xref: /openbmc/linux/net/ipv4/arp.c (revision 58f9d806)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #include <net/dst_metadata.h>
117 #include <net/ip_tunnels.h>
118 
119 #include <linux/uaccess.h>
120 
121 #include <linux/netfilter_arp.h>
122 
123 /*
124  *	Interface to generic neighbour cache.
125  */
126 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
127 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
128 static int arp_constructor(struct neighbour *neigh);
129 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131 static void parp_redo(struct sk_buff *skb);
132 
133 static const struct neigh_ops arp_generic_ops = {
134 	.family =		AF_INET,
135 	.solicit =		arp_solicit,
136 	.error_report =		arp_error_report,
137 	.output =		neigh_resolve_output,
138 	.connected_output =	neigh_connected_output,
139 };
140 
141 static const struct neigh_ops arp_hh_ops = {
142 	.family =		AF_INET,
143 	.solicit =		arp_solicit,
144 	.error_report =		arp_error_report,
145 	.output =		neigh_resolve_output,
146 	.connected_output =	neigh_resolve_output,
147 };
148 
149 static const struct neigh_ops arp_direct_ops = {
150 	.family =		AF_INET,
151 	.output =		neigh_direct_output,
152 	.connected_output =	neigh_direct_output,
153 };
154 
155 struct neigh_table arp_tbl = {
156 	.family		= AF_INET,
157 	.key_len	= 4,
158 	.protocol	= cpu_to_be16(ETH_P_IP),
159 	.hash		= arp_hash,
160 	.key_eq		= arp_key_eq,
161 	.constructor	= arp_constructor,
162 	.proxy_redo	= parp_redo,
163 	.id		= "arp_cache",
164 	.parms		= {
165 		.tbl			= &arp_tbl,
166 		.reachable_time		= 30 * HZ,
167 		.data	= {
168 			[NEIGH_VAR_MCAST_PROBES] = 3,
169 			[NEIGH_VAR_UCAST_PROBES] = 3,
170 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
171 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
172 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
173 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
175 			[NEIGH_VAR_PROXY_QLEN] = 64,
176 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
178 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
179 		},
180 	},
181 	.gc_interval	= 30 * HZ,
182 	.gc_thresh1	= 128,
183 	.gc_thresh2	= 512,
184 	.gc_thresh3	= 1024,
185 };
186 EXPORT_SYMBOL(arp_tbl);
187 
188 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189 {
190 	switch (dev->type) {
191 	case ARPHRD_ETHER:
192 	case ARPHRD_FDDI:
193 	case ARPHRD_IEEE802:
194 		ip_eth_mc_map(addr, haddr);
195 		return 0;
196 	case ARPHRD_INFINIBAND:
197 		ip_ib_mc_map(addr, dev->broadcast, haddr);
198 		return 0;
199 	case ARPHRD_IPGRE:
200 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201 		return 0;
202 	default:
203 		if (dir) {
204 			memcpy(haddr, dev->broadcast, dev->addr_len);
205 			return 0;
206 		}
207 	}
208 	return -EINVAL;
209 }
210 
211 
212 static u32 arp_hash(const void *pkey,
213 		    const struct net_device *dev,
214 		    __u32 *hash_rnd)
215 {
216 	return arp_hashfn(pkey, dev, hash_rnd);
217 }
218 
219 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220 {
221 	return neigh_key_eq32(neigh, pkey);
222 }
223 
224 static int arp_constructor(struct neighbour *neigh)
225 {
226 	__be32 addr;
227 	struct net_device *dev = neigh->dev;
228 	struct in_device *in_dev;
229 	struct neigh_parms *parms;
230 	u32 inaddr_any = INADDR_ANY;
231 
232 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
233 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
234 
235 	addr = *(__be32 *)neigh->primary_key;
236 	rcu_read_lock();
237 	in_dev = __in_dev_get_rcu(dev);
238 	if (!in_dev) {
239 		rcu_read_unlock();
240 		return -EINVAL;
241 	}
242 
243 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
244 
245 	parms = in_dev->arp_parms;
246 	__neigh_parms_put(neigh->parms);
247 	neigh->parms = neigh_parms_clone(parms);
248 	rcu_read_unlock();
249 
250 	if (!dev->header_ops) {
251 		neigh->nud_state = NUD_NOARP;
252 		neigh->ops = &arp_direct_ops;
253 		neigh->output = neigh_direct_output;
254 	} else {
255 		/* Good devices (checked by reading texts, but only Ethernet is
256 		   tested)
257 
258 		   ARPHRD_ETHER: (ethernet, apfddi)
259 		   ARPHRD_FDDI: (fddi)
260 		   ARPHRD_IEEE802: (tr)
261 		   ARPHRD_METRICOM: (strip)
262 		   ARPHRD_ARCNET:
263 		   etc. etc. etc.
264 
265 		   ARPHRD_IPDDP will also work, if author repairs it.
266 		   I did not it, because this driver does not work even
267 		   in old paradigm.
268 		 */
269 
270 		if (neigh->type == RTN_MULTICAST) {
271 			neigh->nud_state = NUD_NOARP;
272 			arp_mc_map(addr, neigh->ha, dev, 1);
273 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
274 			neigh->nud_state = NUD_NOARP;
275 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
276 		} else if (neigh->type == RTN_BROADCAST ||
277 			   (dev->flags & IFF_POINTOPOINT)) {
278 			neigh->nud_state = NUD_NOARP;
279 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
280 		}
281 
282 		if (dev->header_ops->cache)
283 			neigh->ops = &arp_hh_ops;
284 		else
285 			neigh->ops = &arp_generic_ops;
286 
287 		if (neigh->nud_state & NUD_VALID)
288 			neigh->output = neigh->ops->connected_output;
289 		else
290 			neigh->output = neigh->ops->output;
291 	}
292 	return 0;
293 }
294 
295 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
296 {
297 	dst_link_failure(skb);
298 	kfree_skb(skb);
299 }
300 
301 /* Create and send an arp packet. */
302 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
303 			 struct net_device *dev, __be32 src_ip,
304 			 const unsigned char *dest_hw,
305 			 const unsigned char *src_hw,
306 			 const unsigned char *target_hw,
307 			 struct dst_entry *dst)
308 {
309 	struct sk_buff *skb;
310 
311 	/* arp on this interface. */
312 	if (dev->flags & IFF_NOARP)
313 		return;
314 
315 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
316 			 dest_hw, src_hw, target_hw);
317 	if (!skb)
318 		return;
319 
320 	skb_dst_set(skb, dst_clone(dst));
321 	arp_xmit(skb);
322 }
323 
324 void arp_send(int type, int ptype, __be32 dest_ip,
325 	      struct net_device *dev, __be32 src_ip,
326 	      const unsigned char *dest_hw, const unsigned char *src_hw,
327 	      const unsigned char *target_hw)
328 {
329 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
330 		     target_hw, NULL);
331 }
332 EXPORT_SYMBOL(arp_send);
333 
334 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
335 {
336 	__be32 saddr = 0;
337 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
338 	struct net_device *dev = neigh->dev;
339 	__be32 target = *(__be32 *)neigh->primary_key;
340 	int probes = atomic_read(&neigh->probes);
341 	struct in_device *in_dev;
342 	struct dst_entry *dst = NULL;
343 
344 	rcu_read_lock();
345 	in_dev = __in_dev_get_rcu(dev);
346 	if (!in_dev) {
347 		rcu_read_unlock();
348 		return;
349 	}
350 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
351 	default:
352 	case 0:		/* By default announce any local IP */
353 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
354 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
355 			saddr = ip_hdr(skb)->saddr;
356 		break;
357 	case 1:		/* Restrict announcements of saddr in same subnet */
358 		if (!skb)
359 			break;
360 		saddr = ip_hdr(skb)->saddr;
361 		if (inet_addr_type_dev_table(dev_net(dev), dev,
362 					     saddr) == RTN_LOCAL) {
363 			/* saddr should be known to target */
364 			if (inet_addr_onlink(in_dev, target, saddr))
365 				break;
366 		}
367 		saddr = 0;
368 		break;
369 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
370 		break;
371 	}
372 	rcu_read_unlock();
373 
374 	if (!saddr)
375 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
376 
377 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
378 	if (probes < 0) {
379 		if (!(neigh->nud_state & NUD_VALID))
380 			pr_debug("trying to ucast probe in NUD_INVALID\n");
381 		neigh_ha_snapshot(dst_ha, neigh, dev);
382 		dst_hw = dst_ha;
383 	} else {
384 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
385 		if (probes < 0) {
386 			neigh_app_ns(neigh);
387 			return;
388 		}
389 	}
390 
391 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
392 		dst = skb_dst(skb);
393 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
394 		     dst_hw, dev->dev_addr, NULL, dst);
395 }
396 
397 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
398 {
399 	struct net *net = dev_net(in_dev->dev);
400 	int scope;
401 
402 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
403 	case 0:	/* Reply, the tip is already validated */
404 		return 0;
405 	case 1:	/* Reply only if tip is configured on the incoming interface */
406 		sip = 0;
407 		scope = RT_SCOPE_HOST;
408 		break;
409 	case 2:	/*
410 		 * Reply only if tip is configured on the incoming interface
411 		 * and is in same subnet as sip
412 		 */
413 		scope = RT_SCOPE_HOST;
414 		break;
415 	case 3:	/* Do not reply for scope host addresses */
416 		sip = 0;
417 		scope = RT_SCOPE_LINK;
418 		in_dev = NULL;
419 		break;
420 	case 4:	/* Reserved */
421 	case 5:
422 	case 6:
423 	case 7:
424 		return 0;
425 	case 8:	/* Do not reply */
426 		return 1;
427 	default:
428 		return 0;
429 	}
430 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
431 }
432 
433 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
434 {
435 	struct rtable *rt;
436 	int flag = 0;
437 	/*unsigned long now; */
438 	struct net *net = dev_net(dev);
439 
440 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
441 	if (IS_ERR(rt))
442 		return 1;
443 	if (rt->dst.dev != dev) {
444 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
445 		flag = 1;
446 	}
447 	ip_rt_put(rt);
448 	return flag;
449 }
450 
451 /*
452  * Check if we can use proxy ARP for this path
453  */
454 static inline int arp_fwd_proxy(struct in_device *in_dev,
455 				struct net_device *dev,	struct rtable *rt)
456 {
457 	struct in_device *out_dev;
458 	int imi, omi = -1;
459 
460 	if (rt->dst.dev == dev)
461 		return 0;
462 
463 	if (!IN_DEV_PROXY_ARP(in_dev))
464 		return 0;
465 	imi = IN_DEV_MEDIUM_ID(in_dev);
466 	if (imi == 0)
467 		return 1;
468 	if (imi == -1)
469 		return 0;
470 
471 	/* place to check for proxy_arp for routes */
472 
473 	out_dev = __in_dev_get_rcu(rt->dst.dev);
474 	if (out_dev)
475 		omi = IN_DEV_MEDIUM_ID(out_dev);
476 
477 	return omi != imi && omi != -1;
478 }
479 
480 /*
481  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
482  *
483  * RFC3069 supports proxy arp replies back to the same interface.  This
484  * is done to support (ethernet) switch features, like RFC 3069, where
485  * the individual ports are not allowed to communicate with each
486  * other, BUT they are allowed to talk to the upstream router.  As
487  * described in RFC 3069, it is possible to allow these hosts to
488  * communicate through the upstream router, by proxy_arp'ing.
489  *
490  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
491  *
492  *  This technology is known by different names:
493  *    In RFC 3069 it is called VLAN Aggregation.
494  *    Cisco and Allied Telesyn call it Private VLAN.
495  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
496  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
497  *
498  */
499 static inline int arp_fwd_pvlan(struct in_device *in_dev,
500 				struct net_device *dev,	struct rtable *rt,
501 				__be32 sip, __be32 tip)
502 {
503 	/* Private VLAN is only concerned about the same ethernet segment */
504 	if (rt->dst.dev != dev)
505 		return 0;
506 
507 	/* Don't reply on self probes (often done by windowz boxes)*/
508 	if (sip == tip)
509 		return 0;
510 
511 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
512 		return 1;
513 	else
514 		return 0;
515 }
516 
517 /*
518  *	Interface to link layer: send routine and receive handler.
519  */
520 
521 /*
522  *	Create an arp packet. If dest_hw is not set, we create a broadcast
523  *	message.
524  */
525 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
526 			   struct net_device *dev, __be32 src_ip,
527 			   const unsigned char *dest_hw,
528 			   const unsigned char *src_hw,
529 			   const unsigned char *target_hw)
530 {
531 	struct sk_buff *skb;
532 	struct arphdr *arp;
533 	unsigned char *arp_ptr;
534 	int hlen = LL_RESERVED_SPACE(dev);
535 	int tlen = dev->needed_tailroom;
536 
537 	/*
538 	 *	Allocate a buffer
539 	 */
540 
541 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
542 	if (!skb)
543 		return NULL;
544 
545 	skb_reserve(skb, hlen);
546 	skb_reset_network_header(skb);
547 	arp = skb_put(skb, arp_hdr_len(dev));
548 	skb->dev = dev;
549 	skb->protocol = htons(ETH_P_ARP);
550 	if (!src_hw)
551 		src_hw = dev->dev_addr;
552 	if (!dest_hw)
553 		dest_hw = dev->broadcast;
554 
555 	/*
556 	 *	Fill the device header for the ARP frame
557 	 */
558 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
559 		goto out;
560 
561 	/*
562 	 * Fill out the arp protocol part.
563 	 *
564 	 * The arp hardware type should match the device type, except for FDDI,
565 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
566 	 */
567 	/*
568 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
569 	 *	DIX code for the protocol. Make these device structure fields.
570 	 */
571 	switch (dev->type) {
572 	default:
573 		arp->ar_hrd = htons(dev->type);
574 		arp->ar_pro = htons(ETH_P_IP);
575 		break;
576 
577 #if IS_ENABLED(CONFIG_AX25)
578 	case ARPHRD_AX25:
579 		arp->ar_hrd = htons(ARPHRD_AX25);
580 		arp->ar_pro = htons(AX25_P_IP);
581 		break;
582 
583 #if IS_ENABLED(CONFIG_NETROM)
584 	case ARPHRD_NETROM:
585 		arp->ar_hrd = htons(ARPHRD_NETROM);
586 		arp->ar_pro = htons(AX25_P_IP);
587 		break;
588 #endif
589 #endif
590 
591 #if IS_ENABLED(CONFIG_FDDI)
592 	case ARPHRD_FDDI:
593 		arp->ar_hrd = htons(ARPHRD_ETHER);
594 		arp->ar_pro = htons(ETH_P_IP);
595 		break;
596 #endif
597 	}
598 
599 	arp->ar_hln = dev->addr_len;
600 	arp->ar_pln = 4;
601 	arp->ar_op = htons(type);
602 
603 	arp_ptr = (unsigned char *)(arp + 1);
604 
605 	memcpy(arp_ptr, src_hw, dev->addr_len);
606 	arp_ptr += dev->addr_len;
607 	memcpy(arp_ptr, &src_ip, 4);
608 	arp_ptr += 4;
609 
610 	switch (dev->type) {
611 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
612 	case ARPHRD_IEEE1394:
613 		break;
614 #endif
615 	default:
616 		if (target_hw)
617 			memcpy(arp_ptr, target_hw, dev->addr_len);
618 		else
619 			memset(arp_ptr, 0, dev->addr_len);
620 		arp_ptr += dev->addr_len;
621 	}
622 	memcpy(arp_ptr, &dest_ip, 4);
623 
624 	return skb;
625 
626 out:
627 	kfree_skb(skb);
628 	return NULL;
629 }
630 EXPORT_SYMBOL(arp_create);
631 
632 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
633 {
634 	return dev_queue_xmit(skb);
635 }
636 
637 /*
638  *	Send an arp packet.
639  */
640 void arp_xmit(struct sk_buff *skb)
641 {
642 	/* Send it off, maybe filter it using firewalling first.  */
643 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
644 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
645 		arp_xmit_finish);
646 }
647 EXPORT_SYMBOL(arp_xmit);
648 
649 static bool arp_is_garp(struct net *net, struct net_device *dev,
650 			int *addr_type, __be16 ar_op,
651 			__be32 sip, __be32 tip,
652 			unsigned char *sha, unsigned char *tha)
653 {
654 	bool is_garp = tip == sip;
655 
656 	/* Gratuitous ARP _replies_ also require target hwaddr to be
657 	 * the same as source.
658 	 */
659 	if (is_garp && ar_op == htons(ARPOP_REPLY))
660 		is_garp =
661 			/* IPv4 over IEEE 1394 doesn't provide target
662 			 * hardware address field in its ARP payload.
663 			 */
664 			tha &&
665 			!memcmp(tha, sha, dev->addr_len);
666 
667 	if (is_garp) {
668 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
669 		if (*addr_type != RTN_UNICAST)
670 			is_garp = false;
671 	}
672 	return is_garp;
673 }
674 
675 /*
676  *	Process an arp request.
677  */
678 
679 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
680 {
681 	struct net_device *dev = skb->dev;
682 	struct in_device *in_dev = __in_dev_get_rcu(dev);
683 	struct arphdr *arp;
684 	unsigned char *arp_ptr;
685 	struct rtable *rt;
686 	unsigned char *sha;
687 	unsigned char *tha = NULL;
688 	__be32 sip, tip;
689 	u16 dev_type = dev->type;
690 	int addr_type;
691 	struct neighbour *n;
692 	struct dst_entry *reply_dst = NULL;
693 	bool is_garp = false;
694 
695 	/* arp_rcv below verifies the ARP header and verifies the device
696 	 * is ARP'able.
697 	 */
698 
699 	if (!in_dev)
700 		goto out_free_skb;
701 
702 	arp = arp_hdr(skb);
703 
704 	switch (dev_type) {
705 	default:
706 		if (arp->ar_pro != htons(ETH_P_IP) ||
707 		    htons(dev_type) != arp->ar_hrd)
708 			goto out_free_skb;
709 		break;
710 	case ARPHRD_ETHER:
711 	case ARPHRD_FDDI:
712 	case ARPHRD_IEEE802:
713 		/*
714 		 * ETHERNET, and Fibre Channel (which are IEEE 802
715 		 * devices, according to RFC 2625) devices will accept ARP
716 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
717 		 * This is the case also of FDDI, where the RFC 1390 says that
718 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
719 		 * however, to be more robust, we'll accept both 1 (Ethernet)
720 		 * or 6 (IEEE 802.2)
721 		 */
722 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
723 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
724 		    arp->ar_pro != htons(ETH_P_IP))
725 			goto out_free_skb;
726 		break;
727 	case ARPHRD_AX25:
728 		if (arp->ar_pro != htons(AX25_P_IP) ||
729 		    arp->ar_hrd != htons(ARPHRD_AX25))
730 			goto out_free_skb;
731 		break;
732 	case ARPHRD_NETROM:
733 		if (arp->ar_pro != htons(AX25_P_IP) ||
734 		    arp->ar_hrd != htons(ARPHRD_NETROM))
735 			goto out_free_skb;
736 		break;
737 	}
738 
739 	/* Understand only these message types */
740 
741 	if (arp->ar_op != htons(ARPOP_REPLY) &&
742 	    arp->ar_op != htons(ARPOP_REQUEST))
743 		goto out_free_skb;
744 
745 /*
746  *	Extract fields
747  */
748 	arp_ptr = (unsigned char *)(arp + 1);
749 	sha	= arp_ptr;
750 	arp_ptr += dev->addr_len;
751 	memcpy(&sip, arp_ptr, 4);
752 	arp_ptr += 4;
753 	switch (dev_type) {
754 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
755 	case ARPHRD_IEEE1394:
756 		break;
757 #endif
758 	default:
759 		tha = arp_ptr;
760 		arp_ptr += dev->addr_len;
761 	}
762 	memcpy(&tip, arp_ptr, 4);
763 /*
764  *	Check for bad requests for 127.x.x.x and requests for multicast
765  *	addresses.  If this is one such, delete it.
766  */
767 	if (ipv4_is_multicast(tip) ||
768 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
769 		goto out_free_skb;
770 
771  /*
772   *	For some 802.11 wireless deployments (and possibly other networks),
773   *	there will be an ARP proxy and gratuitous ARP frames are attacks
774   *	and thus should not be accepted.
775   */
776 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
777 		goto out_free_skb;
778 
779 /*
780  *     Special case: We must set Frame Relay source Q.922 address
781  */
782 	if (dev_type == ARPHRD_DLCI)
783 		sha = dev->broadcast;
784 
785 /*
786  *  Process entry.  The idea here is we want to send a reply if it is a
787  *  request for us or if it is a request for someone else that we hold
788  *  a proxy for.  We want to add an entry to our cache if it is a reply
789  *  to us or if it is a request for our address.
790  *  (The assumption for this last is that if someone is requesting our
791  *  address, they are probably intending to talk to us, so it saves time
792  *  if we cache their address.  Their address is also probably not in
793  *  our cache, since ours is not in their cache.)
794  *
795  *  Putting this another way, we only care about replies if they are to
796  *  us, in which case we add them to the cache.  For requests, we care
797  *  about those for us and those for our proxies.  We reply to both,
798  *  and in the case of requests for us we add the requester to the arp
799  *  cache.
800  */
801 
802 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
803 		reply_dst = (struct dst_entry *)
804 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
805 						    GFP_ATOMIC);
806 
807 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
808 	if (sip == 0) {
809 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
810 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
811 		    !arp_ignore(in_dev, sip, tip))
812 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
813 				     sha, dev->dev_addr, sha, reply_dst);
814 		goto out_consume_skb;
815 	}
816 
817 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
818 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
819 
820 		rt = skb_rtable(skb);
821 		addr_type = rt->rt_type;
822 
823 		if (addr_type == RTN_LOCAL) {
824 			int dont_send;
825 
826 			dont_send = arp_ignore(in_dev, sip, tip);
827 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
828 				dont_send = arp_filter(sip, tip, dev);
829 			if (!dont_send) {
830 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
831 				if (n) {
832 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
833 						     sip, dev, tip, sha,
834 						     dev->dev_addr, sha,
835 						     reply_dst);
836 					neigh_release(n);
837 				}
838 			}
839 			goto out_consume_skb;
840 		} else if (IN_DEV_FORWARD(in_dev)) {
841 			if (addr_type == RTN_UNICAST  &&
842 			    (arp_fwd_proxy(in_dev, dev, rt) ||
843 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
844 			     (rt->dst.dev != dev &&
845 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
846 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
847 				if (n)
848 					neigh_release(n);
849 
850 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
851 				    skb->pkt_type == PACKET_HOST ||
852 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
853 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
854 						     sip, dev, tip, sha,
855 						     dev->dev_addr, sha,
856 						     reply_dst);
857 				} else {
858 					pneigh_enqueue(&arp_tbl,
859 						       in_dev->arp_parms, skb);
860 					goto out_free_dst;
861 				}
862 				goto out_consume_skb;
863 			}
864 		}
865 	}
866 
867 	/* Update our ARP tables */
868 
869 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
870 
871 	addr_type = -1;
872 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
873 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
874 				      sip, tip, sha, tha);
875 	}
876 
877 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
878 		/* Unsolicited ARP is not accepted by default.
879 		   It is possible, that this option should be enabled for some
880 		   devices (strip is candidate)
881 		 */
882 		if (!n &&
883 		    (is_garp ||
884 		     (arp->ar_op == htons(ARPOP_REPLY) &&
885 		      (addr_type == RTN_UNICAST ||
886 		       (addr_type < 0 &&
887 			/* postpone calculation to as late as possible */
888 			inet_addr_type_dev_table(net, dev, sip) ==
889 				RTN_UNICAST)))))
890 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891 	}
892 
893 	if (n) {
894 		int state = NUD_REACHABLE;
895 		int override;
896 
897 		/* If several different ARP replies follows back-to-back,
898 		   use the FIRST one. It is possible, if several proxy
899 		   agents are active. Taking the first reply prevents
900 		   arp trashing and chooses the fastest router.
901 		 */
902 		override = time_after(jiffies,
903 				      n->updated +
904 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
905 			   is_garp;
906 
907 		/* Broadcast replies and request packets
908 		   do not assert neighbour reachability.
909 		 */
910 		if (arp->ar_op != htons(ARPOP_REPLY) ||
911 		    skb->pkt_type != PACKET_HOST)
912 			state = NUD_STALE;
913 		neigh_update(n, sha, state,
914 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
915 		neigh_release(n);
916 	}
917 
918 out_consume_skb:
919 	consume_skb(skb);
920 
921 out_free_dst:
922 	dst_release(reply_dst);
923 	return NET_RX_SUCCESS;
924 
925 out_free_skb:
926 	kfree_skb(skb);
927 	return NET_RX_DROP;
928 }
929 
930 static void parp_redo(struct sk_buff *skb)
931 {
932 	arp_process(dev_net(skb->dev), NULL, skb);
933 }
934 
935 
936 /*
937  *	Receive an arp request from the device layer.
938  */
939 
940 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
941 		   struct packet_type *pt, struct net_device *orig_dev)
942 {
943 	const struct arphdr *arp;
944 
945 	/* do not tweak dropwatch on an ARP we will ignore */
946 	if (dev->flags & IFF_NOARP ||
947 	    skb->pkt_type == PACKET_OTHERHOST ||
948 	    skb->pkt_type == PACKET_LOOPBACK)
949 		goto consumeskb;
950 
951 	skb = skb_share_check(skb, GFP_ATOMIC);
952 	if (!skb)
953 		goto out_of_mem;
954 
955 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
956 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
957 		goto freeskb;
958 
959 	arp = arp_hdr(skb);
960 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
961 		goto freeskb;
962 
963 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
964 
965 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
966 		       dev_net(dev), NULL, skb, dev, NULL,
967 		       arp_process);
968 
969 consumeskb:
970 	consume_skb(skb);
971 	return NET_RX_SUCCESS;
972 freeskb:
973 	kfree_skb(skb);
974 out_of_mem:
975 	return NET_RX_DROP;
976 }
977 
978 /*
979  *	User level interface (ioctl)
980  */
981 
982 /*
983  *	Set (create) an ARP cache entry.
984  */
985 
986 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
987 {
988 	if (!dev) {
989 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
990 		return 0;
991 	}
992 	if (__in_dev_get_rtnl(dev)) {
993 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
994 		return 0;
995 	}
996 	return -ENXIO;
997 }
998 
999 static int arp_req_set_public(struct net *net, struct arpreq *r,
1000 		struct net_device *dev)
1001 {
1002 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004 
1005 	if (mask && mask != htonl(0xFFFFFFFF))
1006 		return -EINVAL;
1007 	if (!dev && (r->arp_flags & ATF_COM)) {
1008 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009 				      r->arp_ha.sa_data);
1010 		if (!dev)
1011 			return -ENODEV;
1012 	}
1013 	if (mask) {
1014 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1015 			return -ENOBUFS;
1016 		return 0;
1017 	}
1018 
1019 	return arp_req_set_proxy(net, dev, 1);
1020 }
1021 
1022 static int arp_req_set(struct net *net, struct arpreq *r,
1023 		       struct net_device *dev)
1024 {
1025 	__be32 ip;
1026 	struct neighbour *neigh;
1027 	int err;
1028 
1029 	if (r->arp_flags & ATF_PUBL)
1030 		return arp_req_set_public(net, r, dev);
1031 
1032 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033 	if (r->arp_flags & ATF_PERM)
1034 		r->arp_flags |= ATF_COM;
1035 	if (!dev) {
1036 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037 
1038 		if (IS_ERR(rt))
1039 			return PTR_ERR(rt);
1040 		dev = rt->dst.dev;
1041 		ip_rt_put(rt);
1042 		if (!dev)
1043 			return -EINVAL;
1044 	}
1045 	switch (dev->type) {
1046 #if IS_ENABLED(CONFIG_FDDI)
1047 	case ARPHRD_FDDI:
1048 		/*
1049 		 * According to RFC 1390, FDDI devices should accept ARP
1050 		 * hardware types of 1 (Ethernet).  However, to be more
1051 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1052 		 * or 6 (IEEE 802.2).
1053 		 */
1054 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1056 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1057 			return -EINVAL;
1058 		break;
1059 #endif
1060 	default:
1061 		if (r->arp_ha.sa_family != dev->type)
1062 			return -EINVAL;
1063 		break;
1064 	}
1065 
1066 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067 	err = PTR_ERR(neigh);
1068 	if (!IS_ERR(neigh)) {
1069 		unsigned int state = NUD_STALE;
1070 		if (r->arp_flags & ATF_PERM)
1071 			state = NUD_PERMANENT;
1072 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073 				   r->arp_ha.sa_data : NULL, state,
1074 				   NEIGH_UPDATE_F_OVERRIDE |
1075 				   NEIGH_UPDATE_F_ADMIN, 0);
1076 		neigh_release(neigh);
1077 	}
1078 	return err;
1079 }
1080 
1081 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082 {
1083 	if (neigh->nud_state&NUD_PERMANENT)
1084 		return ATF_PERM | ATF_COM;
1085 	else if (neigh->nud_state&NUD_VALID)
1086 		return ATF_COM;
1087 	else
1088 		return 0;
1089 }
1090 
1091 /*
1092  *	Get an ARP cache entry.
1093  */
1094 
1095 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096 {
1097 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098 	struct neighbour *neigh;
1099 	int err = -ENXIO;
1100 
1101 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102 	if (neigh) {
1103 		if (!(neigh->nud_state & NUD_NOARP)) {
1104 			read_lock_bh(&neigh->lock);
1105 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1106 			r->arp_flags = arp_state_to_flags(neigh);
1107 			read_unlock_bh(&neigh->lock);
1108 			r->arp_ha.sa_family = dev->type;
1109 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1110 			err = 0;
1111 		}
1112 		neigh_release(neigh);
1113 	}
1114 	return err;
1115 }
1116 
1117 static int arp_invalidate(struct net_device *dev, __be32 ip)
1118 {
1119 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120 	int err = -ENXIO;
1121 	struct neigh_table *tbl = &arp_tbl;
1122 
1123 	if (neigh) {
1124 		if (neigh->nud_state & ~NUD_NOARP)
1125 			err = neigh_update(neigh, NULL, NUD_FAILED,
1126 					   NEIGH_UPDATE_F_OVERRIDE|
1127 					   NEIGH_UPDATE_F_ADMIN, 0);
1128 		write_lock_bh(&tbl->lock);
1129 		neigh_release(neigh);
1130 		neigh_remove_one(neigh, tbl);
1131 		write_unlock_bh(&tbl->lock);
1132 	}
1133 
1134 	return err;
1135 }
1136 
1137 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1138 		struct net_device *dev)
1139 {
1140 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1141 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1142 
1143 	if (mask == htonl(0xFFFFFFFF))
1144 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1145 
1146 	if (mask)
1147 		return -EINVAL;
1148 
1149 	return arp_req_set_proxy(net, dev, 0);
1150 }
1151 
1152 static int arp_req_delete(struct net *net, struct arpreq *r,
1153 			  struct net_device *dev)
1154 {
1155 	__be32 ip;
1156 
1157 	if (r->arp_flags & ATF_PUBL)
1158 		return arp_req_delete_public(net, r, dev);
1159 
1160 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1161 	if (!dev) {
1162 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1163 		if (IS_ERR(rt))
1164 			return PTR_ERR(rt);
1165 		dev = rt->dst.dev;
1166 		ip_rt_put(rt);
1167 		if (!dev)
1168 			return -EINVAL;
1169 	}
1170 	return arp_invalidate(dev, ip);
1171 }
1172 
1173 /*
1174  *	Handle an ARP layer I/O control request.
1175  */
1176 
1177 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178 {
1179 	int err;
1180 	struct arpreq r;
1181 	struct net_device *dev = NULL;
1182 
1183 	switch (cmd) {
1184 	case SIOCDARP:
1185 	case SIOCSARP:
1186 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1187 			return -EPERM;
1188 		/* fall through */
1189 	case SIOCGARP:
1190 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1191 		if (err)
1192 			return -EFAULT;
1193 		break;
1194 	default:
1195 		return -EINVAL;
1196 	}
1197 
1198 	if (r.arp_pa.sa_family != AF_INET)
1199 		return -EPFNOSUPPORT;
1200 
1201 	if (!(r.arp_flags & ATF_PUBL) &&
1202 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1203 		return -EINVAL;
1204 	if (!(r.arp_flags & ATF_NETMASK))
1205 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1206 							   htonl(0xFFFFFFFFUL);
1207 	rtnl_lock();
1208 	if (r.arp_dev[0]) {
1209 		err = -ENODEV;
1210 		dev = __dev_get_by_name(net, r.arp_dev);
1211 		if (!dev)
1212 			goto out;
1213 
1214 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1215 		if (!r.arp_ha.sa_family)
1216 			r.arp_ha.sa_family = dev->type;
1217 		err = -EINVAL;
1218 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1219 			goto out;
1220 	} else if (cmd == SIOCGARP) {
1221 		err = -ENODEV;
1222 		goto out;
1223 	}
1224 
1225 	switch (cmd) {
1226 	case SIOCDARP:
1227 		err = arp_req_delete(net, &r, dev);
1228 		break;
1229 	case SIOCSARP:
1230 		err = arp_req_set(net, &r, dev);
1231 		break;
1232 	case SIOCGARP:
1233 		err = arp_req_get(&r, dev);
1234 		break;
1235 	}
1236 out:
1237 	rtnl_unlock();
1238 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1239 		err = -EFAULT;
1240 	return err;
1241 }
1242 
1243 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1244 			    void *ptr)
1245 {
1246 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1247 	struct netdev_notifier_change_info *change_info;
1248 
1249 	switch (event) {
1250 	case NETDEV_CHANGEADDR:
1251 		neigh_changeaddr(&arp_tbl, dev);
1252 		rt_cache_flush(dev_net(dev));
1253 		break;
1254 	case NETDEV_CHANGE:
1255 		change_info = ptr;
1256 		if (change_info->flags_changed & IFF_NOARP)
1257 			neigh_changeaddr(&arp_tbl, dev);
1258 		if (!netif_carrier_ok(dev))
1259 			neigh_carrier_down(&arp_tbl, dev);
1260 		break;
1261 	default:
1262 		break;
1263 	}
1264 
1265 	return NOTIFY_DONE;
1266 }
1267 
1268 static struct notifier_block arp_netdev_notifier = {
1269 	.notifier_call = arp_netdev_event,
1270 };
1271 
1272 /* Note, that it is not on notifier chain.
1273    It is necessary, that this routine was called after route cache will be
1274    flushed.
1275  */
1276 void arp_ifdown(struct net_device *dev)
1277 {
1278 	neigh_ifdown(&arp_tbl, dev);
1279 }
1280 
1281 
1282 /*
1283  *	Called once on startup.
1284  */
1285 
1286 static struct packet_type arp_packet_type __read_mostly = {
1287 	.type =	cpu_to_be16(ETH_P_ARP),
1288 	.func =	arp_rcv,
1289 };
1290 
1291 static int arp_proc_init(void);
1292 
1293 void __init arp_init(void)
1294 {
1295 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1296 
1297 	dev_add_pack(&arp_packet_type);
1298 	arp_proc_init();
1299 #ifdef CONFIG_SYSCTL
1300 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1301 #endif
1302 	register_netdevice_notifier(&arp_netdev_notifier);
1303 }
1304 
1305 #ifdef CONFIG_PROC_FS
1306 #if IS_ENABLED(CONFIG_AX25)
1307 
1308 /* ------------------------------------------------------------------------ */
1309 /*
1310  *	ax25 -> ASCII conversion
1311  */
1312 static void ax2asc2(ax25_address *a, char *buf)
1313 {
1314 	char c, *s;
1315 	int n;
1316 
1317 	for (n = 0, s = buf; n < 6; n++) {
1318 		c = (a->ax25_call[n] >> 1) & 0x7F;
1319 
1320 		if (c != ' ')
1321 			*s++ = c;
1322 	}
1323 
1324 	*s++ = '-';
1325 	n = (a->ax25_call[6] >> 1) & 0x0F;
1326 	if (n > 9) {
1327 		*s++ = '1';
1328 		n -= 10;
1329 	}
1330 
1331 	*s++ = n + '0';
1332 	*s++ = '\0';
1333 
1334 	if (*buf == '\0' || *buf == '-') {
1335 		buf[0] = '*';
1336 		buf[1] = '\0';
1337 	}
1338 }
1339 #endif /* CONFIG_AX25 */
1340 
1341 #define HBUFFERLEN 30
1342 
1343 static void arp_format_neigh_entry(struct seq_file *seq,
1344 				   struct neighbour *n)
1345 {
1346 	char hbuffer[HBUFFERLEN];
1347 	int k, j;
1348 	char tbuf[16];
1349 	struct net_device *dev = n->dev;
1350 	int hatype = dev->type;
1351 
1352 	read_lock(&n->lock);
1353 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1354 #if IS_ENABLED(CONFIG_AX25)
1355 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1356 		ax2asc2((ax25_address *)n->ha, hbuffer);
1357 	else {
1358 #endif
1359 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1360 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1361 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1362 		hbuffer[k++] = ':';
1363 	}
1364 	if (k != 0)
1365 		--k;
1366 	hbuffer[k] = 0;
1367 #if IS_ENABLED(CONFIG_AX25)
1368 	}
1369 #endif
1370 	sprintf(tbuf, "%pI4", n->primary_key);
1371 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1372 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1373 	read_unlock(&n->lock);
1374 }
1375 
1376 static void arp_format_pneigh_entry(struct seq_file *seq,
1377 				    struct pneigh_entry *n)
1378 {
1379 	struct net_device *dev = n->dev;
1380 	int hatype = dev ? dev->type : 0;
1381 	char tbuf[16];
1382 
1383 	sprintf(tbuf, "%pI4", n->key);
1384 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1385 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1386 		   dev ? dev->name : "*");
1387 }
1388 
1389 static int arp_seq_show(struct seq_file *seq, void *v)
1390 {
1391 	if (v == SEQ_START_TOKEN) {
1392 		seq_puts(seq, "IP address       HW type     Flags       "
1393 			      "HW address            Mask     Device\n");
1394 	} else {
1395 		struct neigh_seq_state *state = seq->private;
1396 
1397 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1398 			arp_format_pneigh_entry(seq, v);
1399 		else
1400 			arp_format_neigh_entry(seq, v);
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1407 {
1408 	/* Don't want to confuse "arp -a" w/ magic entries,
1409 	 * so we tell the generic iterator to skip NUD_NOARP.
1410 	 */
1411 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1412 }
1413 
1414 /* ------------------------------------------------------------------------ */
1415 
1416 static const struct seq_operations arp_seq_ops = {
1417 	.start	= arp_seq_start,
1418 	.next	= neigh_seq_next,
1419 	.stop	= neigh_seq_stop,
1420 	.show	= arp_seq_show,
1421 };
1422 
1423 /* ------------------------------------------------------------------------ */
1424 
1425 static int __net_init arp_net_init(struct net *net)
1426 {
1427 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1428 			sizeof(struct neigh_seq_state)))
1429 		return -ENOMEM;
1430 	return 0;
1431 }
1432 
1433 static void __net_exit arp_net_exit(struct net *net)
1434 {
1435 	remove_proc_entry("arp", net->proc_net);
1436 }
1437 
1438 static struct pernet_operations arp_net_ops = {
1439 	.init = arp_net_init,
1440 	.exit = arp_net_exit,
1441 };
1442 
1443 static int __init arp_proc_init(void)
1444 {
1445 	return register_pernet_subsys(&arp_net_ops);
1446 }
1447 
1448 #else /* CONFIG_PROC_FS */
1449 
1450 static int __init arp_proc_init(void)
1451 {
1452 	return 0;
1453 }
1454 
1455 #endif /* CONFIG_PROC_FS */
1456