xref: /openbmc/linux/net/ipv4/arp.c (revision c0e297dc)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netfilter_arp.h>
120 
121 /*
122  *	Interface to generic neighbour cache.
123  */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130 
131 static const struct neigh_ops arp_generic_ops = {
132 	.family =		AF_INET,
133 	.solicit =		arp_solicit,
134 	.error_report =		arp_error_report,
135 	.output =		neigh_resolve_output,
136 	.connected_output =	neigh_connected_output,
137 };
138 
139 static const struct neigh_ops arp_hh_ops = {
140 	.family =		AF_INET,
141 	.solicit =		arp_solicit,
142 	.error_report =		arp_error_report,
143 	.output =		neigh_resolve_output,
144 	.connected_output =	neigh_resolve_output,
145 };
146 
147 static const struct neigh_ops arp_direct_ops = {
148 	.family =		AF_INET,
149 	.output =		neigh_direct_output,
150 	.connected_output =	neigh_direct_output,
151 };
152 
153 struct neigh_table arp_tbl = {
154 	.family		= AF_INET,
155 	.key_len	= 4,
156 	.protocol	= cpu_to_be16(ETH_P_IP),
157 	.hash		= arp_hash,
158 	.key_eq		= arp_key_eq,
159 	.constructor	= arp_constructor,
160 	.proxy_redo	= parp_redo,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 			[NEIGH_VAR_PROXY_QLEN] = 64,
174 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 		},
178 	},
179 	.gc_interval	= 30 * HZ,
180 	.gc_thresh1	= 128,
181 	.gc_thresh2	= 512,
182 	.gc_thresh3	= 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185 
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 	switch (dev->type) {
189 	case ARPHRD_ETHER:
190 	case ARPHRD_FDDI:
191 	case ARPHRD_IEEE802:
192 		ip_eth_mc_map(addr, haddr);
193 		return 0;
194 	case ARPHRD_INFINIBAND:
195 		ip_ib_mc_map(addr, dev->broadcast, haddr);
196 		return 0;
197 	case ARPHRD_IPGRE:
198 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 		return 0;
200 	default:
201 		if (dir) {
202 			memcpy(haddr, dev->broadcast, dev->addr_len);
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 
209 
210 static u32 arp_hash(const void *pkey,
211 		    const struct net_device *dev,
212 		    __u32 *hash_rnd)
213 {
214 	return arp_hashfn(pkey, dev, hash_rnd);
215 }
216 
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 	return neigh_key_eq32(neigh, pkey);
220 }
221 
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 	__be32 addr = *(__be32 *)neigh->primary_key;
225 	struct net_device *dev = neigh->dev;
226 	struct in_device *in_dev;
227 	struct neigh_parms *parms;
228 
229 	rcu_read_lock();
230 	in_dev = __in_dev_get_rcu(dev);
231 	if (!in_dev) {
232 		rcu_read_unlock();
233 		return -EINVAL;
234 	}
235 
236 	neigh->type = inet_addr_type(dev_net(dev), addr);
237 
238 	parms = in_dev->arp_parms;
239 	__neigh_parms_put(neigh->parms);
240 	neigh->parms = neigh_parms_clone(parms);
241 	rcu_read_unlock();
242 
243 	if (!dev->header_ops) {
244 		neigh->nud_state = NUD_NOARP;
245 		neigh->ops = &arp_direct_ops;
246 		neigh->output = neigh_direct_output;
247 	} else {
248 		/* Good devices (checked by reading texts, but only Ethernet is
249 		   tested)
250 
251 		   ARPHRD_ETHER: (ethernet, apfddi)
252 		   ARPHRD_FDDI: (fddi)
253 		   ARPHRD_IEEE802: (tr)
254 		   ARPHRD_METRICOM: (strip)
255 		   ARPHRD_ARCNET:
256 		   etc. etc. etc.
257 
258 		   ARPHRD_IPDDP will also work, if author repairs it.
259 		   I did not it, because this driver does not work even
260 		   in old paradigm.
261 		 */
262 
263 		if (neigh->type == RTN_MULTICAST) {
264 			neigh->nud_state = NUD_NOARP;
265 			arp_mc_map(addr, neigh->ha, dev, 1);
266 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 			neigh->nud_state = NUD_NOARP;
268 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 		} else if (neigh->type == RTN_BROADCAST ||
270 			   (dev->flags & IFF_POINTOPOINT)) {
271 			neigh->nud_state = NUD_NOARP;
272 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 		}
274 
275 		if (dev->header_ops->cache)
276 			neigh->ops = &arp_hh_ops;
277 		else
278 			neigh->ops = &arp_generic_ops;
279 
280 		if (neigh->nud_state & NUD_VALID)
281 			neigh->output = neigh->ops->connected_output;
282 		else
283 			neigh->output = neigh->ops->output;
284 	}
285 	return 0;
286 }
287 
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 	dst_link_failure(skb);
291 	kfree_skb(skb);
292 }
293 
294 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
295 {
296 	__be32 saddr = 0;
297 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
298 	struct net_device *dev = neigh->dev;
299 	__be32 target = *(__be32 *)neigh->primary_key;
300 	int probes = atomic_read(&neigh->probes);
301 	struct in_device *in_dev;
302 
303 	rcu_read_lock();
304 	in_dev = __in_dev_get_rcu(dev);
305 	if (!in_dev) {
306 		rcu_read_unlock();
307 		return;
308 	}
309 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
310 	default:
311 	case 0:		/* By default announce any local IP */
312 		if (skb && inet_addr_type(dev_net(dev),
313 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
314 			saddr = ip_hdr(skb)->saddr;
315 		break;
316 	case 1:		/* Restrict announcements of saddr in same subnet */
317 		if (!skb)
318 			break;
319 		saddr = ip_hdr(skb)->saddr;
320 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
321 			/* saddr should be known to target */
322 			if (inet_addr_onlink(in_dev, target, saddr))
323 				break;
324 		}
325 		saddr = 0;
326 		break;
327 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
328 		break;
329 	}
330 	rcu_read_unlock();
331 
332 	if (!saddr)
333 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
334 
335 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
336 	if (probes < 0) {
337 		if (!(neigh->nud_state & NUD_VALID))
338 			pr_debug("trying to ucast probe in NUD_INVALID\n");
339 		neigh_ha_snapshot(dst_ha, neigh, dev);
340 		dst_hw = dst_ha;
341 	} else {
342 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
343 		if (probes < 0) {
344 			neigh_app_ns(neigh);
345 			return;
346 		}
347 	}
348 
349 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
350 		 dst_hw, dev->dev_addr, NULL);
351 }
352 
353 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
354 {
355 	struct net *net = dev_net(in_dev->dev);
356 	int scope;
357 
358 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
359 	case 0:	/* Reply, the tip is already validated */
360 		return 0;
361 	case 1:	/* Reply only if tip is configured on the incoming interface */
362 		sip = 0;
363 		scope = RT_SCOPE_HOST;
364 		break;
365 	case 2:	/*
366 		 * Reply only if tip is configured on the incoming interface
367 		 * and is in same subnet as sip
368 		 */
369 		scope = RT_SCOPE_HOST;
370 		break;
371 	case 3:	/* Do not reply for scope host addresses */
372 		sip = 0;
373 		scope = RT_SCOPE_LINK;
374 		in_dev = NULL;
375 		break;
376 	case 4:	/* Reserved */
377 	case 5:
378 	case 6:
379 	case 7:
380 		return 0;
381 	case 8:	/* Do not reply */
382 		return 1;
383 	default:
384 		return 0;
385 	}
386 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
387 }
388 
389 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
390 {
391 	struct rtable *rt;
392 	int flag = 0;
393 	/*unsigned long now; */
394 	struct net *net = dev_net(dev);
395 
396 	rt = ip_route_output(net, sip, tip, 0, 0);
397 	if (IS_ERR(rt))
398 		return 1;
399 	if (rt->dst.dev != dev) {
400 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
401 		flag = 1;
402 	}
403 	ip_rt_put(rt);
404 	return flag;
405 }
406 
407 /*
408  * Check if we can use proxy ARP for this path
409  */
410 static inline int arp_fwd_proxy(struct in_device *in_dev,
411 				struct net_device *dev,	struct rtable *rt)
412 {
413 	struct in_device *out_dev;
414 	int imi, omi = -1;
415 
416 	if (rt->dst.dev == dev)
417 		return 0;
418 
419 	if (!IN_DEV_PROXY_ARP(in_dev))
420 		return 0;
421 	imi = IN_DEV_MEDIUM_ID(in_dev);
422 	if (imi == 0)
423 		return 1;
424 	if (imi == -1)
425 		return 0;
426 
427 	/* place to check for proxy_arp for routes */
428 
429 	out_dev = __in_dev_get_rcu(rt->dst.dev);
430 	if (out_dev)
431 		omi = IN_DEV_MEDIUM_ID(out_dev);
432 
433 	return omi != imi && omi != -1;
434 }
435 
436 /*
437  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
438  *
439  * RFC3069 supports proxy arp replies back to the same interface.  This
440  * is done to support (ethernet) switch features, like RFC 3069, where
441  * the individual ports are not allowed to communicate with each
442  * other, BUT they are allowed to talk to the upstream router.  As
443  * described in RFC 3069, it is possible to allow these hosts to
444  * communicate through the upstream router, by proxy_arp'ing.
445  *
446  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
447  *
448  *  This technology is known by different names:
449  *    In RFC 3069 it is called VLAN Aggregation.
450  *    Cisco and Allied Telesyn call it Private VLAN.
451  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
452  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
453  *
454  */
455 static inline int arp_fwd_pvlan(struct in_device *in_dev,
456 				struct net_device *dev,	struct rtable *rt,
457 				__be32 sip, __be32 tip)
458 {
459 	/* Private VLAN is only concerned about the same ethernet segment */
460 	if (rt->dst.dev != dev)
461 		return 0;
462 
463 	/* Don't reply on self probes (often done by windowz boxes)*/
464 	if (sip == tip)
465 		return 0;
466 
467 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
468 		return 1;
469 	else
470 		return 0;
471 }
472 
473 /*
474  *	Interface to link layer: send routine and receive handler.
475  */
476 
477 /*
478  *	Create an arp packet. If dest_hw is not set, we create a broadcast
479  *	message.
480  */
481 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
482 			   struct net_device *dev, __be32 src_ip,
483 			   const unsigned char *dest_hw,
484 			   const unsigned char *src_hw,
485 			   const unsigned char *target_hw)
486 {
487 	struct sk_buff *skb;
488 	struct arphdr *arp;
489 	unsigned char *arp_ptr;
490 	int hlen = LL_RESERVED_SPACE(dev);
491 	int tlen = dev->needed_tailroom;
492 
493 	/*
494 	 *	Allocate a buffer
495 	 */
496 
497 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
498 	if (!skb)
499 		return NULL;
500 
501 	skb_reserve(skb, hlen);
502 	skb_reset_network_header(skb);
503 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
504 	skb->dev = dev;
505 	skb->protocol = htons(ETH_P_ARP);
506 	if (!src_hw)
507 		src_hw = dev->dev_addr;
508 	if (!dest_hw)
509 		dest_hw = dev->broadcast;
510 
511 	/*
512 	 *	Fill the device header for the ARP frame
513 	 */
514 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
515 		goto out;
516 
517 	/*
518 	 * Fill out the arp protocol part.
519 	 *
520 	 * The arp hardware type should match the device type, except for FDDI,
521 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
522 	 */
523 	/*
524 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
525 	 *	DIX code for the protocol. Make these device structure fields.
526 	 */
527 	switch (dev->type) {
528 	default:
529 		arp->ar_hrd = htons(dev->type);
530 		arp->ar_pro = htons(ETH_P_IP);
531 		break;
532 
533 #if IS_ENABLED(CONFIG_AX25)
534 	case ARPHRD_AX25:
535 		arp->ar_hrd = htons(ARPHRD_AX25);
536 		arp->ar_pro = htons(AX25_P_IP);
537 		break;
538 
539 #if IS_ENABLED(CONFIG_NETROM)
540 	case ARPHRD_NETROM:
541 		arp->ar_hrd = htons(ARPHRD_NETROM);
542 		arp->ar_pro = htons(AX25_P_IP);
543 		break;
544 #endif
545 #endif
546 
547 #if IS_ENABLED(CONFIG_FDDI)
548 	case ARPHRD_FDDI:
549 		arp->ar_hrd = htons(ARPHRD_ETHER);
550 		arp->ar_pro = htons(ETH_P_IP);
551 		break;
552 #endif
553 	}
554 
555 	arp->ar_hln = dev->addr_len;
556 	arp->ar_pln = 4;
557 	arp->ar_op = htons(type);
558 
559 	arp_ptr = (unsigned char *)(arp + 1);
560 
561 	memcpy(arp_ptr, src_hw, dev->addr_len);
562 	arp_ptr += dev->addr_len;
563 	memcpy(arp_ptr, &src_ip, 4);
564 	arp_ptr += 4;
565 
566 	switch (dev->type) {
567 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
568 	case ARPHRD_IEEE1394:
569 		break;
570 #endif
571 	default:
572 		if (target_hw)
573 			memcpy(arp_ptr, target_hw, dev->addr_len);
574 		else
575 			memset(arp_ptr, 0, dev->addr_len);
576 		arp_ptr += dev->addr_len;
577 	}
578 	memcpy(arp_ptr, &dest_ip, 4);
579 
580 	return skb;
581 
582 out:
583 	kfree_skb(skb);
584 	return NULL;
585 }
586 EXPORT_SYMBOL(arp_create);
587 
588 /*
589  *	Send an arp packet.
590  */
591 void arp_xmit(struct sk_buff *skb)
592 {
593 	/* Send it off, maybe filter it using firewalling first.  */
594 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, NULL, skb,
595 		NULL, skb->dev, dev_queue_xmit_sk);
596 }
597 EXPORT_SYMBOL(arp_xmit);
598 
599 /*
600  *	Create and send an arp packet.
601  */
602 void arp_send(int type, int ptype, __be32 dest_ip,
603 	      struct net_device *dev, __be32 src_ip,
604 	      const unsigned char *dest_hw, const unsigned char *src_hw,
605 	      const unsigned char *target_hw)
606 {
607 	struct sk_buff *skb;
608 
609 	/*
610 	 *	No arp on this interface.
611 	 */
612 
613 	if (dev->flags&IFF_NOARP)
614 		return;
615 
616 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
617 			 dest_hw, src_hw, target_hw);
618 	if (!skb)
619 		return;
620 
621 	arp_xmit(skb);
622 }
623 EXPORT_SYMBOL(arp_send);
624 
625 /*
626  *	Process an arp request.
627  */
628 
629 static int arp_process(struct sock *sk, struct sk_buff *skb)
630 {
631 	struct net_device *dev = skb->dev;
632 	struct in_device *in_dev = __in_dev_get_rcu(dev);
633 	struct arphdr *arp;
634 	unsigned char *arp_ptr;
635 	struct rtable *rt;
636 	unsigned char *sha;
637 	__be32 sip, tip;
638 	u16 dev_type = dev->type;
639 	int addr_type;
640 	struct neighbour *n;
641 	struct net *net = dev_net(dev);
642 	bool is_garp = false;
643 
644 	/* arp_rcv below verifies the ARP header and verifies the device
645 	 * is ARP'able.
646 	 */
647 
648 	if (!in_dev)
649 		goto out;
650 
651 	arp = arp_hdr(skb);
652 
653 	switch (dev_type) {
654 	default:
655 		if (arp->ar_pro != htons(ETH_P_IP) ||
656 		    htons(dev_type) != arp->ar_hrd)
657 			goto out;
658 		break;
659 	case ARPHRD_ETHER:
660 	case ARPHRD_FDDI:
661 	case ARPHRD_IEEE802:
662 		/*
663 		 * ETHERNET, and Fibre Channel (which are IEEE 802
664 		 * devices, according to RFC 2625) devices will accept ARP
665 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
666 		 * This is the case also of FDDI, where the RFC 1390 says that
667 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
668 		 * however, to be more robust, we'll accept both 1 (Ethernet)
669 		 * or 6 (IEEE 802.2)
670 		 */
671 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
672 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
673 		    arp->ar_pro != htons(ETH_P_IP))
674 			goto out;
675 		break;
676 	case ARPHRD_AX25:
677 		if (arp->ar_pro != htons(AX25_P_IP) ||
678 		    arp->ar_hrd != htons(ARPHRD_AX25))
679 			goto out;
680 		break;
681 	case ARPHRD_NETROM:
682 		if (arp->ar_pro != htons(AX25_P_IP) ||
683 		    arp->ar_hrd != htons(ARPHRD_NETROM))
684 			goto out;
685 		break;
686 	}
687 
688 	/* Understand only these message types */
689 
690 	if (arp->ar_op != htons(ARPOP_REPLY) &&
691 	    arp->ar_op != htons(ARPOP_REQUEST))
692 		goto out;
693 
694 /*
695  *	Extract fields
696  */
697 	arp_ptr = (unsigned char *)(arp + 1);
698 	sha	= arp_ptr;
699 	arp_ptr += dev->addr_len;
700 	memcpy(&sip, arp_ptr, 4);
701 	arp_ptr += 4;
702 	switch (dev_type) {
703 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
704 	case ARPHRD_IEEE1394:
705 		break;
706 #endif
707 	default:
708 		arp_ptr += dev->addr_len;
709 	}
710 	memcpy(&tip, arp_ptr, 4);
711 /*
712  *	Check for bad requests for 127.x.x.x and requests for multicast
713  *	addresses.  If this is one such, delete it.
714  */
715 	if (ipv4_is_multicast(tip) ||
716 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
717 		goto out;
718 
719 /*
720  *     Special case: We must set Frame Relay source Q.922 address
721  */
722 	if (dev_type == ARPHRD_DLCI)
723 		sha = dev->broadcast;
724 
725 /*
726  *  Process entry.  The idea here is we want to send a reply if it is a
727  *  request for us or if it is a request for someone else that we hold
728  *  a proxy for.  We want to add an entry to our cache if it is a reply
729  *  to us or if it is a request for our address.
730  *  (The assumption for this last is that if someone is requesting our
731  *  address, they are probably intending to talk to us, so it saves time
732  *  if we cache their address.  Their address is also probably not in
733  *  our cache, since ours is not in their cache.)
734  *
735  *  Putting this another way, we only care about replies if they are to
736  *  us, in which case we add them to the cache.  For requests, we care
737  *  about those for us and those for our proxies.  We reply to both,
738  *  and in the case of requests for us we add the requester to the arp
739  *  cache.
740  */
741 
742 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
743 	if (sip == 0) {
744 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
745 		    inet_addr_type(net, tip) == RTN_LOCAL &&
746 		    !arp_ignore(in_dev, sip, tip))
747 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
748 				 dev->dev_addr, sha);
749 		goto out;
750 	}
751 
752 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
753 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
754 
755 		rt = skb_rtable(skb);
756 		addr_type = rt->rt_type;
757 
758 		if (addr_type == RTN_LOCAL) {
759 			int dont_send;
760 
761 			dont_send = arp_ignore(in_dev, sip, tip);
762 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
763 				dont_send = arp_filter(sip, tip, dev);
764 			if (!dont_send) {
765 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
766 				if (n) {
767 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
768 						 dev, tip, sha, dev->dev_addr,
769 						 sha);
770 					neigh_release(n);
771 				}
772 			}
773 			goto out;
774 		} else if (IN_DEV_FORWARD(in_dev)) {
775 			if (addr_type == RTN_UNICAST  &&
776 			    (arp_fwd_proxy(in_dev, dev, rt) ||
777 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
778 			     (rt->dst.dev != dev &&
779 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
780 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
781 				if (n)
782 					neigh_release(n);
783 
784 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
785 				    skb->pkt_type == PACKET_HOST ||
786 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
787 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
788 						 dev, tip, sha, dev->dev_addr,
789 						 sha);
790 				} else {
791 					pneigh_enqueue(&arp_tbl,
792 						       in_dev->arp_parms, skb);
793 					return 0;
794 				}
795 				goto out;
796 			}
797 		}
798 	}
799 
800 	/* Update our ARP tables */
801 
802 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
803 
804 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
805 		/* Unsolicited ARP is not accepted by default.
806 		   It is possible, that this option should be enabled for some
807 		   devices (strip is candidate)
808 		 */
809 		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
810 			  inet_addr_type(net, sip) == RTN_UNICAST;
811 
812 		if (!n &&
813 		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
814 		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
815 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
816 	}
817 
818 	if (n) {
819 		int state = NUD_REACHABLE;
820 		int override;
821 
822 		/* If several different ARP replies follows back-to-back,
823 		   use the FIRST one. It is possible, if several proxy
824 		   agents are active. Taking the first reply prevents
825 		   arp trashing and chooses the fastest router.
826 		 */
827 		override = time_after(jiffies,
828 				      n->updated +
829 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
830 			   is_garp;
831 
832 		/* Broadcast replies and request packets
833 		   do not assert neighbour reachability.
834 		 */
835 		if (arp->ar_op != htons(ARPOP_REPLY) ||
836 		    skb->pkt_type != PACKET_HOST)
837 			state = NUD_STALE;
838 		neigh_update(n, sha, state,
839 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
840 		neigh_release(n);
841 	}
842 
843 out:
844 	consume_skb(skb);
845 	return 0;
846 }
847 
848 static void parp_redo(struct sk_buff *skb)
849 {
850 	arp_process(NULL, skb);
851 }
852 
853 
854 /*
855  *	Receive an arp request from the device layer.
856  */
857 
858 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
859 		   struct packet_type *pt, struct net_device *orig_dev)
860 {
861 	const struct arphdr *arp;
862 
863 	/* do not tweak dropwatch on an ARP we will ignore */
864 	if (dev->flags & IFF_NOARP ||
865 	    skb->pkt_type == PACKET_OTHERHOST ||
866 	    skb->pkt_type == PACKET_LOOPBACK)
867 		goto consumeskb;
868 
869 	skb = skb_share_check(skb, GFP_ATOMIC);
870 	if (!skb)
871 		goto out_of_mem;
872 
873 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
874 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
875 		goto freeskb;
876 
877 	arp = arp_hdr(skb);
878 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
879 		goto freeskb;
880 
881 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
882 
883 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, NULL, skb,
884 		       dev, NULL, arp_process);
885 
886 consumeskb:
887 	consume_skb(skb);
888 	return 0;
889 freeskb:
890 	kfree_skb(skb);
891 out_of_mem:
892 	return 0;
893 }
894 
895 /*
896  *	User level interface (ioctl)
897  */
898 
899 /*
900  *	Set (create) an ARP cache entry.
901  */
902 
903 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
904 {
905 	if (!dev) {
906 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
907 		return 0;
908 	}
909 	if (__in_dev_get_rtnl(dev)) {
910 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
911 		return 0;
912 	}
913 	return -ENXIO;
914 }
915 
916 static int arp_req_set_public(struct net *net, struct arpreq *r,
917 		struct net_device *dev)
918 {
919 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
920 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
921 
922 	if (mask && mask != htonl(0xFFFFFFFF))
923 		return -EINVAL;
924 	if (!dev && (r->arp_flags & ATF_COM)) {
925 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
926 				      r->arp_ha.sa_data);
927 		if (!dev)
928 			return -ENODEV;
929 	}
930 	if (mask) {
931 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
932 			return -ENOBUFS;
933 		return 0;
934 	}
935 
936 	return arp_req_set_proxy(net, dev, 1);
937 }
938 
939 static int arp_req_set(struct net *net, struct arpreq *r,
940 		       struct net_device *dev)
941 {
942 	__be32 ip;
943 	struct neighbour *neigh;
944 	int err;
945 
946 	if (r->arp_flags & ATF_PUBL)
947 		return arp_req_set_public(net, r, dev);
948 
949 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
950 	if (r->arp_flags & ATF_PERM)
951 		r->arp_flags |= ATF_COM;
952 	if (!dev) {
953 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
954 
955 		if (IS_ERR(rt))
956 			return PTR_ERR(rt);
957 		dev = rt->dst.dev;
958 		ip_rt_put(rt);
959 		if (!dev)
960 			return -EINVAL;
961 	}
962 	switch (dev->type) {
963 #if IS_ENABLED(CONFIG_FDDI)
964 	case ARPHRD_FDDI:
965 		/*
966 		 * According to RFC 1390, FDDI devices should accept ARP
967 		 * hardware types of 1 (Ethernet).  However, to be more
968 		 * robust, we'll accept hardware types of either 1 (Ethernet)
969 		 * or 6 (IEEE 802.2).
970 		 */
971 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
972 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
973 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
974 			return -EINVAL;
975 		break;
976 #endif
977 	default:
978 		if (r->arp_ha.sa_family != dev->type)
979 			return -EINVAL;
980 		break;
981 	}
982 
983 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
984 	err = PTR_ERR(neigh);
985 	if (!IS_ERR(neigh)) {
986 		unsigned int state = NUD_STALE;
987 		if (r->arp_flags & ATF_PERM)
988 			state = NUD_PERMANENT;
989 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
990 				   r->arp_ha.sa_data : NULL, state,
991 				   NEIGH_UPDATE_F_OVERRIDE |
992 				   NEIGH_UPDATE_F_ADMIN);
993 		neigh_release(neigh);
994 	}
995 	return err;
996 }
997 
998 static unsigned int arp_state_to_flags(struct neighbour *neigh)
999 {
1000 	if (neigh->nud_state&NUD_PERMANENT)
1001 		return ATF_PERM | ATF_COM;
1002 	else if (neigh->nud_state&NUD_VALID)
1003 		return ATF_COM;
1004 	else
1005 		return 0;
1006 }
1007 
1008 /*
1009  *	Get an ARP cache entry.
1010  */
1011 
1012 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1013 {
1014 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1015 	struct neighbour *neigh;
1016 	int err = -ENXIO;
1017 
1018 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1019 	if (neigh) {
1020 		if (!(neigh->nud_state & NUD_NOARP)) {
1021 			read_lock_bh(&neigh->lock);
1022 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1023 			r->arp_flags = arp_state_to_flags(neigh);
1024 			read_unlock_bh(&neigh->lock);
1025 			r->arp_ha.sa_family = dev->type;
1026 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1027 			err = 0;
1028 		}
1029 		neigh_release(neigh);
1030 	}
1031 	return err;
1032 }
1033 
1034 static int arp_invalidate(struct net_device *dev, __be32 ip)
1035 {
1036 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1037 	int err = -ENXIO;
1038 
1039 	if (neigh) {
1040 		if (neigh->nud_state & ~NUD_NOARP)
1041 			err = neigh_update(neigh, NULL, NUD_FAILED,
1042 					   NEIGH_UPDATE_F_OVERRIDE|
1043 					   NEIGH_UPDATE_F_ADMIN);
1044 		neigh_release(neigh);
1045 	}
1046 
1047 	return err;
1048 }
1049 
1050 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1051 		struct net_device *dev)
1052 {
1053 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1054 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1055 
1056 	if (mask == htonl(0xFFFFFFFF))
1057 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1058 
1059 	if (mask)
1060 		return -EINVAL;
1061 
1062 	return arp_req_set_proxy(net, dev, 0);
1063 }
1064 
1065 static int arp_req_delete(struct net *net, struct arpreq *r,
1066 			  struct net_device *dev)
1067 {
1068 	__be32 ip;
1069 
1070 	if (r->arp_flags & ATF_PUBL)
1071 		return arp_req_delete_public(net, r, dev);
1072 
1073 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1074 	if (!dev) {
1075 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1076 		if (IS_ERR(rt))
1077 			return PTR_ERR(rt);
1078 		dev = rt->dst.dev;
1079 		ip_rt_put(rt);
1080 		if (!dev)
1081 			return -EINVAL;
1082 	}
1083 	return arp_invalidate(dev, ip);
1084 }
1085 
1086 /*
1087  *	Handle an ARP layer I/O control request.
1088  */
1089 
1090 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1091 {
1092 	int err;
1093 	struct arpreq r;
1094 	struct net_device *dev = NULL;
1095 
1096 	switch (cmd) {
1097 	case SIOCDARP:
1098 	case SIOCSARP:
1099 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1100 			return -EPERM;
1101 	case SIOCGARP:
1102 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1103 		if (err)
1104 			return -EFAULT;
1105 		break;
1106 	default:
1107 		return -EINVAL;
1108 	}
1109 
1110 	if (r.arp_pa.sa_family != AF_INET)
1111 		return -EPFNOSUPPORT;
1112 
1113 	if (!(r.arp_flags & ATF_PUBL) &&
1114 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1115 		return -EINVAL;
1116 	if (!(r.arp_flags & ATF_NETMASK))
1117 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1118 							   htonl(0xFFFFFFFFUL);
1119 	rtnl_lock();
1120 	if (r.arp_dev[0]) {
1121 		err = -ENODEV;
1122 		dev = __dev_get_by_name(net, r.arp_dev);
1123 		if (!dev)
1124 			goto out;
1125 
1126 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1127 		if (!r.arp_ha.sa_family)
1128 			r.arp_ha.sa_family = dev->type;
1129 		err = -EINVAL;
1130 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1131 			goto out;
1132 	} else if (cmd == SIOCGARP) {
1133 		err = -ENODEV;
1134 		goto out;
1135 	}
1136 
1137 	switch (cmd) {
1138 	case SIOCDARP:
1139 		err = arp_req_delete(net, &r, dev);
1140 		break;
1141 	case SIOCSARP:
1142 		err = arp_req_set(net, &r, dev);
1143 		break;
1144 	case SIOCGARP:
1145 		err = arp_req_get(&r, dev);
1146 		break;
1147 	}
1148 out:
1149 	rtnl_unlock();
1150 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1151 		err = -EFAULT;
1152 	return err;
1153 }
1154 
1155 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1156 			    void *ptr)
1157 {
1158 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1159 	struct netdev_notifier_change_info *change_info;
1160 
1161 	switch (event) {
1162 	case NETDEV_CHANGEADDR:
1163 		neigh_changeaddr(&arp_tbl, dev);
1164 		rt_cache_flush(dev_net(dev));
1165 		break;
1166 	case NETDEV_CHANGE:
1167 		change_info = ptr;
1168 		if (change_info->flags_changed & IFF_NOARP)
1169 			neigh_changeaddr(&arp_tbl, dev);
1170 		break;
1171 	default:
1172 		break;
1173 	}
1174 
1175 	return NOTIFY_DONE;
1176 }
1177 
1178 static struct notifier_block arp_netdev_notifier = {
1179 	.notifier_call = arp_netdev_event,
1180 };
1181 
1182 /* Note, that it is not on notifier chain.
1183    It is necessary, that this routine was called after route cache will be
1184    flushed.
1185  */
1186 void arp_ifdown(struct net_device *dev)
1187 {
1188 	neigh_ifdown(&arp_tbl, dev);
1189 }
1190 
1191 
1192 /*
1193  *	Called once on startup.
1194  */
1195 
1196 static struct packet_type arp_packet_type __read_mostly = {
1197 	.type =	cpu_to_be16(ETH_P_ARP),
1198 	.func =	arp_rcv,
1199 };
1200 
1201 static int arp_proc_init(void);
1202 
1203 void __init arp_init(void)
1204 {
1205 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1206 
1207 	dev_add_pack(&arp_packet_type);
1208 	arp_proc_init();
1209 #ifdef CONFIG_SYSCTL
1210 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1211 #endif
1212 	register_netdevice_notifier(&arp_netdev_notifier);
1213 }
1214 
1215 #ifdef CONFIG_PROC_FS
1216 #if IS_ENABLED(CONFIG_AX25)
1217 
1218 /* ------------------------------------------------------------------------ */
1219 /*
1220  *	ax25 -> ASCII conversion
1221  */
1222 static char *ax2asc2(ax25_address *a, char *buf)
1223 {
1224 	char c, *s;
1225 	int n;
1226 
1227 	for (n = 0, s = buf; n < 6; n++) {
1228 		c = (a->ax25_call[n] >> 1) & 0x7F;
1229 
1230 		if (c != ' ')
1231 			*s++ = c;
1232 	}
1233 
1234 	*s++ = '-';
1235 	n = (a->ax25_call[6] >> 1) & 0x0F;
1236 	if (n > 9) {
1237 		*s++ = '1';
1238 		n -= 10;
1239 	}
1240 
1241 	*s++ = n + '0';
1242 	*s++ = '\0';
1243 
1244 	if (*buf == '\0' || *buf == '-')
1245 		return "*";
1246 
1247 	return buf;
1248 }
1249 #endif /* CONFIG_AX25 */
1250 
1251 #define HBUFFERLEN 30
1252 
1253 static void arp_format_neigh_entry(struct seq_file *seq,
1254 				   struct neighbour *n)
1255 {
1256 	char hbuffer[HBUFFERLEN];
1257 	int k, j;
1258 	char tbuf[16];
1259 	struct net_device *dev = n->dev;
1260 	int hatype = dev->type;
1261 
1262 	read_lock(&n->lock);
1263 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1264 #if IS_ENABLED(CONFIG_AX25)
1265 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1266 		ax2asc2((ax25_address *)n->ha, hbuffer);
1267 	else {
1268 #endif
1269 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1270 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1271 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1272 		hbuffer[k++] = ':';
1273 	}
1274 	if (k != 0)
1275 		--k;
1276 	hbuffer[k] = 0;
1277 #if IS_ENABLED(CONFIG_AX25)
1278 	}
1279 #endif
1280 	sprintf(tbuf, "%pI4", n->primary_key);
1281 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1282 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1283 	read_unlock(&n->lock);
1284 }
1285 
1286 static void arp_format_pneigh_entry(struct seq_file *seq,
1287 				    struct pneigh_entry *n)
1288 {
1289 	struct net_device *dev = n->dev;
1290 	int hatype = dev ? dev->type : 0;
1291 	char tbuf[16];
1292 
1293 	sprintf(tbuf, "%pI4", n->key);
1294 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1295 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1296 		   dev ? dev->name : "*");
1297 }
1298 
1299 static int arp_seq_show(struct seq_file *seq, void *v)
1300 {
1301 	if (v == SEQ_START_TOKEN) {
1302 		seq_puts(seq, "IP address       HW type     Flags       "
1303 			      "HW address            Mask     Device\n");
1304 	} else {
1305 		struct neigh_seq_state *state = seq->private;
1306 
1307 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1308 			arp_format_pneigh_entry(seq, v);
1309 		else
1310 			arp_format_neigh_entry(seq, v);
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1317 {
1318 	/* Don't want to confuse "arp -a" w/ magic entries,
1319 	 * so we tell the generic iterator to skip NUD_NOARP.
1320 	 */
1321 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1322 }
1323 
1324 /* ------------------------------------------------------------------------ */
1325 
1326 static const struct seq_operations arp_seq_ops = {
1327 	.start	= arp_seq_start,
1328 	.next	= neigh_seq_next,
1329 	.stop	= neigh_seq_stop,
1330 	.show	= arp_seq_show,
1331 };
1332 
1333 static int arp_seq_open(struct inode *inode, struct file *file)
1334 {
1335 	return seq_open_net(inode, file, &arp_seq_ops,
1336 			    sizeof(struct neigh_seq_state));
1337 }
1338 
1339 static const struct file_operations arp_seq_fops = {
1340 	.owner		= THIS_MODULE,
1341 	.open           = arp_seq_open,
1342 	.read           = seq_read,
1343 	.llseek         = seq_lseek,
1344 	.release	= seq_release_net,
1345 };
1346 
1347 
1348 static int __net_init arp_net_init(struct net *net)
1349 {
1350 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1351 		return -ENOMEM;
1352 	return 0;
1353 }
1354 
1355 static void __net_exit arp_net_exit(struct net *net)
1356 {
1357 	remove_proc_entry("arp", net->proc_net);
1358 }
1359 
1360 static struct pernet_operations arp_net_ops = {
1361 	.init = arp_net_init,
1362 	.exit = arp_net_exit,
1363 };
1364 
1365 static int __init arp_proc_init(void)
1366 {
1367 	return register_pernet_subsys(&arp_net_ops);
1368 }
1369 
1370 #else /* CONFIG_PROC_FS */
1371 
1372 static int __init arp_proc_init(void)
1373 {
1374 	return 0;
1375 }
1376 
1377 #endif /* CONFIG_PROC_FS */
1378