xref: /openbmc/linux/net/ipv4/arp.c (revision a5c43003)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
120 
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
123 
124 #include <linux/netfilter_arp.h>
125 
126 /*
127  *	Interface to generic neighbour cache.
128  */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134 
135 static const struct neigh_ops arp_generic_ops = {
136 	.family =		AF_INET,
137 	.solicit =		arp_solicit,
138 	.error_report =		arp_error_report,
139 	.output =		neigh_resolve_output,
140 	.connected_output =	neigh_connected_output,
141 	.hh_output =		dev_queue_xmit,
142 	.queue_xmit =		dev_queue_xmit,
143 };
144 
145 static const struct neigh_ops arp_hh_ops = {
146 	.family =		AF_INET,
147 	.solicit =		arp_solicit,
148 	.error_report =		arp_error_report,
149 	.output =		neigh_resolve_output,
150 	.connected_output =	neigh_resolve_output,
151 	.hh_output =		dev_queue_xmit,
152 	.queue_xmit =		dev_queue_xmit,
153 };
154 
155 static const struct neigh_ops arp_direct_ops = {
156 	.family =		AF_INET,
157 	.output =		dev_queue_xmit,
158 	.connected_output =	dev_queue_xmit,
159 	.hh_output =		dev_queue_xmit,
160 	.queue_xmit =		dev_queue_xmit,
161 };
162 
163 const struct neigh_ops arp_broken_ops = {
164 	.family =		AF_INET,
165 	.solicit =		arp_solicit,
166 	.error_report =		arp_error_report,
167 	.output =		neigh_compat_output,
168 	.connected_output =	neigh_compat_output,
169 	.hh_output =		dev_queue_xmit,
170 	.queue_xmit =		dev_queue_xmit,
171 };
172 
173 struct neigh_table arp_tbl = {
174 	.family =	AF_INET,
175 	.entry_size =	sizeof(struct neighbour) + 4,
176 	.key_len =	4,
177 	.hash =		arp_hash,
178 	.constructor =	arp_constructor,
179 	.proxy_redo =	parp_redo,
180 	.id =		"arp_cache",
181 	.parms = {
182 		.tbl =			&arp_tbl,
183 		.base_reachable_time =	30 * HZ,
184 		.retrans_time =	1 * HZ,
185 		.gc_staletime =	60 * HZ,
186 		.reachable_time =		30 * HZ,
187 		.delay_probe_time =	5 * HZ,
188 		.queue_len =		3,
189 		.ucast_probes =	3,
190 		.mcast_probes =	3,
191 		.anycast_delay =	1 * HZ,
192 		.proxy_delay =		(8 * HZ) / 10,
193 		.proxy_qlen =		64,
194 		.locktime =		1 * HZ,
195 	},
196 	.gc_interval =	30 * HZ,
197 	.gc_thresh1 =	128,
198 	.gc_thresh2 =	512,
199 	.gc_thresh3 =	1024,
200 };
201 
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203 {
204 	switch (dev->type) {
205 	case ARPHRD_ETHER:
206 	case ARPHRD_FDDI:
207 	case ARPHRD_IEEE802:
208 		ip_eth_mc_map(addr, haddr);
209 		return 0;
210 	case ARPHRD_IEEE802_TR:
211 		ip_tr_mc_map(addr, haddr);
212 		return 0;
213 	case ARPHRD_INFINIBAND:
214 		ip_ib_mc_map(addr, dev->broadcast, haddr);
215 		return 0;
216 	default:
217 		if (dir) {
218 			memcpy(haddr, dev->broadcast, dev->addr_len);
219 			return 0;
220 		}
221 	}
222 	return -EINVAL;
223 }
224 
225 
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
227 {
228 	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229 }
230 
231 static int arp_constructor(struct neighbour *neigh)
232 {
233 	__be32 addr = *(__be32*)neigh->primary_key;
234 	struct net_device *dev = neigh->dev;
235 	struct in_device *in_dev;
236 	struct neigh_parms *parms;
237 
238 	rcu_read_lock();
239 	in_dev = __in_dev_get_rcu(dev);
240 	if (in_dev == NULL) {
241 		rcu_read_unlock();
242 		return -EINVAL;
243 	}
244 
245 	neigh->type = inet_addr_type(dev_net(dev), addr);
246 
247 	parms = in_dev->arp_parms;
248 	__neigh_parms_put(neigh->parms);
249 	neigh->parms = neigh_parms_clone(parms);
250 	rcu_read_unlock();
251 
252 	if (!dev->header_ops) {
253 		neigh->nud_state = NUD_NOARP;
254 		neigh->ops = &arp_direct_ops;
255 		neigh->output = neigh->ops->queue_xmit;
256 	} else {
257 		/* Good devices (checked by reading texts, but only Ethernet is
258 		   tested)
259 
260 		   ARPHRD_ETHER: (ethernet, apfddi)
261 		   ARPHRD_FDDI: (fddi)
262 		   ARPHRD_IEEE802: (tr)
263 		   ARPHRD_METRICOM: (strip)
264 		   ARPHRD_ARCNET:
265 		   etc. etc. etc.
266 
267 		   ARPHRD_IPDDP will also work, if author repairs it.
268 		   I did not it, because this driver does not work even
269 		   in old paradigm.
270 		 */
271 
272 #if 1
273 		/* So... these "amateur" devices are hopeless.
274 		   The only thing, that I can say now:
275 		   It is very sad that we need to keep ugly obsolete
276 		   code to make them happy.
277 
278 		   They should be moved to more reasonable state, now
279 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 		   Besides that, they are sort of out of date
281 		   (a lot of redundant clones/copies, useless in 2.1),
282 		   I wonder why people believe that they work.
283 		 */
284 		switch (dev->type) {
285 		default:
286 			break;
287 		case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 		case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 		case ARPHRD_NETROM:
292 #endif
293 			neigh->ops = &arp_broken_ops;
294 			neigh->output = neigh->ops->output;
295 			return 0;
296 #endif
297 		;}
298 #endif
299 		if (neigh->type == RTN_MULTICAST) {
300 			neigh->nud_state = NUD_NOARP;
301 			arp_mc_map(addr, neigh->ha, dev, 1);
302 		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 			neigh->nud_state = NUD_NOARP;
304 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 			neigh->nud_state = NUD_NOARP;
307 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 		}
309 
310 		if (dev->header_ops->cache)
311 			neigh->ops = &arp_hh_ops;
312 		else
313 			neigh->ops = &arp_generic_ops;
314 
315 		if (neigh->nud_state&NUD_VALID)
316 			neigh->output = neigh->ops->connected_output;
317 		else
318 			neigh->output = neigh->ops->output;
319 	}
320 	return 0;
321 }
322 
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324 {
325 	dst_link_failure(skb);
326 	kfree_skb(skb);
327 }
328 
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 	__be32 saddr = 0;
332 	u8  *dst_ha = NULL;
333 	struct net_device *dev = neigh->dev;
334 	__be32 target = *(__be32*)neigh->primary_key;
335 	int probes = atomic_read(&neigh->probes);
336 	struct in_device *in_dev = in_dev_get(dev);
337 
338 	if (!in_dev)
339 		return;
340 
341 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 	default:
343 	case 0:		/* By default announce any local IP */
344 		if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
345 			saddr = ip_hdr(skb)->saddr;
346 		break;
347 	case 1:		/* Restrict announcements of saddr in same subnet */
348 		if (!skb)
349 			break;
350 		saddr = ip_hdr(skb)->saddr;
351 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
352 			/* saddr should be known to target */
353 			if (inet_addr_onlink(in_dev, target, saddr))
354 				break;
355 		}
356 		saddr = 0;
357 		break;
358 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
359 		break;
360 	}
361 
362 	if (in_dev)
363 		in_dev_put(in_dev);
364 	if (!saddr)
365 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366 
367 	if ((probes -= neigh->parms->ucast_probes) < 0) {
368 		if (!(neigh->nud_state&NUD_VALID))
369 			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 		dst_ha = neigh->ha;
371 		read_lock_bh(&neigh->lock);
372 	} else if ((probes -= neigh->parms->app_probes) < 0) {
373 #ifdef CONFIG_ARPD
374 		neigh_app_ns(neigh);
375 #endif
376 		return;
377 	}
378 
379 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 		 dst_ha, dev->dev_addr, NULL);
381 	if (dst_ha)
382 		read_unlock_bh(&neigh->lock);
383 }
384 
385 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
386 {
387 	int scope;
388 
389 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
390 	case 0:	/* Reply, the tip is already validated */
391 		return 0;
392 	case 1:	/* Reply only if tip is configured on the incoming interface */
393 		sip = 0;
394 		scope = RT_SCOPE_HOST;
395 		break;
396 	case 2:	/*
397 		 * Reply only if tip is configured on the incoming interface
398 		 * and is in same subnet as sip
399 		 */
400 		scope = RT_SCOPE_HOST;
401 		break;
402 	case 3:	/* Do not reply for scope host addresses */
403 		sip = 0;
404 		scope = RT_SCOPE_LINK;
405 		break;
406 	case 4:	/* Reserved */
407 	case 5:
408 	case 6:
409 	case 7:
410 		return 0;
411 	case 8:	/* Do not reply */
412 		return 1;
413 	default:
414 		return 0;
415 	}
416 	return !inet_confirm_addr(in_dev, sip, tip, scope);
417 }
418 
419 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
420 {
421 	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
422 						 .saddr = tip } } };
423 	struct rtable *rt;
424 	int flag = 0;
425 	/*unsigned long now; */
426 	struct net *net = dev_net(dev);
427 
428 	if (ip_route_output_key(net, &rt, &fl) < 0)
429 		return 1;
430 	if (rt->u.dst.dev != dev) {
431 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
432 		flag = 1;
433 	}
434 	ip_rt_put(rt);
435 	return flag;
436 }
437 
438 /* OBSOLETE FUNCTIONS */
439 
440 /*
441  *	Find an arp mapping in the cache. If not found, post a request.
442  *
443  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
444  *	even if it exists. It is supposed that skb->dev was mangled
445  *	by a virtual device (eql, shaper). Nobody but broken devices
446  *	is allowed to use this function, it is scheduled to be removed. --ANK
447  */
448 
449 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
450 {
451 	switch (addr_hint) {
452 	case RTN_LOCAL:
453 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
454 		memcpy(haddr, dev->dev_addr, dev->addr_len);
455 		return 1;
456 	case RTN_MULTICAST:
457 		arp_mc_map(paddr, haddr, dev, 1);
458 		return 1;
459 	case RTN_BROADCAST:
460 		memcpy(haddr, dev->broadcast, dev->addr_len);
461 		return 1;
462 	}
463 	return 0;
464 }
465 
466 
467 int arp_find(unsigned char *haddr, struct sk_buff *skb)
468 {
469 	struct net_device *dev = skb->dev;
470 	__be32 paddr;
471 	struct neighbour *n;
472 
473 	if (!skb_dst(skb)) {
474 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
475 		kfree_skb(skb);
476 		return 1;
477 	}
478 
479 	paddr = skb_rtable(skb)->rt_gateway;
480 
481 	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
482 		return 0;
483 
484 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
485 
486 	if (n) {
487 		n->used = jiffies;
488 		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
489 			read_lock_bh(&n->lock);
490 			memcpy(haddr, n->ha, dev->addr_len);
491 			read_unlock_bh(&n->lock);
492 			neigh_release(n);
493 			return 0;
494 		}
495 		neigh_release(n);
496 	} else
497 		kfree_skb(skb);
498 	return 1;
499 }
500 
501 /* END OF OBSOLETE FUNCTIONS */
502 
503 int arp_bind_neighbour(struct dst_entry *dst)
504 {
505 	struct net_device *dev = dst->dev;
506 	struct neighbour *n = dst->neighbour;
507 
508 	if (dev == NULL)
509 		return -EINVAL;
510 	if (n == NULL) {
511 		__be32 nexthop = ((struct rtable *)dst)->rt_gateway;
512 		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
513 			nexthop = 0;
514 		n = __neigh_lookup_errno(
515 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
516 		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
517 #endif
518 		    &arp_tbl, &nexthop, dev);
519 		if (IS_ERR(n))
520 			return PTR_ERR(n);
521 		dst->neighbour = n;
522 	}
523 	return 0;
524 }
525 
526 /*
527  * Check if we can use proxy ARP for this path
528  */
529 static inline int arp_fwd_proxy(struct in_device *in_dev,
530 				struct net_device *dev,	struct rtable *rt)
531 {
532 	struct in_device *out_dev;
533 	int imi, omi = -1;
534 
535 	if (rt->u.dst.dev == dev)
536 		return 0;
537 
538 	if (!IN_DEV_PROXY_ARP(in_dev))
539 		return 0;
540 
541 	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542 		return 1;
543 	if (imi == -1)
544 		return 0;
545 
546 	/* place to check for proxy_arp for routes */
547 
548 	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
549 		omi = IN_DEV_MEDIUM_ID(out_dev);
550 		in_dev_put(out_dev);
551 	}
552 	return (omi != imi && omi != -1);
553 }
554 
555 /*
556  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
557  *
558  * RFC3069 supports proxy arp replies back to the same interface.  This
559  * is done to support (ethernet) switch features, like RFC 3069, where
560  * the individual ports are not allowed to communicate with each
561  * other, BUT they are allowed to talk to the upstream router.  As
562  * described in RFC 3069, it is possible to allow these hosts to
563  * communicate through the upstream router, by proxy_arp'ing.
564  *
565  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
566  *
567  *  This technology is known by different names:
568  *    In RFC 3069 it is called VLAN Aggregation.
569  *    Cisco and Allied Telesyn call it Private VLAN.
570  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
571  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
572  *
573  */
574 static inline int arp_fwd_pvlan(struct in_device *in_dev,
575 				struct net_device *dev,	struct rtable *rt,
576 				__be32 sip, __be32 tip)
577 {
578 	/* Private VLAN is only concerned about the same ethernet segment */
579 	if (rt->u.dst.dev != dev)
580 		return 0;
581 
582 	/* Don't reply on self probes (often done by windowz boxes)*/
583 	if (sip == tip)
584 		return 0;
585 
586 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
587 		return 1;
588 	else
589 		return 0;
590 }
591 
592 /*
593  *	Interface to link layer: send routine and receive handler.
594  */
595 
596 /*
597  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
598  *	message.
599  */
600 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
601 			   struct net_device *dev, __be32 src_ip,
602 			   const unsigned char *dest_hw,
603 			   const unsigned char *src_hw,
604 			   const unsigned char *target_hw)
605 {
606 	struct sk_buff *skb;
607 	struct arphdr *arp;
608 	unsigned char *arp_ptr;
609 
610 	/*
611 	 *	Allocate a buffer
612 	 */
613 
614 	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
615 	if (skb == NULL)
616 		return NULL;
617 
618 	skb_reserve(skb, LL_RESERVED_SPACE(dev));
619 	skb_reset_network_header(skb);
620 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
621 	skb->dev = dev;
622 	skb->protocol = htons(ETH_P_ARP);
623 	if (src_hw == NULL)
624 		src_hw = dev->dev_addr;
625 	if (dest_hw == NULL)
626 		dest_hw = dev->broadcast;
627 
628 	/*
629 	 *	Fill the device header for the ARP frame
630 	 */
631 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
632 		goto out;
633 
634 	/*
635 	 * Fill out the arp protocol part.
636 	 *
637 	 * The arp hardware type should match the device type, except for FDDI,
638 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
639 	 */
640 	/*
641 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
642 	 *	DIX code for the protocol. Make these device structure fields.
643 	 */
644 	switch (dev->type) {
645 	default:
646 		arp->ar_hrd = htons(dev->type);
647 		arp->ar_pro = htons(ETH_P_IP);
648 		break;
649 
650 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
651 	case ARPHRD_AX25:
652 		arp->ar_hrd = htons(ARPHRD_AX25);
653 		arp->ar_pro = htons(AX25_P_IP);
654 		break;
655 
656 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
657 	case ARPHRD_NETROM:
658 		arp->ar_hrd = htons(ARPHRD_NETROM);
659 		arp->ar_pro = htons(AX25_P_IP);
660 		break;
661 #endif
662 #endif
663 
664 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
665 	case ARPHRD_FDDI:
666 		arp->ar_hrd = htons(ARPHRD_ETHER);
667 		arp->ar_pro = htons(ETH_P_IP);
668 		break;
669 #endif
670 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
671 	case ARPHRD_IEEE802_TR:
672 		arp->ar_hrd = htons(ARPHRD_IEEE802);
673 		arp->ar_pro = htons(ETH_P_IP);
674 		break;
675 #endif
676 	}
677 
678 	arp->ar_hln = dev->addr_len;
679 	arp->ar_pln = 4;
680 	arp->ar_op = htons(type);
681 
682 	arp_ptr=(unsigned char *)(arp+1);
683 
684 	memcpy(arp_ptr, src_hw, dev->addr_len);
685 	arp_ptr += dev->addr_len;
686 	memcpy(arp_ptr, &src_ip, 4);
687 	arp_ptr += 4;
688 	if (target_hw != NULL)
689 		memcpy(arp_ptr, target_hw, dev->addr_len);
690 	else
691 		memset(arp_ptr, 0, dev->addr_len);
692 	arp_ptr += dev->addr_len;
693 	memcpy(arp_ptr, &dest_ip, 4);
694 
695 	return skb;
696 
697 out:
698 	kfree_skb(skb);
699 	return NULL;
700 }
701 
702 /*
703  *	Send an arp packet.
704  */
705 void arp_xmit(struct sk_buff *skb)
706 {
707 	/* Send it off, maybe filter it using firewalling first.  */
708 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
709 }
710 
711 /*
712  *	Create and send an arp packet.
713  */
714 void arp_send(int type, int ptype, __be32 dest_ip,
715 	      struct net_device *dev, __be32 src_ip,
716 	      const unsigned char *dest_hw, const unsigned char *src_hw,
717 	      const unsigned char *target_hw)
718 {
719 	struct sk_buff *skb;
720 
721 	/*
722 	 *	No arp on this interface.
723 	 */
724 
725 	if (dev->flags&IFF_NOARP)
726 		return;
727 
728 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
729 			 dest_hw, src_hw, target_hw);
730 	if (skb == NULL) {
731 		return;
732 	}
733 
734 	arp_xmit(skb);
735 }
736 
737 /*
738  *	Process an arp request.
739  */
740 
741 static int arp_process(struct sk_buff *skb)
742 {
743 	struct net_device *dev = skb->dev;
744 	struct in_device *in_dev = in_dev_get(dev);
745 	struct arphdr *arp;
746 	unsigned char *arp_ptr;
747 	struct rtable *rt;
748 	unsigned char *sha;
749 	__be32 sip, tip;
750 	u16 dev_type = dev->type;
751 	int addr_type;
752 	struct neighbour *n;
753 	struct net *net = dev_net(dev);
754 
755 	/* arp_rcv below verifies the ARP header and verifies the device
756 	 * is ARP'able.
757 	 */
758 
759 	if (in_dev == NULL)
760 		goto out;
761 
762 	arp = arp_hdr(skb);
763 
764 	switch (dev_type) {
765 	default:
766 		if (arp->ar_pro != htons(ETH_P_IP) ||
767 		    htons(dev_type) != arp->ar_hrd)
768 			goto out;
769 		break;
770 	case ARPHRD_ETHER:
771 	case ARPHRD_IEEE802_TR:
772 	case ARPHRD_FDDI:
773 	case ARPHRD_IEEE802:
774 		/*
775 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
776 		 * devices, according to RFC 2625) devices will accept ARP
777 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
778 		 * This is the case also of FDDI, where the RFC 1390 says that
779 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
780 		 * however, to be more robust, we'll accept both 1 (Ethernet)
781 		 * or 6 (IEEE 802.2)
782 		 */
783 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
784 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
785 		    arp->ar_pro != htons(ETH_P_IP))
786 			goto out;
787 		break;
788 	case ARPHRD_AX25:
789 		if (arp->ar_pro != htons(AX25_P_IP) ||
790 		    arp->ar_hrd != htons(ARPHRD_AX25))
791 			goto out;
792 		break;
793 	case ARPHRD_NETROM:
794 		if (arp->ar_pro != htons(AX25_P_IP) ||
795 		    arp->ar_hrd != htons(ARPHRD_NETROM))
796 			goto out;
797 		break;
798 	}
799 
800 	/* Understand only these message types */
801 
802 	if (arp->ar_op != htons(ARPOP_REPLY) &&
803 	    arp->ar_op != htons(ARPOP_REQUEST))
804 		goto out;
805 
806 /*
807  *	Extract fields
808  */
809 	arp_ptr= (unsigned char *)(arp+1);
810 	sha	= arp_ptr;
811 	arp_ptr += dev->addr_len;
812 	memcpy(&sip, arp_ptr, 4);
813 	arp_ptr += 4;
814 	arp_ptr += dev->addr_len;
815 	memcpy(&tip, arp_ptr, 4);
816 /*
817  *	Check for bad requests for 127.x.x.x and requests for multicast
818  *	addresses.  If this is one such, delete it.
819  */
820 	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
821 		goto out;
822 
823 /*
824  *     Special case: We must set Frame Relay source Q.922 address
825  */
826 	if (dev_type == ARPHRD_DLCI)
827 		sha = dev->broadcast;
828 
829 /*
830  *  Process entry.  The idea here is we want to send a reply if it is a
831  *  request for us or if it is a request for someone else that we hold
832  *  a proxy for.  We want to add an entry to our cache if it is a reply
833  *  to us or if it is a request for our address.
834  *  (The assumption for this last is that if someone is requesting our
835  *  address, they are probably intending to talk to us, so it saves time
836  *  if we cache their address.  Their address is also probably not in
837  *  our cache, since ours is not in their cache.)
838  *
839  *  Putting this another way, we only care about replies if they are to
840  *  us, in which case we add them to the cache.  For requests, we care
841  *  about those for us and those for our proxies.  We reply to both,
842  *  and in the case of requests for us we add the requester to the arp
843  *  cache.
844  */
845 
846 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
847 	if (sip == 0) {
848 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
849 		    inet_addr_type(net, tip) == RTN_LOCAL &&
850 		    !arp_ignore(in_dev, sip, tip))
851 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
852 				 dev->dev_addr, sha);
853 		goto out;
854 	}
855 
856 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
857 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
858 
859 		rt = skb_rtable(skb);
860 		addr_type = rt->rt_type;
861 
862 		if (addr_type == RTN_LOCAL) {
863 			int dont_send = 0;
864 
865 			if (!dont_send)
866 				dont_send |= arp_ignore(in_dev,sip,tip);
867 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
868 				dont_send |= arp_filter(sip,tip,dev);
869 			if (!dont_send) {
870 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
871 				if (n) {
872 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
873 					neigh_release(n);
874 				}
875 			}
876 			goto out;
877 		} else if (IN_DEV_FORWARD(in_dev)) {
878 			if (addr_type == RTN_UNICAST  &&
879 			    (arp_fwd_proxy(in_dev, dev, rt) ||
880 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
881 			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
882 			{
883 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
884 				if (n)
885 					neigh_release(n);
886 
887 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
888 				    skb->pkt_type == PACKET_HOST ||
889 				    in_dev->arp_parms->proxy_delay == 0) {
890 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
891 				} else {
892 					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
893 					in_dev_put(in_dev);
894 					return 0;
895 				}
896 				goto out;
897 			}
898 		}
899 	}
900 
901 	/* Update our ARP tables */
902 
903 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
904 
905 	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
906 		/* Unsolicited ARP is not accepted by default.
907 		   It is possible, that this option should be enabled for some
908 		   devices (strip is candidate)
909 		 */
910 		if (n == NULL &&
911 		    (arp->ar_op == htons(ARPOP_REPLY) ||
912 		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
913 		    inet_addr_type(net, sip) == RTN_UNICAST)
914 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
915 	}
916 
917 	if (n) {
918 		int state = NUD_REACHABLE;
919 		int override;
920 
921 		/* If several different ARP replies follows back-to-back,
922 		   use the FIRST one. It is possible, if several proxy
923 		   agents are active. Taking the first reply prevents
924 		   arp trashing and chooses the fastest router.
925 		 */
926 		override = time_after(jiffies, n->updated + n->parms->locktime);
927 
928 		/* Broadcast replies and request packets
929 		   do not assert neighbour reachability.
930 		 */
931 		if (arp->ar_op != htons(ARPOP_REPLY) ||
932 		    skb->pkt_type != PACKET_HOST)
933 			state = NUD_STALE;
934 		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
935 		neigh_release(n);
936 	}
937 
938 out:
939 	if (in_dev)
940 		in_dev_put(in_dev);
941 	consume_skb(skb);
942 	return 0;
943 }
944 
945 static void parp_redo(struct sk_buff *skb)
946 {
947 	arp_process(skb);
948 }
949 
950 
951 /*
952  *	Receive an arp request from the device layer.
953  */
954 
955 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
956 		   struct packet_type *pt, struct net_device *orig_dev)
957 {
958 	struct arphdr *arp;
959 
960 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
961 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
962 		goto freeskb;
963 
964 	arp = arp_hdr(skb);
965 	if (arp->ar_hln != dev->addr_len ||
966 	    dev->flags & IFF_NOARP ||
967 	    skb->pkt_type == PACKET_OTHERHOST ||
968 	    skb->pkt_type == PACKET_LOOPBACK ||
969 	    arp->ar_pln != 4)
970 		goto freeskb;
971 
972 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
973 		goto out_of_mem;
974 
975 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
976 
977 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
978 
979 freeskb:
980 	kfree_skb(skb);
981 out_of_mem:
982 	return 0;
983 }
984 
985 /*
986  *	User level interface (ioctl)
987  */
988 
989 /*
990  *	Set (create) an ARP cache entry.
991  */
992 
993 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
994 {
995 	if (dev == NULL) {
996 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
997 		return 0;
998 	}
999 	if (__in_dev_get_rtnl(dev)) {
1000 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1001 		return 0;
1002 	}
1003 	return -ENXIO;
1004 }
1005 
1006 static int arp_req_set_public(struct net *net, struct arpreq *r,
1007 		struct net_device *dev)
1008 {
1009 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1010 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1011 
1012 	if (mask && mask != htonl(0xFFFFFFFF))
1013 		return -EINVAL;
1014 	if (!dev && (r->arp_flags & ATF_COM)) {
1015 		dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1016 				r->arp_ha.sa_data);
1017 		if (!dev)
1018 			return -ENODEV;
1019 	}
1020 	if (mask) {
1021 		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1022 			return -ENOBUFS;
1023 		return 0;
1024 	}
1025 
1026 	return arp_req_set_proxy(net, dev, 1);
1027 }
1028 
1029 static int arp_req_set(struct net *net, struct arpreq *r,
1030 		struct net_device * dev)
1031 {
1032 	__be32 ip;
1033 	struct neighbour *neigh;
1034 	int err;
1035 
1036 	if (r->arp_flags & ATF_PUBL)
1037 		return arp_req_set_public(net, r, dev);
1038 
1039 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1040 	if (r->arp_flags & ATF_PERM)
1041 		r->arp_flags |= ATF_COM;
1042 	if (dev == NULL) {
1043 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1044 							 .tos = RTO_ONLINK } } };
1045 		struct rtable * rt;
1046 		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1047 			return err;
1048 		dev = rt->u.dst.dev;
1049 		ip_rt_put(rt);
1050 		if (!dev)
1051 			return -EINVAL;
1052 	}
1053 	switch (dev->type) {
1054 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1055 	case ARPHRD_FDDI:
1056 		/*
1057 		 * According to RFC 1390, FDDI devices should accept ARP
1058 		 * hardware types of 1 (Ethernet).  However, to be more
1059 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1060 		 * or 6 (IEEE 802.2).
1061 		 */
1062 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1063 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1064 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1065 			return -EINVAL;
1066 		break;
1067 #endif
1068 	default:
1069 		if (r->arp_ha.sa_family != dev->type)
1070 			return -EINVAL;
1071 		break;
1072 	}
1073 
1074 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1075 	err = PTR_ERR(neigh);
1076 	if (!IS_ERR(neigh)) {
1077 		unsigned state = NUD_STALE;
1078 		if (r->arp_flags & ATF_PERM)
1079 			state = NUD_PERMANENT;
1080 		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1081 				   r->arp_ha.sa_data : NULL, state,
1082 				   NEIGH_UPDATE_F_OVERRIDE|
1083 				   NEIGH_UPDATE_F_ADMIN);
1084 		neigh_release(neigh);
1085 	}
1086 	return err;
1087 }
1088 
1089 static unsigned arp_state_to_flags(struct neighbour *neigh)
1090 {
1091 	unsigned flags = 0;
1092 	if (neigh->nud_state&NUD_PERMANENT)
1093 		flags = ATF_PERM|ATF_COM;
1094 	else if (neigh->nud_state&NUD_VALID)
1095 		flags = ATF_COM;
1096 	return flags;
1097 }
1098 
1099 /*
1100  *	Get an ARP cache entry.
1101  */
1102 
1103 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1104 {
1105 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1106 	struct neighbour *neigh;
1107 	int err = -ENXIO;
1108 
1109 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1110 	if (neigh) {
1111 		read_lock_bh(&neigh->lock);
1112 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1113 		r->arp_flags = arp_state_to_flags(neigh);
1114 		read_unlock_bh(&neigh->lock);
1115 		r->arp_ha.sa_family = dev->type;
1116 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1117 		neigh_release(neigh);
1118 		err = 0;
1119 	}
1120 	return err;
1121 }
1122 
1123 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1124 		struct net_device *dev)
1125 {
1126 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1127 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1128 
1129 	if (mask == htonl(0xFFFFFFFF))
1130 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1131 
1132 	if (mask)
1133 		return -EINVAL;
1134 
1135 	return arp_req_set_proxy(net, dev, 0);
1136 }
1137 
1138 static int arp_req_delete(struct net *net, struct arpreq *r,
1139 		struct net_device * dev)
1140 {
1141 	int err;
1142 	__be32 ip;
1143 	struct neighbour *neigh;
1144 
1145 	if (r->arp_flags & ATF_PUBL)
1146 		return arp_req_delete_public(net, r, dev);
1147 
1148 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1149 	if (dev == NULL) {
1150 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1151 							 .tos = RTO_ONLINK } } };
1152 		struct rtable * rt;
1153 		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1154 			return err;
1155 		dev = rt->u.dst.dev;
1156 		ip_rt_put(rt);
1157 		if (!dev)
1158 			return -EINVAL;
1159 	}
1160 	err = -ENXIO;
1161 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1162 	if (neigh) {
1163 		if (neigh->nud_state&~NUD_NOARP)
1164 			err = neigh_update(neigh, NULL, NUD_FAILED,
1165 					   NEIGH_UPDATE_F_OVERRIDE|
1166 					   NEIGH_UPDATE_F_ADMIN);
1167 		neigh_release(neigh);
1168 	}
1169 	return err;
1170 }
1171 
1172 /*
1173  *	Handle an ARP layer I/O control request.
1174  */
1175 
1176 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1177 {
1178 	int err;
1179 	struct arpreq r;
1180 	struct net_device *dev = NULL;
1181 
1182 	switch (cmd) {
1183 		case SIOCDARP:
1184 		case SIOCSARP:
1185 			if (!capable(CAP_NET_ADMIN))
1186 				return -EPERM;
1187 		case SIOCGARP:
1188 			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189 			if (err)
1190 				return -EFAULT;
1191 			break;
1192 		default:
1193 			return -EINVAL;
1194 	}
1195 
1196 	if (r.arp_pa.sa_family != AF_INET)
1197 		return -EPFNOSUPPORT;
1198 
1199 	if (!(r.arp_flags & ATF_PUBL) &&
1200 	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1201 		return -EINVAL;
1202 	if (!(r.arp_flags & ATF_NETMASK))
1203 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204 							   htonl(0xFFFFFFFFUL);
1205 	rtnl_lock();
1206 	if (r.arp_dev[0]) {
1207 		err = -ENODEV;
1208 		if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1209 			goto out;
1210 
1211 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1212 		if (!r.arp_ha.sa_family)
1213 			r.arp_ha.sa_family = dev->type;
1214 		err = -EINVAL;
1215 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1216 			goto out;
1217 	} else if (cmd == SIOCGARP) {
1218 		err = -ENODEV;
1219 		goto out;
1220 	}
1221 
1222 	switch (cmd) {
1223 	case SIOCDARP:
1224 		err = arp_req_delete(net, &r, dev);
1225 		break;
1226 	case SIOCSARP:
1227 		err = arp_req_set(net, &r, dev);
1228 		break;
1229 	case SIOCGARP:
1230 		err = arp_req_get(&r, dev);
1231 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1232 			err = -EFAULT;
1233 		break;
1234 	}
1235 out:
1236 	rtnl_unlock();
1237 	return err;
1238 }
1239 
1240 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1241 {
1242 	struct net_device *dev = ptr;
1243 
1244 	switch (event) {
1245 	case NETDEV_CHANGEADDR:
1246 		neigh_changeaddr(&arp_tbl, dev);
1247 		rt_cache_flush(dev_net(dev), 0);
1248 		break;
1249 	default:
1250 		break;
1251 	}
1252 
1253 	return NOTIFY_DONE;
1254 }
1255 
1256 static struct notifier_block arp_netdev_notifier = {
1257 	.notifier_call = arp_netdev_event,
1258 };
1259 
1260 /* Note, that it is not on notifier chain.
1261    It is necessary, that this routine was called after route cache will be
1262    flushed.
1263  */
1264 void arp_ifdown(struct net_device *dev)
1265 {
1266 	neigh_ifdown(&arp_tbl, dev);
1267 }
1268 
1269 
1270 /*
1271  *	Called once on startup.
1272  */
1273 
1274 static struct packet_type arp_packet_type __read_mostly = {
1275 	.type =	cpu_to_be16(ETH_P_ARP),
1276 	.func =	arp_rcv,
1277 };
1278 
1279 static int arp_proc_init(void);
1280 
1281 void __init arp_init(void)
1282 {
1283 	neigh_table_init(&arp_tbl);
1284 
1285 	dev_add_pack(&arp_packet_type);
1286 	arp_proc_init();
1287 #ifdef CONFIG_SYSCTL
1288 	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1289 #endif
1290 	register_netdevice_notifier(&arp_netdev_notifier);
1291 }
1292 
1293 #ifdef CONFIG_PROC_FS
1294 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1295 
1296 /* ------------------------------------------------------------------------ */
1297 /*
1298  *	ax25 -> ASCII conversion
1299  */
1300 static char *ax2asc2(ax25_address *a, char *buf)
1301 {
1302 	char c, *s;
1303 	int n;
1304 
1305 	for (n = 0, s = buf; n < 6; n++) {
1306 		c = (a->ax25_call[n] >> 1) & 0x7F;
1307 
1308 		if (c != ' ') *s++ = c;
1309 	}
1310 
1311 	*s++ = '-';
1312 
1313 	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1314 		*s++ = '1';
1315 		n -= 10;
1316 	}
1317 
1318 	*s++ = n + '0';
1319 	*s++ = '\0';
1320 
1321 	if (*buf == '\0' || *buf == '-')
1322 	   return "*";
1323 
1324 	return buf;
1325 
1326 }
1327 #endif /* CONFIG_AX25 */
1328 
1329 #define HBUFFERLEN 30
1330 
1331 static void arp_format_neigh_entry(struct seq_file *seq,
1332 				   struct neighbour *n)
1333 {
1334 	char hbuffer[HBUFFERLEN];
1335 	int k, j;
1336 	char tbuf[16];
1337 	struct net_device *dev = n->dev;
1338 	int hatype = dev->type;
1339 
1340 	read_lock(&n->lock);
1341 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1342 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1343 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1344 		ax2asc2((ax25_address *)n->ha, hbuffer);
1345 	else {
1346 #endif
1347 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1348 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1349 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1350 		hbuffer[k++] = ':';
1351 	}
1352 	if (k != 0)
1353 		--k;
1354 	hbuffer[k] = 0;
1355 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1356 	}
1357 #endif
1358 	sprintf(tbuf, "%pI4", n->primary_key);
1359 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1360 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1361 	read_unlock(&n->lock);
1362 }
1363 
1364 static void arp_format_pneigh_entry(struct seq_file *seq,
1365 				    struct pneigh_entry *n)
1366 {
1367 	struct net_device *dev = n->dev;
1368 	int hatype = dev ? dev->type : 0;
1369 	char tbuf[16];
1370 
1371 	sprintf(tbuf, "%pI4", n->key);
1372 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1373 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1374 		   dev ? dev->name : "*");
1375 }
1376 
1377 static int arp_seq_show(struct seq_file *seq, void *v)
1378 {
1379 	if (v == SEQ_START_TOKEN) {
1380 		seq_puts(seq, "IP address       HW type     Flags       "
1381 			      "HW address            Mask     Device\n");
1382 	} else {
1383 		struct neigh_seq_state *state = seq->private;
1384 
1385 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1386 			arp_format_pneigh_entry(seq, v);
1387 		else
1388 			arp_format_neigh_entry(seq, v);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1395 {
1396 	/* Don't want to confuse "arp -a" w/ magic entries,
1397 	 * so we tell the generic iterator to skip NUD_NOARP.
1398 	 */
1399 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1400 }
1401 
1402 /* ------------------------------------------------------------------------ */
1403 
1404 static const struct seq_operations arp_seq_ops = {
1405 	.start  = arp_seq_start,
1406 	.next   = neigh_seq_next,
1407 	.stop   = neigh_seq_stop,
1408 	.show   = arp_seq_show,
1409 };
1410 
1411 static int arp_seq_open(struct inode *inode, struct file *file)
1412 {
1413 	return seq_open_net(inode, file, &arp_seq_ops,
1414 			    sizeof(struct neigh_seq_state));
1415 }
1416 
1417 static const struct file_operations arp_seq_fops = {
1418 	.owner		= THIS_MODULE,
1419 	.open           = arp_seq_open,
1420 	.read           = seq_read,
1421 	.llseek         = seq_lseek,
1422 	.release	= seq_release_net,
1423 };
1424 
1425 
1426 static int __net_init arp_net_init(struct net *net)
1427 {
1428 	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1429 		return -ENOMEM;
1430 	return 0;
1431 }
1432 
1433 static void __net_exit arp_net_exit(struct net *net)
1434 {
1435 	proc_net_remove(net, "arp");
1436 }
1437 
1438 static struct pernet_operations arp_net_ops = {
1439 	.init = arp_net_init,
1440 	.exit = arp_net_exit,
1441 };
1442 
1443 static int __init arp_proc_init(void)
1444 {
1445 	return register_pernet_subsys(&arp_net_ops);
1446 }
1447 
1448 #else /* CONFIG_PROC_FS */
1449 
1450 static int __init arp_proc_init(void)
1451 {
1452 	return 0;
1453 }
1454 
1455 #endif /* CONFIG_PROC_FS */
1456 
1457 EXPORT_SYMBOL(arp_broken_ops);
1458 EXPORT_SYMBOL(arp_find);
1459 EXPORT_SYMBOL(arp_create);
1460 EXPORT_SYMBOL(arp_xmit);
1461 EXPORT_SYMBOL(arp_send);
1462 EXPORT_SYMBOL(arp_tbl);
1463 
1464 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1465 EXPORT_SYMBOL(clip_tbl_hook);
1466 #endif
1467