xref: /openbmc/linux/net/ipv4/fib_frontend.c (revision e1a3e724)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		IPv4 Forwarding Information Base: FIB frontend.
7  *
8  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/capability.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/string.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/inetdevice.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_addr.h>
32 #include <linux/if_arp.h>
33 #include <linux/skbuff.h>
34 #include <linux/cache.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/slab.h>
38 
39 #include <net/ip.h>
40 #include <net/protocol.h>
41 #include <net/route.h>
42 #include <net/tcp.h>
43 #include <net/sock.h>
44 #include <net/arp.h>
45 #include <net/ip_fib.h>
46 #include <net/rtnetlink.h>
47 #include <net/xfrm.h>
48 #include <net/vrf.h>
49 #include <trace/events/fib.h>
50 
51 #ifndef CONFIG_IP_MULTIPLE_TABLES
52 
53 static int __net_init fib4_rules_init(struct net *net)
54 {
55 	struct fib_table *local_table, *main_table;
56 
57 	main_table  = fib_trie_table(RT_TABLE_MAIN, NULL);
58 	if (!main_table)
59 		return -ENOMEM;
60 
61 	local_table = fib_trie_table(RT_TABLE_LOCAL, main_table);
62 	if (!local_table)
63 		goto fail;
64 
65 	hlist_add_head_rcu(&local_table->tb_hlist,
66 				&net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
67 	hlist_add_head_rcu(&main_table->tb_hlist,
68 				&net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
69 	return 0;
70 
71 fail:
72 	fib_free_table(main_table);
73 	return -ENOMEM;
74 }
75 #else
76 
77 struct fib_table *fib_new_table(struct net *net, u32 id)
78 {
79 	struct fib_table *tb, *alias = NULL;
80 	unsigned int h;
81 
82 	if (id == 0)
83 		id = RT_TABLE_MAIN;
84 	tb = fib_get_table(net, id);
85 	if (tb)
86 		return tb;
87 
88 	if (id == RT_TABLE_LOCAL)
89 		alias = fib_new_table(net, RT_TABLE_MAIN);
90 
91 	tb = fib_trie_table(id, alias);
92 	if (!tb)
93 		return NULL;
94 
95 	switch (id) {
96 	case RT_TABLE_LOCAL:
97 		rcu_assign_pointer(net->ipv4.fib_local, tb);
98 		break;
99 	case RT_TABLE_MAIN:
100 		rcu_assign_pointer(net->ipv4.fib_main, tb);
101 		break;
102 	case RT_TABLE_DEFAULT:
103 		rcu_assign_pointer(net->ipv4.fib_default, tb);
104 		break;
105 	default:
106 		break;
107 	}
108 
109 	h = id & (FIB_TABLE_HASHSZ - 1);
110 	hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
111 	return tb;
112 }
113 
114 /* caller must hold either rtnl or rcu read lock */
115 struct fib_table *fib_get_table(struct net *net, u32 id)
116 {
117 	struct fib_table *tb;
118 	struct hlist_head *head;
119 	unsigned int h;
120 
121 	if (id == 0)
122 		id = RT_TABLE_MAIN;
123 	h = id & (FIB_TABLE_HASHSZ - 1);
124 
125 	head = &net->ipv4.fib_table_hash[h];
126 	hlist_for_each_entry_rcu(tb, head, tb_hlist) {
127 		if (tb->tb_id == id)
128 			return tb;
129 	}
130 	return NULL;
131 }
132 #endif /* CONFIG_IP_MULTIPLE_TABLES */
133 
134 static void fib_replace_table(struct net *net, struct fib_table *old,
135 			      struct fib_table *new)
136 {
137 #ifdef CONFIG_IP_MULTIPLE_TABLES
138 	switch (new->tb_id) {
139 	case RT_TABLE_LOCAL:
140 		rcu_assign_pointer(net->ipv4.fib_local, new);
141 		break;
142 	case RT_TABLE_MAIN:
143 		rcu_assign_pointer(net->ipv4.fib_main, new);
144 		break;
145 	case RT_TABLE_DEFAULT:
146 		rcu_assign_pointer(net->ipv4.fib_default, new);
147 		break;
148 	default:
149 		break;
150 	}
151 
152 #endif
153 	/* replace the old table in the hlist */
154 	hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist);
155 }
156 
157 int fib_unmerge(struct net *net)
158 {
159 	struct fib_table *old, *new;
160 
161 	/* attempt to fetch local table if it has been allocated */
162 	old = fib_get_table(net, RT_TABLE_LOCAL);
163 	if (!old)
164 		return 0;
165 
166 	new = fib_trie_unmerge(old);
167 	if (!new)
168 		return -ENOMEM;
169 
170 	/* replace merged table with clean table */
171 	if (new != old) {
172 		fib_replace_table(net, old, new);
173 		fib_free_table(old);
174 	}
175 
176 	return 0;
177 }
178 
179 static void fib_flush(struct net *net)
180 {
181 	int flushed = 0;
182 	unsigned int h;
183 
184 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
185 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
186 		struct hlist_node *tmp;
187 		struct fib_table *tb;
188 
189 		hlist_for_each_entry_safe(tb, tmp, head, tb_hlist)
190 			flushed += fib_table_flush(tb);
191 	}
192 
193 	if (flushed)
194 		rt_cache_flush(net);
195 }
196 
197 void fib_flush_external(struct net *net)
198 {
199 	struct fib_table *tb;
200 	struct hlist_head *head;
201 	unsigned int h;
202 
203 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
204 		head = &net->ipv4.fib_table_hash[h];
205 		hlist_for_each_entry(tb, head, tb_hlist)
206 			fib_table_flush_external(tb);
207 	}
208 }
209 
210 /*
211  * Find address type as if only "dev" was present in the system. If
212  * on_dev is NULL then all interfaces are taken into consideration.
213  */
214 static inline unsigned int __inet_dev_addr_type(struct net *net,
215 						const struct net_device *dev,
216 						__be32 addr, u32 tb_id)
217 {
218 	struct flowi4		fl4 = { .daddr = addr };
219 	struct fib_result	res;
220 	unsigned int ret = RTN_BROADCAST;
221 	struct fib_table *table;
222 
223 	if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
224 		return RTN_BROADCAST;
225 	if (ipv4_is_multicast(addr))
226 		return RTN_MULTICAST;
227 
228 	rcu_read_lock();
229 
230 	table = fib_get_table(net, tb_id);
231 	if (table) {
232 		ret = RTN_UNICAST;
233 		if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) {
234 			if (!dev || dev == res.fi->fib_dev)
235 				ret = res.type;
236 		}
237 	}
238 
239 	rcu_read_unlock();
240 	return ret;
241 }
242 
243 unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id)
244 {
245 	return __inet_dev_addr_type(net, NULL, addr, tb_id);
246 }
247 EXPORT_SYMBOL(inet_addr_type_table);
248 
249 unsigned int inet_addr_type(struct net *net, __be32 addr)
250 {
251 	return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL);
252 }
253 EXPORT_SYMBOL(inet_addr_type);
254 
255 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
256 				__be32 addr)
257 {
258 	u32 rt_table = vrf_dev_table(dev) ? : RT_TABLE_LOCAL;
259 
260 	return __inet_dev_addr_type(net, dev, addr, rt_table);
261 }
262 EXPORT_SYMBOL(inet_dev_addr_type);
263 
264 /* inet_addr_type with dev == NULL but using the table from a dev
265  * if one is associated
266  */
267 unsigned int inet_addr_type_dev_table(struct net *net,
268 				      const struct net_device *dev,
269 				      __be32 addr)
270 {
271 	u32 rt_table = vrf_dev_table(dev) ? : RT_TABLE_LOCAL;
272 
273 	return __inet_dev_addr_type(net, NULL, addr, rt_table);
274 }
275 EXPORT_SYMBOL(inet_addr_type_dev_table);
276 
277 __be32 fib_compute_spec_dst(struct sk_buff *skb)
278 {
279 	struct net_device *dev = skb->dev;
280 	struct in_device *in_dev;
281 	struct fib_result res;
282 	struct rtable *rt;
283 	struct flowi4 fl4;
284 	struct net *net;
285 	int scope;
286 
287 	rt = skb_rtable(skb);
288 	if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
289 	    RTCF_LOCAL)
290 		return ip_hdr(skb)->daddr;
291 
292 	in_dev = __in_dev_get_rcu(dev);
293 	BUG_ON(!in_dev);
294 
295 	net = dev_net(dev);
296 
297 	scope = RT_SCOPE_UNIVERSE;
298 	if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
299 		fl4.flowi4_oif = 0;
300 		fl4.flowi4_iif = LOOPBACK_IFINDEX;
301 		fl4.daddr = ip_hdr(skb)->saddr;
302 		fl4.saddr = 0;
303 		fl4.flowi4_tos = RT_TOS(ip_hdr(skb)->tos);
304 		fl4.flowi4_scope = scope;
305 		fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0;
306 		fl4.flowi4_tun_key.tun_id = 0;
307 		if (!fib_lookup(net, &fl4, &res, 0))
308 			return FIB_RES_PREFSRC(net, res);
309 	} else {
310 		scope = RT_SCOPE_LINK;
311 	}
312 
313 	return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
314 }
315 
316 /* Given (packet source, input interface) and optional (dst, oif, tos):
317  * - (main) check, that source is valid i.e. not broadcast or our local
318  *   address.
319  * - figure out what "logical" interface this packet arrived
320  *   and calculate "specific destination" address.
321  * - check, that packet arrived from expected physical interface.
322  * called with rcu_read_lock()
323  */
324 static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
325 				 u8 tos, int oif, struct net_device *dev,
326 				 int rpf, struct in_device *idev, u32 *itag)
327 {
328 	int ret, no_addr;
329 	struct fib_result res;
330 	struct flowi4 fl4;
331 	struct net *net;
332 	bool dev_match;
333 
334 	fl4.flowi4_oif = 0;
335 	fl4.flowi4_iif = vrf_master_ifindex_rcu(dev);
336 	if (!fl4.flowi4_iif)
337 		fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
338 	fl4.daddr = src;
339 	fl4.saddr = dst;
340 	fl4.flowi4_tos = tos;
341 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
342 	fl4.flowi4_tun_key.tun_id = 0;
343 
344 	no_addr = idev->ifa_list == NULL;
345 
346 	fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
347 
348 	trace_fib_validate_source(dev, &fl4);
349 
350 	net = dev_net(dev);
351 	if (fib_lookup(net, &fl4, &res, 0))
352 		goto last_resort;
353 	if (res.type != RTN_UNICAST &&
354 	    (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
355 		goto e_inval;
356 	if (!rpf && !fib_num_tclassid_users(dev_net(dev)) &&
357 	    (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
358 		goto last_resort;
359 	fib_combine_itag(itag, &res);
360 	dev_match = false;
361 
362 #ifdef CONFIG_IP_ROUTE_MULTIPATH
363 	for (ret = 0; ret < res.fi->fib_nhs; ret++) {
364 		struct fib_nh *nh = &res.fi->fib_nh[ret];
365 
366 		if (nh->nh_dev == dev) {
367 			dev_match = true;
368 			break;
369 		} else if (vrf_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) {
370 			dev_match = true;
371 			break;
372 		}
373 	}
374 #else
375 	if (FIB_RES_DEV(res) == dev)
376 		dev_match = true;
377 #endif
378 	if (dev_match) {
379 		ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
380 		return ret;
381 	}
382 	if (no_addr)
383 		goto last_resort;
384 	if (rpf == 1)
385 		goto e_rpf;
386 	fl4.flowi4_oif = dev->ifindex;
387 
388 	ret = 0;
389 	if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) {
390 		if (res.type == RTN_UNICAST)
391 			ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
392 	}
393 	return ret;
394 
395 last_resort:
396 	if (rpf)
397 		goto e_rpf;
398 	*itag = 0;
399 	return 0;
400 
401 e_inval:
402 	return -EINVAL;
403 e_rpf:
404 	return -EXDEV;
405 }
406 
407 /* Ignore rp_filter for packets protected by IPsec. */
408 int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
409 			u8 tos, int oif, struct net_device *dev,
410 			struct in_device *idev, u32 *itag)
411 {
412 	int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
413 
414 	if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
415 	    IN_DEV_ACCEPT_LOCAL(idev) &&
416 	    (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
417 		*itag = 0;
418 		return 0;
419 	}
420 	return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
421 }
422 
423 static inline __be32 sk_extract_addr(struct sockaddr *addr)
424 {
425 	return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
426 }
427 
428 static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
429 {
430 	struct nlattr *nla;
431 
432 	nla = (struct nlattr *) ((char *) mx + len);
433 	nla->nla_type = type;
434 	nla->nla_len = nla_attr_size(4);
435 	*(u32 *) nla_data(nla) = value;
436 
437 	return len + nla_total_size(4);
438 }
439 
440 static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
441 				 struct fib_config *cfg)
442 {
443 	__be32 addr;
444 	int plen;
445 
446 	memset(cfg, 0, sizeof(*cfg));
447 	cfg->fc_nlinfo.nl_net = net;
448 
449 	if (rt->rt_dst.sa_family != AF_INET)
450 		return -EAFNOSUPPORT;
451 
452 	/*
453 	 * Check mask for validity:
454 	 * a) it must be contiguous.
455 	 * b) destination must have all host bits clear.
456 	 * c) if application forgot to set correct family (AF_INET),
457 	 *    reject request unless it is absolutely clear i.e.
458 	 *    both family and mask are zero.
459 	 */
460 	plen = 32;
461 	addr = sk_extract_addr(&rt->rt_dst);
462 	if (!(rt->rt_flags & RTF_HOST)) {
463 		__be32 mask = sk_extract_addr(&rt->rt_genmask);
464 
465 		if (rt->rt_genmask.sa_family != AF_INET) {
466 			if (mask || rt->rt_genmask.sa_family)
467 				return -EAFNOSUPPORT;
468 		}
469 
470 		if (bad_mask(mask, addr))
471 			return -EINVAL;
472 
473 		plen = inet_mask_len(mask);
474 	}
475 
476 	cfg->fc_dst_len = plen;
477 	cfg->fc_dst = addr;
478 
479 	if (cmd != SIOCDELRT) {
480 		cfg->fc_nlflags = NLM_F_CREATE;
481 		cfg->fc_protocol = RTPROT_BOOT;
482 	}
483 
484 	if (rt->rt_metric)
485 		cfg->fc_priority = rt->rt_metric - 1;
486 
487 	if (rt->rt_flags & RTF_REJECT) {
488 		cfg->fc_scope = RT_SCOPE_HOST;
489 		cfg->fc_type = RTN_UNREACHABLE;
490 		return 0;
491 	}
492 
493 	cfg->fc_scope = RT_SCOPE_NOWHERE;
494 	cfg->fc_type = RTN_UNICAST;
495 
496 	if (rt->rt_dev) {
497 		char *colon;
498 		struct net_device *dev;
499 		char devname[IFNAMSIZ];
500 
501 		if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
502 			return -EFAULT;
503 
504 		devname[IFNAMSIZ-1] = 0;
505 		colon = strchr(devname, ':');
506 		if (colon)
507 			*colon = 0;
508 		dev = __dev_get_by_name(net, devname);
509 		if (!dev)
510 			return -ENODEV;
511 		cfg->fc_oif = dev->ifindex;
512 		if (colon) {
513 			struct in_ifaddr *ifa;
514 			struct in_device *in_dev = __in_dev_get_rtnl(dev);
515 			if (!in_dev)
516 				return -ENODEV;
517 			*colon = ':';
518 			for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
519 				if (strcmp(ifa->ifa_label, devname) == 0)
520 					break;
521 			if (!ifa)
522 				return -ENODEV;
523 			cfg->fc_prefsrc = ifa->ifa_local;
524 		}
525 	}
526 
527 	addr = sk_extract_addr(&rt->rt_gateway);
528 	if (rt->rt_gateway.sa_family == AF_INET && addr) {
529 		unsigned int addr_type;
530 
531 		cfg->fc_gw = addr;
532 		addr_type = inet_addr_type_table(net, addr, cfg->fc_table);
533 		if (rt->rt_flags & RTF_GATEWAY &&
534 		    addr_type == RTN_UNICAST)
535 			cfg->fc_scope = RT_SCOPE_UNIVERSE;
536 	}
537 
538 	if (cmd == SIOCDELRT)
539 		return 0;
540 
541 	if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
542 		return -EINVAL;
543 
544 	if (cfg->fc_scope == RT_SCOPE_NOWHERE)
545 		cfg->fc_scope = RT_SCOPE_LINK;
546 
547 	if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
548 		struct nlattr *mx;
549 		int len = 0;
550 
551 		mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
552 		if (!mx)
553 			return -ENOMEM;
554 
555 		if (rt->rt_flags & RTF_MTU)
556 			len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
557 
558 		if (rt->rt_flags & RTF_WINDOW)
559 			len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
560 
561 		if (rt->rt_flags & RTF_IRTT)
562 			len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
563 
564 		cfg->fc_mx = mx;
565 		cfg->fc_mx_len = len;
566 	}
567 
568 	return 0;
569 }
570 
571 /*
572  * Handle IP routing ioctl calls.
573  * These are used to manipulate the routing tables
574  */
575 int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
576 {
577 	struct fib_config cfg;
578 	struct rtentry rt;
579 	int err;
580 
581 	switch (cmd) {
582 	case SIOCADDRT:		/* Add a route */
583 	case SIOCDELRT:		/* Delete a route */
584 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
585 			return -EPERM;
586 
587 		if (copy_from_user(&rt, arg, sizeof(rt)))
588 			return -EFAULT;
589 
590 		rtnl_lock();
591 		err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
592 		if (err == 0) {
593 			struct fib_table *tb;
594 
595 			if (cmd == SIOCDELRT) {
596 				tb = fib_get_table(net, cfg.fc_table);
597 				if (tb)
598 					err = fib_table_delete(tb, &cfg);
599 				else
600 					err = -ESRCH;
601 			} else {
602 				tb = fib_new_table(net, cfg.fc_table);
603 				if (tb)
604 					err = fib_table_insert(tb, &cfg);
605 				else
606 					err = -ENOBUFS;
607 			}
608 
609 			/* allocated by rtentry_to_fib_config() */
610 			kfree(cfg.fc_mx);
611 		}
612 		rtnl_unlock();
613 		return err;
614 	}
615 	return -EINVAL;
616 }
617 
618 const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
619 	[RTA_DST]		= { .type = NLA_U32 },
620 	[RTA_SRC]		= { .type = NLA_U32 },
621 	[RTA_IIF]		= { .type = NLA_U32 },
622 	[RTA_OIF]		= { .type = NLA_U32 },
623 	[RTA_GATEWAY]		= { .type = NLA_U32 },
624 	[RTA_PRIORITY]		= { .type = NLA_U32 },
625 	[RTA_PREFSRC]		= { .type = NLA_U32 },
626 	[RTA_METRICS]		= { .type = NLA_NESTED },
627 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
628 	[RTA_FLOW]		= { .type = NLA_U32 },
629 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
630 	[RTA_ENCAP]		= { .type = NLA_NESTED },
631 };
632 
633 static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
634 			     struct nlmsghdr *nlh, struct fib_config *cfg)
635 {
636 	struct nlattr *attr;
637 	int err, remaining;
638 	struct rtmsg *rtm;
639 
640 	err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
641 	if (err < 0)
642 		goto errout;
643 
644 	memset(cfg, 0, sizeof(*cfg));
645 
646 	rtm = nlmsg_data(nlh);
647 	cfg->fc_dst_len = rtm->rtm_dst_len;
648 	cfg->fc_tos = rtm->rtm_tos;
649 	cfg->fc_table = rtm->rtm_table;
650 	cfg->fc_protocol = rtm->rtm_protocol;
651 	cfg->fc_scope = rtm->rtm_scope;
652 	cfg->fc_type = rtm->rtm_type;
653 	cfg->fc_flags = rtm->rtm_flags;
654 	cfg->fc_nlflags = nlh->nlmsg_flags;
655 
656 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
657 	cfg->fc_nlinfo.nlh = nlh;
658 	cfg->fc_nlinfo.nl_net = net;
659 
660 	if (cfg->fc_type > RTN_MAX) {
661 		err = -EINVAL;
662 		goto errout;
663 	}
664 
665 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
666 		switch (nla_type(attr)) {
667 		case RTA_DST:
668 			cfg->fc_dst = nla_get_be32(attr);
669 			break;
670 		case RTA_OIF:
671 			cfg->fc_oif = nla_get_u32(attr);
672 			break;
673 		case RTA_GATEWAY:
674 			cfg->fc_gw = nla_get_be32(attr);
675 			break;
676 		case RTA_PRIORITY:
677 			cfg->fc_priority = nla_get_u32(attr);
678 			break;
679 		case RTA_PREFSRC:
680 			cfg->fc_prefsrc = nla_get_be32(attr);
681 			break;
682 		case RTA_METRICS:
683 			cfg->fc_mx = nla_data(attr);
684 			cfg->fc_mx_len = nla_len(attr);
685 			break;
686 		case RTA_MULTIPATH:
687 			cfg->fc_mp = nla_data(attr);
688 			cfg->fc_mp_len = nla_len(attr);
689 			break;
690 		case RTA_FLOW:
691 			cfg->fc_flow = nla_get_u32(attr);
692 			break;
693 		case RTA_TABLE:
694 			cfg->fc_table = nla_get_u32(attr);
695 			break;
696 		case RTA_ENCAP:
697 			cfg->fc_encap = attr;
698 			break;
699 		case RTA_ENCAP_TYPE:
700 			cfg->fc_encap_type = nla_get_u16(attr);
701 			break;
702 		}
703 	}
704 
705 	return 0;
706 errout:
707 	return err;
708 }
709 
710 static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh)
711 {
712 	struct net *net = sock_net(skb->sk);
713 	struct fib_config cfg;
714 	struct fib_table *tb;
715 	int err;
716 
717 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
718 	if (err < 0)
719 		goto errout;
720 
721 	tb = fib_get_table(net, cfg.fc_table);
722 	if (!tb) {
723 		err = -ESRCH;
724 		goto errout;
725 	}
726 
727 	err = fib_table_delete(tb, &cfg);
728 errout:
729 	return err;
730 }
731 
732 static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh)
733 {
734 	struct net *net = sock_net(skb->sk);
735 	struct fib_config cfg;
736 	struct fib_table *tb;
737 	int err;
738 
739 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
740 	if (err < 0)
741 		goto errout;
742 
743 	tb = fib_new_table(net, cfg.fc_table);
744 	if (!tb) {
745 		err = -ENOBUFS;
746 		goto errout;
747 	}
748 
749 	err = fib_table_insert(tb, &cfg);
750 errout:
751 	return err;
752 }
753 
754 static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
755 {
756 	struct net *net = sock_net(skb->sk);
757 	unsigned int h, s_h;
758 	unsigned int e = 0, s_e;
759 	struct fib_table *tb;
760 	struct hlist_head *head;
761 	int dumped = 0;
762 
763 	if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
764 	    ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
765 		return skb->len;
766 
767 	s_h = cb->args[0];
768 	s_e = cb->args[1];
769 
770 	rcu_read_lock();
771 
772 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
773 		e = 0;
774 		head = &net->ipv4.fib_table_hash[h];
775 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
776 			if (e < s_e)
777 				goto next;
778 			if (dumped)
779 				memset(&cb->args[2], 0, sizeof(cb->args) -
780 						 2 * sizeof(cb->args[0]));
781 			if (fib_table_dump(tb, skb, cb) < 0)
782 				goto out;
783 			dumped = 1;
784 next:
785 			e++;
786 		}
787 	}
788 out:
789 	rcu_read_unlock();
790 
791 	cb->args[1] = e;
792 	cb->args[0] = h;
793 
794 	return skb->len;
795 }
796 
797 /* Prepare and feed intra-kernel routing request.
798  * Really, it should be netlink message, but :-( netlink
799  * can be not configured, so that we feed it directly
800  * to fib engine. It is legal, because all events occur
801  * only when netlink is already locked.
802  */
803 static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
804 {
805 	struct net *net = dev_net(ifa->ifa_dev->dev);
806 	u32 tb_id = vrf_dev_table_rtnl(ifa->ifa_dev->dev);
807 	struct fib_table *tb;
808 	struct fib_config cfg = {
809 		.fc_protocol = RTPROT_KERNEL,
810 		.fc_type = type,
811 		.fc_dst = dst,
812 		.fc_dst_len = dst_len,
813 		.fc_prefsrc = ifa->ifa_local,
814 		.fc_oif = ifa->ifa_dev->dev->ifindex,
815 		.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
816 		.fc_nlinfo = {
817 			.nl_net = net,
818 		},
819 	};
820 
821 	if (!tb_id)
822 		tb_id = (type == RTN_UNICAST) ? RT_TABLE_MAIN : RT_TABLE_LOCAL;
823 
824 	tb = fib_new_table(net, tb_id);
825 	if (!tb)
826 		return;
827 
828 	cfg.fc_table = tb->tb_id;
829 
830 	if (type != RTN_LOCAL)
831 		cfg.fc_scope = RT_SCOPE_LINK;
832 	else
833 		cfg.fc_scope = RT_SCOPE_HOST;
834 
835 	if (cmd == RTM_NEWROUTE)
836 		fib_table_insert(tb, &cfg);
837 	else
838 		fib_table_delete(tb, &cfg);
839 }
840 
841 void fib_add_ifaddr(struct in_ifaddr *ifa)
842 {
843 	struct in_device *in_dev = ifa->ifa_dev;
844 	struct net_device *dev = in_dev->dev;
845 	struct in_ifaddr *prim = ifa;
846 	__be32 mask = ifa->ifa_mask;
847 	__be32 addr = ifa->ifa_local;
848 	__be32 prefix = ifa->ifa_address & mask;
849 
850 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
851 		prim = inet_ifa_byprefix(in_dev, prefix, mask);
852 		if (!prim) {
853 			pr_warn("%s: bug: prim == NULL\n", __func__);
854 			return;
855 		}
856 	}
857 
858 	fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
859 
860 	if (!(dev->flags & IFF_UP))
861 		return;
862 
863 	/* Add broadcast address, if it is explicitly assigned. */
864 	if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
865 		fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
866 
867 	if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
868 	    (prefix != addr || ifa->ifa_prefixlen < 32)) {
869 		fib_magic(RTM_NEWROUTE,
870 			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
871 			  prefix, ifa->ifa_prefixlen, prim);
872 
873 		/* Add network specific broadcasts, when it takes a sense */
874 		if (ifa->ifa_prefixlen < 31) {
875 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
876 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
877 				  32, prim);
878 		}
879 	}
880 }
881 
882 /* Delete primary or secondary address.
883  * Optionally, on secondary address promotion consider the addresses
884  * from subnet iprim as deleted, even if they are in device list.
885  * In this case the secondary ifa can be in device list.
886  */
887 void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
888 {
889 	struct in_device *in_dev = ifa->ifa_dev;
890 	struct net_device *dev = in_dev->dev;
891 	struct in_ifaddr *ifa1;
892 	struct in_ifaddr *prim = ifa, *prim1 = NULL;
893 	__be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
894 	__be32 any = ifa->ifa_address & ifa->ifa_mask;
895 #define LOCAL_OK	1
896 #define BRD_OK		2
897 #define BRD0_OK		4
898 #define BRD1_OK		8
899 	unsigned int ok = 0;
900 	int subnet = 0;		/* Primary network */
901 	int gone = 1;		/* Address is missing */
902 	int same_prefsrc = 0;	/* Another primary with same IP */
903 
904 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
905 		prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
906 		if (!prim) {
907 			pr_warn("%s: bug: prim == NULL\n", __func__);
908 			return;
909 		}
910 		if (iprim && iprim != prim) {
911 			pr_warn("%s: bug: iprim != prim\n", __func__);
912 			return;
913 		}
914 	} else if (!ipv4_is_zeronet(any) &&
915 		   (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
916 		fib_magic(RTM_DELROUTE,
917 			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
918 			  any, ifa->ifa_prefixlen, prim);
919 		subnet = 1;
920 	}
921 
922 	/* Deletion is more complicated than add.
923 	 * We should take care of not to delete too much :-)
924 	 *
925 	 * Scan address list to be sure that addresses are really gone.
926 	 */
927 
928 	for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
929 		if (ifa1 == ifa) {
930 			/* promotion, keep the IP */
931 			gone = 0;
932 			continue;
933 		}
934 		/* Ignore IFAs from our subnet */
935 		if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
936 		    inet_ifa_match(ifa1->ifa_address, iprim))
937 			continue;
938 
939 		/* Ignore ifa1 if it uses different primary IP (prefsrc) */
940 		if (ifa1->ifa_flags & IFA_F_SECONDARY) {
941 			/* Another address from our subnet? */
942 			if (ifa1->ifa_mask == prim->ifa_mask &&
943 			    inet_ifa_match(ifa1->ifa_address, prim))
944 				prim1 = prim;
945 			else {
946 				/* We reached the secondaries, so
947 				 * same_prefsrc should be determined.
948 				 */
949 				if (!same_prefsrc)
950 					continue;
951 				/* Search new prim1 if ifa1 is not
952 				 * using the current prim1
953 				 */
954 				if (!prim1 ||
955 				    ifa1->ifa_mask != prim1->ifa_mask ||
956 				    !inet_ifa_match(ifa1->ifa_address, prim1))
957 					prim1 = inet_ifa_byprefix(in_dev,
958 							ifa1->ifa_address,
959 							ifa1->ifa_mask);
960 				if (!prim1)
961 					continue;
962 				if (prim1->ifa_local != prim->ifa_local)
963 					continue;
964 			}
965 		} else {
966 			if (prim->ifa_local != ifa1->ifa_local)
967 				continue;
968 			prim1 = ifa1;
969 			if (prim != prim1)
970 				same_prefsrc = 1;
971 		}
972 		if (ifa->ifa_local == ifa1->ifa_local)
973 			ok |= LOCAL_OK;
974 		if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
975 			ok |= BRD_OK;
976 		if (brd == ifa1->ifa_broadcast)
977 			ok |= BRD1_OK;
978 		if (any == ifa1->ifa_broadcast)
979 			ok |= BRD0_OK;
980 		/* primary has network specific broadcasts */
981 		if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
982 			__be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
983 			__be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
984 
985 			if (!ipv4_is_zeronet(any1)) {
986 				if (ifa->ifa_broadcast == brd1 ||
987 				    ifa->ifa_broadcast == any1)
988 					ok |= BRD_OK;
989 				if (brd == brd1 || brd == any1)
990 					ok |= BRD1_OK;
991 				if (any == brd1 || any == any1)
992 					ok |= BRD0_OK;
993 			}
994 		}
995 	}
996 
997 	if (!(ok & BRD_OK))
998 		fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
999 	if (subnet && ifa->ifa_prefixlen < 31) {
1000 		if (!(ok & BRD1_OK))
1001 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
1002 		if (!(ok & BRD0_OK))
1003 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
1004 	}
1005 	if (!(ok & LOCAL_OK)) {
1006 		unsigned int addr_type;
1007 
1008 		fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
1009 
1010 		/* Check, that this local address finally disappeared. */
1011 		addr_type = inet_addr_type_dev_table(dev_net(dev), dev,
1012 						     ifa->ifa_local);
1013 		if (gone && addr_type != RTN_LOCAL) {
1014 			/* And the last, but not the least thing.
1015 			 * We must flush stray FIB entries.
1016 			 *
1017 			 * First of all, we scan fib_info list searching
1018 			 * for stray nexthop entries, then ignite fib_flush.
1019 			 */
1020 			if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
1021 				fib_flush(dev_net(dev));
1022 		}
1023 	}
1024 #undef LOCAL_OK
1025 #undef BRD_OK
1026 #undef BRD0_OK
1027 #undef BRD1_OK
1028 }
1029 
1030 static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
1031 {
1032 
1033 	struct fib_result       res;
1034 	struct flowi4           fl4 = {
1035 		.flowi4_mark = frn->fl_mark,
1036 		.daddr = frn->fl_addr,
1037 		.flowi4_tos = frn->fl_tos,
1038 		.flowi4_scope = frn->fl_scope,
1039 	};
1040 	struct fib_table *tb;
1041 
1042 	rcu_read_lock();
1043 
1044 	tb = fib_get_table(net, frn->tb_id_in);
1045 
1046 	frn->err = -ENOENT;
1047 	if (tb) {
1048 		local_bh_disable();
1049 
1050 		frn->tb_id = tb->tb_id;
1051 		frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
1052 
1053 		if (!frn->err) {
1054 			frn->prefixlen = res.prefixlen;
1055 			frn->nh_sel = res.nh_sel;
1056 			frn->type = res.type;
1057 			frn->scope = res.scope;
1058 		}
1059 		local_bh_enable();
1060 	}
1061 
1062 	rcu_read_unlock();
1063 }
1064 
1065 static void nl_fib_input(struct sk_buff *skb)
1066 {
1067 	struct net *net;
1068 	struct fib_result_nl *frn;
1069 	struct nlmsghdr *nlh;
1070 	u32 portid;
1071 
1072 	net = sock_net(skb->sk);
1073 	nlh = nlmsg_hdr(skb);
1074 	if (skb->len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len ||
1075 	    nlmsg_len(nlh) < sizeof(*frn))
1076 		return;
1077 
1078 	skb = netlink_skb_clone(skb, GFP_KERNEL);
1079 	if (!skb)
1080 		return;
1081 	nlh = nlmsg_hdr(skb);
1082 
1083 	frn = (struct fib_result_nl *) nlmsg_data(nlh);
1084 	nl_fib_lookup(net, frn);
1085 
1086 	portid = NETLINK_CB(skb).portid;      /* netlink portid */
1087 	NETLINK_CB(skb).portid = 0;        /* from kernel */
1088 	NETLINK_CB(skb).dst_group = 0;  /* unicast */
1089 	netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
1090 }
1091 
1092 static int __net_init nl_fib_lookup_init(struct net *net)
1093 {
1094 	struct sock *sk;
1095 	struct netlink_kernel_cfg cfg = {
1096 		.input	= nl_fib_input,
1097 	};
1098 
1099 	sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
1100 	if (!sk)
1101 		return -EAFNOSUPPORT;
1102 	net->ipv4.fibnl = sk;
1103 	return 0;
1104 }
1105 
1106 static void nl_fib_lookup_exit(struct net *net)
1107 {
1108 	netlink_kernel_release(net->ipv4.fibnl);
1109 	net->ipv4.fibnl = NULL;
1110 }
1111 
1112 static void fib_disable_ip(struct net_device *dev, unsigned long event)
1113 {
1114 	if (fib_sync_down_dev(dev, event))
1115 		fib_flush(dev_net(dev));
1116 	rt_cache_flush(dev_net(dev));
1117 	arp_ifdown(dev);
1118 }
1119 
1120 static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
1121 {
1122 	struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
1123 	struct net_device *dev = ifa->ifa_dev->dev;
1124 	struct net *net = dev_net(dev);
1125 
1126 	switch (event) {
1127 	case NETDEV_UP:
1128 		fib_add_ifaddr(ifa);
1129 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1130 		fib_sync_up(dev, RTNH_F_DEAD);
1131 #endif
1132 		atomic_inc(&net->ipv4.dev_addr_genid);
1133 		rt_cache_flush(dev_net(dev));
1134 		break;
1135 	case NETDEV_DOWN:
1136 		fib_del_ifaddr(ifa, NULL);
1137 		atomic_inc(&net->ipv4.dev_addr_genid);
1138 		if (!ifa->ifa_dev->ifa_list) {
1139 			/* Last address was deleted from this interface.
1140 			 * Disable IP.
1141 			 */
1142 			fib_disable_ip(dev, event);
1143 		} else {
1144 			rt_cache_flush(dev_net(dev));
1145 		}
1146 		break;
1147 	}
1148 	return NOTIFY_DONE;
1149 }
1150 
1151 static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1152 {
1153 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1154 	struct in_device *in_dev;
1155 	struct net *net = dev_net(dev);
1156 	unsigned int flags;
1157 
1158 	if (event == NETDEV_UNREGISTER) {
1159 		fib_disable_ip(dev, event);
1160 		rt_flush_dev(dev);
1161 		return NOTIFY_DONE;
1162 	}
1163 
1164 	in_dev = __in_dev_get_rtnl(dev);
1165 	if (!in_dev)
1166 		return NOTIFY_DONE;
1167 
1168 	switch (event) {
1169 	case NETDEV_UP:
1170 		for_ifa(in_dev) {
1171 			fib_add_ifaddr(ifa);
1172 		} endfor_ifa(in_dev);
1173 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1174 		fib_sync_up(dev, RTNH_F_DEAD);
1175 #endif
1176 		atomic_inc(&net->ipv4.dev_addr_genid);
1177 		rt_cache_flush(net);
1178 		break;
1179 	case NETDEV_DOWN:
1180 		fib_disable_ip(dev, event);
1181 		break;
1182 	case NETDEV_CHANGE:
1183 		flags = dev_get_flags(dev);
1184 		if (flags & (IFF_RUNNING | IFF_LOWER_UP))
1185 			fib_sync_up(dev, RTNH_F_LINKDOWN);
1186 		else
1187 			fib_sync_down_dev(dev, event);
1188 		/* fall through */
1189 	case NETDEV_CHANGEMTU:
1190 		rt_cache_flush(net);
1191 		break;
1192 	}
1193 	return NOTIFY_DONE;
1194 }
1195 
1196 static struct notifier_block fib_inetaddr_notifier = {
1197 	.notifier_call = fib_inetaddr_event,
1198 };
1199 
1200 static struct notifier_block fib_netdev_notifier = {
1201 	.notifier_call = fib_netdev_event,
1202 };
1203 
1204 static int __net_init ip_fib_net_init(struct net *net)
1205 {
1206 	int err;
1207 	size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
1208 
1209 	/* Avoid false sharing : Use at least a full cache line */
1210 	size = max_t(size_t, size, L1_CACHE_BYTES);
1211 
1212 	net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
1213 	if (!net->ipv4.fib_table_hash)
1214 		return -ENOMEM;
1215 
1216 	err = fib4_rules_init(net);
1217 	if (err < 0)
1218 		goto fail;
1219 	return 0;
1220 
1221 fail:
1222 	kfree(net->ipv4.fib_table_hash);
1223 	return err;
1224 }
1225 
1226 static void ip_fib_net_exit(struct net *net)
1227 {
1228 	unsigned int i;
1229 
1230 	rtnl_lock();
1231 #ifdef CONFIG_IP_MULTIPLE_TABLES
1232 	RCU_INIT_POINTER(net->ipv4.fib_local, NULL);
1233 	RCU_INIT_POINTER(net->ipv4.fib_main, NULL);
1234 	RCU_INIT_POINTER(net->ipv4.fib_default, NULL);
1235 #endif
1236 	for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1237 		struct hlist_head *head = &net->ipv4.fib_table_hash[i];
1238 		struct hlist_node *tmp;
1239 		struct fib_table *tb;
1240 
1241 		hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
1242 			hlist_del(&tb->tb_hlist);
1243 			fib_table_flush(tb);
1244 			fib_free_table(tb);
1245 		}
1246 	}
1247 
1248 #ifdef CONFIG_IP_MULTIPLE_TABLES
1249 	fib4_rules_exit(net);
1250 #endif
1251 	rtnl_unlock();
1252 	kfree(net->ipv4.fib_table_hash);
1253 }
1254 
1255 static int __net_init fib_net_init(struct net *net)
1256 {
1257 	int error;
1258 
1259 #ifdef CONFIG_IP_ROUTE_CLASSID
1260 	net->ipv4.fib_num_tclassid_users = 0;
1261 #endif
1262 	error = ip_fib_net_init(net);
1263 	if (error < 0)
1264 		goto out;
1265 	error = nl_fib_lookup_init(net);
1266 	if (error < 0)
1267 		goto out_nlfl;
1268 	error = fib_proc_init(net);
1269 	if (error < 0)
1270 		goto out_proc;
1271 out:
1272 	return error;
1273 
1274 out_proc:
1275 	nl_fib_lookup_exit(net);
1276 out_nlfl:
1277 	ip_fib_net_exit(net);
1278 	goto out;
1279 }
1280 
1281 static void __net_exit fib_net_exit(struct net *net)
1282 {
1283 	fib_proc_exit(net);
1284 	nl_fib_lookup_exit(net);
1285 	ip_fib_net_exit(net);
1286 }
1287 
1288 static struct pernet_operations fib_net_ops = {
1289 	.init = fib_net_init,
1290 	.exit = fib_net_exit,
1291 };
1292 
1293 void __init ip_fib_init(void)
1294 {
1295 	rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
1296 	rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
1297 	rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
1298 
1299 	register_pernet_subsys(&fib_net_ops);
1300 	register_netdevice_notifier(&fib_netdev_notifier);
1301 	register_inetaddr_notifier(&fib_inetaddr_notifier);
1302 
1303 	fib_trie_init();
1304 }
1305