xref: /openbmc/linux/net/ipv4/arp.c (revision 67dffd3d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *	Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 struct neigh_table arp_tbl = {
153 	.family		= AF_INET,
154 	.key_len	= 4,
155 	.protocol	= cpu_to_be16(ETH_P_IP),
156 	.hash		= arp_hash,
157 	.key_eq		= arp_key_eq,
158 	.constructor	= arp_constructor,
159 	.proxy_redo	= parp_redo,
160 	.is_multicast	= arp_is_multicast,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
172 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
173 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
174 			[NEIGH_VAR_PROXY_QLEN] = 64,
175 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
176 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
177 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
178 		},
179 	},
180 	.gc_interval	= 30 * HZ,
181 	.gc_thresh1	= 128,
182 	.gc_thresh2	= 512,
183 	.gc_thresh3	= 1024,
184 };
185 EXPORT_SYMBOL(arp_tbl);
186 
187 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
188 {
189 	switch (dev->type) {
190 	case ARPHRD_ETHER:
191 	case ARPHRD_FDDI:
192 	case ARPHRD_IEEE802:
193 		ip_eth_mc_map(addr, haddr);
194 		return 0;
195 	case ARPHRD_INFINIBAND:
196 		ip_ib_mc_map(addr, dev->broadcast, haddr);
197 		return 0;
198 	case ARPHRD_IPGRE:
199 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
200 		return 0;
201 	default:
202 		if (dir) {
203 			memcpy(haddr, dev->broadcast, dev->addr_len);
204 			return 0;
205 		}
206 	}
207 	return -EINVAL;
208 }
209 
210 
211 static u32 arp_hash(const void *pkey,
212 		    const struct net_device *dev,
213 		    __u32 *hash_rnd)
214 {
215 	return arp_hashfn(pkey, dev, hash_rnd);
216 }
217 
218 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
219 {
220 	return neigh_key_eq32(neigh, pkey);
221 }
222 
223 static int arp_constructor(struct neighbour *neigh)
224 {
225 	__be32 addr;
226 	struct net_device *dev = neigh->dev;
227 	struct in_device *in_dev;
228 	struct neigh_parms *parms;
229 	u32 inaddr_any = INADDR_ANY;
230 
231 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
232 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
233 
234 	addr = *(__be32 *)neigh->primary_key;
235 	rcu_read_lock();
236 	in_dev = __in_dev_get_rcu(dev);
237 	if (!in_dev) {
238 		rcu_read_unlock();
239 		return -EINVAL;
240 	}
241 
242 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
243 
244 	parms = in_dev->arp_parms;
245 	__neigh_parms_put(neigh->parms);
246 	neigh->parms = neigh_parms_clone(parms);
247 	rcu_read_unlock();
248 
249 	if (!dev->header_ops) {
250 		neigh->nud_state = NUD_NOARP;
251 		neigh->ops = &arp_direct_ops;
252 		neigh->output = neigh_direct_output;
253 	} else {
254 		/* Good devices (checked by reading texts, but only Ethernet is
255 		   tested)
256 
257 		   ARPHRD_ETHER: (ethernet, apfddi)
258 		   ARPHRD_FDDI: (fddi)
259 		   ARPHRD_IEEE802: (tr)
260 		   ARPHRD_METRICOM: (strip)
261 		   ARPHRD_ARCNET:
262 		   etc. etc. etc.
263 
264 		   ARPHRD_IPDDP will also work, if author repairs it.
265 		   I did not it, because this driver does not work even
266 		   in old paradigm.
267 		 */
268 
269 		if (neigh->type == RTN_MULTICAST) {
270 			neigh->nud_state = NUD_NOARP;
271 			arp_mc_map(addr, neigh->ha, dev, 1);
272 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
273 			neigh->nud_state = NUD_NOARP;
274 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
275 		} else if (neigh->type == RTN_BROADCAST ||
276 			   (dev->flags & IFF_POINTOPOINT)) {
277 			neigh->nud_state = NUD_NOARP;
278 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
279 		}
280 
281 		if (dev->header_ops->cache)
282 			neigh->ops = &arp_hh_ops;
283 		else
284 			neigh->ops = &arp_generic_ops;
285 
286 		if (neigh->nud_state & NUD_VALID)
287 			neigh->output = neigh->ops->connected_output;
288 		else
289 			neigh->output = neigh->ops->output;
290 	}
291 	return 0;
292 }
293 
294 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
295 {
296 	dst_link_failure(skb);
297 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
298 }
299 
300 /* Create and send an arp packet. */
301 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
302 			 struct net_device *dev, __be32 src_ip,
303 			 const unsigned char *dest_hw,
304 			 const unsigned char *src_hw,
305 			 const unsigned char *target_hw,
306 			 struct dst_entry *dst)
307 {
308 	struct sk_buff *skb;
309 
310 	/* arp on this interface. */
311 	if (dev->flags & IFF_NOARP)
312 		return;
313 
314 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
315 			 dest_hw, src_hw, target_hw);
316 	if (!skb)
317 		return;
318 
319 	skb_dst_set(skb, dst_clone(dst));
320 	arp_xmit(skb);
321 }
322 
323 void arp_send(int type, int ptype, __be32 dest_ip,
324 	      struct net_device *dev, __be32 src_ip,
325 	      const unsigned char *dest_hw, const unsigned char *src_hw,
326 	      const unsigned char *target_hw)
327 {
328 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
329 		     target_hw, NULL);
330 }
331 EXPORT_SYMBOL(arp_send);
332 
333 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334 {
335 	__be32 saddr = 0;
336 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
337 	struct net_device *dev = neigh->dev;
338 	__be32 target = *(__be32 *)neigh->primary_key;
339 	int probes = atomic_read(&neigh->probes);
340 	struct in_device *in_dev;
341 	struct dst_entry *dst = NULL;
342 
343 	rcu_read_lock();
344 	in_dev = __in_dev_get_rcu(dev);
345 	if (!in_dev) {
346 		rcu_read_unlock();
347 		return;
348 	}
349 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
350 	default:
351 	case 0:		/* By default announce any local IP */
352 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
353 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
354 			saddr = ip_hdr(skb)->saddr;
355 		break;
356 	case 1:		/* Restrict announcements of saddr in same subnet */
357 		if (!skb)
358 			break;
359 		saddr = ip_hdr(skb)->saddr;
360 		if (inet_addr_type_dev_table(dev_net(dev), dev,
361 					     saddr) == RTN_LOCAL) {
362 			/* saddr should be known to target */
363 			if (inet_addr_onlink(in_dev, target, saddr))
364 				break;
365 		}
366 		saddr = 0;
367 		break;
368 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
369 		break;
370 	}
371 	rcu_read_unlock();
372 
373 	if (!saddr)
374 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375 
376 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
377 	if (probes < 0) {
378 		if (!(neigh->nud_state & NUD_VALID))
379 			pr_debug("trying to ucast probe in NUD_INVALID\n");
380 		neigh_ha_snapshot(dst_ha, neigh, dev);
381 		dst_hw = dst_ha;
382 	} else {
383 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
384 		if (probes < 0) {
385 			neigh_app_ns(neigh);
386 			return;
387 		}
388 	}
389 
390 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
391 		dst = skb_dst(skb);
392 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
393 		     dst_hw, dev->dev_addr, NULL, dst);
394 }
395 
396 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
397 {
398 	struct net *net = dev_net(in_dev->dev);
399 	int scope;
400 
401 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
402 	case 0:	/* Reply, the tip is already validated */
403 		return 0;
404 	case 1:	/* Reply only if tip is configured on the incoming interface */
405 		sip = 0;
406 		scope = RT_SCOPE_HOST;
407 		break;
408 	case 2:	/*
409 		 * Reply only if tip is configured on the incoming interface
410 		 * and is in same subnet as sip
411 		 */
412 		scope = RT_SCOPE_HOST;
413 		break;
414 	case 3:	/* Do not reply for scope host addresses */
415 		sip = 0;
416 		scope = RT_SCOPE_LINK;
417 		in_dev = NULL;
418 		break;
419 	case 4:	/* Reserved */
420 	case 5:
421 	case 6:
422 	case 7:
423 		return 0;
424 	case 8:	/* Do not reply */
425 		return 1;
426 	default:
427 		return 0;
428 	}
429 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
430 }
431 
432 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
433 {
434 	struct rtable *rt;
435 	int flag = 0;
436 	/*unsigned long now; */
437 	struct net *net = dev_net(dev);
438 
439 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
440 	if (IS_ERR(rt))
441 		return 1;
442 	if (rt->dst.dev != dev) {
443 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
444 		flag = 1;
445 	}
446 	ip_rt_put(rt);
447 	return flag;
448 }
449 
450 /*
451  * Check if we can use proxy ARP for this path
452  */
453 static inline int arp_fwd_proxy(struct in_device *in_dev,
454 				struct net_device *dev,	struct rtable *rt)
455 {
456 	struct in_device *out_dev;
457 	int imi, omi = -1;
458 
459 	if (rt->dst.dev == dev)
460 		return 0;
461 
462 	if (!IN_DEV_PROXY_ARP(in_dev))
463 		return 0;
464 	imi = IN_DEV_MEDIUM_ID(in_dev);
465 	if (imi == 0)
466 		return 1;
467 	if (imi == -1)
468 		return 0;
469 
470 	/* place to check for proxy_arp for routes */
471 
472 	out_dev = __in_dev_get_rcu(rt->dst.dev);
473 	if (out_dev)
474 		omi = IN_DEV_MEDIUM_ID(out_dev);
475 
476 	return omi != imi && omi != -1;
477 }
478 
479 /*
480  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
481  *
482  * RFC3069 supports proxy arp replies back to the same interface.  This
483  * is done to support (ethernet) switch features, like RFC 3069, where
484  * the individual ports are not allowed to communicate with each
485  * other, BUT they are allowed to talk to the upstream router.  As
486  * described in RFC 3069, it is possible to allow these hosts to
487  * communicate through the upstream router, by proxy_arp'ing.
488  *
489  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
490  *
491  *  This technology is known by different names:
492  *    In RFC 3069 it is called VLAN Aggregation.
493  *    Cisco and Allied Telesyn call it Private VLAN.
494  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
495  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
496  *
497  */
498 static inline int arp_fwd_pvlan(struct in_device *in_dev,
499 				struct net_device *dev,	struct rtable *rt,
500 				__be32 sip, __be32 tip)
501 {
502 	/* Private VLAN is only concerned about the same ethernet segment */
503 	if (rt->dst.dev != dev)
504 		return 0;
505 
506 	/* Don't reply on self probes (often done by windowz boxes)*/
507 	if (sip == tip)
508 		return 0;
509 
510 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
511 		return 1;
512 	else
513 		return 0;
514 }
515 
516 /*
517  *	Interface to link layer: send routine and receive handler.
518  */
519 
520 /*
521  *	Create an arp packet. If dest_hw is not set, we create a broadcast
522  *	message.
523  */
524 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
525 			   struct net_device *dev, __be32 src_ip,
526 			   const unsigned char *dest_hw,
527 			   const unsigned char *src_hw,
528 			   const unsigned char *target_hw)
529 {
530 	struct sk_buff *skb;
531 	struct arphdr *arp;
532 	unsigned char *arp_ptr;
533 	int hlen = LL_RESERVED_SPACE(dev);
534 	int tlen = dev->needed_tailroom;
535 
536 	/*
537 	 *	Allocate a buffer
538 	 */
539 
540 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
541 	if (!skb)
542 		return NULL;
543 
544 	skb_reserve(skb, hlen);
545 	skb_reset_network_header(skb);
546 	arp = skb_put(skb, arp_hdr_len(dev));
547 	skb->dev = dev;
548 	skb->protocol = htons(ETH_P_ARP);
549 	if (!src_hw)
550 		src_hw = dev->dev_addr;
551 	if (!dest_hw)
552 		dest_hw = dev->broadcast;
553 
554 	/*
555 	 *	Fill the device header for the ARP frame
556 	 */
557 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
558 		goto out;
559 
560 	/*
561 	 * Fill out the arp protocol part.
562 	 *
563 	 * The arp hardware type should match the device type, except for FDDI,
564 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
565 	 */
566 	/*
567 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
568 	 *	DIX code for the protocol. Make these device structure fields.
569 	 */
570 	switch (dev->type) {
571 	default:
572 		arp->ar_hrd = htons(dev->type);
573 		arp->ar_pro = htons(ETH_P_IP);
574 		break;
575 
576 #if IS_ENABLED(CONFIG_AX25)
577 	case ARPHRD_AX25:
578 		arp->ar_hrd = htons(ARPHRD_AX25);
579 		arp->ar_pro = htons(AX25_P_IP);
580 		break;
581 
582 #if IS_ENABLED(CONFIG_NETROM)
583 	case ARPHRD_NETROM:
584 		arp->ar_hrd = htons(ARPHRD_NETROM);
585 		arp->ar_pro = htons(AX25_P_IP);
586 		break;
587 #endif
588 #endif
589 
590 #if IS_ENABLED(CONFIG_FDDI)
591 	case ARPHRD_FDDI:
592 		arp->ar_hrd = htons(ARPHRD_ETHER);
593 		arp->ar_pro = htons(ETH_P_IP);
594 		break;
595 #endif
596 	}
597 
598 	arp->ar_hln = dev->addr_len;
599 	arp->ar_pln = 4;
600 	arp->ar_op = htons(type);
601 
602 	arp_ptr = (unsigned char *)(arp + 1);
603 
604 	memcpy(arp_ptr, src_hw, dev->addr_len);
605 	arp_ptr += dev->addr_len;
606 	memcpy(arp_ptr, &src_ip, 4);
607 	arp_ptr += 4;
608 
609 	switch (dev->type) {
610 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
611 	case ARPHRD_IEEE1394:
612 		break;
613 #endif
614 	default:
615 		if (target_hw)
616 			memcpy(arp_ptr, target_hw, dev->addr_len);
617 		else
618 			memset(arp_ptr, 0, dev->addr_len);
619 		arp_ptr += dev->addr_len;
620 	}
621 	memcpy(arp_ptr, &dest_ip, 4);
622 
623 	return skb;
624 
625 out:
626 	kfree_skb(skb);
627 	return NULL;
628 }
629 EXPORT_SYMBOL(arp_create);
630 
631 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
632 {
633 	return dev_queue_xmit(skb);
634 }
635 
636 /*
637  *	Send an arp packet.
638  */
639 void arp_xmit(struct sk_buff *skb)
640 {
641 	/* Send it off, maybe filter it using firewalling first.  */
642 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
643 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
644 		arp_xmit_finish);
645 }
646 EXPORT_SYMBOL(arp_xmit);
647 
648 static bool arp_is_garp(struct net *net, struct net_device *dev,
649 			int *addr_type, __be16 ar_op,
650 			__be32 sip, __be32 tip,
651 			unsigned char *sha, unsigned char *tha)
652 {
653 	bool is_garp = tip == sip;
654 
655 	/* Gratuitous ARP _replies_ also require target hwaddr to be
656 	 * the same as source.
657 	 */
658 	if (is_garp && ar_op == htons(ARPOP_REPLY))
659 		is_garp =
660 			/* IPv4 over IEEE 1394 doesn't provide target
661 			 * hardware address field in its ARP payload.
662 			 */
663 			tha &&
664 			!memcmp(tha, sha, dev->addr_len);
665 
666 	if (is_garp) {
667 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
668 		if (*addr_type != RTN_UNICAST)
669 			is_garp = false;
670 	}
671 	return is_garp;
672 }
673 
674 /*
675  *	Process an arp request.
676  */
677 
678 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
679 {
680 	struct net_device *dev = skb->dev;
681 	struct in_device *in_dev = __in_dev_get_rcu(dev);
682 	struct arphdr *arp;
683 	unsigned char *arp_ptr;
684 	struct rtable *rt;
685 	unsigned char *sha;
686 	unsigned char *tha = NULL;
687 	__be32 sip, tip;
688 	u16 dev_type = dev->type;
689 	int addr_type;
690 	struct neighbour *n;
691 	struct dst_entry *reply_dst = NULL;
692 	bool is_garp = false;
693 
694 	/* arp_rcv below verifies the ARP header and verifies the device
695 	 * is ARP'able.
696 	 */
697 
698 	if (!in_dev)
699 		goto out_free_skb;
700 
701 	arp = arp_hdr(skb);
702 
703 	switch (dev_type) {
704 	default:
705 		if (arp->ar_pro != htons(ETH_P_IP) ||
706 		    htons(dev_type) != arp->ar_hrd)
707 			goto out_free_skb;
708 		break;
709 	case ARPHRD_ETHER:
710 	case ARPHRD_FDDI:
711 	case ARPHRD_IEEE802:
712 		/*
713 		 * ETHERNET, and Fibre Channel (which are IEEE 802
714 		 * devices, according to RFC 2625) devices will accept ARP
715 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
716 		 * This is the case also of FDDI, where the RFC 1390 says that
717 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
718 		 * however, to be more robust, we'll accept both 1 (Ethernet)
719 		 * or 6 (IEEE 802.2)
720 		 */
721 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
722 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
723 		    arp->ar_pro != htons(ETH_P_IP))
724 			goto out_free_skb;
725 		break;
726 	case ARPHRD_AX25:
727 		if (arp->ar_pro != htons(AX25_P_IP) ||
728 		    arp->ar_hrd != htons(ARPHRD_AX25))
729 			goto out_free_skb;
730 		break;
731 	case ARPHRD_NETROM:
732 		if (arp->ar_pro != htons(AX25_P_IP) ||
733 		    arp->ar_hrd != htons(ARPHRD_NETROM))
734 			goto out_free_skb;
735 		break;
736 	}
737 
738 	/* Understand only these message types */
739 
740 	if (arp->ar_op != htons(ARPOP_REPLY) &&
741 	    arp->ar_op != htons(ARPOP_REQUEST))
742 		goto out_free_skb;
743 
744 /*
745  *	Extract fields
746  */
747 	arp_ptr = (unsigned char *)(arp + 1);
748 	sha	= arp_ptr;
749 	arp_ptr += dev->addr_len;
750 	memcpy(&sip, arp_ptr, 4);
751 	arp_ptr += 4;
752 	switch (dev_type) {
753 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
754 	case ARPHRD_IEEE1394:
755 		break;
756 #endif
757 	default:
758 		tha = arp_ptr;
759 		arp_ptr += dev->addr_len;
760 	}
761 	memcpy(&tip, arp_ptr, 4);
762 /*
763  *	Check for bad requests for 127.x.x.x and requests for multicast
764  *	addresses.  If this is one such, delete it.
765  */
766 	if (ipv4_is_multicast(tip) ||
767 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
768 		goto out_free_skb;
769 
770  /*
771   *	For some 802.11 wireless deployments (and possibly other networks),
772   *	there will be an ARP proxy and gratuitous ARP frames are attacks
773   *	and thus should not be accepted.
774   */
775 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
776 		goto out_free_skb;
777 
778 /*
779  *     Special case: We must set Frame Relay source Q.922 address
780  */
781 	if (dev_type == ARPHRD_DLCI)
782 		sha = dev->broadcast;
783 
784 /*
785  *  Process entry.  The idea here is we want to send a reply if it is a
786  *  request for us or if it is a request for someone else that we hold
787  *  a proxy for.  We want to add an entry to our cache if it is a reply
788  *  to us or if it is a request for our address.
789  *  (The assumption for this last is that if someone is requesting our
790  *  address, they are probably intending to talk to us, so it saves time
791  *  if we cache their address.  Their address is also probably not in
792  *  our cache, since ours is not in their cache.)
793  *
794  *  Putting this another way, we only care about replies if they are to
795  *  us, in which case we add them to the cache.  For requests, we care
796  *  about those for us and those for our proxies.  We reply to both,
797  *  and in the case of requests for us we add the requester to the arp
798  *  cache.
799  */
800 
801 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
802 		reply_dst = (struct dst_entry *)
803 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
804 						    GFP_ATOMIC);
805 
806 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
807 	if (sip == 0) {
808 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
809 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
810 		    !arp_ignore(in_dev, sip, tip))
811 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
812 				     sha, dev->dev_addr, sha, reply_dst);
813 		goto out_consume_skb;
814 	}
815 
816 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
817 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
818 
819 		rt = skb_rtable(skb);
820 		addr_type = rt->rt_type;
821 
822 		if (addr_type == RTN_LOCAL) {
823 			int dont_send;
824 
825 			dont_send = arp_ignore(in_dev, sip, tip);
826 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
827 				dont_send = arp_filter(sip, tip, dev);
828 			if (!dont_send) {
829 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
830 				if (n) {
831 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
832 						     sip, dev, tip, sha,
833 						     dev->dev_addr, sha,
834 						     reply_dst);
835 					neigh_release(n);
836 				}
837 			}
838 			goto out_consume_skb;
839 		} else if (IN_DEV_FORWARD(in_dev)) {
840 			if (addr_type == RTN_UNICAST  &&
841 			    (arp_fwd_proxy(in_dev, dev, rt) ||
842 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
843 			     (rt->dst.dev != dev &&
844 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
845 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
846 				if (n)
847 					neigh_release(n);
848 
849 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
850 				    skb->pkt_type == PACKET_HOST ||
851 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
852 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
853 						     sip, dev, tip, sha,
854 						     dev->dev_addr, sha,
855 						     reply_dst);
856 				} else {
857 					pneigh_enqueue(&arp_tbl,
858 						       in_dev->arp_parms, skb);
859 					goto out_free_dst;
860 				}
861 				goto out_consume_skb;
862 			}
863 		}
864 	}
865 
866 	/* Update our ARP tables */
867 
868 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
869 
870 	addr_type = -1;
871 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
872 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
873 				      sip, tip, sha, tha);
874 	}
875 
876 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
877 		/* Unsolicited ARP is not accepted by default.
878 		   It is possible, that this option should be enabled for some
879 		   devices (strip is candidate)
880 		 */
881 		if (!n &&
882 		    (is_garp ||
883 		     (arp->ar_op == htons(ARPOP_REPLY) &&
884 		      (addr_type == RTN_UNICAST ||
885 		       (addr_type < 0 &&
886 			/* postpone calculation to as late as possible */
887 			inet_addr_type_dev_table(net, dev, sip) ==
888 				RTN_UNICAST)))))
889 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
890 	}
891 
892 	if (n) {
893 		int state = NUD_REACHABLE;
894 		int override;
895 
896 		/* If several different ARP replies follows back-to-back,
897 		   use the FIRST one. It is possible, if several proxy
898 		   agents are active. Taking the first reply prevents
899 		   arp trashing and chooses the fastest router.
900 		 */
901 		override = time_after(jiffies,
902 				      n->updated +
903 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
904 			   is_garp;
905 
906 		/* Broadcast replies and request packets
907 		   do not assert neighbour reachability.
908 		 */
909 		if (arp->ar_op != htons(ARPOP_REPLY) ||
910 		    skb->pkt_type != PACKET_HOST)
911 			state = NUD_STALE;
912 		neigh_update(n, sha, state,
913 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
914 		neigh_release(n);
915 	}
916 
917 out_consume_skb:
918 	consume_skb(skb);
919 
920 out_free_dst:
921 	dst_release(reply_dst);
922 	return NET_RX_SUCCESS;
923 
924 out_free_skb:
925 	kfree_skb(skb);
926 	return NET_RX_DROP;
927 }
928 
929 static void parp_redo(struct sk_buff *skb)
930 {
931 	arp_process(dev_net(skb->dev), NULL, skb);
932 }
933 
934 static int arp_is_multicast(const void *pkey)
935 {
936 	return ipv4_is_multicast(*((__be32 *)pkey));
937 }
938 
939 /*
940  *	Receive an arp request from the device layer.
941  */
942 
943 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
944 		   struct packet_type *pt, struct net_device *orig_dev)
945 {
946 	const struct arphdr *arp;
947 
948 	/* do not tweak dropwatch on an ARP we will ignore */
949 	if (dev->flags & IFF_NOARP ||
950 	    skb->pkt_type == PACKET_OTHERHOST ||
951 	    skb->pkt_type == PACKET_LOOPBACK)
952 		goto consumeskb;
953 
954 	skb = skb_share_check(skb, GFP_ATOMIC);
955 	if (!skb)
956 		goto out_of_mem;
957 
958 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
959 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
960 		goto freeskb;
961 
962 	arp = arp_hdr(skb);
963 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
964 		goto freeskb;
965 
966 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
967 
968 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
969 		       dev_net(dev), NULL, skb, dev, NULL,
970 		       arp_process);
971 
972 consumeskb:
973 	consume_skb(skb);
974 	return NET_RX_SUCCESS;
975 freeskb:
976 	kfree_skb(skb);
977 out_of_mem:
978 	return NET_RX_DROP;
979 }
980 
981 /*
982  *	User level interface (ioctl)
983  */
984 
985 /*
986  *	Set (create) an ARP cache entry.
987  */
988 
989 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
990 {
991 	if (!dev) {
992 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
993 		return 0;
994 	}
995 	if (__in_dev_get_rtnl(dev)) {
996 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
997 		return 0;
998 	}
999 	return -ENXIO;
1000 }
1001 
1002 static int arp_req_set_public(struct net *net, struct arpreq *r,
1003 		struct net_device *dev)
1004 {
1005 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1006 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1007 
1008 	if (mask && mask != htonl(0xFFFFFFFF))
1009 		return -EINVAL;
1010 	if (!dev && (r->arp_flags & ATF_COM)) {
1011 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1012 				      r->arp_ha.sa_data);
1013 		if (!dev)
1014 			return -ENODEV;
1015 	}
1016 	if (mask) {
1017 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1018 			return -ENOBUFS;
1019 		return 0;
1020 	}
1021 
1022 	return arp_req_set_proxy(net, dev, 1);
1023 }
1024 
1025 static int arp_req_set(struct net *net, struct arpreq *r,
1026 		       struct net_device *dev)
1027 {
1028 	__be32 ip;
1029 	struct neighbour *neigh;
1030 	int err;
1031 
1032 	if (r->arp_flags & ATF_PUBL)
1033 		return arp_req_set_public(net, r, dev);
1034 
1035 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1036 	if (r->arp_flags & ATF_PERM)
1037 		r->arp_flags |= ATF_COM;
1038 	if (!dev) {
1039 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1040 
1041 		if (IS_ERR(rt))
1042 			return PTR_ERR(rt);
1043 		dev = rt->dst.dev;
1044 		ip_rt_put(rt);
1045 		if (!dev)
1046 			return -EINVAL;
1047 	}
1048 	switch (dev->type) {
1049 #if IS_ENABLED(CONFIG_FDDI)
1050 	case ARPHRD_FDDI:
1051 		/*
1052 		 * According to RFC 1390, FDDI devices should accept ARP
1053 		 * hardware types of 1 (Ethernet).  However, to be more
1054 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1055 		 * or 6 (IEEE 802.2).
1056 		 */
1057 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1058 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1059 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1060 			return -EINVAL;
1061 		break;
1062 #endif
1063 	default:
1064 		if (r->arp_ha.sa_family != dev->type)
1065 			return -EINVAL;
1066 		break;
1067 	}
1068 
1069 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1070 	err = PTR_ERR(neigh);
1071 	if (!IS_ERR(neigh)) {
1072 		unsigned int state = NUD_STALE;
1073 		if (r->arp_flags & ATF_PERM)
1074 			state = NUD_PERMANENT;
1075 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1076 				   r->arp_ha.sa_data : NULL, state,
1077 				   NEIGH_UPDATE_F_OVERRIDE |
1078 				   NEIGH_UPDATE_F_ADMIN, 0);
1079 		neigh_release(neigh);
1080 	}
1081 	return err;
1082 }
1083 
1084 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1085 {
1086 	if (neigh->nud_state&NUD_PERMANENT)
1087 		return ATF_PERM | ATF_COM;
1088 	else if (neigh->nud_state&NUD_VALID)
1089 		return ATF_COM;
1090 	else
1091 		return 0;
1092 }
1093 
1094 /*
1095  *	Get an ARP cache entry.
1096  */
1097 
1098 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1099 {
1100 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1101 	struct neighbour *neigh;
1102 	int err = -ENXIO;
1103 
1104 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1105 	if (neigh) {
1106 		if (!(neigh->nud_state & NUD_NOARP)) {
1107 			read_lock_bh(&neigh->lock);
1108 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1109 			r->arp_flags = arp_state_to_flags(neigh);
1110 			read_unlock_bh(&neigh->lock);
1111 			r->arp_ha.sa_family = dev->type;
1112 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1113 			err = 0;
1114 		}
1115 		neigh_release(neigh);
1116 	}
1117 	return err;
1118 }
1119 
1120 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1121 {
1122 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1123 	int err = -ENXIO;
1124 	struct neigh_table *tbl = &arp_tbl;
1125 
1126 	if (neigh) {
1127 		if ((neigh->nud_state & NUD_VALID) && !force) {
1128 			neigh_release(neigh);
1129 			return 0;
1130 		}
1131 
1132 		if (neigh->nud_state & ~NUD_NOARP)
1133 			err = neigh_update(neigh, NULL, NUD_FAILED,
1134 					   NEIGH_UPDATE_F_OVERRIDE|
1135 					   NEIGH_UPDATE_F_ADMIN, 0);
1136 		write_lock_bh(&tbl->lock);
1137 		neigh_release(neigh);
1138 		neigh_remove_one(neigh, tbl);
1139 		write_unlock_bh(&tbl->lock);
1140 	}
1141 
1142 	return err;
1143 }
1144 
1145 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1146 		struct net_device *dev)
1147 {
1148 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1149 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1150 
1151 	if (mask == htonl(0xFFFFFFFF))
1152 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1153 
1154 	if (mask)
1155 		return -EINVAL;
1156 
1157 	return arp_req_set_proxy(net, dev, 0);
1158 }
1159 
1160 static int arp_req_delete(struct net *net, struct arpreq *r,
1161 			  struct net_device *dev)
1162 {
1163 	__be32 ip;
1164 
1165 	if (r->arp_flags & ATF_PUBL)
1166 		return arp_req_delete_public(net, r, dev);
1167 
1168 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1169 	if (!dev) {
1170 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1171 		if (IS_ERR(rt))
1172 			return PTR_ERR(rt);
1173 		dev = rt->dst.dev;
1174 		ip_rt_put(rt);
1175 		if (!dev)
1176 			return -EINVAL;
1177 	}
1178 	return arp_invalidate(dev, ip, true);
1179 }
1180 
1181 /*
1182  *	Handle an ARP layer I/O control request.
1183  */
1184 
1185 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1186 {
1187 	int err;
1188 	struct arpreq r;
1189 	struct net_device *dev = NULL;
1190 
1191 	switch (cmd) {
1192 	case SIOCDARP:
1193 	case SIOCSARP:
1194 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1195 			return -EPERM;
1196 		fallthrough;
1197 	case SIOCGARP:
1198 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1199 		if (err)
1200 			return -EFAULT;
1201 		break;
1202 	default:
1203 		return -EINVAL;
1204 	}
1205 
1206 	if (r.arp_pa.sa_family != AF_INET)
1207 		return -EPFNOSUPPORT;
1208 
1209 	if (!(r.arp_flags & ATF_PUBL) &&
1210 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1211 		return -EINVAL;
1212 	if (!(r.arp_flags & ATF_NETMASK))
1213 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1214 							   htonl(0xFFFFFFFFUL);
1215 	rtnl_lock();
1216 	if (r.arp_dev[0]) {
1217 		err = -ENODEV;
1218 		dev = __dev_get_by_name(net, r.arp_dev);
1219 		if (!dev)
1220 			goto out;
1221 
1222 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1223 		if (!r.arp_ha.sa_family)
1224 			r.arp_ha.sa_family = dev->type;
1225 		err = -EINVAL;
1226 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1227 			goto out;
1228 	} else if (cmd == SIOCGARP) {
1229 		err = -ENODEV;
1230 		goto out;
1231 	}
1232 
1233 	switch (cmd) {
1234 	case SIOCDARP:
1235 		err = arp_req_delete(net, &r, dev);
1236 		break;
1237 	case SIOCSARP:
1238 		err = arp_req_set(net, &r, dev);
1239 		break;
1240 	case SIOCGARP:
1241 		err = arp_req_get(&r, dev);
1242 		break;
1243 	}
1244 out:
1245 	rtnl_unlock();
1246 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1247 		err = -EFAULT;
1248 	return err;
1249 }
1250 
1251 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1252 			    void *ptr)
1253 {
1254 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1255 	struct netdev_notifier_change_info *change_info;
1256 	struct in_device *in_dev;
1257 	bool evict_nocarrier;
1258 
1259 	switch (event) {
1260 	case NETDEV_CHANGEADDR:
1261 		neigh_changeaddr(&arp_tbl, dev);
1262 		rt_cache_flush(dev_net(dev));
1263 		break;
1264 	case NETDEV_CHANGE:
1265 		change_info = ptr;
1266 		if (change_info->flags_changed & IFF_NOARP)
1267 			neigh_changeaddr(&arp_tbl, dev);
1268 
1269 		in_dev = __in_dev_get_rtnl(dev);
1270 		if (!in_dev)
1271 			evict_nocarrier = true;
1272 		else
1273 			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1274 
1275 		if (evict_nocarrier && !netif_carrier_ok(dev))
1276 			neigh_carrier_down(&arp_tbl, dev);
1277 		break;
1278 	default:
1279 		break;
1280 	}
1281 
1282 	return NOTIFY_DONE;
1283 }
1284 
1285 static struct notifier_block arp_netdev_notifier = {
1286 	.notifier_call = arp_netdev_event,
1287 };
1288 
1289 /* Note, that it is not on notifier chain.
1290    It is necessary, that this routine was called after route cache will be
1291    flushed.
1292  */
1293 void arp_ifdown(struct net_device *dev)
1294 {
1295 	neigh_ifdown(&arp_tbl, dev);
1296 }
1297 
1298 
1299 /*
1300  *	Called once on startup.
1301  */
1302 
1303 static struct packet_type arp_packet_type __read_mostly = {
1304 	.type =	cpu_to_be16(ETH_P_ARP),
1305 	.func =	arp_rcv,
1306 };
1307 
1308 #ifdef CONFIG_PROC_FS
1309 #if IS_ENABLED(CONFIG_AX25)
1310 
1311 /*
1312  *	ax25 -> ASCII conversion
1313  */
1314 static void ax2asc2(ax25_address *a, char *buf)
1315 {
1316 	char c, *s;
1317 	int n;
1318 
1319 	for (n = 0, s = buf; n < 6; n++) {
1320 		c = (a->ax25_call[n] >> 1) & 0x7F;
1321 
1322 		if (c != ' ')
1323 			*s++ = c;
1324 	}
1325 
1326 	*s++ = '-';
1327 	n = (a->ax25_call[6] >> 1) & 0x0F;
1328 	if (n > 9) {
1329 		*s++ = '1';
1330 		n -= 10;
1331 	}
1332 
1333 	*s++ = n + '0';
1334 	*s++ = '\0';
1335 
1336 	if (*buf == '\0' || *buf == '-') {
1337 		buf[0] = '*';
1338 		buf[1] = '\0';
1339 	}
1340 }
1341 #endif /* CONFIG_AX25 */
1342 
1343 #define HBUFFERLEN 30
1344 
1345 static void arp_format_neigh_entry(struct seq_file *seq,
1346 				   struct neighbour *n)
1347 {
1348 	char hbuffer[HBUFFERLEN];
1349 	int k, j;
1350 	char tbuf[16];
1351 	struct net_device *dev = n->dev;
1352 	int hatype = dev->type;
1353 
1354 	read_lock(&n->lock);
1355 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1356 #if IS_ENABLED(CONFIG_AX25)
1357 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358 		ax2asc2((ax25_address *)n->ha, hbuffer);
1359 	else {
1360 #endif
1361 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364 		hbuffer[k++] = ':';
1365 	}
1366 	if (k != 0)
1367 		--k;
1368 	hbuffer[k] = 0;
1369 #if IS_ENABLED(CONFIG_AX25)
1370 	}
1371 #endif
1372 	sprintf(tbuf, "%pI4", n->primary_key);
1373 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375 	read_unlock(&n->lock);
1376 }
1377 
1378 static void arp_format_pneigh_entry(struct seq_file *seq,
1379 				    struct pneigh_entry *n)
1380 {
1381 	struct net_device *dev = n->dev;
1382 	int hatype = dev ? dev->type : 0;
1383 	char tbuf[16];
1384 
1385 	sprintf(tbuf, "%pI4", n->key);
1386 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388 		   dev ? dev->name : "*");
1389 }
1390 
1391 static int arp_seq_show(struct seq_file *seq, void *v)
1392 {
1393 	if (v == SEQ_START_TOKEN) {
1394 		seq_puts(seq, "IP address       HW type     Flags       "
1395 			      "HW address            Mask     Device\n");
1396 	} else {
1397 		struct neigh_seq_state *state = seq->private;
1398 
1399 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400 			arp_format_pneigh_entry(seq, v);
1401 		else
1402 			arp_format_neigh_entry(seq, v);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409 {
1410 	/* Don't want to confuse "arp -a" w/ magic entries,
1411 	 * so we tell the generic iterator to skip NUD_NOARP.
1412 	 */
1413 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414 }
1415 
1416 static const struct seq_operations arp_seq_ops = {
1417 	.start	= arp_seq_start,
1418 	.next	= neigh_seq_next,
1419 	.stop	= neigh_seq_stop,
1420 	.show	= arp_seq_show,
1421 };
1422 #endif /* CONFIG_PROC_FS */
1423 
1424 static int __net_init arp_net_init(struct net *net)
1425 {
1426 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1427 			sizeof(struct neigh_seq_state)))
1428 		return -ENOMEM;
1429 	return 0;
1430 }
1431 
1432 static void __net_exit arp_net_exit(struct net *net)
1433 {
1434 	remove_proc_entry("arp", net->proc_net);
1435 }
1436 
1437 static struct pernet_operations arp_net_ops = {
1438 	.init = arp_net_init,
1439 	.exit = arp_net_exit,
1440 };
1441 
1442 void __init arp_init(void)
1443 {
1444 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1445 
1446 	dev_add_pack(&arp_packet_type);
1447 	register_pernet_subsys(&arp_net_ops);
1448 #ifdef CONFIG_SYSCTL
1449 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1450 #endif
1451 	register_netdevice_notifier(&arp_netdev_notifier);
1452 }
1453