xref: /openbmc/linux/net/ipv4/arp.c (revision 87c2ce3b)
1 /* linux/net/inet/arp.c
2  *
3  * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4  *
5  * Copyright (C) 1994 by Florian  La Roche
6  *
7  * This module implements the Address Resolution Protocol ARP (RFC 826),
8  * which is used to convert IP addresses (or in the future maybe other
9  * high-level addresses) into a low-level hardware address (like an Ethernet
10  * address).
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * Fixes:
18  *		Alan Cox	:	Removed the Ethernet assumptions in
19  *					Florian's code
20  *		Alan Cox	:	Fixed some small errors in the ARP
21  *					logic
22  *		Alan Cox	:	Allow >4K in /proc
23  *		Alan Cox	:	Make ARP add its own protocol entry
24  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25  *		Stephen Henson	:	Add AX25 support to arp_get_info()
26  *		Alan Cox	:	Drop data when a device is downed.
27  *		Alan Cox	:	Use init_timer().
28  *		Alan Cox	:	Double lock fixes.
29  *		Martin Seine	:	Move the arphdr structure
30  *					to if_arp.h for compatibility.
31  *					with BSD based programs.
32  *		Andrew Tridgell :       Added ARP netmask code and
33  *					re-arranged proxy handling.
34  *		Alan Cox	:	Changed to use notifiers.
35  *		Niibe Yutaka	:	Reply for this device or proxies only.
36  *		Alan Cox	:	Don't proxy across hardware types!
37  *		Jonathan Naylor :	Added support for NET/ROM.
38  *		Mike Shaver     :       RFC1122 checks.
39  *		Jonathan Naylor :	Only lookup the hardware address for
40  *					the correct hardware type.
41  *		Germano Caronni	:	Assorted subtle races.
42  *		Craig Schlenter :	Don't modify permanent entry
43  *					during arp_rcv.
44  *		Russ Nelson	:	Tidied up a few bits.
45  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46  *					eg intelligent arp probing and
47  *					generation
48  *					of host down events.
49  *		Alan Cox	:	Missing unlock in device events.
50  *		Eckes		:	ARP ioctl control errors.
51  *		Alexey Kuznetsov:	Arp free fix.
52  *		Manuel Rodriguez:	Gratuitous ARP.
53  *              Jonathan Layes  :       Added arpd support through kerneld
54  *                                      message queue (960314)
55  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56  *		Mike McLagan    :	Routing by source
57  *		Stuart Cheshire	:	Metricom and grat arp fixes
58  *					*** FOR 2.1 clean this up ***
59  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60  *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61  *					folded into the mainstream FDDI code.
62  *					Ack spit, Linus how did you allow that
63  *					one in...
64  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65  *					clean up the APFDDI & gen. FDDI bits.
66  *		Alexey Kuznetsov:	new arp state machine;
67  *					now it is in net/core/neighbour.c.
68  *		Krzysztof Halasa:	Added Frame Relay ARP support.
69  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70  *		Shmulik Hen:		Split arp_send to arp_create and
71  *					arp_xmit so intermediate drivers like
72  *					bonding can change the skb before
73  *					sending (e.g. insert 8021q tag).
74  *		Harald Welte	:	convert to make use of jenkins hash
75  */
76 
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/sched.h>
82 #include <linux/config.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/trdevice.h>
95 #include <linux/skbuff.h>
96 #include <linux/proc_fs.h>
97 #include <linux/seq_file.h>
98 #include <linux/stat.h>
99 #include <linux/init.h>
100 #include <linux/net.h>
101 #include <linux/rcupdate.h>
102 #include <linux/jhash.h>
103 #ifdef CONFIG_SYSCTL
104 #include <linux/sysctl.h>
105 #endif
106 
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
115 #include <net/ax25.h>
116 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
117 #include <net/netrom.h>
118 #endif
119 #endif
120 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
121 #include <net/atmclip.h>
122 struct neigh_table *clip_tbl_hook;
123 #endif
124 
125 #include <asm/system.h>
126 #include <asm/uaccess.h>
127 
128 #include <linux/netfilter_arp.h>
129 
130 /*
131  *	Interface to generic neighbour cache.
132  */
133 static u32 arp_hash(const void *pkey, const struct net_device *dev);
134 static int arp_constructor(struct neighbour *neigh);
135 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
136 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
137 static void parp_redo(struct sk_buff *skb);
138 
139 static struct neigh_ops arp_generic_ops = {
140 	.family =		AF_INET,
141 	.solicit =		arp_solicit,
142 	.error_report =		arp_error_report,
143 	.output =		neigh_resolve_output,
144 	.connected_output =	neigh_connected_output,
145 	.hh_output =		dev_queue_xmit,
146 	.queue_xmit =		dev_queue_xmit,
147 };
148 
149 static struct neigh_ops arp_hh_ops = {
150 	.family =		AF_INET,
151 	.solicit =		arp_solicit,
152 	.error_report =		arp_error_report,
153 	.output =		neigh_resolve_output,
154 	.connected_output =	neigh_resolve_output,
155 	.hh_output =		dev_queue_xmit,
156 	.queue_xmit =		dev_queue_xmit,
157 };
158 
159 static struct neigh_ops arp_direct_ops = {
160 	.family =		AF_INET,
161 	.output =		dev_queue_xmit,
162 	.connected_output =	dev_queue_xmit,
163 	.hh_output =		dev_queue_xmit,
164 	.queue_xmit =		dev_queue_xmit,
165 };
166 
167 struct neigh_ops arp_broken_ops = {
168 	.family =		AF_INET,
169 	.solicit =		arp_solicit,
170 	.error_report =		arp_error_report,
171 	.output =		neigh_compat_output,
172 	.connected_output =	neigh_compat_output,
173 	.hh_output =		dev_queue_xmit,
174 	.queue_xmit =		dev_queue_xmit,
175 };
176 
177 struct neigh_table arp_tbl = {
178 	.family =	AF_INET,
179 	.entry_size =	sizeof(struct neighbour) + 4,
180 	.key_len =	4,
181 	.hash =		arp_hash,
182 	.constructor =	arp_constructor,
183 	.proxy_redo =	parp_redo,
184 	.id =		"arp_cache",
185 	.parms = {
186 		.tbl =			&arp_tbl,
187 		.base_reachable_time =	30 * HZ,
188 		.retrans_time =	1 * HZ,
189 		.gc_staletime =	60 * HZ,
190 		.reachable_time =		30 * HZ,
191 		.delay_probe_time =	5 * HZ,
192 		.queue_len =		3,
193 		.ucast_probes =	3,
194 		.mcast_probes =	3,
195 		.anycast_delay =	1 * HZ,
196 		.proxy_delay =		(8 * HZ) / 10,
197 		.proxy_qlen =		64,
198 		.locktime =		1 * HZ,
199 	},
200 	.gc_interval =	30 * HZ,
201 	.gc_thresh1 =	128,
202 	.gc_thresh2 =	512,
203 	.gc_thresh3 =	1024,
204 };
205 
206 int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
207 {
208 	switch (dev->type) {
209 	case ARPHRD_ETHER:
210 	case ARPHRD_FDDI:
211 	case ARPHRD_IEEE802:
212 		ip_eth_mc_map(addr, haddr);
213 		return 0;
214 	case ARPHRD_IEEE802_TR:
215 		ip_tr_mc_map(addr, haddr);
216 		return 0;
217 	case ARPHRD_INFINIBAND:
218 		ip_ib_mc_map(addr, haddr);
219 		return 0;
220 	default:
221 		if (dir) {
222 			memcpy(haddr, dev->broadcast, dev->addr_len);
223 			return 0;
224 		}
225 	}
226 	return -EINVAL;
227 }
228 
229 
230 static u32 arp_hash(const void *pkey, const struct net_device *dev)
231 {
232 	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
233 }
234 
235 static int arp_constructor(struct neighbour *neigh)
236 {
237 	u32 addr = *(u32*)neigh->primary_key;
238 	struct net_device *dev = neigh->dev;
239 	struct in_device *in_dev;
240 	struct neigh_parms *parms;
241 
242 	neigh->type = inet_addr_type(addr);
243 
244 	rcu_read_lock();
245 	in_dev = __in_dev_get_rcu(dev);
246 	if (in_dev == NULL) {
247 		rcu_read_unlock();
248 		return -EINVAL;
249 	}
250 
251 	parms = in_dev->arp_parms;
252 	__neigh_parms_put(neigh->parms);
253 	neigh->parms = neigh_parms_clone(parms);
254 	rcu_read_unlock();
255 
256 	if (dev->hard_header == NULL) {
257 		neigh->nud_state = NUD_NOARP;
258 		neigh->ops = &arp_direct_ops;
259 		neigh->output = neigh->ops->queue_xmit;
260 	} else {
261 		/* Good devices (checked by reading texts, but only Ethernet is
262 		   tested)
263 
264 		   ARPHRD_ETHER: (ethernet, apfddi)
265 		   ARPHRD_FDDI: (fddi)
266 		   ARPHRD_IEEE802: (tr)
267 		   ARPHRD_METRICOM: (strip)
268 		   ARPHRD_ARCNET:
269 		   etc. etc. etc.
270 
271 		   ARPHRD_IPDDP will also work, if author repairs it.
272 		   I did not it, because this driver does not work even
273 		   in old paradigm.
274 		 */
275 
276 #if 1
277 		/* So... these "amateur" devices are hopeless.
278 		   The only thing, that I can say now:
279 		   It is very sad that we need to keep ugly obsolete
280 		   code to make them happy.
281 
282 		   They should be moved to more reasonable state, now
283 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
284 		   Besides that, they are sort of out of date
285 		   (a lot of redundant clones/copies, useless in 2.1),
286 		   I wonder why people believe that they work.
287 		 */
288 		switch (dev->type) {
289 		default:
290 			break;
291 		case ARPHRD_ROSE:
292 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293 		case ARPHRD_AX25:
294 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295 		case ARPHRD_NETROM:
296 #endif
297 			neigh->ops = &arp_broken_ops;
298 			neigh->output = neigh->ops->output;
299 			return 0;
300 #endif
301 		;}
302 #endif
303 		if (neigh->type == RTN_MULTICAST) {
304 			neigh->nud_state = NUD_NOARP;
305 			arp_mc_map(addr, neigh->ha, dev, 1);
306 		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
307 			neigh->nud_state = NUD_NOARP;
308 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
309 		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
310 			neigh->nud_state = NUD_NOARP;
311 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
312 		}
313 		if (dev->hard_header_cache)
314 			neigh->ops = &arp_hh_ops;
315 		else
316 			neigh->ops = &arp_generic_ops;
317 		if (neigh->nud_state&NUD_VALID)
318 			neigh->output = neigh->ops->connected_output;
319 		else
320 			neigh->output = neigh->ops->output;
321 	}
322 	return 0;
323 }
324 
325 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
326 {
327 	dst_link_failure(skb);
328 	kfree_skb(skb);
329 }
330 
331 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
332 {
333 	u32 saddr = 0;
334 	u8  *dst_ha = NULL;
335 	struct net_device *dev = neigh->dev;
336 	u32 target = *(u32*)neigh->primary_key;
337 	int probes = atomic_read(&neigh->probes);
338 	struct in_device *in_dev = in_dev_get(dev);
339 
340 	if (!in_dev)
341 		return;
342 
343 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 	default:
345 	case 0:		/* By default announce any local IP */
346 		if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
347 			saddr = skb->nh.iph->saddr;
348 		break;
349 	case 1:		/* Restrict announcements of saddr in same subnet */
350 		if (!skb)
351 			break;
352 		saddr = skb->nh.iph->saddr;
353 		if (inet_addr_type(saddr) == RTN_LOCAL) {
354 			/* saddr should be known to target */
355 			if (inet_addr_onlink(in_dev, target, saddr))
356 				break;
357 		}
358 		saddr = 0;
359 		break;
360 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
361 		break;
362 	}
363 
364 	if (in_dev)
365 		in_dev_put(in_dev);
366 	if (!saddr)
367 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
368 
369 	if ((probes -= neigh->parms->ucast_probes) < 0) {
370 		if (!(neigh->nud_state&NUD_VALID))
371 			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
372 		dst_ha = neigh->ha;
373 		read_lock_bh(&neigh->lock);
374 	} else if ((probes -= neigh->parms->app_probes) < 0) {
375 #ifdef CONFIG_ARPD
376 		neigh_app_ns(neigh);
377 #endif
378 		return;
379 	}
380 
381 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
382 		 dst_ha, dev->dev_addr, NULL);
383 	if (dst_ha)
384 		read_unlock_bh(&neigh->lock);
385 }
386 
387 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
388 		      u32 sip, u32 tip)
389 {
390 	int scope;
391 
392 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
393 	case 0:	/* Reply, the tip is already validated */
394 		return 0;
395 	case 1:	/* Reply only if tip is configured on the incoming interface */
396 		sip = 0;
397 		scope = RT_SCOPE_HOST;
398 		break;
399 	case 2:	/*
400 		 * Reply only if tip is configured on the incoming interface
401 		 * and is in same subnet as sip
402 		 */
403 		scope = RT_SCOPE_HOST;
404 		break;
405 	case 3:	/* Do not reply for scope host addresses */
406 		sip = 0;
407 		scope = RT_SCOPE_LINK;
408 		dev = NULL;
409 		break;
410 	case 4:	/* Reserved */
411 	case 5:
412 	case 6:
413 	case 7:
414 		return 0;
415 	case 8:	/* Do not reply */
416 		return 1;
417 	default:
418 		return 0;
419 	}
420 	return !inet_confirm_addr(dev, sip, tip, scope);
421 }
422 
423 static int arp_filter(__u32 sip, __u32 tip, struct net_device *dev)
424 {
425 	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
426 						 .saddr = tip } } };
427 	struct rtable *rt;
428 	int flag = 0;
429 	/*unsigned long now; */
430 
431 	if (ip_route_output_key(&rt, &fl) < 0)
432 		return 1;
433 	if (rt->u.dst.dev != dev) {
434 		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
435 		flag = 1;
436 	}
437 	ip_rt_put(rt);
438 	return flag;
439 }
440 
441 /* OBSOLETE FUNCTIONS */
442 
443 /*
444  *	Find an arp mapping in the cache. If not found, post a request.
445  *
446  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
447  *	even if it exists. It is supposed that skb->dev was mangled
448  *	by a virtual device (eql, shaper). Nobody but broken devices
449  *	is allowed to use this function, it is scheduled to be removed. --ANK
450  */
451 
452 static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct net_device * dev)
453 {
454 	switch (addr_hint) {
455 	case RTN_LOCAL:
456 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457 		memcpy(haddr, dev->dev_addr, dev->addr_len);
458 		return 1;
459 	case RTN_MULTICAST:
460 		arp_mc_map(paddr, haddr, dev, 1);
461 		return 1;
462 	case RTN_BROADCAST:
463 		memcpy(haddr, dev->broadcast, dev->addr_len);
464 		return 1;
465 	}
466 	return 0;
467 }
468 
469 
470 int arp_find(unsigned char *haddr, struct sk_buff *skb)
471 {
472 	struct net_device *dev = skb->dev;
473 	u32 paddr;
474 	struct neighbour *n;
475 
476 	if (!skb->dst) {
477 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478 		kfree_skb(skb);
479 		return 1;
480 	}
481 
482 	paddr = ((struct rtable*)skb->dst)->rt_gateway;
483 
484 	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
485 		return 0;
486 
487 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
488 
489 	if (n) {
490 		n->used = jiffies;
491 		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
492 			read_lock_bh(&n->lock);
493  			memcpy(haddr, n->ha, dev->addr_len);
494 			read_unlock_bh(&n->lock);
495 			neigh_release(n);
496 			return 0;
497 		}
498 		neigh_release(n);
499 	} else
500 		kfree_skb(skb);
501 	return 1;
502 }
503 
504 /* END OF OBSOLETE FUNCTIONS */
505 
506 int arp_bind_neighbour(struct dst_entry *dst)
507 {
508 	struct net_device *dev = dst->dev;
509 	struct neighbour *n = dst->neighbour;
510 
511 	if (dev == NULL)
512 		return -EINVAL;
513 	if (n == NULL) {
514 		u32 nexthop = ((struct rtable*)dst)->rt_gateway;
515 		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
516 			nexthop = 0;
517 		n = __neigh_lookup_errno(
518 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
519 		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
520 #endif
521 		    &arp_tbl, &nexthop, dev);
522 		if (IS_ERR(n))
523 			return PTR_ERR(n);
524 		dst->neighbour = n;
525 	}
526 	return 0;
527 }
528 
529 /*
530  * Check if we can use proxy ARP for this path
531  */
532 
533 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
534 {
535 	struct in_device *out_dev;
536 	int imi, omi = -1;
537 
538 	if (!IN_DEV_PROXY_ARP(in_dev))
539 		return 0;
540 
541 	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542 		return 1;
543 	if (imi == -1)
544 		return 0;
545 
546 	/* place to check for proxy_arp for routes */
547 
548 	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
549 		omi = IN_DEV_MEDIUM_ID(out_dev);
550 		in_dev_put(out_dev);
551 	}
552 	return (omi != imi && omi != -1);
553 }
554 
555 /*
556  *	Interface to link layer: send routine and receive handler.
557  */
558 
559 /*
560  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
561  *	message.
562  */
563 struct sk_buff *arp_create(int type, int ptype, u32 dest_ip,
564 			   struct net_device *dev, u32 src_ip,
565 			   unsigned char *dest_hw, unsigned char *src_hw,
566 			   unsigned char *target_hw)
567 {
568 	struct sk_buff *skb;
569 	struct arphdr *arp;
570 	unsigned char *arp_ptr;
571 
572 	/*
573 	 *	Allocate a buffer
574 	 */
575 
576 	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
577 				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
578 	if (skb == NULL)
579 		return NULL;
580 
581 	skb_reserve(skb, LL_RESERVED_SPACE(dev));
582 	skb->nh.raw = skb->data;
583 	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
584 	skb->dev = dev;
585 	skb->protocol = htons(ETH_P_ARP);
586 	if (src_hw == NULL)
587 		src_hw = dev->dev_addr;
588 	if (dest_hw == NULL)
589 		dest_hw = dev->broadcast;
590 
591 	/*
592 	 *	Fill the device header for the ARP frame
593 	 */
594 	if (dev->hard_header &&
595 	    dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
596 		goto out;
597 
598 	/*
599 	 * Fill out the arp protocol part.
600 	 *
601 	 * The arp hardware type should match the device type, except for FDDI,
602 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
603 	 */
604 	/*
605 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
606 	 *	DIX code for the protocol. Make these device structure fields.
607 	 */
608 	switch (dev->type) {
609 	default:
610 		arp->ar_hrd = htons(dev->type);
611 		arp->ar_pro = htons(ETH_P_IP);
612 		break;
613 
614 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
615 	case ARPHRD_AX25:
616 		arp->ar_hrd = htons(ARPHRD_AX25);
617 		arp->ar_pro = htons(AX25_P_IP);
618 		break;
619 
620 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
621 	case ARPHRD_NETROM:
622 		arp->ar_hrd = htons(ARPHRD_NETROM);
623 		arp->ar_pro = htons(AX25_P_IP);
624 		break;
625 #endif
626 #endif
627 
628 #ifdef CONFIG_FDDI
629 	case ARPHRD_FDDI:
630 		arp->ar_hrd = htons(ARPHRD_ETHER);
631 		arp->ar_pro = htons(ETH_P_IP);
632 		break;
633 #endif
634 #ifdef CONFIG_TR
635 	case ARPHRD_IEEE802_TR:
636 		arp->ar_hrd = htons(ARPHRD_IEEE802);
637 		arp->ar_pro = htons(ETH_P_IP);
638 		break;
639 #endif
640 	}
641 
642 	arp->ar_hln = dev->addr_len;
643 	arp->ar_pln = 4;
644 	arp->ar_op = htons(type);
645 
646 	arp_ptr=(unsigned char *)(arp+1);
647 
648 	memcpy(arp_ptr, src_hw, dev->addr_len);
649 	arp_ptr+=dev->addr_len;
650 	memcpy(arp_ptr, &src_ip,4);
651 	arp_ptr+=4;
652 	if (target_hw != NULL)
653 		memcpy(arp_ptr, target_hw, dev->addr_len);
654 	else
655 		memset(arp_ptr, 0, dev->addr_len);
656 	arp_ptr+=dev->addr_len;
657 	memcpy(arp_ptr, &dest_ip, 4);
658 
659 	return skb;
660 
661 out:
662 	kfree_skb(skb);
663 	return NULL;
664 }
665 
666 /*
667  *	Send an arp packet.
668  */
669 void arp_xmit(struct sk_buff *skb)
670 {
671 	/* Send it off, maybe filter it using firewalling first.  */
672 	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
673 }
674 
675 /*
676  *	Create and send an arp packet.
677  */
678 void arp_send(int type, int ptype, u32 dest_ip,
679 	      struct net_device *dev, u32 src_ip,
680 	      unsigned char *dest_hw, unsigned char *src_hw,
681 	      unsigned char *target_hw)
682 {
683 	struct sk_buff *skb;
684 
685 	/*
686 	 *	No arp on this interface.
687 	 */
688 
689 	if (dev->flags&IFF_NOARP)
690 		return;
691 
692 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
693 			 dest_hw, src_hw, target_hw);
694 	if (skb == NULL) {
695 		return;
696 	}
697 
698 	arp_xmit(skb);
699 }
700 
701 /*
702  *	Process an arp request.
703  */
704 
705 static int arp_process(struct sk_buff *skb)
706 {
707 	struct net_device *dev = skb->dev;
708 	struct in_device *in_dev = in_dev_get(dev);
709 	struct arphdr *arp;
710 	unsigned char *arp_ptr;
711 	struct rtable *rt;
712 	unsigned char *sha, *tha;
713 	u32 sip, tip;
714 	u16 dev_type = dev->type;
715 	int addr_type;
716 	struct neighbour *n;
717 
718 	/* arp_rcv below verifies the ARP header and verifies the device
719 	 * is ARP'able.
720 	 */
721 
722 	if (in_dev == NULL)
723 		goto out;
724 
725 	arp = skb->nh.arph;
726 
727 	switch (dev_type) {
728 	default:
729 		if (arp->ar_pro != htons(ETH_P_IP) ||
730 		    htons(dev_type) != arp->ar_hrd)
731 			goto out;
732 		break;
733 #ifdef CONFIG_NET_ETHERNET
734 	case ARPHRD_ETHER:
735 #endif
736 #ifdef CONFIG_TR
737 	case ARPHRD_IEEE802_TR:
738 #endif
739 #ifdef CONFIG_FDDI
740 	case ARPHRD_FDDI:
741 #endif
742 #ifdef CONFIG_NET_FC
743 	case ARPHRD_IEEE802:
744 #endif
745 #if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
746     defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
747 		/*
748 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
749 		 * devices, according to RFC 2625) devices will accept ARP
750 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
751 		 * This is the case also of FDDI, where the RFC 1390 says that
752 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
753 		 * however, to be more robust, we'll accept both 1 (Ethernet)
754 		 * or 6 (IEEE 802.2)
755 		 */
756 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
757 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
758 		    arp->ar_pro != htons(ETH_P_IP))
759 			goto out;
760 		break;
761 #endif
762 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
763 	case ARPHRD_AX25:
764 		if (arp->ar_pro != htons(AX25_P_IP) ||
765 		    arp->ar_hrd != htons(ARPHRD_AX25))
766 			goto out;
767 		break;
768 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
769 	case ARPHRD_NETROM:
770 		if (arp->ar_pro != htons(AX25_P_IP) ||
771 		    arp->ar_hrd != htons(ARPHRD_NETROM))
772 			goto out;
773 		break;
774 #endif
775 #endif
776 	}
777 
778 	/* Understand only these message types */
779 
780 	if (arp->ar_op != htons(ARPOP_REPLY) &&
781 	    arp->ar_op != htons(ARPOP_REQUEST))
782 		goto out;
783 
784 /*
785  *	Extract fields
786  */
787 	arp_ptr= (unsigned char *)(arp+1);
788 	sha	= arp_ptr;
789 	arp_ptr += dev->addr_len;
790 	memcpy(&sip, arp_ptr, 4);
791 	arp_ptr += 4;
792 	tha	= arp_ptr;
793 	arp_ptr += dev->addr_len;
794 	memcpy(&tip, arp_ptr, 4);
795 /*
796  *	Check for bad requests for 127.x.x.x and requests for multicast
797  *	addresses.  If this is one such, delete it.
798  */
799 	if (LOOPBACK(tip) || MULTICAST(tip))
800 		goto out;
801 
802 /*
803  *     Special case: We must set Frame Relay source Q.922 address
804  */
805 	if (dev_type == ARPHRD_DLCI)
806 		sha = dev->broadcast;
807 
808 /*
809  *  Process entry.  The idea here is we want to send a reply if it is a
810  *  request for us or if it is a request for someone else that we hold
811  *  a proxy for.  We want to add an entry to our cache if it is a reply
812  *  to us or if it is a request for our address.
813  *  (The assumption for this last is that if someone is requesting our
814  *  address, they are probably intending to talk to us, so it saves time
815  *  if we cache their address.  Their address is also probably not in
816  *  our cache, since ours is not in their cache.)
817  *
818  *  Putting this another way, we only care about replies if they are to
819  *  us, in which case we add them to the cache.  For requests, we care
820  *  about those for us and those for our proxies.  We reply to both,
821  *  and in the case of requests for us we add the requester to the arp
822  *  cache.
823  */
824 
825 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
826 	if (sip == 0) {
827 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
828 		    inet_addr_type(tip) == RTN_LOCAL &&
829 		    !arp_ignore(in_dev,dev,sip,tip))
830 			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
831 		goto out;
832 	}
833 
834 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
835 	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
836 
837 		rt = (struct rtable*)skb->dst;
838 		addr_type = rt->rt_type;
839 
840 		if (addr_type == RTN_LOCAL) {
841 			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842 			if (n) {
843 				int dont_send = 0;
844 
845 				if (!dont_send)
846 					dont_send |= arp_ignore(in_dev,dev,sip,tip);
847 				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
848 					dont_send |= arp_filter(sip,tip,dev);
849 				if (!dont_send)
850 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
851 
852 				neigh_release(n);
853 			}
854 			goto out;
855 		} else if (IN_DEV_FORWARD(in_dev)) {
856 			if ((rt->rt_flags&RTCF_DNAT) ||
857 			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
858 			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
859 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
860 				if (n)
861 					neigh_release(n);
862 
863 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
864 				    skb->pkt_type == PACKET_HOST ||
865 				    in_dev->arp_parms->proxy_delay == 0) {
866 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
867 				} else {
868 					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
869 					in_dev_put(in_dev);
870 					return 0;
871 				}
872 				goto out;
873 			}
874 		}
875 	}
876 
877 	/* Update our ARP tables */
878 
879 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
880 
881 #ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
882 	/* Unsolicited ARP is not accepted by default.
883 	   It is possible, that this option should be enabled for some
884 	   devices (strip is candidate)
885 	 */
886 	if (n == NULL &&
887 	    arp->ar_op == htons(ARPOP_REPLY) &&
888 	    inet_addr_type(sip) == RTN_UNICAST)
889 		n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
890 #endif
891 
892 	if (n) {
893 		int state = NUD_REACHABLE;
894 		int override;
895 
896 		/* If several different ARP replies follows back-to-back,
897 		   use the FIRST one. It is possible, if several proxy
898 		   agents are active. Taking the first reply prevents
899 		   arp trashing and chooses the fastest router.
900 		 */
901 		override = time_after(jiffies, n->updated + n->parms->locktime);
902 
903 		/* Broadcast replies and request packets
904 		   do not assert neighbour reachability.
905 		 */
906 		if (arp->ar_op != htons(ARPOP_REPLY) ||
907 		    skb->pkt_type != PACKET_HOST)
908 			state = NUD_STALE;
909 		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
910 		neigh_release(n);
911 	}
912 
913 out:
914 	if (in_dev)
915 		in_dev_put(in_dev);
916 	kfree_skb(skb);
917 	return 0;
918 }
919 
920 static void parp_redo(struct sk_buff *skb)
921 {
922 	arp_process(skb);
923 }
924 
925 
926 /*
927  *	Receive an arp request from the device layer.
928  */
929 
930 int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
931 {
932 	struct arphdr *arp;
933 
934 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
935 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
936 				 (2 * dev->addr_len) +
937 				 (2 * sizeof(u32)))))
938 		goto freeskb;
939 
940 	arp = skb->nh.arph;
941 	if (arp->ar_hln != dev->addr_len ||
942 	    dev->flags & IFF_NOARP ||
943 	    skb->pkt_type == PACKET_OTHERHOST ||
944 	    skb->pkt_type == PACKET_LOOPBACK ||
945 	    arp->ar_pln != 4)
946 		goto freeskb;
947 
948 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
949 		goto out_of_mem;
950 
951 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
952 
953 	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
954 
955 freeskb:
956 	kfree_skb(skb);
957 out_of_mem:
958 	return 0;
959 }
960 
961 /*
962  *	User level interface (ioctl)
963  */
964 
965 /*
966  *	Set (create) an ARP cache entry.
967  */
968 
969 static int arp_req_set(struct arpreq *r, struct net_device * dev)
970 {
971 	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
972 	struct neighbour *neigh;
973 	int err;
974 
975 	if (r->arp_flags&ATF_PUBL) {
976 		u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
977 		if (mask && mask != 0xFFFFFFFF)
978 			return -EINVAL;
979 		if (!dev && (r->arp_flags & ATF_COM)) {
980 			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
981 			if (!dev)
982 				return -ENODEV;
983 		}
984 		if (mask) {
985 			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
986 				return -ENOBUFS;
987 			return 0;
988 		}
989 		if (dev == NULL) {
990 			ipv4_devconf.proxy_arp = 1;
991 			return 0;
992 		}
993 		if (__in_dev_get_rtnl(dev)) {
994 			__in_dev_get_rtnl(dev)->cnf.proxy_arp = 1;
995 			return 0;
996 		}
997 		return -ENXIO;
998 	}
999 
1000 	if (r->arp_flags & ATF_PERM)
1001 		r->arp_flags |= ATF_COM;
1002 	if (dev == NULL) {
1003 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1004 							 .tos = RTO_ONLINK } } };
1005 		struct rtable * rt;
1006 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1007 			return err;
1008 		dev = rt->u.dst.dev;
1009 		ip_rt_put(rt);
1010 		if (!dev)
1011 			return -EINVAL;
1012 	}
1013 	switch (dev->type) {
1014 #ifdef CONFIG_FDDI
1015 	case ARPHRD_FDDI:
1016 		/*
1017 		 * According to RFC 1390, FDDI devices should accept ARP
1018 		 * hardware types of 1 (Ethernet).  However, to be more
1019 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1020 		 * or 6 (IEEE 802.2).
1021 		 */
1022 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1023 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1024 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1025 			return -EINVAL;
1026 		break;
1027 #endif
1028 	default:
1029 		if (r->arp_ha.sa_family != dev->type)
1030 			return -EINVAL;
1031 		break;
1032 	}
1033 
1034 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1035 	err = PTR_ERR(neigh);
1036 	if (!IS_ERR(neigh)) {
1037 		unsigned state = NUD_STALE;
1038 		if (r->arp_flags & ATF_PERM)
1039 			state = NUD_PERMANENT;
1040 		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1041 				   r->arp_ha.sa_data : NULL, state,
1042 				   NEIGH_UPDATE_F_OVERRIDE|
1043 				   NEIGH_UPDATE_F_ADMIN);
1044 		neigh_release(neigh);
1045 	}
1046 	return err;
1047 }
1048 
1049 static unsigned arp_state_to_flags(struct neighbour *neigh)
1050 {
1051 	unsigned flags = 0;
1052 	if (neigh->nud_state&NUD_PERMANENT)
1053 		flags = ATF_PERM|ATF_COM;
1054 	else if (neigh->nud_state&NUD_VALID)
1055 		flags = ATF_COM;
1056 	return flags;
1057 }
1058 
1059 /*
1060  *	Get an ARP cache entry.
1061  */
1062 
1063 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1064 {
1065 	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1066 	struct neighbour *neigh;
1067 	int err = -ENXIO;
1068 
1069 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1070 	if (neigh) {
1071 		read_lock_bh(&neigh->lock);
1072 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1073 		r->arp_flags = arp_state_to_flags(neigh);
1074 		read_unlock_bh(&neigh->lock);
1075 		r->arp_ha.sa_family = dev->type;
1076 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1077 		neigh_release(neigh);
1078 		err = 0;
1079 	}
1080 	return err;
1081 }
1082 
1083 static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1084 {
1085 	int err;
1086 	u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1087 	struct neighbour *neigh;
1088 
1089 	if (r->arp_flags & ATF_PUBL) {
1090 		u32 mask =
1091 		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1092 		if (mask == 0xFFFFFFFF)
1093 			return pneigh_delete(&arp_tbl, &ip, dev);
1094 		if (mask == 0) {
1095 			if (dev == NULL) {
1096 				ipv4_devconf.proxy_arp = 0;
1097 				return 0;
1098 			}
1099 			if (__in_dev_get_rtnl(dev)) {
1100 				__in_dev_get_rtnl(dev)->cnf.proxy_arp = 0;
1101 				return 0;
1102 			}
1103 			return -ENXIO;
1104 		}
1105 		return -EINVAL;
1106 	}
1107 
1108 	if (dev == NULL) {
1109 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1110 							 .tos = RTO_ONLINK } } };
1111 		struct rtable * rt;
1112 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1113 			return err;
1114 		dev = rt->u.dst.dev;
1115 		ip_rt_put(rt);
1116 		if (!dev)
1117 			return -EINVAL;
1118 	}
1119 	err = -ENXIO;
1120 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1121 	if (neigh) {
1122 		if (neigh->nud_state&~NUD_NOARP)
1123 			err = neigh_update(neigh, NULL, NUD_FAILED,
1124 					   NEIGH_UPDATE_F_OVERRIDE|
1125 					   NEIGH_UPDATE_F_ADMIN);
1126 		neigh_release(neigh);
1127 	}
1128 	return err;
1129 }
1130 
1131 /*
1132  *	Handle an ARP layer I/O control request.
1133  */
1134 
1135 int arp_ioctl(unsigned int cmd, void __user *arg)
1136 {
1137 	int err;
1138 	struct arpreq r;
1139 	struct net_device *dev = NULL;
1140 
1141 	switch (cmd) {
1142 		case SIOCDARP:
1143 		case SIOCSARP:
1144 			if (!capable(CAP_NET_ADMIN))
1145 				return -EPERM;
1146 		case SIOCGARP:
1147 			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1148 			if (err)
1149 				return -EFAULT;
1150 			break;
1151 		default:
1152 			return -EINVAL;
1153 	}
1154 
1155 	if (r.arp_pa.sa_family != AF_INET)
1156 		return -EPFNOSUPPORT;
1157 
1158 	if (!(r.arp_flags & ATF_PUBL) &&
1159 	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1160 		return -EINVAL;
1161 	if (!(r.arp_flags & ATF_NETMASK))
1162 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1163 							   htonl(0xFFFFFFFFUL);
1164 	rtnl_lock();
1165 	if (r.arp_dev[0]) {
1166 		err = -ENODEV;
1167 		if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1168 			goto out;
1169 
1170 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171 		if (!r.arp_ha.sa_family)
1172 			r.arp_ha.sa_family = dev->type;
1173 		err = -EINVAL;
1174 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175 			goto out;
1176 	} else if (cmd == SIOCGARP) {
1177 		err = -ENODEV;
1178 		goto out;
1179 	}
1180 
1181 	switch(cmd) {
1182 	case SIOCDARP:
1183 	        err = arp_req_delete(&r, dev);
1184 		break;
1185 	case SIOCSARP:
1186 		err = arp_req_set(&r, dev);
1187 		break;
1188 	case SIOCGARP:
1189 		err = arp_req_get(&r, dev);
1190 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1191 			err = -EFAULT;
1192 		break;
1193 	}
1194 out:
1195 	rtnl_unlock();
1196 	return err;
1197 }
1198 
1199 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1200 {
1201 	struct net_device *dev = ptr;
1202 
1203 	switch (event) {
1204 	case NETDEV_CHANGEADDR:
1205 		neigh_changeaddr(&arp_tbl, dev);
1206 		rt_cache_flush(0);
1207 		break;
1208 	default:
1209 		break;
1210 	}
1211 
1212 	return NOTIFY_DONE;
1213 }
1214 
1215 static struct notifier_block arp_netdev_notifier = {
1216 	.notifier_call = arp_netdev_event,
1217 };
1218 
1219 /* Note, that it is not on notifier chain.
1220    It is necessary, that this routine was called after route cache will be
1221    flushed.
1222  */
1223 void arp_ifdown(struct net_device *dev)
1224 {
1225 	neigh_ifdown(&arp_tbl, dev);
1226 }
1227 
1228 
1229 /*
1230  *	Called once on startup.
1231  */
1232 
1233 static struct packet_type arp_packet_type = {
1234 	.type =	__constant_htons(ETH_P_ARP),
1235 	.func =	arp_rcv,
1236 };
1237 
1238 static int arp_proc_init(void);
1239 
1240 void __init arp_init(void)
1241 {
1242 	neigh_table_init(&arp_tbl);
1243 
1244 	dev_add_pack(&arp_packet_type);
1245 	arp_proc_init();
1246 #ifdef CONFIG_SYSCTL
1247 	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1248 			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1249 #endif
1250 	register_netdevice_notifier(&arp_netdev_notifier);
1251 }
1252 
1253 #ifdef CONFIG_PROC_FS
1254 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1255 
1256 /* ------------------------------------------------------------------------ */
1257 /*
1258  *	ax25 -> ASCII conversion
1259  */
1260 static char *ax2asc2(ax25_address *a, char *buf)
1261 {
1262 	char c, *s;
1263 	int n;
1264 
1265 	for (n = 0, s = buf; n < 6; n++) {
1266 		c = (a->ax25_call[n] >> 1) & 0x7F;
1267 
1268 		if (c != ' ') *s++ = c;
1269 	}
1270 
1271 	*s++ = '-';
1272 
1273 	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1274 		*s++ = '1';
1275 		n -= 10;
1276 	}
1277 
1278 	*s++ = n + '0';
1279 	*s++ = '\0';
1280 
1281 	if (*buf == '\0' || *buf == '-')
1282 	   return "*";
1283 
1284 	return buf;
1285 
1286 }
1287 #endif /* CONFIG_AX25 */
1288 
1289 #define HBUFFERLEN 30
1290 
1291 static void arp_format_neigh_entry(struct seq_file *seq,
1292 				   struct neighbour *n)
1293 {
1294 	char hbuffer[HBUFFERLEN];
1295 	const char hexbuf[] = "0123456789ABCDEF";
1296 	int k, j;
1297 	char tbuf[16];
1298 	struct net_device *dev = n->dev;
1299 	int hatype = dev->type;
1300 
1301 	read_lock(&n->lock);
1302 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1303 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1304 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1305 		ax2asc2((ax25_address *)n->ha, hbuffer);
1306 	else {
1307 #endif
1308 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1309 		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1310 		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1311 		hbuffer[k++] = ':';
1312 	}
1313 	hbuffer[--k] = 0;
1314 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1315 	}
1316 #endif
1317 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1318 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1319 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1320 	read_unlock(&n->lock);
1321 }
1322 
1323 static void arp_format_pneigh_entry(struct seq_file *seq,
1324 				    struct pneigh_entry *n)
1325 {
1326 	struct net_device *dev = n->dev;
1327 	int hatype = dev ? dev->type : 0;
1328 	char tbuf[16];
1329 
1330 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1331 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1332 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1333 		   dev ? dev->name : "*");
1334 }
1335 
1336 static int arp_seq_show(struct seq_file *seq, void *v)
1337 {
1338 	if (v == SEQ_START_TOKEN) {
1339 		seq_puts(seq, "IP address       HW type     Flags       "
1340 			      "HW address            Mask     Device\n");
1341 	} else {
1342 		struct neigh_seq_state *state = seq->private;
1343 
1344 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1345 			arp_format_pneigh_entry(seq, v);
1346 		else
1347 			arp_format_neigh_entry(seq, v);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1354 {
1355 	/* Don't want to confuse "arp -a" w/ magic entries,
1356 	 * so we tell the generic iterator to skip NUD_NOARP.
1357 	 */
1358 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1359 }
1360 
1361 /* ------------------------------------------------------------------------ */
1362 
1363 static struct seq_operations arp_seq_ops = {
1364 	.start  = arp_seq_start,
1365 	.next   = neigh_seq_next,
1366 	.stop   = neigh_seq_stop,
1367 	.show   = arp_seq_show,
1368 };
1369 
1370 static int arp_seq_open(struct inode *inode, struct file *file)
1371 {
1372 	struct seq_file *seq;
1373 	int rc = -ENOMEM;
1374 	struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1375 
1376 	if (!s)
1377 		goto out;
1378 
1379 	memset(s, 0, sizeof(*s));
1380 	rc = seq_open(file, &arp_seq_ops);
1381 	if (rc)
1382 		goto out_kfree;
1383 
1384 	seq	     = file->private_data;
1385 	seq->private = s;
1386 out:
1387 	return rc;
1388 out_kfree:
1389 	kfree(s);
1390 	goto out;
1391 }
1392 
1393 static struct file_operations arp_seq_fops = {
1394 	.owner		= THIS_MODULE,
1395 	.open           = arp_seq_open,
1396 	.read           = seq_read,
1397 	.llseek         = seq_lseek,
1398 	.release	= seq_release_private,
1399 };
1400 
1401 static int __init arp_proc_init(void)
1402 {
1403 	if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1404 		return -ENOMEM;
1405 	return 0;
1406 }
1407 
1408 #else /* CONFIG_PROC_FS */
1409 
1410 static int __init arp_proc_init(void)
1411 {
1412 	return 0;
1413 }
1414 
1415 #endif /* CONFIG_PROC_FS */
1416 
1417 EXPORT_SYMBOL(arp_broken_ops);
1418 EXPORT_SYMBOL(arp_find);
1419 EXPORT_SYMBOL(arp_rcv);
1420 EXPORT_SYMBOL(arp_create);
1421 EXPORT_SYMBOL(arp_xmit);
1422 EXPORT_SYMBOL(arp_send);
1423 EXPORT_SYMBOL(arp_tbl);
1424 
1425 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1426 EXPORT_SYMBOL(clip_tbl_hook);
1427 #endif
1428