xref: /openbmc/linux/net/ipv4/arp.c (revision b96fc2f3)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #include <net/dst_metadata.h>
117 #include <net/ip_tunnels.h>
118 
119 #include <linux/uaccess.h>
120 
121 #include <linux/netfilter_arp.h>
122 
123 /*
124  *	Interface to generic neighbour cache.
125  */
126 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
127 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
128 static int arp_constructor(struct neighbour *neigh);
129 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131 static void parp_redo(struct sk_buff *skb);
132 
133 static const struct neigh_ops arp_generic_ops = {
134 	.family =		AF_INET,
135 	.solicit =		arp_solicit,
136 	.error_report =		arp_error_report,
137 	.output =		neigh_resolve_output,
138 	.connected_output =	neigh_connected_output,
139 };
140 
141 static const struct neigh_ops arp_hh_ops = {
142 	.family =		AF_INET,
143 	.solicit =		arp_solicit,
144 	.error_report =		arp_error_report,
145 	.output =		neigh_resolve_output,
146 	.connected_output =	neigh_resolve_output,
147 };
148 
149 static const struct neigh_ops arp_direct_ops = {
150 	.family =		AF_INET,
151 	.output =		neigh_direct_output,
152 	.connected_output =	neigh_direct_output,
153 };
154 
155 struct neigh_table arp_tbl = {
156 	.family		= AF_INET,
157 	.key_len	= 4,
158 	.protocol	= cpu_to_be16(ETH_P_IP),
159 	.hash		= arp_hash,
160 	.key_eq		= arp_key_eq,
161 	.constructor	= arp_constructor,
162 	.proxy_redo	= parp_redo,
163 	.id		= "arp_cache",
164 	.parms		= {
165 		.tbl			= &arp_tbl,
166 		.reachable_time		= 30 * HZ,
167 		.data	= {
168 			[NEIGH_VAR_MCAST_PROBES] = 3,
169 			[NEIGH_VAR_UCAST_PROBES] = 3,
170 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
171 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
172 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
173 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174 			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
175 			[NEIGH_VAR_PROXY_QLEN] = 64,
176 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
178 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
179 		},
180 	},
181 	.gc_interval	= 30 * HZ,
182 	.gc_thresh1	= 128,
183 	.gc_thresh2	= 512,
184 	.gc_thresh3	= 1024,
185 };
186 EXPORT_SYMBOL(arp_tbl);
187 
188 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189 {
190 	switch (dev->type) {
191 	case ARPHRD_ETHER:
192 	case ARPHRD_FDDI:
193 	case ARPHRD_IEEE802:
194 		ip_eth_mc_map(addr, haddr);
195 		return 0;
196 	case ARPHRD_INFINIBAND:
197 		ip_ib_mc_map(addr, dev->broadcast, haddr);
198 		return 0;
199 	case ARPHRD_IPGRE:
200 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201 		return 0;
202 	default:
203 		if (dir) {
204 			memcpy(haddr, dev->broadcast, dev->addr_len);
205 			return 0;
206 		}
207 	}
208 	return -EINVAL;
209 }
210 
211 
212 static u32 arp_hash(const void *pkey,
213 		    const struct net_device *dev,
214 		    __u32 *hash_rnd)
215 {
216 	return arp_hashfn(pkey, dev, hash_rnd);
217 }
218 
219 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220 {
221 	return neigh_key_eq32(neigh, pkey);
222 }
223 
224 static int arp_constructor(struct neighbour *neigh)
225 {
226 	__be32 addr = *(__be32 *)neigh->primary_key;
227 	struct net_device *dev = neigh->dev;
228 	struct in_device *in_dev;
229 	struct neigh_parms *parms;
230 
231 	rcu_read_lock();
232 	in_dev = __in_dev_get_rcu(dev);
233 	if (!in_dev) {
234 		rcu_read_unlock();
235 		return -EINVAL;
236 	}
237 
238 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
239 
240 	parms = in_dev->arp_parms;
241 	__neigh_parms_put(neigh->parms);
242 	neigh->parms = neigh_parms_clone(parms);
243 	rcu_read_unlock();
244 
245 	if (!dev->header_ops) {
246 		neigh->nud_state = NUD_NOARP;
247 		neigh->ops = &arp_direct_ops;
248 		neigh->output = neigh_direct_output;
249 	} else {
250 		/* Good devices (checked by reading texts, but only Ethernet is
251 		   tested)
252 
253 		   ARPHRD_ETHER: (ethernet, apfddi)
254 		   ARPHRD_FDDI: (fddi)
255 		   ARPHRD_IEEE802: (tr)
256 		   ARPHRD_METRICOM: (strip)
257 		   ARPHRD_ARCNET:
258 		   etc. etc. etc.
259 
260 		   ARPHRD_IPDDP will also work, if author repairs it.
261 		   I did not it, because this driver does not work even
262 		   in old paradigm.
263 		 */
264 
265 		if (neigh->type == RTN_MULTICAST) {
266 			neigh->nud_state = NUD_NOARP;
267 			arp_mc_map(addr, neigh->ha, dev, 1);
268 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
269 			neigh->nud_state = NUD_NOARP;
270 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
271 		} else if (neigh->type == RTN_BROADCAST ||
272 			   (dev->flags & IFF_POINTOPOINT)) {
273 			neigh->nud_state = NUD_NOARP;
274 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
275 		}
276 
277 		if (dev->header_ops->cache)
278 			neigh->ops = &arp_hh_ops;
279 		else
280 			neigh->ops = &arp_generic_ops;
281 
282 		if (neigh->nud_state & NUD_VALID)
283 			neigh->output = neigh->ops->connected_output;
284 		else
285 			neigh->output = neigh->ops->output;
286 	}
287 	return 0;
288 }
289 
290 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
291 {
292 	dst_link_failure(skb);
293 	kfree_skb(skb);
294 }
295 
296 /* Create and send an arp packet. */
297 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
298 			 struct net_device *dev, __be32 src_ip,
299 			 const unsigned char *dest_hw,
300 			 const unsigned char *src_hw,
301 			 const unsigned char *target_hw,
302 			 struct dst_entry *dst)
303 {
304 	struct sk_buff *skb;
305 
306 	/* arp on this interface. */
307 	if (dev->flags & IFF_NOARP)
308 		return;
309 
310 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
311 			 dest_hw, src_hw, target_hw);
312 	if (!skb)
313 		return;
314 
315 	skb_dst_set(skb, dst);
316 	arp_xmit(skb);
317 }
318 
319 void arp_send(int type, int ptype, __be32 dest_ip,
320 	      struct net_device *dev, __be32 src_ip,
321 	      const unsigned char *dest_hw, const unsigned char *src_hw,
322 	      const unsigned char *target_hw)
323 {
324 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
325 		     target_hw, NULL);
326 }
327 EXPORT_SYMBOL(arp_send);
328 
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 	__be32 saddr = 0;
332 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
333 	struct net_device *dev = neigh->dev;
334 	__be32 target = *(__be32 *)neigh->primary_key;
335 	int probes = atomic_read(&neigh->probes);
336 	struct in_device *in_dev;
337 	struct dst_entry *dst = NULL;
338 
339 	rcu_read_lock();
340 	in_dev = __in_dev_get_rcu(dev);
341 	if (!in_dev) {
342 		rcu_read_unlock();
343 		return;
344 	}
345 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 	default:
347 	case 0:		/* By default announce any local IP */
348 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
349 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
350 			saddr = ip_hdr(skb)->saddr;
351 		break;
352 	case 1:		/* Restrict announcements of saddr in same subnet */
353 		if (!skb)
354 			break;
355 		saddr = ip_hdr(skb)->saddr;
356 		if (inet_addr_type_dev_table(dev_net(dev), dev,
357 					     saddr) == RTN_LOCAL) {
358 			/* saddr should be known to target */
359 			if (inet_addr_onlink(in_dev, target, saddr))
360 				break;
361 		}
362 		saddr = 0;
363 		break;
364 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
365 		break;
366 	}
367 	rcu_read_unlock();
368 
369 	if (!saddr)
370 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
371 
372 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
373 	if (probes < 0) {
374 		if (!(neigh->nud_state & NUD_VALID))
375 			pr_debug("trying to ucast probe in NUD_INVALID\n");
376 		neigh_ha_snapshot(dst_ha, neigh, dev);
377 		dst_hw = dst_ha;
378 	} else {
379 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
380 		if (probes < 0) {
381 			neigh_app_ns(neigh);
382 			return;
383 		}
384 	}
385 
386 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
387 		dst = dst_clone(skb_dst(skb));
388 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
389 		     dst_hw, dev->dev_addr, NULL, dst);
390 }
391 
392 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
393 {
394 	struct net *net = dev_net(in_dev->dev);
395 	int scope;
396 
397 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
398 	case 0:	/* Reply, the tip is already validated */
399 		return 0;
400 	case 1:	/* Reply only if tip is configured on the incoming interface */
401 		sip = 0;
402 		scope = RT_SCOPE_HOST;
403 		break;
404 	case 2:	/*
405 		 * Reply only if tip is configured on the incoming interface
406 		 * and is in same subnet as sip
407 		 */
408 		scope = RT_SCOPE_HOST;
409 		break;
410 	case 3:	/* Do not reply for scope host addresses */
411 		sip = 0;
412 		scope = RT_SCOPE_LINK;
413 		in_dev = NULL;
414 		break;
415 	case 4:	/* Reserved */
416 	case 5:
417 	case 6:
418 	case 7:
419 		return 0;
420 	case 8:	/* Do not reply */
421 		return 1;
422 	default:
423 		return 0;
424 	}
425 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
426 }
427 
428 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
429 {
430 	struct rtable *rt;
431 	int flag = 0;
432 	/*unsigned long now; */
433 	struct net *net = dev_net(dev);
434 
435 	rt = ip_route_output(net, sip, tip, 0, 0);
436 	if (IS_ERR(rt))
437 		return 1;
438 	if (rt->dst.dev != dev) {
439 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
440 		flag = 1;
441 	}
442 	ip_rt_put(rt);
443 	return flag;
444 }
445 
446 /*
447  * Check if we can use proxy ARP for this path
448  */
449 static inline int arp_fwd_proxy(struct in_device *in_dev,
450 				struct net_device *dev,	struct rtable *rt)
451 {
452 	struct in_device *out_dev;
453 	int imi, omi = -1;
454 
455 	if (rt->dst.dev == dev)
456 		return 0;
457 
458 	if (!IN_DEV_PROXY_ARP(in_dev))
459 		return 0;
460 	imi = IN_DEV_MEDIUM_ID(in_dev);
461 	if (imi == 0)
462 		return 1;
463 	if (imi == -1)
464 		return 0;
465 
466 	/* place to check for proxy_arp for routes */
467 
468 	out_dev = __in_dev_get_rcu(rt->dst.dev);
469 	if (out_dev)
470 		omi = IN_DEV_MEDIUM_ID(out_dev);
471 
472 	return omi != imi && omi != -1;
473 }
474 
475 /*
476  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
477  *
478  * RFC3069 supports proxy arp replies back to the same interface.  This
479  * is done to support (ethernet) switch features, like RFC 3069, where
480  * the individual ports are not allowed to communicate with each
481  * other, BUT they are allowed to talk to the upstream router.  As
482  * described in RFC 3069, it is possible to allow these hosts to
483  * communicate through the upstream router, by proxy_arp'ing.
484  *
485  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
486  *
487  *  This technology is known by different names:
488  *    In RFC 3069 it is called VLAN Aggregation.
489  *    Cisco and Allied Telesyn call it Private VLAN.
490  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
491  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
492  *
493  */
494 static inline int arp_fwd_pvlan(struct in_device *in_dev,
495 				struct net_device *dev,	struct rtable *rt,
496 				__be32 sip, __be32 tip)
497 {
498 	/* Private VLAN is only concerned about the same ethernet segment */
499 	if (rt->dst.dev != dev)
500 		return 0;
501 
502 	/* Don't reply on self probes (often done by windowz boxes)*/
503 	if (sip == tip)
504 		return 0;
505 
506 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
507 		return 1;
508 	else
509 		return 0;
510 }
511 
512 /*
513  *	Interface to link layer: send routine and receive handler.
514  */
515 
516 /*
517  *	Create an arp packet. If dest_hw is not set, we create a broadcast
518  *	message.
519  */
520 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
521 			   struct net_device *dev, __be32 src_ip,
522 			   const unsigned char *dest_hw,
523 			   const unsigned char *src_hw,
524 			   const unsigned char *target_hw)
525 {
526 	struct sk_buff *skb;
527 	struct arphdr *arp;
528 	unsigned char *arp_ptr;
529 	int hlen = LL_RESERVED_SPACE(dev);
530 	int tlen = dev->needed_tailroom;
531 
532 	/*
533 	 *	Allocate a buffer
534 	 */
535 
536 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
537 	if (!skb)
538 		return NULL;
539 
540 	skb_reserve(skb, hlen);
541 	skb_reset_network_header(skb);
542 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
543 	skb->dev = dev;
544 	skb->protocol = htons(ETH_P_ARP);
545 	if (!src_hw)
546 		src_hw = dev->dev_addr;
547 	if (!dest_hw)
548 		dest_hw = dev->broadcast;
549 
550 	/*
551 	 *	Fill the device header for the ARP frame
552 	 */
553 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
554 		goto out;
555 
556 	/*
557 	 * Fill out the arp protocol part.
558 	 *
559 	 * The arp hardware type should match the device type, except for FDDI,
560 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
561 	 */
562 	/*
563 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
564 	 *	DIX code for the protocol. Make these device structure fields.
565 	 */
566 	switch (dev->type) {
567 	default:
568 		arp->ar_hrd = htons(dev->type);
569 		arp->ar_pro = htons(ETH_P_IP);
570 		break;
571 
572 #if IS_ENABLED(CONFIG_AX25)
573 	case ARPHRD_AX25:
574 		arp->ar_hrd = htons(ARPHRD_AX25);
575 		arp->ar_pro = htons(AX25_P_IP);
576 		break;
577 
578 #if IS_ENABLED(CONFIG_NETROM)
579 	case ARPHRD_NETROM:
580 		arp->ar_hrd = htons(ARPHRD_NETROM);
581 		arp->ar_pro = htons(AX25_P_IP);
582 		break;
583 #endif
584 #endif
585 
586 #if IS_ENABLED(CONFIG_FDDI)
587 	case ARPHRD_FDDI:
588 		arp->ar_hrd = htons(ARPHRD_ETHER);
589 		arp->ar_pro = htons(ETH_P_IP);
590 		break;
591 #endif
592 	}
593 
594 	arp->ar_hln = dev->addr_len;
595 	arp->ar_pln = 4;
596 	arp->ar_op = htons(type);
597 
598 	arp_ptr = (unsigned char *)(arp + 1);
599 
600 	memcpy(arp_ptr, src_hw, dev->addr_len);
601 	arp_ptr += dev->addr_len;
602 	memcpy(arp_ptr, &src_ip, 4);
603 	arp_ptr += 4;
604 
605 	switch (dev->type) {
606 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
607 	case ARPHRD_IEEE1394:
608 		break;
609 #endif
610 	default:
611 		if (target_hw)
612 			memcpy(arp_ptr, target_hw, dev->addr_len);
613 		else
614 			memset(arp_ptr, 0, dev->addr_len);
615 		arp_ptr += dev->addr_len;
616 	}
617 	memcpy(arp_ptr, &dest_ip, 4);
618 
619 	return skb;
620 
621 out:
622 	kfree_skb(skb);
623 	return NULL;
624 }
625 EXPORT_SYMBOL(arp_create);
626 
627 /*
628  *	Send an arp packet.
629  */
630 void arp_xmit(struct sk_buff *skb)
631 {
632 	/* Send it off, maybe filter it using firewalling first.  */
633 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, NULL, skb,
634 		NULL, skb->dev, dev_queue_xmit_sk);
635 }
636 EXPORT_SYMBOL(arp_xmit);
637 
638 /*
639  *	Process an arp request.
640  */
641 
642 static int arp_process(struct sock *sk, struct sk_buff *skb)
643 {
644 	struct net_device *dev = skb->dev;
645 	struct in_device *in_dev = __in_dev_get_rcu(dev);
646 	struct arphdr *arp;
647 	unsigned char *arp_ptr;
648 	struct rtable *rt;
649 	unsigned char *sha;
650 	__be32 sip, tip;
651 	u16 dev_type = dev->type;
652 	int addr_type;
653 	struct neighbour *n;
654 	struct net *net = dev_net(dev);
655 	struct dst_entry *reply_dst = NULL;
656 	bool is_garp = false;
657 
658 	/* arp_rcv below verifies the ARP header and verifies the device
659 	 * is ARP'able.
660 	 */
661 
662 	if (!in_dev)
663 		goto out;
664 
665 	arp = arp_hdr(skb);
666 
667 	switch (dev_type) {
668 	default:
669 		if (arp->ar_pro != htons(ETH_P_IP) ||
670 		    htons(dev_type) != arp->ar_hrd)
671 			goto out;
672 		break;
673 	case ARPHRD_ETHER:
674 	case ARPHRD_FDDI:
675 	case ARPHRD_IEEE802:
676 		/*
677 		 * ETHERNET, and Fibre Channel (which are IEEE 802
678 		 * devices, according to RFC 2625) devices will accept ARP
679 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
680 		 * This is the case also of FDDI, where the RFC 1390 says that
681 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
682 		 * however, to be more robust, we'll accept both 1 (Ethernet)
683 		 * or 6 (IEEE 802.2)
684 		 */
685 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
686 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
687 		    arp->ar_pro != htons(ETH_P_IP))
688 			goto out;
689 		break;
690 	case ARPHRD_AX25:
691 		if (arp->ar_pro != htons(AX25_P_IP) ||
692 		    arp->ar_hrd != htons(ARPHRD_AX25))
693 			goto out;
694 		break;
695 	case ARPHRD_NETROM:
696 		if (arp->ar_pro != htons(AX25_P_IP) ||
697 		    arp->ar_hrd != htons(ARPHRD_NETROM))
698 			goto out;
699 		break;
700 	}
701 
702 	/* Understand only these message types */
703 
704 	if (arp->ar_op != htons(ARPOP_REPLY) &&
705 	    arp->ar_op != htons(ARPOP_REQUEST))
706 		goto out;
707 
708 /*
709  *	Extract fields
710  */
711 	arp_ptr = (unsigned char *)(arp + 1);
712 	sha	= arp_ptr;
713 	arp_ptr += dev->addr_len;
714 	memcpy(&sip, arp_ptr, 4);
715 	arp_ptr += 4;
716 	switch (dev_type) {
717 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
718 	case ARPHRD_IEEE1394:
719 		break;
720 #endif
721 	default:
722 		arp_ptr += dev->addr_len;
723 	}
724 	memcpy(&tip, arp_ptr, 4);
725 /*
726  *	Check for bad requests for 127.x.x.x and requests for multicast
727  *	addresses.  If this is one such, delete it.
728  */
729 	if (ipv4_is_multicast(tip) ||
730 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
731 		goto out;
732 
733 /*
734  *     Special case: We must set Frame Relay source Q.922 address
735  */
736 	if (dev_type == ARPHRD_DLCI)
737 		sha = dev->broadcast;
738 
739 /*
740  *  Process entry.  The idea here is we want to send a reply if it is a
741  *  request for us or if it is a request for someone else that we hold
742  *  a proxy for.  We want to add an entry to our cache if it is a reply
743  *  to us or if it is a request for our address.
744  *  (The assumption for this last is that if someone is requesting our
745  *  address, they are probably intending to talk to us, so it saves time
746  *  if we cache their address.  Their address is also probably not in
747  *  our cache, since ours is not in their cache.)
748  *
749  *  Putting this another way, we only care about replies if they are to
750  *  us, in which case we add them to the cache.  For requests, we care
751  *  about those for us and those for our proxies.  We reply to both,
752  *  and in the case of requests for us we add the requester to the arp
753  *  cache.
754  */
755 
756 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
757 		reply_dst = (struct dst_entry *)
758 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
759 						    GFP_ATOMIC);
760 
761 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
762 	if (sip == 0) {
763 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
764 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
765 		    !arp_ignore(in_dev, sip, tip))
766 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
767 				     sha, dev->dev_addr, sha, reply_dst);
768 		goto out;
769 	}
770 
771 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
772 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
773 
774 		rt = skb_rtable(skb);
775 		addr_type = rt->rt_type;
776 
777 		if (addr_type == RTN_LOCAL) {
778 			int dont_send;
779 
780 			dont_send = arp_ignore(in_dev, sip, tip);
781 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
782 				dont_send = arp_filter(sip, tip, dev);
783 			if (!dont_send) {
784 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
785 				if (n) {
786 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
787 						     sip, dev, tip, sha,
788 						     dev->dev_addr, sha,
789 						     reply_dst);
790 					neigh_release(n);
791 				}
792 			}
793 			goto out;
794 		} else if (IN_DEV_FORWARD(in_dev)) {
795 			if (addr_type == RTN_UNICAST  &&
796 			    (arp_fwd_proxy(in_dev, dev, rt) ||
797 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
798 			     (rt->dst.dev != dev &&
799 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
800 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
801 				if (n)
802 					neigh_release(n);
803 
804 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
805 				    skb->pkt_type == PACKET_HOST ||
806 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
807 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
808 						     sip, dev, tip, sha,
809 						     dev->dev_addr, sha,
810 						     reply_dst);
811 				} else {
812 					pneigh_enqueue(&arp_tbl,
813 						       in_dev->arp_parms, skb);
814 					return 0;
815 				}
816 				goto out;
817 			}
818 		}
819 	}
820 
821 	/* Update our ARP tables */
822 
823 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
824 
825 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
826 		unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
827 
828 		/* Unsolicited ARP is not accepted by default.
829 		   It is possible, that this option should be enabled for some
830 		   devices (strip is candidate)
831 		 */
832 		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
833 			  addr_type == RTN_UNICAST;
834 
835 		if (!n &&
836 		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
837 				addr_type == RTN_UNICAST) || is_garp))
838 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
839 	}
840 
841 	if (n) {
842 		int state = NUD_REACHABLE;
843 		int override;
844 
845 		/* If several different ARP replies follows back-to-back,
846 		   use the FIRST one. It is possible, if several proxy
847 		   agents are active. Taking the first reply prevents
848 		   arp trashing and chooses the fastest router.
849 		 */
850 		override = time_after(jiffies,
851 				      n->updated +
852 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
853 			   is_garp;
854 
855 		/* Broadcast replies and request packets
856 		   do not assert neighbour reachability.
857 		 */
858 		if (arp->ar_op != htons(ARPOP_REPLY) ||
859 		    skb->pkt_type != PACKET_HOST)
860 			state = NUD_STALE;
861 		neigh_update(n, sha, state,
862 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
863 		neigh_release(n);
864 	}
865 
866 out:
867 	consume_skb(skb);
868 	return 0;
869 }
870 
871 static void parp_redo(struct sk_buff *skb)
872 {
873 	arp_process(NULL, skb);
874 }
875 
876 
877 /*
878  *	Receive an arp request from the device layer.
879  */
880 
881 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
882 		   struct packet_type *pt, struct net_device *orig_dev)
883 {
884 	const struct arphdr *arp;
885 
886 	/* do not tweak dropwatch on an ARP we will ignore */
887 	if (dev->flags & IFF_NOARP ||
888 	    skb->pkt_type == PACKET_OTHERHOST ||
889 	    skb->pkt_type == PACKET_LOOPBACK)
890 		goto consumeskb;
891 
892 	skb = skb_share_check(skb, GFP_ATOMIC);
893 	if (!skb)
894 		goto out_of_mem;
895 
896 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
897 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
898 		goto freeskb;
899 
900 	arp = arp_hdr(skb);
901 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
902 		goto freeskb;
903 
904 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
905 
906 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, NULL, skb,
907 		       dev, NULL, arp_process);
908 
909 consumeskb:
910 	consume_skb(skb);
911 	return 0;
912 freeskb:
913 	kfree_skb(skb);
914 out_of_mem:
915 	return 0;
916 }
917 
918 /*
919  *	User level interface (ioctl)
920  */
921 
922 /*
923  *	Set (create) an ARP cache entry.
924  */
925 
926 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
927 {
928 	if (!dev) {
929 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
930 		return 0;
931 	}
932 	if (__in_dev_get_rtnl(dev)) {
933 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
934 		return 0;
935 	}
936 	return -ENXIO;
937 }
938 
939 static int arp_req_set_public(struct net *net, struct arpreq *r,
940 		struct net_device *dev)
941 {
942 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
943 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
944 
945 	if (mask && mask != htonl(0xFFFFFFFF))
946 		return -EINVAL;
947 	if (!dev && (r->arp_flags & ATF_COM)) {
948 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
949 				      r->arp_ha.sa_data);
950 		if (!dev)
951 			return -ENODEV;
952 	}
953 	if (mask) {
954 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
955 			return -ENOBUFS;
956 		return 0;
957 	}
958 
959 	return arp_req_set_proxy(net, dev, 1);
960 }
961 
962 static int arp_req_set(struct net *net, struct arpreq *r,
963 		       struct net_device *dev)
964 {
965 	__be32 ip;
966 	struct neighbour *neigh;
967 	int err;
968 
969 	if (r->arp_flags & ATF_PUBL)
970 		return arp_req_set_public(net, r, dev);
971 
972 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
973 	if (r->arp_flags & ATF_PERM)
974 		r->arp_flags |= ATF_COM;
975 	if (!dev) {
976 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
977 
978 		if (IS_ERR(rt))
979 			return PTR_ERR(rt);
980 		dev = rt->dst.dev;
981 		ip_rt_put(rt);
982 		if (!dev)
983 			return -EINVAL;
984 	}
985 	switch (dev->type) {
986 #if IS_ENABLED(CONFIG_FDDI)
987 	case ARPHRD_FDDI:
988 		/*
989 		 * According to RFC 1390, FDDI devices should accept ARP
990 		 * hardware types of 1 (Ethernet).  However, to be more
991 		 * robust, we'll accept hardware types of either 1 (Ethernet)
992 		 * or 6 (IEEE 802.2).
993 		 */
994 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
995 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
996 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
997 			return -EINVAL;
998 		break;
999 #endif
1000 	default:
1001 		if (r->arp_ha.sa_family != dev->type)
1002 			return -EINVAL;
1003 		break;
1004 	}
1005 
1006 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1007 	err = PTR_ERR(neigh);
1008 	if (!IS_ERR(neigh)) {
1009 		unsigned int state = NUD_STALE;
1010 		if (r->arp_flags & ATF_PERM)
1011 			state = NUD_PERMANENT;
1012 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1013 				   r->arp_ha.sa_data : NULL, state,
1014 				   NEIGH_UPDATE_F_OVERRIDE |
1015 				   NEIGH_UPDATE_F_ADMIN);
1016 		neigh_release(neigh);
1017 	}
1018 	return err;
1019 }
1020 
1021 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1022 {
1023 	if (neigh->nud_state&NUD_PERMANENT)
1024 		return ATF_PERM | ATF_COM;
1025 	else if (neigh->nud_state&NUD_VALID)
1026 		return ATF_COM;
1027 	else
1028 		return 0;
1029 }
1030 
1031 /*
1032  *	Get an ARP cache entry.
1033  */
1034 
1035 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1036 {
1037 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1038 	struct neighbour *neigh;
1039 	int err = -ENXIO;
1040 
1041 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1042 	if (neigh) {
1043 		if (!(neigh->nud_state & NUD_NOARP)) {
1044 			read_lock_bh(&neigh->lock);
1045 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1046 			r->arp_flags = arp_state_to_flags(neigh);
1047 			read_unlock_bh(&neigh->lock);
1048 			r->arp_ha.sa_family = dev->type;
1049 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1050 			err = 0;
1051 		}
1052 		neigh_release(neigh);
1053 	}
1054 	return err;
1055 }
1056 
1057 static int arp_invalidate(struct net_device *dev, __be32 ip)
1058 {
1059 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1060 	int err = -ENXIO;
1061 
1062 	if (neigh) {
1063 		if (neigh->nud_state & ~NUD_NOARP)
1064 			err = neigh_update(neigh, NULL, NUD_FAILED,
1065 					   NEIGH_UPDATE_F_OVERRIDE|
1066 					   NEIGH_UPDATE_F_ADMIN);
1067 		neigh_release(neigh);
1068 	}
1069 
1070 	return err;
1071 }
1072 
1073 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1074 		struct net_device *dev)
1075 {
1076 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1077 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1078 
1079 	if (mask == htonl(0xFFFFFFFF))
1080 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1081 
1082 	if (mask)
1083 		return -EINVAL;
1084 
1085 	return arp_req_set_proxy(net, dev, 0);
1086 }
1087 
1088 static int arp_req_delete(struct net *net, struct arpreq *r,
1089 			  struct net_device *dev)
1090 {
1091 	__be32 ip;
1092 
1093 	if (r->arp_flags & ATF_PUBL)
1094 		return arp_req_delete_public(net, r, dev);
1095 
1096 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1097 	if (!dev) {
1098 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1099 		if (IS_ERR(rt))
1100 			return PTR_ERR(rt);
1101 		dev = rt->dst.dev;
1102 		ip_rt_put(rt);
1103 		if (!dev)
1104 			return -EINVAL;
1105 	}
1106 	return arp_invalidate(dev, ip);
1107 }
1108 
1109 /*
1110  *	Handle an ARP layer I/O control request.
1111  */
1112 
1113 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1114 {
1115 	int err;
1116 	struct arpreq r;
1117 	struct net_device *dev = NULL;
1118 
1119 	switch (cmd) {
1120 	case SIOCDARP:
1121 	case SIOCSARP:
1122 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1123 			return -EPERM;
1124 	case SIOCGARP:
1125 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1126 		if (err)
1127 			return -EFAULT;
1128 		break;
1129 	default:
1130 		return -EINVAL;
1131 	}
1132 
1133 	if (r.arp_pa.sa_family != AF_INET)
1134 		return -EPFNOSUPPORT;
1135 
1136 	if (!(r.arp_flags & ATF_PUBL) &&
1137 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1138 		return -EINVAL;
1139 	if (!(r.arp_flags & ATF_NETMASK))
1140 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1141 							   htonl(0xFFFFFFFFUL);
1142 	rtnl_lock();
1143 	if (r.arp_dev[0]) {
1144 		err = -ENODEV;
1145 		dev = __dev_get_by_name(net, r.arp_dev);
1146 		if (!dev)
1147 			goto out;
1148 
1149 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1150 		if (!r.arp_ha.sa_family)
1151 			r.arp_ha.sa_family = dev->type;
1152 		err = -EINVAL;
1153 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1154 			goto out;
1155 	} else if (cmd == SIOCGARP) {
1156 		err = -ENODEV;
1157 		goto out;
1158 	}
1159 
1160 	switch (cmd) {
1161 	case SIOCDARP:
1162 		err = arp_req_delete(net, &r, dev);
1163 		break;
1164 	case SIOCSARP:
1165 		err = arp_req_set(net, &r, dev);
1166 		break;
1167 	case SIOCGARP:
1168 		err = arp_req_get(&r, dev);
1169 		break;
1170 	}
1171 out:
1172 	rtnl_unlock();
1173 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1174 		err = -EFAULT;
1175 	return err;
1176 }
1177 
1178 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1179 			    void *ptr)
1180 {
1181 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1182 	struct netdev_notifier_change_info *change_info;
1183 
1184 	switch (event) {
1185 	case NETDEV_CHANGEADDR:
1186 		neigh_changeaddr(&arp_tbl, dev);
1187 		rt_cache_flush(dev_net(dev));
1188 		break;
1189 	case NETDEV_CHANGE:
1190 		change_info = ptr;
1191 		if (change_info->flags_changed & IFF_NOARP)
1192 			neigh_changeaddr(&arp_tbl, dev);
1193 		break;
1194 	default:
1195 		break;
1196 	}
1197 
1198 	return NOTIFY_DONE;
1199 }
1200 
1201 static struct notifier_block arp_netdev_notifier = {
1202 	.notifier_call = arp_netdev_event,
1203 };
1204 
1205 /* Note, that it is not on notifier chain.
1206    It is necessary, that this routine was called after route cache will be
1207    flushed.
1208  */
1209 void arp_ifdown(struct net_device *dev)
1210 {
1211 	neigh_ifdown(&arp_tbl, dev);
1212 }
1213 
1214 
1215 /*
1216  *	Called once on startup.
1217  */
1218 
1219 static struct packet_type arp_packet_type __read_mostly = {
1220 	.type =	cpu_to_be16(ETH_P_ARP),
1221 	.func =	arp_rcv,
1222 };
1223 
1224 static int arp_proc_init(void);
1225 
1226 void __init arp_init(void)
1227 {
1228 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1229 
1230 	dev_add_pack(&arp_packet_type);
1231 	arp_proc_init();
1232 #ifdef CONFIG_SYSCTL
1233 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1234 #endif
1235 	register_netdevice_notifier(&arp_netdev_notifier);
1236 }
1237 
1238 #ifdef CONFIG_PROC_FS
1239 #if IS_ENABLED(CONFIG_AX25)
1240 
1241 /* ------------------------------------------------------------------------ */
1242 /*
1243  *	ax25 -> ASCII conversion
1244  */
1245 static char *ax2asc2(ax25_address *a, char *buf)
1246 {
1247 	char c, *s;
1248 	int n;
1249 
1250 	for (n = 0, s = buf; n < 6; n++) {
1251 		c = (a->ax25_call[n] >> 1) & 0x7F;
1252 
1253 		if (c != ' ')
1254 			*s++ = c;
1255 	}
1256 
1257 	*s++ = '-';
1258 	n = (a->ax25_call[6] >> 1) & 0x0F;
1259 	if (n > 9) {
1260 		*s++ = '1';
1261 		n -= 10;
1262 	}
1263 
1264 	*s++ = n + '0';
1265 	*s++ = '\0';
1266 
1267 	if (*buf == '\0' || *buf == '-')
1268 		return "*";
1269 
1270 	return buf;
1271 }
1272 #endif /* CONFIG_AX25 */
1273 
1274 #define HBUFFERLEN 30
1275 
1276 static void arp_format_neigh_entry(struct seq_file *seq,
1277 				   struct neighbour *n)
1278 {
1279 	char hbuffer[HBUFFERLEN];
1280 	int k, j;
1281 	char tbuf[16];
1282 	struct net_device *dev = n->dev;
1283 	int hatype = dev->type;
1284 
1285 	read_lock(&n->lock);
1286 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1287 #if IS_ENABLED(CONFIG_AX25)
1288 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1289 		ax2asc2((ax25_address *)n->ha, hbuffer);
1290 	else {
1291 #endif
1292 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1293 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1294 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1295 		hbuffer[k++] = ':';
1296 	}
1297 	if (k != 0)
1298 		--k;
1299 	hbuffer[k] = 0;
1300 #if IS_ENABLED(CONFIG_AX25)
1301 	}
1302 #endif
1303 	sprintf(tbuf, "%pI4", n->primary_key);
1304 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1305 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1306 	read_unlock(&n->lock);
1307 }
1308 
1309 static void arp_format_pneigh_entry(struct seq_file *seq,
1310 				    struct pneigh_entry *n)
1311 {
1312 	struct net_device *dev = n->dev;
1313 	int hatype = dev ? dev->type : 0;
1314 	char tbuf[16];
1315 
1316 	sprintf(tbuf, "%pI4", n->key);
1317 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1318 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1319 		   dev ? dev->name : "*");
1320 }
1321 
1322 static int arp_seq_show(struct seq_file *seq, void *v)
1323 {
1324 	if (v == SEQ_START_TOKEN) {
1325 		seq_puts(seq, "IP address       HW type     Flags       "
1326 			      "HW address            Mask     Device\n");
1327 	} else {
1328 		struct neigh_seq_state *state = seq->private;
1329 
1330 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1331 			arp_format_pneigh_entry(seq, v);
1332 		else
1333 			arp_format_neigh_entry(seq, v);
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1340 {
1341 	/* Don't want to confuse "arp -a" w/ magic entries,
1342 	 * so we tell the generic iterator to skip NUD_NOARP.
1343 	 */
1344 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1345 }
1346 
1347 /* ------------------------------------------------------------------------ */
1348 
1349 static const struct seq_operations arp_seq_ops = {
1350 	.start	= arp_seq_start,
1351 	.next	= neigh_seq_next,
1352 	.stop	= neigh_seq_stop,
1353 	.show	= arp_seq_show,
1354 };
1355 
1356 static int arp_seq_open(struct inode *inode, struct file *file)
1357 {
1358 	return seq_open_net(inode, file, &arp_seq_ops,
1359 			    sizeof(struct neigh_seq_state));
1360 }
1361 
1362 static const struct file_operations arp_seq_fops = {
1363 	.owner		= THIS_MODULE,
1364 	.open           = arp_seq_open,
1365 	.read           = seq_read,
1366 	.llseek         = seq_lseek,
1367 	.release	= seq_release_net,
1368 };
1369 
1370 
1371 static int __net_init arp_net_init(struct net *net)
1372 {
1373 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1374 		return -ENOMEM;
1375 	return 0;
1376 }
1377 
1378 static void __net_exit arp_net_exit(struct net *net)
1379 {
1380 	remove_proc_entry("arp", net->proc_net);
1381 }
1382 
1383 static struct pernet_operations arp_net_ops = {
1384 	.init = arp_net_init,
1385 	.exit = arp_net_exit,
1386 };
1387 
1388 static int __init arp_proc_init(void)
1389 {
1390 	return register_pernet_subsys(&arp_net_ops);
1391 }
1392 
1393 #else /* CONFIG_PROC_FS */
1394 
1395 static int __init arp_proc_init(void)
1396 {
1397 	return 0;
1398 }
1399 
1400 #endif /* CONFIG_PROC_FS */
1401