ((filter->protocol && 2237 fi->fib_protocol != filter->protocol)) 2238 goto next; 2239 2240 if (filter->dev && 2241 !fib_info_nh_uses_dev(fi, filter->dev)) 2242 goto next; 2243 } 2244 2245 if (filter->dump_routes) { 2246 if (!s_fa) { 2247 struct fib_rt_info fri; 2248 2249 fri.fi = fi; 2250 fri.tb_id = tb->tb_id; 2251 fri.dst = xkey; 2252 fri.dst_len = KEYLENGTH - fa->fa_slen; 2253 fri.tos = fa->fa_tos; 2254 fri.type = fa->fa_type; 2255 fri.offload = fa->offload; 2256 fri.trap = fa->trap; 2257 err = fib_dump_info(skb, 2258 NETLINK_CB(cb->skb).portid, 2259 cb->nlh->nlmsg_seq, 2260 RTM_NEWROUTE, &fri, flags); 2261 if (err < 0) 2262 goto stop; 2263 } 2264 2265 i_fa++; 2266 } 2267 2268 if (filter->dump_exceptions) { 2269 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2270 &i_fa, s_fa, flags); 2271 if (err < 0) 2272 goto stop; 2273 } 2274 2275 next: 2276 i++; 2277 } 2278 2279 cb->args[4] = i; 2280 return skb->len; 2281 2282 stop: 2283 cb->args[4] = i; 2284 cb->args[5] = i_fa; 2285 return err; 2286 } 2287 2288 /* rcu_read_lock needs to be hold by caller from readside */ 2289 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2290 struct netlink_callback *cb, struct fib_dump_filter *filter) 2291 { 2292 struct trie *t = (struct trie *)tb->tb_data; 2293 struct key_vector *l, *tp = t->kv; 2294 /* Dump starting at last key. 2295 * Note: 0.0.0.0/0 (ie default) is first key. 2296 */ 2297 int count = cb->args[2]; 2298 t_key key = cb->args[3]; 2299 2300 /* First time here, count and key are both always 0. Count > 0 2301 * and key == 0 means the dump has wrapped around and we are done. 2302 */ 2303 if (count && !key) 2304 return skb->len; 2305 2306 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2307 int err; 2308 2309 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2310 if (err < 0) { 2311 cb->args[3] = key; 2312 cb->args[2] = count; 2313 return err; 2314 } 2315 2316 ++count; 2317 key = l->key + 1; 2318 2319 memset(&cb->args[4], 0, 2320 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2321 2322 /* stop loop if key wrapped back to 0 */ 2323 if (key < l->key) 2324 break; 2325 } 2326 2327 cb->args[3] = key; 2328 cb->args[2] = count; 2329 2330 return skb->len; 2331 } 2332 2333 void __init fib_trie_init(void) 2334 { 2335 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2336 sizeof(struct fib_alias), 2337 0, SLAB_PANIC, NULL); 2338 2339 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2340 LEAF_SIZE, 2341 0, SLAB_PANIC, NULL); 2342 } 2343 2344 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2345 { 2346 struct fib_table *tb; 2347 struct trie *t; 2348 size_t sz = sizeof(*tb); 2349 2350 if (!alias) 2351 sz += sizeof(struct trie); 2352 2353 tb = kzalloc(sz, GFP_KERNEL); 2354 if (!tb) 2355 return NULL; 2356 2357 tb->tb_id = id; 2358 tb->tb_num_default = 0; 2359 tb->tb_data = (alias ? alias->__data : tb->__data); 2360 2361 if (alias) 2362 return tb; 2363 2364 t = (struct trie *) tb->tb_data; 2365 t->kv[0].pos = KEYLENGTH; 2366 t->kv[0].slen = KEYLENGTH; 2367 #ifdef CONFIG_IP_FIB_TRIE_STATS 2368 t->stats = alloc_percpu(struct trie_use_stats); 2369 if (!t->stats) { 2370 kfree(tb); 2371 tb = NULL; 2372 } 2373 #endif 2374 2375 return tb; 2376 } 2377 2378 #ifdef CONFIG_PROC_FS 2379 /* Depth first Trie walk iterator */ 2380 struct fib_trie_iter { 2381 struct seq_net_private p; 2382 struct fib_table *tb; 2383 struct key_vector *tnode; 2384 unsigned int index; 2385 unsigned int depth; 2386 }; 2387 2388 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2389 { 2390 unsigned long cindex = iter->index; 2391 struct key_vector *pn = iter->tnode; 2392 t_key pkey; 2393 2394 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2395 iter->tnode, iter->index, iter->depth); 2396 2397 while (!IS_TRIE(pn)) { 2398 while (cindex < child_length(pn)) { 2399 struct key_vector *n = get_child_rcu(pn, cindex++); 2400 2401 if (!n) 2402 continue; 2403 2404 if (IS_LEAF(n)) { 2405 iter->tnode = pn; 2406 iter->index = cindex; 2407 } else { 2408 /* push down one level */ 2409 iter->tnode = n; 2410 iter->index = 0; 2411 ++iter->depth; 2412 } 2413 2414 return n; 2415 } 2416 2417 /* Current node exhausted, pop back up */ 2418 pkey = pn->key; 2419 pn = node_parent_rcu(pn); 2420 cindex = get_index(pkey, pn) + 1; 2421 --iter->depth; 2422 } 2423 2424 /* record root node so further searches know we are done */ 2425 iter->tnode = pn; 2426 iter->index = 0; 2427 2428 return NULL; 2429 } 2430 2431 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2432 struct trie *t) 2433 { 2434 struct key_vector *n, *pn; 2435 2436 if (!t) 2437 return NULL; 2438 2439 pn = t->kv; 2440 n = rcu_dereference(pn->tnode[0]); 2441 if (!n) 2442 return NULL; 2443 2444 if (IS_TNODE(n)) { 2445 iter->tnode = n; 2446 iter->index = 0; 2447 iter->depth = 1; 2448 } else { 2449 iter->tnode = pn; 2450 iter->index = 0; 2451 iter->depth = 0; 2452 } 2453 2454 return n; 2455 } 2456 2457 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2458 { 2459 struct key_vector *n; 2460 struct fib_trie_iter iter; 2461 2462 memset(s, 0, sizeof(*s)); 2463 2464 rcu_read_lock(); 2465 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2466 if (IS_LEAF(n)) { 2467 struct fib_alias *fa; 2468 2469 s->leaves++; 2470 s->totdepth += iter.depth; 2471 if (iter.depth > s->maxdepth) 2472 s->maxdepth = iter.depth; 2473 2474 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2475 ++s->prefixes; 2476 } else { 2477 s->tnodes++; 2478 if (n->bits < MAX_STAT_DEPTH) 2479 s->nodesizes[n->bits]++; 2480 s->nullpointers += tn_info(n)->empty_children; 2481 } 2482 } 2483 rcu_read_unlock(); 2484 } 2485 2486 /* 2487 * This outputs /proc/net/fib_triestats 2488 */ 2489 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2490 { 2491 unsigned int i, max, pointers, bytes, avdepth; 2492 2493 if (stat->leaves) 2494 avdepth = stat->totdepth*100 / stat->leaves; 2495 else 2496 avdepth = 0; 2497 2498 seq_printf(seq, "\tAver depth: %u.%02d\n", 2499 avdepth / 100, avdepth % 100); 2500 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2501 2502 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2503 bytes = LEAF_SIZE * stat->leaves; 2504 2505 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2506 bytes += sizeof(struct fib_alias) * stat->prefixes; 2507 2508 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2509 bytes += TNODE_SIZE(0) * stat->tnodes; 2510 2511 max = MAX_STAT_DEPTH; 2512 while (max > 0 && stat->nodesizes[max-1] == 0) 2513 max--; 2514 2515 pointers = 0; 2516 for (i = 1; i < max; i++) 2517 if (stat->nodesizes[i] != 0) { 2518 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2519 pointers += (1<<i) * stat->nodesizes[i]; 2520 } 2521 seq_putc(seq, '\n'); 2522 seq_printf(seq, "\tPointers: %u\n", pointers); 2523 2524 bytes += sizeof(struct key_vector *) * pointers; 2525 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2526 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2527 } 2528 2529 #ifdef CONFIG_IP_FIB_TRIE_STATS 2530 static void trie_show_usage(struct seq_file *seq, 2531 const struct trie_use_stats __percpu *stats) 2532 { 2533 struct trie_use_stats s = { 0 }; 2534 int cpu; 2535 2536 /* loop through all of the CPUs and gather up the stats */ 2537 for_each_possible_cpu(cpu) { 2538 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2539 2540 s.gets += pcpu->gets; 2541 s.backtrack += pcpu->backtrack; 2542 s.semantic_match_passed += pcpu->semantic_match_passed; 2543 s.semantic_match_miss += pcpu->semantic_match_miss; 2544 s.null_node_hit += pcpu->null_node_hit; 2545 s.resize_node_skipped += pcpu->resize_node_skipped; 2546 } 2547 2548 seq_printf(seq, "\nCounters:\n---------\n"); 2549 seq_printf(seq, "gets = %u\n", s.gets); 2550 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2551 seq_printf(seq, "semantic match passed = %u\n", 2552 s.semantic_match_passed); 2553 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2554 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2555 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2556 } 2557 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2558 2559 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2560 { 2561 if (tb->tb_id == RT_TABLE_LOCAL) 2562 seq_puts(seq, "Local:\n"); 2563 else if (tb->tb_id == RT_TABLE_MAIN) 2564 seq_puts(seq, "Main:\n"); 2565 else 2566 seq_printf(seq, "Id %d:\n", tb->tb_id); 2567 } 2568 2569 2570 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2571 { 2572 struct net *net = (struct net *)seq->private; 2573 unsigned int h; 2574 2575 seq_printf(seq, 2576 "Basic info: size of leaf:" 2577 " %zd bytes, size of tnode: %zd bytes.\n", 2578 LEAF_SIZE, TNODE_SIZE(0)); 2579 2580 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2581 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2582 struct fib_table *tb; 2583 2584 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2585 struct trie *t = (struct trie *) tb->tb_data; 2586 struct trie_stat stat; 2587 2588 if (!t) 2589 continue; 2590 2591 fib_table_print(seq, tb); 2592 2593 trie_collect_stats(t, &stat); 2594 trie_show_stats(seq, &stat); 2595 #ifdef CONFIG_IP_FIB_TRIE_STATS 2596 trie_show_usage(seq, t->stats); 2597 #endif 2598 } 2599 } 2600 2601 return 0; 2602 } 2603 2604 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2605 { 2606 struct fib_trie_iter *iter = seq->private; 2607 struct net *net = seq_file_net(seq); 2608 loff_t idx = 0; 2609 unsigned int h; 2610 2611 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2612 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2613 struct fib_table *tb; 2614 2615 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2616 struct key_vector *n; 2617 2618 for (n = fib_trie_get_first(iter, 2619 (struct trie *) tb->tb_data); 2620 n; n = fib_trie_get_next(iter)) 2621 if (pos == idx++) { 2622 iter->tb = tb; 2623 return n; 2624 } 2625 } 2626 } 2627 2628 return NULL; 2629 } 2630 2631 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2632 __acquires(RCU) 2633 { 2634 rcu_read_lock(); 2635 return fib_trie_get_idx(seq, *pos); 2636 } 2637 2638 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2639 { 2640 struct fib_trie_iter *iter = seq->private; 2641 struct net *net = seq_file_net(seq); 2642 struct fib_table *tb = iter->tb; 2643 struct hlist_node *tb_node; 2644 unsigned int h; 2645 struct key_vector *n; 2646 2647 ++*pos; 2648 /* next node in same table */ 2649 n = fib_trie_get_next(iter); 2650 if (n) 2651 return n; 2652 2653 /* walk rest of this hash chain */ 2654 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2655 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2656 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2657 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2658 if (n) 2659 goto found; 2660 } 2661 2662 /* new hash chain */ 2663 while (++h < FIB_TABLE_HASHSZ) { 2664 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2665 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2666 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2667 if (n) 2668 goto found; 2669 } 2670 } 2671 return NULL; 2672 2673 found: 2674 iter->tb = tb; 2675 return n; 2676 } 2677 2678 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2679 __releases(RCU) 2680 { 2681 rcu_read_unlock(); 2682 } 2683 2684 static void seq_indent(struct seq_file *seq, int n) 2685 { 2686 while (n-- > 0) 2687 seq_puts(seq, " "); 2688 } 2689 2690 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2691 { 2692 switch (s) { 2693 case RT_SCOPE_UNIVERSE: return "universe"; 2694 case RT_SCOPE_SITE: return "site"; 2695 case RT_SCOPE_LINK: return "link"; 2696 case RT_SCOPE_HOST: return "host"; 2697 case RT_SCOPE_NOWHERE: return "nowhere"; 2698 default: 2699 snprintf(buf, len, "scope=%d", s); 2700 return buf; 2701 } 2702 } 2703 2704 static const char *const rtn_type_names[__RTN_MAX] = { 2705 [RTN_UNSPEC] = "UNSPEC", 2706 [RTN_UNICAST] = "UNICAST", 2707 [RTN_LOCAL] = "LOCAL", 2708 [RTN_BROADCAST] = "BROADCAST", 2709 [RTN_ANYCAST] = "ANYCAST", 2710 [RTN_MULTICAST] = "MULTICAST", 2711 [RTN_BLACKHOLE] = "BLACKHOLE", 2712 [RTN_UNREACHABLE] = "UNREACHABLE", 2713 [RTN_PROHIBIT] = "PROHIBIT", 2714 [RTN_THROW] = "THROW", 2715 [RTN_NAT] = "NAT", 2716 [RTN_XRESOLVE] = "XRESOLVE", 2717 }; 2718 2719 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2720 { 2721 if (t < __RTN_MAX && rtn_type_names[t]) 2722 return rtn_type_names[t]; 2723 snprintf(buf, len, "type %u", t); 2724 return buf; 2725 } 2726 2727 /* Pretty print the trie */ 2728 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2729 { 2730 const struct fib_trie_iter *iter = seq->private; 2731 struct key_vector *n = v; 2732 2733 if (IS_TRIE(node_parent_rcu(n))) 2734 fib_table_print(seq, iter->tb); 2735 2736 if (IS_TNODE(n)) { 2737 __be32 prf = htonl(n->key); 2738 2739 seq_indent(seq, iter->depth-1); 2740 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2741 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2742 tn_info(n)->full_children, 2743 tn_info(n)->empty_children); 2744 } else { 2745 __be32 val = htonl(n->key); 2746 struct fib_alias *fa; 2747 2748 seq_indent(seq, iter->depth); 2749 seq_printf(seq, " |-- %pI4\n", &val); 2750 2751 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2752 char buf1[32], buf2[32]; 2753 2754 seq_indent(seq, iter->depth + 1); 2755 seq_printf(seq, " /%zu %s %s", 2756 KEYLENGTH - fa->fa_slen, 2757 rtn_scope(buf1, sizeof(buf1), 2758 fa->fa_info->fib_scope), 2759 rtn_type(buf2, sizeof(buf2), 2760 fa->fa_type)); 2761 if (fa->fa_tos) 2762 seq_printf(seq, " tos=%d", fa->fa_tos); 2763 seq_putc(seq, '\n'); 2764 } 2765 } 2766 2767 return 0; 2768 } 2769 2770 static const struct seq_operations fib_trie_seq_ops = { 2771 .start = fib_trie_seq_start, 2772 .next = fib_trie_seq_next, 2773 .stop = fib_trie_seq_stop, 2774 .show = fib_trie_seq_show, 2775 }; 2776 2777 struct fib_route_iter { 2778 struct seq_net_private p; 2779 struct fib_table *main_tb; 2780 struct key_vector *tnode; 2781 loff_t pos; 2782 t_key key; 2783 }; 2784 2785 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2786 loff_t pos) 2787 { 2788 struct key_vector *l, **tp = &iter->tnode; 2789 t_key key; 2790 2791 /* use cached location of previously found key */ 2792 if (iter->pos > 0 && pos >= iter->pos) { 2793 key = iter->key; 2794 } else { 2795 iter->pos = 1; 2796 key = 0; 2797 } 2798 2799 pos -= iter->pos; 2800 2801 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2802 key = l->key + 1; 2803 iter->pos++; 2804 l = NULL; 2805 2806 /* handle unlikely case of a key wrap */ 2807 if (!key) 2808 break; 2809 } 2810 2811 if (l) 2812 iter->key = l->key; /* remember it */ 2813 else 2814 iter->pos = 0; /* forget it */ 2815 2816 return l; 2817 } 2818 2819 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2820 __acquires(RCU) 2821 { 2822 struct fib_route_iter *iter = seq->private; 2823 struct fib_table *tb; 2824 struct trie *t; 2825 2826 rcu_read_lock(); 2827 2828 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2829 if (!tb) 2830 return NULL; 2831 2832 iter->main_tb = tb; 2833 t = (struct trie *)tb->tb_data; 2834 iter->tnode = t->kv; 2835 2836 if (*pos != 0) 2837 return fib_route_get_idx(iter, *pos); 2838 2839 iter->pos = 0; 2840 iter->key = KEY_MAX; 2841 2842 return SEQ_START_TOKEN; 2843 } 2844 2845 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2846 { 2847 struct fib_route_iter *iter = seq->private; 2848 struct key_vector *l = NULL; 2849 t_key key = iter->key + 1; 2850 2851 ++*pos; 2852 2853 /* only allow key of 0 for start of sequence */ 2854 if ((v == SEQ_START_TOKEN) || key) 2855 l = leaf_walk_rcu(&iter->tnode, key); 2856 2857 if (l) { 2858 iter->key = l->key; 2859 iter->pos++; 2860 } else { 2861 iter->pos = 0; 2862 } 2863 2864 return l; 2865 } 2866 2867 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2868 __releases(RCU) 2869 { 2870 rcu_read_unlock(); 2871 } 2872 2873 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2874 { 2875 unsigned int flags = 0; 2876 2877 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2878 flags = RTF_REJECT; 2879 if (fi) { 2880 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2881 2882 if (nhc->nhc_gw.ipv4) 2883 flags |= RTF_GATEWAY; 2884 } 2885 if (mask == htonl(0xFFFFFFFF)) 2886 flags |= RTF_HOST; 2887 flags |= RTF_UP; 2888 return flags; 2889 } 2890 2891 /* 2892 * This outputs /proc/net/route. 2893 * The format of the file is not supposed to be changed 2894 * and needs to be same as fib_hash output to avoid breaking 2895 * legacy utilities 2896 */ 2897 static int fib_route_seq_show(struct seq_file *seq, void *v) 2898 { 2899 struct fib_route_iter *iter = seq->private; 2900 struct fib_table *tb = iter->main_tb; 2901 struct fib_alias *fa; 2902 struct key_vector *l = v; 2903 __be32 prefix; 2904 2905 if (v == SEQ_START_TOKEN) { 2906 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2907 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2908 "\tWindow\tIRTT"); 2909 return 0; 2910 } 2911 2912 prefix = htonl(l->key); 2913 2914 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2915 struct fib_info *fi = fa->fa_info; 2916 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2917 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2918 2919 if ((fa->fa_type == RTN_BROADCAST) || 2920 (fa->fa_type == RTN_MULTICAST)) 2921 continue; 2922 2923 if (fa->tb_id != tb->tb_id) 2924 continue; 2925 2926 seq_setwidth(seq, 127); 2927 2928 if (fi) { 2929 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2930 __be32 gw = 0; 2931 2932 if (nhc->nhc_gw_family == AF_INET) 2933 gw = nhc->nhc_gw.ipv4; 2934 2935 seq_printf(seq, 2936 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2937 "%d\t%08X\t%d\t%u\t%u", 2938 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2939 prefix, gw, flags, 0, 0, 2940 fi->fib_priority, 2941 mask, 2942 (fi->fib_advmss ? 2943 fi->fib_advmss + 40 : 0), 2944 fi->fib_window, 2945 fi->fib_rtt >> 3); 2946 } else { 2947 seq_printf(seq, 2948 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2949 "%d\t%08X\t%d\t%u\t%u", 2950 prefix, 0, flags, 0, 0, 0, 2951 mask, 0, 0, 0); 2952 } 2953 seq_pad(seq, '\n'); 2954 } 2955 2956 return 0; 2957 } 2958 2959 static const struct seq_operations fib_route_seq_ops = { 2960 .start = fib_route_seq_start, 2961 .next = fib_route_seq_next, 2962 .stop = fib_route_seq_stop, 2963 .show = fib_route_seq_show, 2964 }; 2965 2966 int __net_init fib_proc_init(struct net *net) 2967 { 2968 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2969 sizeof(struct fib_trie_iter))) 2970 goto out1; 2971 2972 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2973 fib_triestat_seq_show, NULL)) 2974 goto out2; 2975 2976 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2977 sizeof(struct fib_route_iter))) 2978 goto out3; 2979 2980 return 0; 2981 2982 out3: 2983 remove_proc_entry("fib_triestat", net->proc_net); 2984 out2: 2985 remove_proc_entry("fib_trie", net->proc_net); 2986 out1: 2987 return -ENOMEM; 2988 } 2989 2990 void __net_exit fib_proc_exit(struct net *net) 2991 { 2992 remove_proc_entry("fib_trie", net->proc_net); 2993 remove_proc_entry("fib_triestat", net->proc_net); 2994 remove_proc_entry("route", net->proc_net); 2995 } 2996 2997 #endif /* CONFIG_PROC_FS */ 2998