xref: /openbmc/linux/net/ipv4/arp.c (revision ee89bd6b)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netfilter_arp.h>
120 
121 /*
122  *	Interface to generic neighbour cache.
123  */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 static const struct neigh_ops arp_broken_ops = {
153 	.family =		AF_INET,
154 	.solicit =		arp_solicit,
155 	.error_report =		arp_error_report,
156 	.output =		neigh_compat_output,
157 	.connected_output =	neigh_compat_output,
158 };
159 
160 struct neigh_table arp_tbl = {
161 	.family		= AF_INET,
162 	.key_len	= 4,
163 	.hash		= arp_hash,
164 	.constructor	= arp_constructor,
165 	.proxy_redo	= parp_redo,
166 	.id		= "arp_cache",
167 	.parms		= {
168 		.tbl			= &arp_tbl,
169 		.base_reachable_time	= 30 * HZ,
170 		.retrans_time		= 1 * HZ,
171 		.gc_staletime		= 60 * HZ,
172 		.reachable_time		= 30 * HZ,
173 		.delay_probe_time	= 5 * HZ,
174 		.queue_len_bytes	= 64*1024,
175 		.ucast_probes		= 3,
176 		.mcast_probes		= 3,
177 		.anycast_delay		= 1 * HZ,
178 		.proxy_delay		= (8 * HZ) / 10,
179 		.proxy_qlen		= 64,
180 		.locktime		= 1 * HZ,
181 	},
182 	.gc_interval	= 30 * HZ,
183 	.gc_thresh1	= 128,
184 	.gc_thresh2	= 512,
185 	.gc_thresh3	= 1024,
186 };
187 EXPORT_SYMBOL(arp_tbl);
188 
189 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
190 {
191 	switch (dev->type) {
192 	case ARPHRD_ETHER:
193 	case ARPHRD_FDDI:
194 	case ARPHRD_IEEE802:
195 		ip_eth_mc_map(addr, haddr);
196 		return 0;
197 	case ARPHRD_INFINIBAND:
198 		ip_ib_mc_map(addr, dev->broadcast, haddr);
199 		return 0;
200 	case ARPHRD_IPGRE:
201 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
202 		return 0;
203 	default:
204 		if (dir) {
205 			memcpy(haddr, dev->broadcast, dev->addr_len);
206 			return 0;
207 		}
208 	}
209 	return -EINVAL;
210 }
211 
212 
213 static u32 arp_hash(const void *pkey,
214 		    const struct net_device *dev,
215 		    __u32 *hash_rnd)
216 {
217 	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
218 }
219 
220 static int arp_constructor(struct neighbour *neigh)
221 {
222 	__be32 addr = *(__be32 *)neigh->primary_key;
223 	struct net_device *dev = neigh->dev;
224 	struct in_device *in_dev;
225 	struct neigh_parms *parms;
226 
227 	rcu_read_lock();
228 	in_dev = __in_dev_get_rcu(dev);
229 	if (in_dev == NULL) {
230 		rcu_read_unlock();
231 		return -EINVAL;
232 	}
233 
234 	neigh->type = inet_addr_type(dev_net(dev), addr);
235 
236 	parms = in_dev->arp_parms;
237 	__neigh_parms_put(neigh->parms);
238 	neigh->parms = neigh_parms_clone(parms);
239 	rcu_read_unlock();
240 
241 	if (!dev->header_ops) {
242 		neigh->nud_state = NUD_NOARP;
243 		neigh->ops = &arp_direct_ops;
244 		neigh->output = neigh_direct_output;
245 	} else {
246 		/* Good devices (checked by reading texts, but only Ethernet is
247 		   tested)
248 
249 		   ARPHRD_ETHER: (ethernet, apfddi)
250 		   ARPHRD_FDDI: (fddi)
251 		   ARPHRD_IEEE802: (tr)
252 		   ARPHRD_METRICOM: (strip)
253 		   ARPHRD_ARCNET:
254 		   etc. etc. etc.
255 
256 		   ARPHRD_IPDDP will also work, if author repairs it.
257 		   I did not it, because this driver does not work even
258 		   in old paradigm.
259 		 */
260 
261 #if 1
262 		/* So... these "amateur" devices are hopeless.
263 		   The only thing, that I can say now:
264 		   It is very sad that we need to keep ugly obsolete
265 		   code to make them happy.
266 
267 		   They should be moved to more reasonable state, now
268 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
269 		   Besides that, they are sort of out of date
270 		   (a lot of redundant clones/copies, useless in 2.1),
271 		   I wonder why people believe that they work.
272 		 */
273 		switch (dev->type) {
274 		default:
275 			break;
276 		case ARPHRD_ROSE:
277 #if IS_ENABLED(CONFIG_AX25)
278 		case ARPHRD_AX25:
279 #if IS_ENABLED(CONFIG_NETROM)
280 		case ARPHRD_NETROM:
281 #endif
282 			neigh->ops = &arp_broken_ops;
283 			neigh->output = neigh->ops->output;
284 			return 0;
285 #else
286 			break;
287 #endif
288 		}
289 #endif
290 		if (neigh->type == RTN_MULTICAST) {
291 			neigh->nud_state = NUD_NOARP;
292 			arp_mc_map(addr, neigh->ha, dev, 1);
293 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
294 			neigh->nud_state = NUD_NOARP;
295 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
296 		} else if (neigh->type == RTN_BROADCAST ||
297 			   (dev->flags & IFF_POINTOPOINT)) {
298 			neigh->nud_state = NUD_NOARP;
299 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
300 		}
301 
302 		if (dev->header_ops->cache)
303 			neigh->ops = &arp_hh_ops;
304 		else
305 			neigh->ops = &arp_generic_ops;
306 
307 		if (neigh->nud_state & NUD_VALID)
308 			neigh->output = neigh->ops->connected_output;
309 		else
310 			neigh->output = neigh->ops->output;
311 	}
312 	return 0;
313 }
314 
315 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
316 {
317 	dst_link_failure(skb);
318 	kfree_skb(skb);
319 }
320 
321 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
322 {
323 	__be32 saddr = 0;
324 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
325 	struct net_device *dev = neigh->dev;
326 	__be32 target = *(__be32 *)neigh->primary_key;
327 	int probes = atomic_read(&neigh->probes);
328 	struct in_device *in_dev;
329 
330 	rcu_read_lock();
331 	in_dev = __in_dev_get_rcu(dev);
332 	if (!in_dev) {
333 		rcu_read_unlock();
334 		return;
335 	}
336 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
337 	default:
338 	case 0:		/* By default announce any local IP */
339 		if (skb && inet_addr_type(dev_net(dev),
340 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
341 			saddr = ip_hdr(skb)->saddr;
342 		break;
343 	case 1:		/* Restrict announcements of saddr in same subnet */
344 		if (!skb)
345 			break;
346 		saddr = ip_hdr(skb)->saddr;
347 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
348 			/* saddr should be known to target */
349 			if (inet_addr_onlink(in_dev, target, saddr))
350 				break;
351 		}
352 		saddr = 0;
353 		break;
354 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
355 		break;
356 	}
357 	rcu_read_unlock();
358 
359 	if (!saddr)
360 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
361 
362 	probes -= neigh->parms->ucast_probes;
363 	if (probes < 0) {
364 		if (!(neigh->nud_state & NUD_VALID))
365 			pr_debug("trying to ucast probe in NUD_INVALID\n");
366 		neigh_ha_snapshot(dst_ha, neigh, dev);
367 		dst_hw = dst_ha;
368 	} else {
369 		probes -= neigh->parms->app_probes;
370 		if (probes < 0) {
371 #ifdef CONFIG_ARPD
372 			neigh_app_ns(neigh);
373 #endif
374 			return;
375 		}
376 	}
377 
378 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
379 		 dst_hw, dev->dev_addr, NULL);
380 }
381 
382 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
383 {
384 	int scope;
385 
386 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
387 	case 0:	/* Reply, the tip is already validated */
388 		return 0;
389 	case 1:	/* Reply only if tip is configured on the incoming interface */
390 		sip = 0;
391 		scope = RT_SCOPE_HOST;
392 		break;
393 	case 2:	/*
394 		 * Reply only if tip is configured on the incoming interface
395 		 * and is in same subnet as sip
396 		 */
397 		scope = RT_SCOPE_HOST;
398 		break;
399 	case 3:	/* Do not reply for scope host addresses */
400 		sip = 0;
401 		scope = RT_SCOPE_LINK;
402 		break;
403 	case 4:	/* Reserved */
404 	case 5:
405 	case 6:
406 	case 7:
407 		return 0;
408 	case 8:	/* Do not reply */
409 		return 1;
410 	default:
411 		return 0;
412 	}
413 	return !inet_confirm_addr(in_dev, sip, tip, scope);
414 }
415 
416 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
417 {
418 	struct rtable *rt;
419 	int flag = 0;
420 	/*unsigned long now; */
421 	struct net *net = dev_net(dev);
422 
423 	rt = ip_route_output(net, sip, tip, 0, 0);
424 	if (IS_ERR(rt))
425 		return 1;
426 	if (rt->dst.dev != dev) {
427 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
428 		flag = 1;
429 	}
430 	ip_rt_put(rt);
431 	return flag;
432 }
433 
434 /* OBSOLETE FUNCTIONS */
435 
436 /*
437  *	Find an arp mapping in the cache. If not found, post a request.
438  *
439  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
440  *	even if it exists. It is supposed that skb->dev was mangled
441  *	by a virtual device (eql, shaper). Nobody but broken devices
442  *	is allowed to use this function, it is scheduled to be removed. --ANK
443  */
444 
445 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
446 			      __be32 paddr, struct net_device *dev)
447 {
448 	switch (addr_hint) {
449 	case RTN_LOCAL:
450 		pr_debug("arp called for own IP address\n");
451 		memcpy(haddr, dev->dev_addr, dev->addr_len);
452 		return 1;
453 	case RTN_MULTICAST:
454 		arp_mc_map(paddr, haddr, dev, 1);
455 		return 1;
456 	case RTN_BROADCAST:
457 		memcpy(haddr, dev->broadcast, dev->addr_len);
458 		return 1;
459 	}
460 	return 0;
461 }
462 
463 
464 int arp_find(unsigned char *haddr, struct sk_buff *skb)
465 {
466 	struct net_device *dev = skb->dev;
467 	__be32 paddr;
468 	struct neighbour *n;
469 
470 	if (!skb_dst(skb)) {
471 		pr_debug("arp_find is called with dst==NULL\n");
472 		kfree_skb(skb);
473 		return 1;
474 	}
475 
476 	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
477 	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
478 			       paddr, dev))
479 		return 0;
480 
481 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
482 
483 	if (n) {
484 		n->used = jiffies;
485 		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
486 			neigh_ha_snapshot(haddr, n, dev);
487 			neigh_release(n);
488 			return 0;
489 		}
490 		neigh_release(n);
491 	} else
492 		kfree_skb(skb);
493 	return 1;
494 }
495 EXPORT_SYMBOL(arp_find);
496 
497 /* END OF OBSOLETE FUNCTIONS */
498 
499 /*
500  * Check if we can use proxy ARP for this path
501  */
502 static inline int arp_fwd_proxy(struct in_device *in_dev,
503 				struct net_device *dev,	struct rtable *rt)
504 {
505 	struct in_device *out_dev;
506 	int imi, omi = -1;
507 
508 	if (rt->dst.dev == dev)
509 		return 0;
510 
511 	if (!IN_DEV_PROXY_ARP(in_dev))
512 		return 0;
513 	imi = IN_DEV_MEDIUM_ID(in_dev);
514 	if (imi == 0)
515 		return 1;
516 	if (imi == -1)
517 		return 0;
518 
519 	/* place to check for proxy_arp for routes */
520 
521 	out_dev = __in_dev_get_rcu(rt->dst.dev);
522 	if (out_dev)
523 		omi = IN_DEV_MEDIUM_ID(out_dev);
524 
525 	return omi != imi && omi != -1;
526 }
527 
528 /*
529  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
530  *
531  * RFC3069 supports proxy arp replies back to the same interface.  This
532  * is done to support (ethernet) switch features, like RFC 3069, where
533  * the individual ports are not allowed to communicate with each
534  * other, BUT they are allowed to talk to the upstream router.  As
535  * described in RFC 3069, it is possible to allow these hosts to
536  * communicate through the upstream router, by proxy_arp'ing.
537  *
538  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
539  *
540  *  This technology is known by different names:
541  *    In RFC 3069 it is called VLAN Aggregation.
542  *    Cisco and Allied Telesyn call it Private VLAN.
543  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
544  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
545  *
546  */
547 static inline int arp_fwd_pvlan(struct in_device *in_dev,
548 				struct net_device *dev,	struct rtable *rt,
549 				__be32 sip, __be32 tip)
550 {
551 	/* Private VLAN is only concerned about the same ethernet segment */
552 	if (rt->dst.dev != dev)
553 		return 0;
554 
555 	/* Don't reply on self probes (often done by windowz boxes)*/
556 	if (sip == tip)
557 		return 0;
558 
559 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
560 		return 1;
561 	else
562 		return 0;
563 }
564 
565 /*
566  *	Interface to link layer: send routine and receive handler.
567  */
568 
569 /*
570  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
571  *	message.
572  */
573 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
574 			   struct net_device *dev, __be32 src_ip,
575 			   const unsigned char *dest_hw,
576 			   const unsigned char *src_hw,
577 			   const unsigned char *target_hw)
578 {
579 	struct sk_buff *skb;
580 	struct arphdr *arp;
581 	unsigned char *arp_ptr;
582 	int hlen = LL_RESERVED_SPACE(dev);
583 	int tlen = dev->needed_tailroom;
584 
585 	/*
586 	 *	Allocate a buffer
587 	 */
588 
589 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
590 	if (skb == NULL)
591 		return NULL;
592 
593 	skb_reserve(skb, hlen);
594 	skb_reset_network_header(skb);
595 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
596 	skb->dev = dev;
597 	skb->protocol = htons(ETH_P_ARP);
598 	if (src_hw == NULL)
599 		src_hw = dev->dev_addr;
600 	if (dest_hw == NULL)
601 		dest_hw = dev->broadcast;
602 
603 	/*
604 	 *	Fill the device header for the ARP frame
605 	 */
606 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
607 		goto out;
608 
609 	/*
610 	 * Fill out the arp protocol part.
611 	 *
612 	 * The arp hardware type should match the device type, except for FDDI,
613 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
614 	 */
615 	/*
616 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
617 	 *	DIX code for the protocol. Make these device structure fields.
618 	 */
619 	switch (dev->type) {
620 	default:
621 		arp->ar_hrd = htons(dev->type);
622 		arp->ar_pro = htons(ETH_P_IP);
623 		break;
624 
625 #if IS_ENABLED(CONFIG_AX25)
626 	case ARPHRD_AX25:
627 		arp->ar_hrd = htons(ARPHRD_AX25);
628 		arp->ar_pro = htons(AX25_P_IP);
629 		break;
630 
631 #if IS_ENABLED(CONFIG_NETROM)
632 	case ARPHRD_NETROM:
633 		arp->ar_hrd = htons(ARPHRD_NETROM);
634 		arp->ar_pro = htons(AX25_P_IP);
635 		break;
636 #endif
637 #endif
638 
639 #if IS_ENABLED(CONFIG_FDDI)
640 	case ARPHRD_FDDI:
641 		arp->ar_hrd = htons(ARPHRD_ETHER);
642 		arp->ar_pro = htons(ETH_P_IP);
643 		break;
644 #endif
645 	}
646 
647 	arp->ar_hln = dev->addr_len;
648 	arp->ar_pln = 4;
649 	arp->ar_op = htons(type);
650 
651 	arp_ptr = (unsigned char *)(arp + 1);
652 
653 	memcpy(arp_ptr, src_hw, dev->addr_len);
654 	arp_ptr += dev->addr_len;
655 	memcpy(arp_ptr, &src_ip, 4);
656 	arp_ptr += 4;
657 
658 	switch (dev->type) {
659 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
660 	case ARPHRD_IEEE1394:
661 		break;
662 #endif
663 	default:
664 		if (target_hw != NULL)
665 			memcpy(arp_ptr, target_hw, dev->addr_len);
666 		else
667 			memset(arp_ptr, 0, dev->addr_len);
668 		arp_ptr += dev->addr_len;
669 	}
670 	memcpy(arp_ptr, &dest_ip, 4);
671 
672 	return skb;
673 
674 out:
675 	kfree_skb(skb);
676 	return NULL;
677 }
678 EXPORT_SYMBOL(arp_create);
679 
680 /*
681  *	Send an arp packet.
682  */
683 void arp_xmit(struct sk_buff *skb)
684 {
685 	/* Send it off, maybe filter it using firewalling first.  */
686 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
687 }
688 EXPORT_SYMBOL(arp_xmit);
689 
690 /*
691  *	Create and send an arp packet.
692  */
693 void arp_send(int type, int ptype, __be32 dest_ip,
694 	      struct net_device *dev, __be32 src_ip,
695 	      const unsigned char *dest_hw, const unsigned char *src_hw,
696 	      const unsigned char *target_hw)
697 {
698 	struct sk_buff *skb;
699 
700 	/*
701 	 *	No arp on this interface.
702 	 */
703 
704 	if (dev->flags&IFF_NOARP)
705 		return;
706 
707 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
708 			 dest_hw, src_hw, target_hw);
709 	if (skb == NULL)
710 		return;
711 
712 	arp_xmit(skb);
713 }
714 EXPORT_SYMBOL(arp_send);
715 
716 /*
717  *	Process an arp request.
718  */
719 
720 static int arp_process(struct sk_buff *skb)
721 {
722 	struct net_device *dev = skb->dev;
723 	struct in_device *in_dev = __in_dev_get_rcu(dev);
724 	struct arphdr *arp;
725 	unsigned char *arp_ptr;
726 	struct rtable *rt;
727 	unsigned char *sha;
728 	__be32 sip, tip;
729 	u16 dev_type = dev->type;
730 	int addr_type;
731 	struct neighbour *n;
732 	struct net *net = dev_net(dev);
733 
734 	/* arp_rcv below verifies the ARP header and verifies the device
735 	 * is ARP'able.
736 	 */
737 
738 	if (in_dev == NULL)
739 		goto out;
740 
741 	arp = arp_hdr(skb);
742 
743 	switch (dev_type) {
744 	default:
745 		if (arp->ar_pro != htons(ETH_P_IP) ||
746 		    htons(dev_type) != arp->ar_hrd)
747 			goto out;
748 		break;
749 	case ARPHRD_ETHER:
750 	case ARPHRD_FDDI:
751 	case ARPHRD_IEEE802:
752 		/*
753 		 * ETHERNET, and Fibre Channel (which are IEEE 802
754 		 * devices, according to RFC 2625) devices will accept ARP
755 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
756 		 * This is the case also of FDDI, where the RFC 1390 says that
757 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
758 		 * however, to be more robust, we'll accept both 1 (Ethernet)
759 		 * or 6 (IEEE 802.2)
760 		 */
761 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
762 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
763 		    arp->ar_pro != htons(ETH_P_IP))
764 			goto out;
765 		break;
766 	case ARPHRD_AX25:
767 		if (arp->ar_pro != htons(AX25_P_IP) ||
768 		    arp->ar_hrd != htons(ARPHRD_AX25))
769 			goto out;
770 		break;
771 	case ARPHRD_NETROM:
772 		if (arp->ar_pro != htons(AX25_P_IP) ||
773 		    arp->ar_hrd != htons(ARPHRD_NETROM))
774 			goto out;
775 		break;
776 	}
777 
778 	/* Understand only these message types */
779 
780 	if (arp->ar_op != htons(ARPOP_REPLY) &&
781 	    arp->ar_op != htons(ARPOP_REQUEST))
782 		goto out;
783 
784 /*
785  *	Extract fields
786  */
787 	arp_ptr = (unsigned char *)(arp + 1);
788 	sha	= arp_ptr;
789 	arp_ptr += dev->addr_len;
790 	memcpy(&sip, arp_ptr, 4);
791 	arp_ptr += 4;
792 	switch (dev_type) {
793 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
794 	case ARPHRD_IEEE1394:
795 		break;
796 #endif
797 	default:
798 		arp_ptr += dev->addr_len;
799 	}
800 	memcpy(&tip, arp_ptr, 4);
801 /*
802  *	Check for bad requests for 127.x.x.x and requests for multicast
803  *	addresses.  If this is one such, delete it.
804  */
805 	if (ipv4_is_multicast(tip) ||
806 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
807 		goto out;
808 
809 /*
810  *     Special case: We must set Frame Relay source Q.922 address
811  */
812 	if (dev_type == ARPHRD_DLCI)
813 		sha = dev->broadcast;
814 
815 /*
816  *  Process entry.  The idea here is we want to send a reply if it is a
817  *  request for us or if it is a request for someone else that we hold
818  *  a proxy for.  We want to add an entry to our cache if it is a reply
819  *  to us or if it is a request for our address.
820  *  (The assumption for this last is that if someone is requesting our
821  *  address, they are probably intending to talk to us, so it saves time
822  *  if we cache their address.  Their address is also probably not in
823  *  our cache, since ours is not in their cache.)
824  *
825  *  Putting this another way, we only care about replies if they are to
826  *  us, in which case we add them to the cache.  For requests, we care
827  *  about those for us and those for our proxies.  We reply to both,
828  *  and in the case of requests for us we add the requester to the arp
829  *  cache.
830  */
831 
832 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
833 	if (sip == 0) {
834 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
835 		    inet_addr_type(net, tip) == RTN_LOCAL &&
836 		    !arp_ignore(in_dev, sip, tip))
837 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
838 				 dev->dev_addr, sha);
839 		goto out;
840 	}
841 
842 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
843 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
844 
845 		rt = skb_rtable(skb);
846 		addr_type = rt->rt_type;
847 
848 		if (addr_type == RTN_LOCAL) {
849 			int dont_send;
850 
851 			dont_send = arp_ignore(in_dev, sip, tip);
852 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
853 				dont_send = arp_filter(sip, tip, dev);
854 			if (!dont_send) {
855 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
856 				if (n) {
857 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
858 						 dev, tip, sha, dev->dev_addr,
859 						 sha);
860 					neigh_release(n);
861 				}
862 			}
863 			goto out;
864 		} else if (IN_DEV_FORWARD(in_dev)) {
865 			if (addr_type == RTN_UNICAST  &&
866 			    (arp_fwd_proxy(in_dev, dev, rt) ||
867 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
868 			     (rt->dst.dev != dev &&
869 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
870 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
871 				if (n)
872 					neigh_release(n);
873 
874 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
875 				    skb->pkt_type == PACKET_HOST ||
876 				    in_dev->arp_parms->proxy_delay == 0) {
877 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
878 						 dev, tip, sha, dev->dev_addr,
879 						 sha);
880 				} else {
881 					pneigh_enqueue(&arp_tbl,
882 						       in_dev->arp_parms, skb);
883 					return 0;
884 				}
885 				goto out;
886 			}
887 		}
888 	}
889 
890 	/* Update our ARP tables */
891 
892 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
893 
894 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
895 		/* Unsolicited ARP is not accepted by default.
896 		   It is possible, that this option should be enabled for some
897 		   devices (strip is candidate)
898 		 */
899 		if (n == NULL &&
900 		    (arp->ar_op == htons(ARPOP_REPLY) ||
901 		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
902 		    inet_addr_type(net, sip) == RTN_UNICAST)
903 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
904 	}
905 
906 	if (n) {
907 		int state = NUD_REACHABLE;
908 		int override;
909 
910 		/* If several different ARP replies follows back-to-back,
911 		   use the FIRST one. It is possible, if several proxy
912 		   agents are active. Taking the first reply prevents
913 		   arp trashing and chooses the fastest router.
914 		 */
915 		override = time_after(jiffies, n->updated + n->parms->locktime);
916 
917 		/* Broadcast replies and request packets
918 		   do not assert neighbour reachability.
919 		 */
920 		if (arp->ar_op != htons(ARPOP_REPLY) ||
921 		    skb->pkt_type != PACKET_HOST)
922 			state = NUD_STALE;
923 		neigh_update(n, sha, state,
924 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
925 		neigh_release(n);
926 	}
927 
928 out:
929 	consume_skb(skb);
930 	return 0;
931 }
932 
933 static void parp_redo(struct sk_buff *skb)
934 {
935 	arp_process(skb);
936 }
937 
938 
939 /*
940  *	Receive an arp request from the device layer.
941  */
942 
943 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
944 		   struct packet_type *pt, struct net_device *orig_dev)
945 {
946 	const struct arphdr *arp;
947 
948 	if (dev->flags & IFF_NOARP ||
949 	    skb->pkt_type == PACKET_OTHERHOST ||
950 	    skb->pkt_type == PACKET_LOOPBACK)
951 		goto freeskb;
952 
953 	skb = skb_share_check(skb, GFP_ATOMIC);
954 	if (!skb)
955 		goto out_of_mem;
956 
957 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
958 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
959 		goto freeskb;
960 
961 	arp = arp_hdr(skb);
962 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
963 		goto freeskb;
964 
965 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966 
967 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
968 
969 freeskb:
970 	kfree_skb(skb);
971 out_of_mem:
972 	return 0;
973 }
974 
975 /*
976  *	User level interface (ioctl)
977  */
978 
979 /*
980  *	Set (create) an ARP cache entry.
981  */
982 
983 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
984 {
985 	if (dev == NULL) {
986 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
987 		return 0;
988 	}
989 	if (__in_dev_get_rtnl(dev)) {
990 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
991 		return 0;
992 	}
993 	return -ENXIO;
994 }
995 
996 static int arp_req_set_public(struct net *net, struct arpreq *r,
997 		struct net_device *dev)
998 {
999 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001 
1002 	if (mask && mask != htonl(0xFFFFFFFF))
1003 		return -EINVAL;
1004 	if (!dev && (r->arp_flags & ATF_COM)) {
1005 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006 				      r->arp_ha.sa_data);
1007 		if (!dev)
1008 			return -ENODEV;
1009 	}
1010 	if (mask) {
1011 		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012 			return -ENOBUFS;
1013 		return 0;
1014 	}
1015 
1016 	return arp_req_set_proxy(net, dev, 1);
1017 }
1018 
1019 static int arp_req_set(struct net *net, struct arpreq *r,
1020 		       struct net_device *dev)
1021 {
1022 	__be32 ip;
1023 	struct neighbour *neigh;
1024 	int err;
1025 
1026 	if (r->arp_flags & ATF_PUBL)
1027 		return arp_req_set_public(net, r, dev);
1028 
1029 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030 	if (r->arp_flags & ATF_PERM)
1031 		r->arp_flags |= ATF_COM;
1032 	if (dev == NULL) {
1033 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034 
1035 		if (IS_ERR(rt))
1036 			return PTR_ERR(rt);
1037 		dev = rt->dst.dev;
1038 		ip_rt_put(rt);
1039 		if (!dev)
1040 			return -EINVAL;
1041 	}
1042 	switch (dev->type) {
1043 #if IS_ENABLED(CONFIG_FDDI)
1044 	case ARPHRD_FDDI:
1045 		/*
1046 		 * According to RFC 1390, FDDI devices should accept ARP
1047 		 * hardware types of 1 (Ethernet).  However, to be more
1048 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049 		 * or 6 (IEEE 802.2).
1050 		 */
1051 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054 			return -EINVAL;
1055 		break;
1056 #endif
1057 	default:
1058 		if (r->arp_ha.sa_family != dev->type)
1059 			return -EINVAL;
1060 		break;
1061 	}
1062 
1063 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064 	err = PTR_ERR(neigh);
1065 	if (!IS_ERR(neigh)) {
1066 		unsigned int state = NUD_STALE;
1067 		if (r->arp_flags & ATF_PERM)
1068 			state = NUD_PERMANENT;
1069 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070 				   r->arp_ha.sa_data : NULL, state,
1071 				   NEIGH_UPDATE_F_OVERRIDE |
1072 				   NEIGH_UPDATE_F_ADMIN);
1073 		neigh_release(neigh);
1074 	}
1075 	return err;
1076 }
1077 
1078 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1079 {
1080 	if (neigh->nud_state&NUD_PERMANENT)
1081 		return ATF_PERM | ATF_COM;
1082 	else if (neigh->nud_state&NUD_VALID)
1083 		return ATF_COM;
1084 	else
1085 		return 0;
1086 }
1087 
1088 /*
1089  *	Get an ARP cache entry.
1090  */
1091 
1092 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093 {
1094 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095 	struct neighbour *neigh;
1096 	int err = -ENXIO;
1097 
1098 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099 	if (neigh) {
1100 		read_lock_bh(&neigh->lock);
1101 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102 		r->arp_flags = arp_state_to_flags(neigh);
1103 		read_unlock_bh(&neigh->lock);
1104 		r->arp_ha.sa_family = dev->type;
1105 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106 		neigh_release(neigh);
1107 		err = 0;
1108 	}
1109 	return err;
1110 }
1111 
1112 int arp_invalidate(struct net_device *dev, __be32 ip)
1113 {
1114 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115 	int err = -ENXIO;
1116 
1117 	if (neigh) {
1118 		if (neigh->nud_state & ~NUD_NOARP)
1119 			err = neigh_update(neigh, NULL, NUD_FAILED,
1120 					   NEIGH_UPDATE_F_OVERRIDE|
1121 					   NEIGH_UPDATE_F_ADMIN);
1122 		neigh_release(neigh);
1123 	}
1124 
1125 	return err;
1126 }
1127 EXPORT_SYMBOL(arp_invalidate);
1128 
1129 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130 		struct net_device *dev)
1131 {
1132 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134 
1135 	if (mask == htonl(0xFFFFFFFF))
1136 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137 
1138 	if (mask)
1139 		return -EINVAL;
1140 
1141 	return arp_req_set_proxy(net, dev, 0);
1142 }
1143 
1144 static int arp_req_delete(struct net *net, struct arpreq *r,
1145 			  struct net_device *dev)
1146 {
1147 	__be32 ip;
1148 
1149 	if (r->arp_flags & ATF_PUBL)
1150 		return arp_req_delete_public(net, r, dev);
1151 
1152 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153 	if (dev == NULL) {
1154 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155 		if (IS_ERR(rt))
1156 			return PTR_ERR(rt);
1157 		dev = rt->dst.dev;
1158 		ip_rt_put(rt);
1159 		if (!dev)
1160 			return -EINVAL;
1161 	}
1162 	return arp_invalidate(dev, ip);
1163 }
1164 
1165 /*
1166  *	Handle an ARP layer I/O control request.
1167  */
1168 
1169 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170 {
1171 	int err;
1172 	struct arpreq r;
1173 	struct net_device *dev = NULL;
1174 
1175 	switch (cmd) {
1176 	case SIOCDARP:
1177 	case SIOCSARP:
1178 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179 			return -EPERM;
1180 	case SIOCGARP:
1181 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182 		if (err)
1183 			return -EFAULT;
1184 		break;
1185 	default:
1186 		return -EINVAL;
1187 	}
1188 
1189 	if (r.arp_pa.sa_family != AF_INET)
1190 		return -EPFNOSUPPORT;
1191 
1192 	if (!(r.arp_flags & ATF_PUBL) &&
1193 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194 		return -EINVAL;
1195 	if (!(r.arp_flags & ATF_NETMASK))
1196 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197 							   htonl(0xFFFFFFFFUL);
1198 	rtnl_lock();
1199 	if (r.arp_dev[0]) {
1200 		err = -ENODEV;
1201 		dev = __dev_get_by_name(net, r.arp_dev);
1202 		if (dev == NULL)
1203 			goto out;
1204 
1205 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206 		if (!r.arp_ha.sa_family)
1207 			r.arp_ha.sa_family = dev->type;
1208 		err = -EINVAL;
1209 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210 			goto out;
1211 	} else if (cmd == SIOCGARP) {
1212 		err = -ENODEV;
1213 		goto out;
1214 	}
1215 
1216 	switch (cmd) {
1217 	case SIOCDARP:
1218 		err = arp_req_delete(net, &r, dev);
1219 		break;
1220 	case SIOCSARP:
1221 		err = arp_req_set(net, &r, dev);
1222 		break;
1223 	case SIOCGARP:
1224 		err = arp_req_get(&r, dev);
1225 		break;
1226 	}
1227 out:
1228 	rtnl_unlock();
1229 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230 		err = -EFAULT;
1231 	return err;
1232 }
1233 
1234 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235 			    void *ptr)
1236 {
1237 	struct net_device *dev = ptr;
1238 
1239 	switch (event) {
1240 	case NETDEV_CHANGEADDR:
1241 		neigh_changeaddr(&arp_tbl, dev);
1242 		rt_cache_flush(dev_net(dev));
1243 		break;
1244 	default:
1245 		break;
1246 	}
1247 
1248 	return NOTIFY_DONE;
1249 }
1250 
1251 static struct notifier_block arp_netdev_notifier = {
1252 	.notifier_call = arp_netdev_event,
1253 };
1254 
1255 /* Note, that it is not on notifier chain.
1256    It is necessary, that this routine was called after route cache will be
1257    flushed.
1258  */
1259 void arp_ifdown(struct net_device *dev)
1260 {
1261 	neigh_ifdown(&arp_tbl, dev);
1262 }
1263 
1264 
1265 /*
1266  *	Called once on startup.
1267  */
1268 
1269 static struct packet_type arp_packet_type __read_mostly = {
1270 	.type =	cpu_to_be16(ETH_P_ARP),
1271 	.func =	arp_rcv,
1272 };
1273 
1274 static int arp_proc_init(void);
1275 
1276 void __init arp_init(void)
1277 {
1278 	neigh_table_init(&arp_tbl);
1279 
1280 	dev_add_pack(&arp_packet_type);
1281 	arp_proc_init();
1282 #ifdef CONFIG_SYSCTL
1283 	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284 #endif
1285 	register_netdevice_notifier(&arp_netdev_notifier);
1286 }
1287 
1288 #ifdef CONFIG_PROC_FS
1289 #if IS_ENABLED(CONFIG_AX25)
1290 
1291 /* ------------------------------------------------------------------------ */
1292 /*
1293  *	ax25 -> ASCII conversion
1294  */
1295 static char *ax2asc2(ax25_address *a, char *buf)
1296 {
1297 	char c, *s;
1298 	int n;
1299 
1300 	for (n = 0, s = buf; n < 6; n++) {
1301 		c = (a->ax25_call[n] >> 1) & 0x7F;
1302 
1303 		if (c != ' ')
1304 			*s++ = c;
1305 	}
1306 
1307 	*s++ = '-';
1308 	n = (a->ax25_call[6] >> 1) & 0x0F;
1309 	if (n > 9) {
1310 		*s++ = '1';
1311 		n -= 10;
1312 	}
1313 
1314 	*s++ = n + '0';
1315 	*s++ = '\0';
1316 
1317 	if (*buf == '\0' || *buf == '-')
1318 		return "*";
1319 
1320 	return buf;
1321 }
1322 #endif /* CONFIG_AX25 */
1323 
1324 #define HBUFFERLEN 30
1325 
1326 static void arp_format_neigh_entry(struct seq_file *seq,
1327 				   struct neighbour *n)
1328 {
1329 	char hbuffer[HBUFFERLEN];
1330 	int k, j;
1331 	char tbuf[16];
1332 	struct net_device *dev = n->dev;
1333 	int hatype = dev->type;
1334 
1335 	read_lock(&n->lock);
1336 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337 #if IS_ENABLED(CONFIG_AX25)
1338 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339 		ax2asc2((ax25_address *)n->ha, hbuffer);
1340 	else {
1341 #endif
1342 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345 		hbuffer[k++] = ':';
1346 	}
1347 	if (k != 0)
1348 		--k;
1349 	hbuffer[k] = 0;
1350 #if IS_ENABLED(CONFIG_AX25)
1351 	}
1352 #endif
1353 	sprintf(tbuf, "%pI4", n->primary_key);
1354 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356 	read_unlock(&n->lock);
1357 }
1358 
1359 static void arp_format_pneigh_entry(struct seq_file *seq,
1360 				    struct pneigh_entry *n)
1361 {
1362 	struct net_device *dev = n->dev;
1363 	int hatype = dev ? dev->type : 0;
1364 	char tbuf[16];
1365 
1366 	sprintf(tbuf, "%pI4", n->key);
1367 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369 		   dev ? dev->name : "*");
1370 }
1371 
1372 static int arp_seq_show(struct seq_file *seq, void *v)
1373 {
1374 	if (v == SEQ_START_TOKEN) {
1375 		seq_puts(seq, "IP address       HW type     Flags       "
1376 			      "HW address            Mask     Device\n");
1377 	} else {
1378 		struct neigh_seq_state *state = seq->private;
1379 
1380 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381 			arp_format_pneigh_entry(seq, v);
1382 		else
1383 			arp_format_neigh_entry(seq, v);
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390 {
1391 	/* Don't want to confuse "arp -a" w/ magic entries,
1392 	 * so we tell the generic iterator to skip NUD_NOARP.
1393 	 */
1394 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395 }
1396 
1397 /* ------------------------------------------------------------------------ */
1398 
1399 static const struct seq_operations arp_seq_ops = {
1400 	.start	= arp_seq_start,
1401 	.next	= neigh_seq_next,
1402 	.stop	= neigh_seq_stop,
1403 	.show	= arp_seq_show,
1404 };
1405 
1406 static int arp_seq_open(struct inode *inode, struct file *file)
1407 {
1408 	return seq_open_net(inode, file, &arp_seq_ops,
1409 			    sizeof(struct neigh_seq_state));
1410 }
1411 
1412 static const struct file_operations arp_seq_fops = {
1413 	.owner		= THIS_MODULE,
1414 	.open           = arp_seq_open,
1415 	.read           = seq_read,
1416 	.llseek         = seq_lseek,
1417 	.release	= seq_release_net,
1418 };
1419 
1420 
1421 static int __net_init arp_net_init(struct net *net)
1422 {
1423 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1424 		return -ENOMEM;
1425 	return 0;
1426 }
1427 
1428 static void __net_exit arp_net_exit(struct net *net)
1429 {
1430 	remove_proc_entry("arp", net->proc_net);
1431 }
1432 
1433 static struct pernet_operations arp_net_ops = {
1434 	.init = arp_net_init,
1435 	.exit = arp_net_exit,
1436 };
1437 
1438 static int __init arp_proc_init(void)
1439 {
1440 	return register_pernet_subsys(&arp_net_ops);
1441 }
1442 
1443 #else /* CONFIG_PROC_FS */
1444 
1445 static int __init arp_proc_init(void)
1446 {
1447 	return 0;
1448 }
1449 
1450 #endif /* CONFIG_PROC_FS */
1451