xref: /openbmc/linux/net/ipv4/arp.c (revision 81d67439)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/slab.h>
101 #ifdef CONFIG_SYSCTL
102 #include <linux/sysctl.h>
103 #endif
104 
105 #include <net/net_namespace.h>
106 #include <net/ip.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/protocol.h>
110 #include <net/tcp.h>
111 #include <net/sock.h>
112 #include <net/arp.h>
113 #include <net/ax25.h>
114 #include <net/netrom.h>
115 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
116 #include <net/atmclip.h>
117 struct neigh_table *clip_tbl_hook;
118 EXPORT_SYMBOL(clip_tbl_hook);
119 #endif
120 
121 #include <asm/system.h>
122 #include <linux/uaccess.h>
123 
124 #include <linux/netfilter_arp.h>
125 
126 /*
127  *	Interface to generic neighbour cache.
128  */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134 
135 static const struct neigh_ops arp_generic_ops = {
136 	.family =		AF_INET,
137 	.solicit =		arp_solicit,
138 	.error_report =		arp_error_report,
139 	.output =		neigh_resolve_output,
140 	.connected_output =	neigh_connected_output,
141 };
142 
143 static const struct neigh_ops arp_hh_ops = {
144 	.family =		AF_INET,
145 	.solicit =		arp_solicit,
146 	.error_report =		arp_error_report,
147 	.output =		neigh_resolve_output,
148 	.connected_output =	neigh_resolve_output,
149 };
150 
151 static const struct neigh_ops arp_direct_ops = {
152 	.family =		AF_INET,
153 	.output =		neigh_direct_output,
154 	.connected_output =	neigh_direct_output,
155 };
156 
157 static const struct neigh_ops arp_broken_ops = {
158 	.family =		AF_INET,
159 	.solicit =		arp_solicit,
160 	.error_report =		arp_error_report,
161 	.output =		neigh_compat_output,
162 	.connected_output =	neigh_compat_output,
163 };
164 
165 struct neigh_table arp_tbl = {
166 	.family		= AF_INET,
167 	.entry_size	= sizeof(struct neighbour) + 4,
168 	.key_len	= 4,
169 	.hash		= arp_hash,
170 	.constructor	= arp_constructor,
171 	.proxy_redo	= parp_redo,
172 	.id		= "arp_cache",
173 	.parms		= {
174 		.tbl			= &arp_tbl,
175 		.base_reachable_time	= 30 * HZ,
176 		.retrans_time		= 1 * HZ,
177 		.gc_staletime		= 60 * HZ,
178 		.reachable_time		= 30 * HZ,
179 		.delay_probe_time	= 5 * HZ,
180 		.queue_len		= 3,
181 		.ucast_probes		= 3,
182 		.mcast_probes		= 3,
183 		.anycast_delay		= 1 * HZ,
184 		.proxy_delay		= (8 * HZ) / 10,
185 		.proxy_qlen		= 64,
186 		.locktime		= 1 * HZ,
187 	},
188 	.gc_interval	= 30 * HZ,
189 	.gc_thresh1	= 128,
190 	.gc_thresh2	= 512,
191 	.gc_thresh3	= 1024,
192 };
193 EXPORT_SYMBOL(arp_tbl);
194 
195 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
196 {
197 	switch (dev->type) {
198 	case ARPHRD_ETHER:
199 	case ARPHRD_FDDI:
200 	case ARPHRD_IEEE802:
201 		ip_eth_mc_map(addr, haddr);
202 		return 0;
203 	case ARPHRD_IEEE802_TR:
204 		ip_tr_mc_map(addr, haddr);
205 		return 0;
206 	case ARPHRD_INFINIBAND:
207 		ip_ib_mc_map(addr, dev->broadcast, haddr);
208 		return 0;
209 	case ARPHRD_IPGRE:
210 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
211 		return 0;
212 	default:
213 		if (dir) {
214 			memcpy(haddr, dev->broadcast, dev->addr_len);
215 			return 0;
216 		}
217 	}
218 	return -EINVAL;
219 }
220 
221 
222 static u32 arp_hash(const void *pkey,
223 		    const struct net_device *dev,
224 		    __u32 hash_rnd)
225 {
226 	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
227 }
228 
229 static int arp_constructor(struct neighbour *neigh)
230 {
231 	__be32 addr = *(__be32 *)neigh->primary_key;
232 	struct net_device *dev = neigh->dev;
233 	struct in_device *in_dev;
234 	struct neigh_parms *parms;
235 
236 	rcu_read_lock();
237 	in_dev = __in_dev_get_rcu(dev);
238 	if (in_dev == NULL) {
239 		rcu_read_unlock();
240 		return -EINVAL;
241 	}
242 
243 	neigh->type = inet_addr_type(dev_net(dev), addr);
244 
245 	parms = in_dev->arp_parms;
246 	__neigh_parms_put(neigh->parms);
247 	neigh->parms = neigh_parms_clone(parms);
248 	rcu_read_unlock();
249 
250 	if (!dev->header_ops) {
251 		neigh->nud_state = NUD_NOARP;
252 		neigh->ops = &arp_direct_ops;
253 		neigh->output = neigh_direct_output;
254 	} else {
255 		/* Good devices (checked by reading texts, but only Ethernet is
256 		   tested)
257 
258 		   ARPHRD_ETHER: (ethernet, apfddi)
259 		   ARPHRD_FDDI: (fddi)
260 		   ARPHRD_IEEE802: (tr)
261 		   ARPHRD_METRICOM: (strip)
262 		   ARPHRD_ARCNET:
263 		   etc. etc. etc.
264 
265 		   ARPHRD_IPDDP will also work, if author repairs it.
266 		   I did not it, because this driver does not work even
267 		   in old paradigm.
268 		 */
269 
270 #if 1
271 		/* So... these "amateur" devices are hopeless.
272 		   The only thing, that I can say now:
273 		   It is very sad that we need to keep ugly obsolete
274 		   code to make them happy.
275 
276 		   They should be moved to more reasonable state, now
277 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
278 		   Besides that, they are sort of out of date
279 		   (a lot of redundant clones/copies, useless in 2.1),
280 		   I wonder why people believe that they work.
281 		 */
282 		switch (dev->type) {
283 		default:
284 			break;
285 		case ARPHRD_ROSE:
286 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
287 		case ARPHRD_AX25:
288 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
289 		case ARPHRD_NETROM:
290 #endif
291 			neigh->ops = &arp_broken_ops;
292 			neigh->output = neigh->ops->output;
293 			return 0;
294 #else
295 			break;
296 #endif
297 		}
298 #endif
299 		if (neigh->type == RTN_MULTICAST) {
300 			neigh->nud_state = NUD_NOARP;
301 			arp_mc_map(addr, neigh->ha, dev, 1);
302 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
303 			neigh->nud_state = NUD_NOARP;
304 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 		} else if (neigh->type == RTN_BROADCAST ||
306 			   (dev->flags & IFF_POINTOPOINT)) {
307 			neigh->nud_state = NUD_NOARP;
308 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
309 		}
310 
311 		if (dev->header_ops->cache)
312 			neigh->ops = &arp_hh_ops;
313 		else
314 			neigh->ops = &arp_generic_ops;
315 
316 		if (neigh->nud_state & NUD_VALID)
317 			neigh->output = neigh->ops->connected_output;
318 		else
319 			neigh->output = neigh->ops->output;
320 	}
321 	return 0;
322 }
323 
324 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 {
326 	dst_link_failure(skb);
327 	kfree_skb(skb);
328 }
329 
330 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 {
332 	__be32 saddr = 0;
333 	u8  *dst_ha = NULL;
334 	struct net_device *dev = neigh->dev;
335 	__be32 target = *(__be32 *)neigh->primary_key;
336 	int probes = atomic_read(&neigh->probes);
337 	struct in_device *in_dev;
338 
339 	rcu_read_lock();
340 	in_dev = __in_dev_get_rcu(dev);
341 	if (!in_dev) {
342 		rcu_read_unlock();
343 		return;
344 	}
345 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 	default:
347 	case 0:		/* By default announce any local IP */
348 		if (skb && inet_addr_type(dev_net(dev),
349 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
350 			saddr = ip_hdr(skb)->saddr;
351 		break;
352 	case 1:		/* Restrict announcements of saddr in same subnet */
353 		if (!skb)
354 			break;
355 		saddr = ip_hdr(skb)->saddr;
356 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
357 			/* saddr should be known to target */
358 			if (inet_addr_onlink(in_dev, target, saddr))
359 				break;
360 		}
361 		saddr = 0;
362 		break;
363 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
364 		break;
365 	}
366 	rcu_read_unlock();
367 
368 	if (!saddr)
369 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
370 
371 	probes -= neigh->parms->ucast_probes;
372 	if (probes < 0) {
373 		if (!(neigh->nud_state & NUD_VALID))
374 			printk(KERN_DEBUG
375 			       "trying to ucast probe in NUD_INVALID\n");
376 		dst_ha = neigh->ha;
377 		read_lock_bh(&neigh->lock);
378 	} else {
379 		probes -= neigh->parms->app_probes;
380 		if (probes < 0) {
381 #ifdef CONFIG_ARPD
382 			neigh_app_ns(neigh);
383 #endif
384 			return;
385 		}
386 	}
387 
388 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
389 		 dst_ha, dev->dev_addr, NULL);
390 	if (dst_ha)
391 		read_unlock_bh(&neigh->lock);
392 }
393 
394 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
395 {
396 	int scope;
397 
398 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
399 	case 0:	/* Reply, the tip is already validated */
400 		return 0;
401 	case 1:	/* Reply only if tip is configured on the incoming interface */
402 		sip = 0;
403 		scope = RT_SCOPE_HOST;
404 		break;
405 	case 2:	/*
406 		 * Reply only if tip is configured on the incoming interface
407 		 * and is in same subnet as sip
408 		 */
409 		scope = RT_SCOPE_HOST;
410 		break;
411 	case 3:	/* Do not reply for scope host addresses */
412 		sip = 0;
413 		scope = RT_SCOPE_LINK;
414 		break;
415 	case 4:	/* Reserved */
416 	case 5:
417 	case 6:
418 	case 7:
419 		return 0;
420 	case 8:	/* Do not reply */
421 		return 1;
422 	default:
423 		return 0;
424 	}
425 	return !inet_confirm_addr(in_dev, sip, tip, scope);
426 }
427 
428 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
429 {
430 	struct rtable *rt;
431 	int flag = 0;
432 	/*unsigned long now; */
433 	struct net *net = dev_net(dev);
434 
435 	rt = ip_route_output(net, sip, tip, 0, 0);
436 	if (IS_ERR(rt))
437 		return 1;
438 	if (rt->dst.dev != dev) {
439 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
440 		flag = 1;
441 	}
442 	ip_rt_put(rt);
443 	return flag;
444 }
445 
446 /* OBSOLETE FUNCTIONS */
447 
448 /*
449  *	Find an arp mapping in the cache. If not found, post a request.
450  *
451  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
452  *	even if it exists. It is supposed that skb->dev was mangled
453  *	by a virtual device (eql, shaper). Nobody but broken devices
454  *	is allowed to use this function, it is scheduled to be removed. --ANK
455  */
456 
457 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
458 			      __be32 paddr, struct net_device *dev)
459 {
460 	switch (addr_hint) {
461 	case RTN_LOCAL:
462 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
463 		memcpy(haddr, dev->dev_addr, dev->addr_len);
464 		return 1;
465 	case RTN_MULTICAST:
466 		arp_mc_map(paddr, haddr, dev, 1);
467 		return 1;
468 	case RTN_BROADCAST:
469 		memcpy(haddr, dev->broadcast, dev->addr_len);
470 		return 1;
471 	}
472 	return 0;
473 }
474 
475 
476 int arp_find(unsigned char *haddr, struct sk_buff *skb)
477 {
478 	struct net_device *dev = skb->dev;
479 	__be32 paddr;
480 	struct neighbour *n;
481 
482 	if (!skb_dst(skb)) {
483 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
484 		kfree_skb(skb);
485 		return 1;
486 	}
487 
488 	paddr = skb_rtable(skb)->rt_gateway;
489 
490 	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
491 			       paddr, dev))
492 		return 0;
493 
494 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
495 
496 	if (n) {
497 		n->used = jiffies;
498 		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
499 			neigh_ha_snapshot(haddr, n, dev);
500 			neigh_release(n);
501 			return 0;
502 		}
503 		neigh_release(n);
504 	} else
505 		kfree_skb(skb);
506 	return 1;
507 }
508 EXPORT_SYMBOL(arp_find);
509 
510 /* END OF OBSOLETE FUNCTIONS */
511 
512 /*
513  * Check if we can use proxy ARP for this path
514  */
515 static inline int arp_fwd_proxy(struct in_device *in_dev,
516 				struct net_device *dev,	struct rtable *rt)
517 {
518 	struct in_device *out_dev;
519 	int imi, omi = -1;
520 
521 	if (rt->dst.dev == dev)
522 		return 0;
523 
524 	if (!IN_DEV_PROXY_ARP(in_dev))
525 		return 0;
526 	imi = IN_DEV_MEDIUM_ID(in_dev);
527 	if (imi == 0)
528 		return 1;
529 	if (imi == -1)
530 		return 0;
531 
532 	/* place to check for proxy_arp for routes */
533 
534 	out_dev = __in_dev_get_rcu(rt->dst.dev);
535 	if (out_dev)
536 		omi = IN_DEV_MEDIUM_ID(out_dev);
537 
538 	return omi != imi && omi != -1;
539 }
540 
541 /*
542  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
543  *
544  * RFC3069 supports proxy arp replies back to the same interface.  This
545  * is done to support (ethernet) switch features, like RFC 3069, where
546  * the individual ports are not allowed to communicate with each
547  * other, BUT they are allowed to talk to the upstream router.  As
548  * described in RFC 3069, it is possible to allow these hosts to
549  * communicate through the upstream router, by proxy_arp'ing.
550  *
551  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
552  *
553  *  This technology is known by different names:
554  *    In RFC 3069 it is called VLAN Aggregation.
555  *    Cisco and Allied Telesyn call it Private VLAN.
556  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
557  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
558  *
559  */
560 static inline int arp_fwd_pvlan(struct in_device *in_dev,
561 				struct net_device *dev,	struct rtable *rt,
562 				__be32 sip, __be32 tip)
563 {
564 	/* Private VLAN is only concerned about the same ethernet segment */
565 	if (rt->dst.dev != dev)
566 		return 0;
567 
568 	/* Don't reply on self probes (often done by windowz boxes)*/
569 	if (sip == tip)
570 		return 0;
571 
572 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
573 		return 1;
574 	else
575 		return 0;
576 }
577 
578 /*
579  *	Interface to link layer: send routine and receive handler.
580  */
581 
582 /*
583  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
584  *	message.
585  */
586 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
587 			   struct net_device *dev, __be32 src_ip,
588 			   const unsigned char *dest_hw,
589 			   const unsigned char *src_hw,
590 			   const unsigned char *target_hw)
591 {
592 	struct sk_buff *skb;
593 	struct arphdr *arp;
594 	unsigned char *arp_ptr;
595 
596 	/*
597 	 *	Allocate a buffer
598 	 */
599 
600 	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
601 	if (skb == NULL)
602 		return NULL;
603 
604 	skb_reserve(skb, LL_RESERVED_SPACE(dev));
605 	skb_reset_network_header(skb);
606 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
607 	skb->dev = dev;
608 	skb->protocol = htons(ETH_P_ARP);
609 	if (src_hw == NULL)
610 		src_hw = dev->dev_addr;
611 	if (dest_hw == NULL)
612 		dest_hw = dev->broadcast;
613 
614 	/*
615 	 *	Fill the device header for the ARP frame
616 	 */
617 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
618 		goto out;
619 
620 	/*
621 	 * Fill out the arp protocol part.
622 	 *
623 	 * The arp hardware type should match the device type, except for FDDI,
624 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
625 	 */
626 	/*
627 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
628 	 *	DIX code for the protocol. Make these device structure fields.
629 	 */
630 	switch (dev->type) {
631 	default:
632 		arp->ar_hrd = htons(dev->type);
633 		arp->ar_pro = htons(ETH_P_IP);
634 		break;
635 
636 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
637 	case ARPHRD_AX25:
638 		arp->ar_hrd = htons(ARPHRD_AX25);
639 		arp->ar_pro = htons(AX25_P_IP);
640 		break;
641 
642 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
643 	case ARPHRD_NETROM:
644 		arp->ar_hrd = htons(ARPHRD_NETROM);
645 		arp->ar_pro = htons(AX25_P_IP);
646 		break;
647 #endif
648 #endif
649 
650 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
651 	case ARPHRD_FDDI:
652 		arp->ar_hrd = htons(ARPHRD_ETHER);
653 		arp->ar_pro = htons(ETH_P_IP);
654 		break;
655 #endif
656 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
657 	case ARPHRD_IEEE802_TR:
658 		arp->ar_hrd = htons(ARPHRD_IEEE802);
659 		arp->ar_pro = htons(ETH_P_IP);
660 		break;
661 #endif
662 	}
663 
664 	arp->ar_hln = dev->addr_len;
665 	arp->ar_pln = 4;
666 	arp->ar_op = htons(type);
667 
668 	arp_ptr = (unsigned char *)(arp + 1);
669 
670 	memcpy(arp_ptr, src_hw, dev->addr_len);
671 	arp_ptr += dev->addr_len;
672 	memcpy(arp_ptr, &src_ip, 4);
673 	arp_ptr += 4;
674 	if (target_hw != NULL)
675 		memcpy(arp_ptr, target_hw, dev->addr_len);
676 	else
677 		memset(arp_ptr, 0, dev->addr_len);
678 	arp_ptr += dev->addr_len;
679 	memcpy(arp_ptr, &dest_ip, 4);
680 
681 	return skb;
682 
683 out:
684 	kfree_skb(skb);
685 	return NULL;
686 }
687 EXPORT_SYMBOL(arp_create);
688 
689 /*
690  *	Send an arp packet.
691  */
692 void arp_xmit(struct sk_buff *skb)
693 {
694 	/* Send it off, maybe filter it using firewalling first.  */
695 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
696 }
697 EXPORT_SYMBOL(arp_xmit);
698 
699 /*
700  *	Create and send an arp packet.
701  */
702 void arp_send(int type, int ptype, __be32 dest_ip,
703 	      struct net_device *dev, __be32 src_ip,
704 	      const unsigned char *dest_hw, const unsigned char *src_hw,
705 	      const unsigned char *target_hw)
706 {
707 	struct sk_buff *skb;
708 
709 	/*
710 	 *	No arp on this interface.
711 	 */
712 
713 	if (dev->flags&IFF_NOARP)
714 		return;
715 
716 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
717 			 dest_hw, src_hw, target_hw);
718 	if (skb == NULL)
719 		return;
720 
721 	arp_xmit(skb);
722 }
723 EXPORT_SYMBOL(arp_send);
724 
725 /*
726  *	Process an arp request.
727  */
728 
729 static int arp_process(struct sk_buff *skb)
730 {
731 	struct net_device *dev = skb->dev;
732 	struct in_device *in_dev = __in_dev_get_rcu(dev);
733 	struct arphdr *arp;
734 	unsigned char *arp_ptr;
735 	struct rtable *rt;
736 	unsigned char *sha;
737 	__be32 sip, tip;
738 	u16 dev_type = dev->type;
739 	int addr_type;
740 	struct neighbour *n;
741 	struct net *net = dev_net(dev);
742 
743 	/* arp_rcv below verifies the ARP header and verifies the device
744 	 * is ARP'able.
745 	 */
746 
747 	if (in_dev == NULL)
748 		goto out;
749 
750 	arp = arp_hdr(skb);
751 
752 	switch (dev_type) {
753 	default:
754 		if (arp->ar_pro != htons(ETH_P_IP) ||
755 		    htons(dev_type) != arp->ar_hrd)
756 			goto out;
757 		break;
758 	case ARPHRD_ETHER:
759 	case ARPHRD_IEEE802_TR:
760 	case ARPHRD_FDDI:
761 	case ARPHRD_IEEE802:
762 		/*
763 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
764 		 * devices, according to RFC 2625) devices will accept ARP
765 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
766 		 * This is the case also of FDDI, where the RFC 1390 says that
767 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
768 		 * however, to be more robust, we'll accept both 1 (Ethernet)
769 		 * or 6 (IEEE 802.2)
770 		 */
771 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
772 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
773 		    arp->ar_pro != htons(ETH_P_IP))
774 			goto out;
775 		break;
776 	case ARPHRD_AX25:
777 		if (arp->ar_pro != htons(AX25_P_IP) ||
778 		    arp->ar_hrd != htons(ARPHRD_AX25))
779 			goto out;
780 		break;
781 	case ARPHRD_NETROM:
782 		if (arp->ar_pro != htons(AX25_P_IP) ||
783 		    arp->ar_hrd != htons(ARPHRD_NETROM))
784 			goto out;
785 		break;
786 	}
787 
788 	/* Understand only these message types */
789 
790 	if (arp->ar_op != htons(ARPOP_REPLY) &&
791 	    arp->ar_op != htons(ARPOP_REQUEST))
792 		goto out;
793 
794 /*
795  *	Extract fields
796  */
797 	arp_ptr = (unsigned char *)(arp + 1);
798 	sha	= arp_ptr;
799 	arp_ptr += dev->addr_len;
800 	memcpy(&sip, arp_ptr, 4);
801 	arp_ptr += 4;
802 	arp_ptr += dev->addr_len;
803 	memcpy(&tip, arp_ptr, 4);
804 /*
805  *	Check for bad requests for 127.x.x.x and requests for multicast
806  *	addresses.  If this is one such, delete it.
807  */
808 	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
809 		goto out;
810 
811 /*
812  *     Special case: We must set Frame Relay source Q.922 address
813  */
814 	if (dev_type == ARPHRD_DLCI)
815 		sha = dev->broadcast;
816 
817 /*
818  *  Process entry.  The idea here is we want to send a reply if it is a
819  *  request for us or if it is a request for someone else that we hold
820  *  a proxy for.  We want to add an entry to our cache if it is a reply
821  *  to us or if it is a request for our address.
822  *  (The assumption for this last is that if someone is requesting our
823  *  address, they are probably intending to talk to us, so it saves time
824  *  if we cache their address.  Their address is also probably not in
825  *  our cache, since ours is not in their cache.)
826  *
827  *  Putting this another way, we only care about replies if they are to
828  *  us, in which case we add them to the cache.  For requests, we care
829  *  about those for us and those for our proxies.  We reply to both,
830  *  and in the case of requests for us we add the requester to the arp
831  *  cache.
832  */
833 
834 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
835 	if (sip == 0) {
836 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
837 		    inet_addr_type(net, tip) == RTN_LOCAL &&
838 		    !arp_ignore(in_dev, sip, tip))
839 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
840 				 dev->dev_addr, sha);
841 		goto out;
842 	}
843 
844 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
845 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
846 
847 		rt = skb_rtable(skb);
848 		addr_type = rt->rt_type;
849 
850 		if (addr_type == RTN_LOCAL) {
851 			int dont_send;
852 
853 			dont_send = arp_ignore(in_dev, sip, tip);
854 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
855 				dont_send = arp_filter(sip, tip, dev);
856 			if (!dont_send) {
857 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
858 				if (n) {
859 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
860 						 dev, tip, sha, dev->dev_addr,
861 						 sha);
862 					neigh_release(n);
863 				}
864 			}
865 			goto out;
866 		} else if (IN_DEV_FORWARD(in_dev)) {
867 			if (addr_type == RTN_UNICAST  &&
868 			    (arp_fwd_proxy(in_dev, dev, rt) ||
869 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
870 			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
871 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
872 				if (n)
873 					neigh_release(n);
874 
875 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
876 				    skb->pkt_type == PACKET_HOST ||
877 				    in_dev->arp_parms->proxy_delay == 0) {
878 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
879 						 dev, tip, sha, dev->dev_addr,
880 						 sha);
881 				} else {
882 					pneigh_enqueue(&arp_tbl,
883 						       in_dev->arp_parms, skb);
884 					return 0;
885 				}
886 				goto out;
887 			}
888 		}
889 	}
890 
891 	/* Update our ARP tables */
892 
893 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
894 
895 	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
896 		/* Unsolicited ARP is not accepted by default.
897 		   It is possible, that this option should be enabled for some
898 		   devices (strip is candidate)
899 		 */
900 		if (n == NULL &&
901 		    (arp->ar_op == htons(ARPOP_REPLY) ||
902 		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
903 		    inet_addr_type(net, sip) == RTN_UNICAST)
904 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
905 	}
906 
907 	if (n) {
908 		int state = NUD_REACHABLE;
909 		int override;
910 
911 		/* If several different ARP replies follows back-to-back,
912 		   use the FIRST one. It is possible, if several proxy
913 		   agents are active. Taking the first reply prevents
914 		   arp trashing and chooses the fastest router.
915 		 */
916 		override = time_after(jiffies, n->updated + n->parms->locktime);
917 
918 		/* Broadcast replies and request packets
919 		   do not assert neighbour reachability.
920 		 */
921 		if (arp->ar_op != htons(ARPOP_REPLY) ||
922 		    skb->pkt_type != PACKET_HOST)
923 			state = NUD_STALE;
924 		neigh_update(n, sha, state,
925 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
926 		neigh_release(n);
927 	}
928 
929 out:
930 	consume_skb(skb);
931 	return 0;
932 }
933 
934 static void parp_redo(struct sk_buff *skb)
935 {
936 	arp_process(skb);
937 }
938 
939 
940 /*
941  *	Receive an arp request from the device layer.
942  */
943 
944 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
945 		   struct packet_type *pt, struct net_device *orig_dev)
946 {
947 	struct arphdr *arp;
948 
949 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
950 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
951 		goto freeskb;
952 
953 	arp = arp_hdr(skb);
954 	if (arp->ar_hln != dev->addr_len ||
955 	    dev->flags & IFF_NOARP ||
956 	    skb->pkt_type == PACKET_OTHERHOST ||
957 	    skb->pkt_type == PACKET_LOOPBACK ||
958 	    arp->ar_pln != 4)
959 		goto freeskb;
960 
961 	skb = skb_share_check(skb, GFP_ATOMIC);
962 	if (skb == NULL)
963 		goto out_of_mem;
964 
965 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966 
967 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
968 
969 freeskb:
970 	kfree_skb(skb);
971 out_of_mem:
972 	return 0;
973 }
974 
975 /*
976  *	User level interface (ioctl)
977  */
978 
979 /*
980  *	Set (create) an ARP cache entry.
981  */
982 
983 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
984 {
985 	if (dev == NULL) {
986 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
987 		return 0;
988 	}
989 	if (__in_dev_get_rtnl(dev)) {
990 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
991 		return 0;
992 	}
993 	return -ENXIO;
994 }
995 
996 static int arp_req_set_public(struct net *net, struct arpreq *r,
997 		struct net_device *dev)
998 {
999 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001 
1002 	if (mask && mask != htonl(0xFFFFFFFF))
1003 		return -EINVAL;
1004 	if (!dev && (r->arp_flags & ATF_COM)) {
1005 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006 				      r->arp_ha.sa_data);
1007 		if (!dev)
1008 			return -ENODEV;
1009 	}
1010 	if (mask) {
1011 		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012 			return -ENOBUFS;
1013 		return 0;
1014 	}
1015 
1016 	return arp_req_set_proxy(net, dev, 1);
1017 }
1018 
1019 static int arp_req_set(struct net *net, struct arpreq *r,
1020 		       struct net_device *dev)
1021 {
1022 	__be32 ip;
1023 	struct neighbour *neigh;
1024 	int err;
1025 
1026 	if (r->arp_flags & ATF_PUBL)
1027 		return arp_req_set_public(net, r, dev);
1028 
1029 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030 	if (r->arp_flags & ATF_PERM)
1031 		r->arp_flags |= ATF_COM;
1032 	if (dev == NULL) {
1033 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034 
1035 		if (IS_ERR(rt))
1036 			return PTR_ERR(rt);
1037 		dev = rt->dst.dev;
1038 		ip_rt_put(rt);
1039 		if (!dev)
1040 			return -EINVAL;
1041 	}
1042 	switch (dev->type) {
1043 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044 	case ARPHRD_FDDI:
1045 		/*
1046 		 * According to RFC 1390, FDDI devices should accept ARP
1047 		 * hardware types of 1 (Ethernet).  However, to be more
1048 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049 		 * or 6 (IEEE 802.2).
1050 		 */
1051 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054 			return -EINVAL;
1055 		break;
1056 #endif
1057 	default:
1058 		if (r->arp_ha.sa_family != dev->type)
1059 			return -EINVAL;
1060 		break;
1061 	}
1062 
1063 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064 	err = PTR_ERR(neigh);
1065 	if (!IS_ERR(neigh)) {
1066 		unsigned state = NUD_STALE;
1067 		if (r->arp_flags & ATF_PERM)
1068 			state = NUD_PERMANENT;
1069 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070 				   r->arp_ha.sa_data : NULL, state,
1071 				   NEIGH_UPDATE_F_OVERRIDE |
1072 				   NEIGH_UPDATE_F_ADMIN);
1073 		neigh_release(neigh);
1074 	}
1075 	return err;
1076 }
1077 
1078 static unsigned arp_state_to_flags(struct neighbour *neigh)
1079 {
1080 	if (neigh->nud_state&NUD_PERMANENT)
1081 		return ATF_PERM | ATF_COM;
1082 	else if (neigh->nud_state&NUD_VALID)
1083 		return ATF_COM;
1084 	else
1085 		return 0;
1086 }
1087 
1088 /*
1089  *	Get an ARP cache entry.
1090  */
1091 
1092 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093 {
1094 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095 	struct neighbour *neigh;
1096 	int err = -ENXIO;
1097 
1098 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099 	if (neigh) {
1100 		read_lock_bh(&neigh->lock);
1101 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102 		r->arp_flags = arp_state_to_flags(neigh);
1103 		read_unlock_bh(&neigh->lock);
1104 		r->arp_ha.sa_family = dev->type;
1105 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106 		neigh_release(neigh);
1107 		err = 0;
1108 	}
1109 	return err;
1110 }
1111 
1112 int arp_invalidate(struct net_device *dev, __be32 ip)
1113 {
1114 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115 	int err = -ENXIO;
1116 
1117 	if (neigh) {
1118 		if (neigh->nud_state & ~NUD_NOARP)
1119 			err = neigh_update(neigh, NULL, NUD_FAILED,
1120 					   NEIGH_UPDATE_F_OVERRIDE|
1121 					   NEIGH_UPDATE_F_ADMIN);
1122 		neigh_release(neigh);
1123 	}
1124 
1125 	return err;
1126 }
1127 EXPORT_SYMBOL(arp_invalidate);
1128 
1129 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130 		struct net_device *dev)
1131 {
1132 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134 
1135 	if (mask == htonl(0xFFFFFFFF))
1136 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137 
1138 	if (mask)
1139 		return -EINVAL;
1140 
1141 	return arp_req_set_proxy(net, dev, 0);
1142 }
1143 
1144 static int arp_req_delete(struct net *net, struct arpreq *r,
1145 			  struct net_device *dev)
1146 {
1147 	__be32 ip;
1148 
1149 	if (r->arp_flags & ATF_PUBL)
1150 		return arp_req_delete_public(net, r, dev);
1151 
1152 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153 	if (dev == NULL) {
1154 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155 		if (IS_ERR(rt))
1156 			return PTR_ERR(rt);
1157 		dev = rt->dst.dev;
1158 		ip_rt_put(rt);
1159 		if (!dev)
1160 			return -EINVAL;
1161 	}
1162 	return arp_invalidate(dev, ip);
1163 }
1164 
1165 /*
1166  *	Handle an ARP layer I/O control request.
1167  */
1168 
1169 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170 {
1171 	int err;
1172 	struct arpreq r;
1173 	struct net_device *dev = NULL;
1174 
1175 	switch (cmd) {
1176 	case SIOCDARP:
1177 	case SIOCSARP:
1178 		if (!capable(CAP_NET_ADMIN))
1179 			return -EPERM;
1180 	case SIOCGARP:
1181 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182 		if (err)
1183 			return -EFAULT;
1184 		break;
1185 	default:
1186 		return -EINVAL;
1187 	}
1188 
1189 	if (r.arp_pa.sa_family != AF_INET)
1190 		return -EPFNOSUPPORT;
1191 
1192 	if (!(r.arp_flags & ATF_PUBL) &&
1193 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194 		return -EINVAL;
1195 	if (!(r.arp_flags & ATF_NETMASK))
1196 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197 							   htonl(0xFFFFFFFFUL);
1198 	rtnl_lock();
1199 	if (r.arp_dev[0]) {
1200 		err = -ENODEV;
1201 		dev = __dev_get_by_name(net, r.arp_dev);
1202 		if (dev == NULL)
1203 			goto out;
1204 
1205 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206 		if (!r.arp_ha.sa_family)
1207 			r.arp_ha.sa_family = dev->type;
1208 		err = -EINVAL;
1209 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210 			goto out;
1211 	} else if (cmd == SIOCGARP) {
1212 		err = -ENODEV;
1213 		goto out;
1214 	}
1215 
1216 	switch (cmd) {
1217 	case SIOCDARP:
1218 		err = arp_req_delete(net, &r, dev);
1219 		break;
1220 	case SIOCSARP:
1221 		err = arp_req_set(net, &r, dev);
1222 		break;
1223 	case SIOCGARP:
1224 		err = arp_req_get(&r, dev);
1225 		break;
1226 	}
1227 out:
1228 	rtnl_unlock();
1229 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230 		err = -EFAULT;
1231 	return err;
1232 }
1233 
1234 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235 			    void *ptr)
1236 {
1237 	struct net_device *dev = ptr;
1238 
1239 	switch (event) {
1240 	case NETDEV_CHANGEADDR:
1241 		neigh_changeaddr(&arp_tbl, dev);
1242 		rt_cache_flush(dev_net(dev), 0);
1243 		break;
1244 	default:
1245 		break;
1246 	}
1247 
1248 	return NOTIFY_DONE;
1249 }
1250 
1251 static struct notifier_block arp_netdev_notifier = {
1252 	.notifier_call = arp_netdev_event,
1253 };
1254 
1255 /* Note, that it is not on notifier chain.
1256    It is necessary, that this routine was called after route cache will be
1257    flushed.
1258  */
1259 void arp_ifdown(struct net_device *dev)
1260 {
1261 	neigh_ifdown(&arp_tbl, dev);
1262 }
1263 
1264 
1265 /*
1266  *	Called once on startup.
1267  */
1268 
1269 static struct packet_type arp_packet_type __read_mostly = {
1270 	.type =	cpu_to_be16(ETH_P_ARP),
1271 	.func =	arp_rcv,
1272 };
1273 
1274 static int arp_proc_init(void);
1275 
1276 void __init arp_init(void)
1277 {
1278 	neigh_table_init(&arp_tbl);
1279 
1280 	dev_add_pack(&arp_packet_type);
1281 	arp_proc_init();
1282 #ifdef CONFIG_SYSCTL
1283 	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284 #endif
1285 	register_netdevice_notifier(&arp_netdev_notifier);
1286 }
1287 
1288 #ifdef CONFIG_PROC_FS
1289 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290 
1291 /* ------------------------------------------------------------------------ */
1292 /*
1293  *	ax25 -> ASCII conversion
1294  */
1295 static char *ax2asc2(ax25_address *a, char *buf)
1296 {
1297 	char c, *s;
1298 	int n;
1299 
1300 	for (n = 0, s = buf; n < 6; n++) {
1301 		c = (a->ax25_call[n] >> 1) & 0x7F;
1302 
1303 		if (c != ' ')
1304 			*s++ = c;
1305 	}
1306 
1307 	*s++ = '-';
1308 	n = (a->ax25_call[6] >> 1) & 0x0F;
1309 	if (n > 9) {
1310 		*s++ = '1';
1311 		n -= 10;
1312 	}
1313 
1314 	*s++ = n + '0';
1315 	*s++ = '\0';
1316 
1317 	if (*buf == '\0' || *buf == '-')
1318 		return "*";
1319 
1320 	return buf;
1321 }
1322 #endif /* CONFIG_AX25 */
1323 
1324 #define HBUFFERLEN 30
1325 
1326 static void arp_format_neigh_entry(struct seq_file *seq,
1327 				   struct neighbour *n)
1328 {
1329 	char hbuffer[HBUFFERLEN];
1330 	int k, j;
1331 	char tbuf[16];
1332 	struct net_device *dev = n->dev;
1333 	int hatype = dev->type;
1334 
1335 	read_lock(&n->lock);
1336 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339 		ax2asc2((ax25_address *)n->ha, hbuffer);
1340 	else {
1341 #endif
1342 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345 		hbuffer[k++] = ':';
1346 	}
1347 	if (k != 0)
1348 		--k;
1349 	hbuffer[k] = 0;
1350 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351 	}
1352 #endif
1353 	sprintf(tbuf, "%pI4", n->primary_key);
1354 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356 	read_unlock(&n->lock);
1357 }
1358 
1359 static void arp_format_pneigh_entry(struct seq_file *seq,
1360 				    struct pneigh_entry *n)
1361 {
1362 	struct net_device *dev = n->dev;
1363 	int hatype = dev ? dev->type : 0;
1364 	char tbuf[16];
1365 
1366 	sprintf(tbuf, "%pI4", n->key);
1367 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369 		   dev ? dev->name : "*");
1370 }
1371 
1372 static int arp_seq_show(struct seq_file *seq, void *v)
1373 {
1374 	if (v == SEQ_START_TOKEN) {
1375 		seq_puts(seq, "IP address       HW type     Flags       "
1376 			      "HW address            Mask     Device\n");
1377 	} else {
1378 		struct neigh_seq_state *state = seq->private;
1379 
1380 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381 			arp_format_pneigh_entry(seq, v);
1382 		else
1383 			arp_format_neigh_entry(seq, v);
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390 {
1391 	/* Don't want to confuse "arp -a" w/ magic entries,
1392 	 * so we tell the generic iterator to skip NUD_NOARP.
1393 	 */
1394 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395 }
1396 
1397 /* ------------------------------------------------------------------------ */
1398 
1399 static const struct seq_operations arp_seq_ops = {
1400 	.start	= arp_seq_start,
1401 	.next	= neigh_seq_next,
1402 	.stop	= neigh_seq_stop,
1403 	.show	= arp_seq_show,
1404 };
1405 
1406 static int arp_seq_open(struct inode *inode, struct file *file)
1407 {
1408 	return seq_open_net(inode, file, &arp_seq_ops,
1409 			    sizeof(struct neigh_seq_state));
1410 }
1411 
1412 static const struct file_operations arp_seq_fops = {
1413 	.owner		= THIS_MODULE,
1414 	.open           = arp_seq_open,
1415 	.read           = seq_read,
1416 	.llseek         = seq_lseek,
1417 	.release	= seq_release_net,
1418 };
1419 
1420 
1421 static int __net_init arp_net_init(struct net *net)
1422 {
1423 	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1424 		return -ENOMEM;
1425 	return 0;
1426 }
1427 
1428 static void __net_exit arp_net_exit(struct net *net)
1429 {
1430 	proc_net_remove(net, "arp");
1431 }
1432 
1433 static struct pernet_operations arp_net_ops = {
1434 	.init = arp_net_init,
1435 	.exit = arp_net_exit,
1436 };
1437 
1438 static int __init arp_proc_init(void)
1439 {
1440 	return register_pernet_subsys(&arp_net_ops);
1441 }
1442 
1443 #else /* CONFIG_PROC_FS */
1444 
1445 static int __init arp_proc_init(void)
1446 {
1447 	return 0;
1448 }
1449 
1450 #endif /* CONFIG_PROC_FS */
1451