xref: /openbmc/linux/net/ipv4/arp.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netfilter_arp.h>
120 
121 /*
122  *	Interface to generic neighbour cache.
123  */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130 
131 static const struct neigh_ops arp_generic_ops = {
132 	.family =		AF_INET,
133 	.solicit =		arp_solicit,
134 	.error_report =		arp_error_report,
135 	.output =		neigh_resolve_output,
136 	.connected_output =	neigh_connected_output,
137 };
138 
139 static const struct neigh_ops arp_hh_ops = {
140 	.family =		AF_INET,
141 	.solicit =		arp_solicit,
142 	.error_report =		arp_error_report,
143 	.output =		neigh_resolve_output,
144 	.connected_output =	neigh_resolve_output,
145 };
146 
147 static const struct neigh_ops arp_direct_ops = {
148 	.family =		AF_INET,
149 	.output =		neigh_direct_output,
150 	.connected_output =	neigh_direct_output,
151 };
152 
153 struct neigh_table arp_tbl = {
154 	.family		= AF_INET,
155 	.key_len	= 4,
156 	.protocol	= cpu_to_be16(ETH_P_IP),
157 	.hash		= arp_hash,
158 	.key_eq		= arp_key_eq,
159 	.constructor	= arp_constructor,
160 	.proxy_redo	= parp_redo,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 			[NEIGH_VAR_PROXY_QLEN] = 64,
174 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 		},
178 	},
179 	.gc_interval	= 30 * HZ,
180 	.gc_thresh1	= 128,
181 	.gc_thresh2	= 512,
182 	.gc_thresh3	= 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185 
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 	switch (dev->type) {
189 	case ARPHRD_ETHER:
190 	case ARPHRD_FDDI:
191 	case ARPHRD_IEEE802:
192 		ip_eth_mc_map(addr, haddr);
193 		return 0;
194 	case ARPHRD_INFINIBAND:
195 		ip_ib_mc_map(addr, dev->broadcast, haddr);
196 		return 0;
197 	case ARPHRD_IPGRE:
198 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 		return 0;
200 	default:
201 		if (dir) {
202 			memcpy(haddr, dev->broadcast, dev->addr_len);
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 
209 
210 static u32 arp_hash(const void *pkey,
211 		    const struct net_device *dev,
212 		    __u32 *hash_rnd)
213 {
214 	return arp_hashfn(pkey, dev, hash_rnd);
215 }
216 
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 	return neigh_key_eq32(neigh, pkey);
220 }
221 
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 	__be32 addr = *(__be32 *)neigh->primary_key;
225 	struct net_device *dev = neigh->dev;
226 	struct in_device *in_dev;
227 	struct neigh_parms *parms;
228 
229 	rcu_read_lock();
230 	in_dev = __in_dev_get_rcu(dev);
231 	if (!in_dev) {
232 		rcu_read_unlock();
233 		return -EINVAL;
234 	}
235 
236 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
237 
238 	parms = in_dev->arp_parms;
239 	__neigh_parms_put(neigh->parms);
240 	neigh->parms = neigh_parms_clone(parms);
241 	rcu_read_unlock();
242 
243 	if (!dev->header_ops) {
244 		neigh->nud_state = NUD_NOARP;
245 		neigh->ops = &arp_direct_ops;
246 		neigh->output = neigh_direct_output;
247 	} else {
248 		/* Good devices (checked by reading texts, but only Ethernet is
249 		   tested)
250 
251 		   ARPHRD_ETHER: (ethernet, apfddi)
252 		   ARPHRD_FDDI: (fddi)
253 		   ARPHRD_IEEE802: (tr)
254 		   ARPHRD_METRICOM: (strip)
255 		   ARPHRD_ARCNET:
256 		   etc. etc. etc.
257 
258 		   ARPHRD_IPDDP will also work, if author repairs it.
259 		   I did not it, because this driver does not work even
260 		   in old paradigm.
261 		 */
262 
263 		if (neigh->type == RTN_MULTICAST) {
264 			neigh->nud_state = NUD_NOARP;
265 			arp_mc_map(addr, neigh->ha, dev, 1);
266 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 			neigh->nud_state = NUD_NOARP;
268 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 		} else if (neigh->type == RTN_BROADCAST ||
270 			   (dev->flags & IFF_POINTOPOINT)) {
271 			neigh->nud_state = NUD_NOARP;
272 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 		}
274 
275 		if (dev->header_ops->cache)
276 			neigh->ops = &arp_hh_ops;
277 		else
278 			neigh->ops = &arp_generic_ops;
279 
280 		if (neigh->nud_state & NUD_VALID)
281 			neigh->output = neigh->ops->connected_output;
282 		else
283 			neigh->output = neigh->ops->output;
284 	}
285 	return 0;
286 }
287 
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 	dst_link_failure(skb);
291 	kfree_skb(skb);
292 }
293 
294 /* Create and send an arp packet. */
295 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
296 			 struct net_device *dev, __be32 src_ip,
297 			 const unsigned char *dest_hw,
298 			 const unsigned char *src_hw,
299 			 const unsigned char *target_hw, struct sk_buff *oskb)
300 {
301 	struct sk_buff *skb;
302 
303 	/* arp on this interface. */
304 	if (dev->flags & IFF_NOARP)
305 		return;
306 
307 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
308 			 dest_hw, src_hw, target_hw);
309 	if (!skb)
310 		return;
311 
312 	if (oskb)
313 		skb_dst_copy(skb, oskb);
314 
315 	arp_xmit(skb);
316 }
317 
318 void arp_send(int type, int ptype, __be32 dest_ip,
319 	      struct net_device *dev, __be32 src_ip,
320 	      const unsigned char *dest_hw, const unsigned char *src_hw,
321 	      const unsigned char *target_hw)
322 {
323 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
324 		     target_hw, NULL);
325 }
326 EXPORT_SYMBOL(arp_send);
327 
328 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
329 {
330 	__be32 saddr = 0;
331 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
332 	struct net_device *dev = neigh->dev;
333 	__be32 target = *(__be32 *)neigh->primary_key;
334 	int probes = atomic_read(&neigh->probes);
335 	struct in_device *in_dev;
336 
337 	rcu_read_lock();
338 	in_dev = __in_dev_get_rcu(dev);
339 	if (!in_dev) {
340 		rcu_read_unlock();
341 		return;
342 	}
343 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 	default:
345 	case 0:		/* By default announce any local IP */
346 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
347 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
348 			saddr = ip_hdr(skb)->saddr;
349 		break;
350 	case 1:		/* Restrict announcements of saddr in same subnet */
351 		if (!skb)
352 			break;
353 		saddr = ip_hdr(skb)->saddr;
354 		if (inet_addr_type_dev_table(dev_net(dev), dev,
355 					     saddr) == RTN_LOCAL) {
356 			/* saddr should be known to target */
357 			if (inet_addr_onlink(in_dev, target, saddr))
358 				break;
359 		}
360 		saddr = 0;
361 		break;
362 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
363 		break;
364 	}
365 	rcu_read_unlock();
366 
367 	if (!saddr)
368 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
369 
370 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
371 	if (probes < 0) {
372 		if (!(neigh->nud_state & NUD_VALID))
373 			pr_debug("trying to ucast probe in NUD_INVALID\n");
374 		neigh_ha_snapshot(dst_ha, neigh, dev);
375 		dst_hw = dst_ha;
376 	} else {
377 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
378 		if (probes < 0) {
379 			neigh_app_ns(neigh);
380 			return;
381 		}
382 	}
383 
384 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
385 		     dst_hw, dev->dev_addr, NULL,
386 		     dev->priv_flags & IFF_XMIT_DST_RELEASE ? NULL : skb);
387 }
388 
389 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
390 {
391 	struct net *net = dev_net(in_dev->dev);
392 	int scope;
393 
394 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
395 	case 0:	/* Reply, the tip is already validated */
396 		return 0;
397 	case 1:	/* Reply only if tip is configured on the incoming interface */
398 		sip = 0;
399 		scope = RT_SCOPE_HOST;
400 		break;
401 	case 2:	/*
402 		 * Reply only if tip is configured on the incoming interface
403 		 * and is in same subnet as sip
404 		 */
405 		scope = RT_SCOPE_HOST;
406 		break;
407 	case 3:	/* Do not reply for scope host addresses */
408 		sip = 0;
409 		scope = RT_SCOPE_LINK;
410 		in_dev = NULL;
411 		break;
412 	case 4:	/* Reserved */
413 	case 5:
414 	case 6:
415 	case 7:
416 		return 0;
417 	case 8:	/* Do not reply */
418 		return 1;
419 	default:
420 		return 0;
421 	}
422 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
423 }
424 
425 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
426 {
427 	struct rtable *rt;
428 	int flag = 0;
429 	/*unsigned long now; */
430 	struct net *net = dev_net(dev);
431 
432 	rt = ip_route_output(net, sip, tip, 0, 0);
433 	if (IS_ERR(rt))
434 		return 1;
435 	if (rt->dst.dev != dev) {
436 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
437 		flag = 1;
438 	}
439 	ip_rt_put(rt);
440 	return flag;
441 }
442 
443 /*
444  * Check if we can use proxy ARP for this path
445  */
446 static inline int arp_fwd_proxy(struct in_device *in_dev,
447 				struct net_device *dev,	struct rtable *rt)
448 {
449 	struct in_device *out_dev;
450 	int imi, omi = -1;
451 
452 	if (rt->dst.dev == dev)
453 		return 0;
454 
455 	if (!IN_DEV_PROXY_ARP(in_dev))
456 		return 0;
457 	imi = IN_DEV_MEDIUM_ID(in_dev);
458 	if (imi == 0)
459 		return 1;
460 	if (imi == -1)
461 		return 0;
462 
463 	/* place to check for proxy_arp for routes */
464 
465 	out_dev = __in_dev_get_rcu(rt->dst.dev);
466 	if (out_dev)
467 		omi = IN_DEV_MEDIUM_ID(out_dev);
468 
469 	return omi != imi && omi != -1;
470 }
471 
472 /*
473  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
474  *
475  * RFC3069 supports proxy arp replies back to the same interface.  This
476  * is done to support (ethernet) switch features, like RFC 3069, where
477  * the individual ports are not allowed to communicate with each
478  * other, BUT they are allowed to talk to the upstream router.  As
479  * described in RFC 3069, it is possible to allow these hosts to
480  * communicate through the upstream router, by proxy_arp'ing.
481  *
482  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
483  *
484  *  This technology is known by different names:
485  *    In RFC 3069 it is called VLAN Aggregation.
486  *    Cisco and Allied Telesyn call it Private VLAN.
487  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
488  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
489  *
490  */
491 static inline int arp_fwd_pvlan(struct in_device *in_dev,
492 				struct net_device *dev,	struct rtable *rt,
493 				__be32 sip, __be32 tip)
494 {
495 	/* Private VLAN is only concerned about the same ethernet segment */
496 	if (rt->dst.dev != dev)
497 		return 0;
498 
499 	/* Don't reply on self probes (often done by windowz boxes)*/
500 	if (sip == tip)
501 		return 0;
502 
503 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
504 		return 1;
505 	else
506 		return 0;
507 }
508 
509 /*
510  *	Interface to link layer: send routine and receive handler.
511  */
512 
513 /*
514  *	Create an arp packet. If dest_hw is not set, we create a broadcast
515  *	message.
516  */
517 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
518 			   struct net_device *dev, __be32 src_ip,
519 			   const unsigned char *dest_hw,
520 			   const unsigned char *src_hw,
521 			   const unsigned char *target_hw)
522 {
523 	struct sk_buff *skb;
524 	struct arphdr *arp;
525 	unsigned char *arp_ptr;
526 	int hlen = LL_RESERVED_SPACE(dev);
527 	int tlen = dev->needed_tailroom;
528 
529 	/*
530 	 *	Allocate a buffer
531 	 */
532 
533 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
534 	if (!skb)
535 		return NULL;
536 
537 	skb_reserve(skb, hlen);
538 	skb_reset_network_header(skb);
539 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
540 	skb->dev = dev;
541 	skb->protocol = htons(ETH_P_ARP);
542 	if (!src_hw)
543 		src_hw = dev->dev_addr;
544 	if (!dest_hw)
545 		dest_hw = dev->broadcast;
546 
547 	/*
548 	 *	Fill the device header for the ARP frame
549 	 */
550 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
551 		goto out;
552 
553 	/*
554 	 * Fill out the arp protocol part.
555 	 *
556 	 * The arp hardware type should match the device type, except for FDDI,
557 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
558 	 */
559 	/*
560 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
561 	 *	DIX code for the protocol. Make these device structure fields.
562 	 */
563 	switch (dev->type) {
564 	default:
565 		arp->ar_hrd = htons(dev->type);
566 		arp->ar_pro = htons(ETH_P_IP);
567 		break;
568 
569 #if IS_ENABLED(CONFIG_AX25)
570 	case ARPHRD_AX25:
571 		arp->ar_hrd = htons(ARPHRD_AX25);
572 		arp->ar_pro = htons(AX25_P_IP);
573 		break;
574 
575 #if IS_ENABLED(CONFIG_NETROM)
576 	case ARPHRD_NETROM:
577 		arp->ar_hrd = htons(ARPHRD_NETROM);
578 		arp->ar_pro = htons(AX25_P_IP);
579 		break;
580 #endif
581 #endif
582 
583 #if IS_ENABLED(CONFIG_FDDI)
584 	case ARPHRD_FDDI:
585 		arp->ar_hrd = htons(ARPHRD_ETHER);
586 		arp->ar_pro = htons(ETH_P_IP);
587 		break;
588 #endif
589 	}
590 
591 	arp->ar_hln = dev->addr_len;
592 	arp->ar_pln = 4;
593 	arp->ar_op = htons(type);
594 
595 	arp_ptr = (unsigned char *)(arp + 1);
596 
597 	memcpy(arp_ptr, src_hw, dev->addr_len);
598 	arp_ptr += dev->addr_len;
599 	memcpy(arp_ptr, &src_ip, 4);
600 	arp_ptr += 4;
601 
602 	switch (dev->type) {
603 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
604 	case ARPHRD_IEEE1394:
605 		break;
606 #endif
607 	default:
608 		if (target_hw)
609 			memcpy(arp_ptr, target_hw, dev->addr_len);
610 		else
611 			memset(arp_ptr, 0, dev->addr_len);
612 		arp_ptr += dev->addr_len;
613 	}
614 	memcpy(arp_ptr, &dest_ip, 4);
615 
616 	return skb;
617 
618 out:
619 	kfree_skb(skb);
620 	return NULL;
621 }
622 EXPORT_SYMBOL(arp_create);
623 
624 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
625 {
626 	return dev_queue_xmit(skb);
627 }
628 
629 /*
630  *	Send an arp packet.
631  */
632 void arp_xmit(struct sk_buff *skb)
633 {
634 	/* Send it off, maybe filter it using firewalling first.  */
635 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
636 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
637 		arp_xmit_finish);
638 }
639 EXPORT_SYMBOL(arp_xmit);
640 
641 /*
642  *	Process an arp request.
643  */
644 
645 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
646 {
647 	struct net_device *dev = skb->dev;
648 	struct in_device *in_dev = __in_dev_get_rcu(dev);
649 	struct arphdr *arp;
650 	unsigned char *arp_ptr;
651 	struct rtable *rt;
652 	unsigned char *sha;
653 	__be32 sip, tip;
654 	u16 dev_type = dev->type;
655 	int addr_type;
656 	struct neighbour *n;
657 	bool is_garp = false;
658 
659 	/* arp_rcv below verifies the ARP header and verifies the device
660 	 * is ARP'able.
661 	 */
662 
663 	if (!in_dev)
664 		goto out;
665 
666 	arp = arp_hdr(skb);
667 
668 	switch (dev_type) {
669 	default:
670 		if (arp->ar_pro != htons(ETH_P_IP) ||
671 		    htons(dev_type) != arp->ar_hrd)
672 			goto out;
673 		break;
674 	case ARPHRD_ETHER:
675 	case ARPHRD_FDDI:
676 	case ARPHRD_IEEE802:
677 		/*
678 		 * ETHERNET, and Fibre Channel (which are IEEE 802
679 		 * devices, according to RFC 2625) devices will accept ARP
680 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
681 		 * This is the case also of FDDI, where the RFC 1390 says that
682 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
683 		 * however, to be more robust, we'll accept both 1 (Ethernet)
684 		 * or 6 (IEEE 802.2)
685 		 */
686 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
687 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
688 		    arp->ar_pro != htons(ETH_P_IP))
689 			goto out;
690 		break;
691 	case ARPHRD_AX25:
692 		if (arp->ar_pro != htons(AX25_P_IP) ||
693 		    arp->ar_hrd != htons(ARPHRD_AX25))
694 			goto out;
695 		break;
696 	case ARPHRD_NETROM:
697 		if (arp->ar_pro != htons(AX25_P_IP) ||
698 		    arp->ar_hrd != htons(ARPHRD_NETROM))
699 			goto out;
700 		break;
701 	}
702 
703 	/* Understand only these message types */
704 
705 	if (arp->ar_op != htons(ARPOP_REPLY) &&
706 	    arp->ar_op != htons(ARPOP_REQUEST))
707 		goto out;
708 
709 /*
710  *	Extract fields
711  */
712 	arp_ptr = (unsigned char *)(arp + 1);
713 	sha	= arp_ptr;
714 	arp_ptr += dev->addr_len;
715 	memcpy(&sip, arp_ptr, 4);
716 	arp_ptr += 4;
717 	switch (dev_type) {
718 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
719 	case ARPHRD_IEEE1394:
720 		break;
721 #endif
722 	default:
723 		arp_ptr += dev->addr_len;
724 	}
725 	memcpy(&tip, arp_ptr, 4);
726 /*
727  *	Check for bad requests for 127.x.x.x and requests for multicast
728  *	addresses.  If this is one such, delete it.
729  */
730 	if (ipv4_is_multicast(tip) ||
731 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
732 		goto out;
733 
734 /*
735  *     Special case: We must set Frame Relay source Q.922 address
736  */
737 	if (dev_type == ARPHRD_DLCI)
738 		sha = dev->broadcast;
739 
740 /*
741  *  Process entry.  The idea here is we want to send a reply if it is a
742  *  request for us or if it is a request for someone else that we hold
743  *  a proxy for.  We want to add an entry to our cache if it is a reply
744  *  to us or if it is a request for our address.
745  *  (The assumption for this last is that if someone is requesting our
746  *  address, they are probably intending to talk to us, so it saves time
747  *  if we cache their address.  Their address is also probably not in
748  *  our cache, since ours is not in their cache.)
749  *
750  *  Putting this another way, we only care about replies if they are to
751  *  us, in which case we add them to the cache.  For requests, we care
752  *  about those for us and those for our proxies.  We reply to both,
753  *  and in the case of requests for us we add the requester to the arp
754  *  cache.
755  */
756 
757 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
758 	if (sip == 0) {
759 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
760 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
761 		    !arp_ignore(in_dev, sip, tip))
762 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
763 				 dev->dev_addr, sha);
764 		goto out;
765 	}
766 
767 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
768 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
769 
770 		rt = skb_rtable(skb);
771 		addr_type = rt->rt_type;
772 
773 		if (addr_type == RTN_LOCAL) {
774 			int dont_send;
775 
776 			dont_send = arp_ignore(in_dev, sip, tip);
777 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
778 				dont_send = arp_filter(sip, tip, dev);
779 			if (!dont_send) {
780 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
781 				if (n) {
782 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
783 						 dev, tip, sha, dev->dev_addr,
784 						 sha);
785 					neigh_release(n);
786 				}
787 			}
788 			goto out;
789 		} else if (IN_DEV_FORWARD(in_dev)) {
790 			if (addr_type == RTN_UNICAST  &&
791 			    (arp_fwd_proxy(in_dev, dev, rt) ||
792 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
793 			     (rt->dst.dev != dev &&
794 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
795 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
796 				if (n)
797 					neigh_release(n);
798 
799 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
800 				    skb->pkt_type == PACKET_HOST ||
801 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
802 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
803 						 dev, tip, sha, dev->dev_addr,
804 						 sha);
805 				} else {
806 					pneigh_enqueue(&arp_tbl,
807 						       in_dev->arp_parms, skb);
808 					return 0;
809 				}
810 				goto out;
811 			}
812 		}
813 	}
814 
815 	/* Update our ARP tables */
816 
817 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
818 
819 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
820 		unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
821 
822 		/* Unsolicited ARP is not accepted by default.
823 		   It is possible, that this option should be enabled for some
824 		   devices (strip is candidate)
825 		 */
826 		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
827 			  addr_type == RTN_UNICAST;
828 
829 		if (!n &&
830 		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
831 				addr_type == RTN_UNICAST) || is_garp))
832 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
833 	}
834 
835 	if (n) {
836 		int state = NUD_REACHABLE;
837 		int override;
838 
839 		/* If several different ARP replies follows back-to-back,
840 		   use the FIRST one. It is possible, if several proxy
841 		   agents are active. Taking the first reply prevents
842 		   arp trashing and chooses the fastest router.
843 		 */
844 		override = time_after(jiffies,
845 				      n->updated +
846 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
847 			   is_garp;
848 
849 		/* Broadcast replies and request packets
850 		   do not assert neighbour reachability.
851 		 */
852 		if (arp->ar_op != htons(ARPOP_REPLY) ||
853 		    skb->pkt_type != PACKET_HOST)
854 			state = NUD_STALE;
855 		neigh_update(n, sha, state,
856 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
857 		neigh_release(n);
858 	}
859 
860 out:
861 	consume_skb(skb);
862 	return 0;
863 }
864 
865 static void parp_redo(struct sk_buff *skb)
866 {
867 	arp_process(dev_net(skb->dev), NULL, skb);
868 }
869 
870 
871 /*
872  *	Receive an arp request from the device layer.
873  */
874 
875 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
876 		   struct packet_type *pt, struct net_device *orig_dev)
877 {
878 	const struct arphdr *arp;
879 
880 	/* do not tweak dropwatch on an ARP we will ignore */
881 	if (dev->flags & IFF_NOARP ||
882 	    skb->pkt_type == PACKET_OTHERHOST ||
883 	    skb->pkt_type == PACKET_LOOPBACK)
884 		goto consumeskb;
885 
886 	skb = skb_share_check(skb, GFP_ATOMIC);
887 	if (!skb)
888 		goto out_of_mem;
889 
890 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
891 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
892 		goto freeskb;
893 
894 	arp = arp_hdr(skb);
895 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
896 		goto freeskb;
897 
898 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
899 
900 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
901 		       dev_net(dev), NULL, skb, dev, NULL,
902 		       arp_process);
903 
904 consumeskb:
905 	consume_skb(skb);
906 	return 0;
907 freeskb:
908 	kfree_skb(skb);
909 out_of_mem:
910 	return 0;
911 }
912 
913 /*
914  *	User level interface (ioctl)
915  */
916 
917 /*
918  *	Set (create) an ARP cache entry.
919  */
920 
921 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
922 {
923 	if (!dev) {
924 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
925 		return 0;
926 	}
927 	if (__in_dev_get_rtnl(dev)) {
928 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
929 		return 0;
930 	}
931 	return -ENXIO;
932 }
933 
934 static int arp_req_set_public(struct net *net, struct arpreq *r,
935 		struct net_device *dev)
936 {
937 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
938 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
939 
940 	if (mask && mask != htonl(0xFFFFFFFF))
941 		return -EINVAL;
942 	if (!dev && (r->arp_flags & ATF_COM)) {
943 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
944 				      r->arp_ha.sa_data);
945 		if (!dev)
946 			return -ENODEV;
947 	}
948 	if (mask) {
949 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
950 			return -ENOBUFS;
951 		return 0;
952 	}
953 
954 	return arp_req_set_proxy(net, dev, 1);
955 }
956 
957 static int arp_req_set(struct net *net, struct arpreq *r,
958 		       struct net_device *dev)
959 {
960 	__be32 ip;
961 	struct neighbour *neigh;
962 	int err;
963 
964 	if (r->arp_flags & ATF_PUBL)
965 		return arp_req_set_public(net, r, dev);
966 
967 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
968 	if (r->arp_flags & ATF_PERM)
969 		r->arp_flags |= ATF_COM;
970 	if (!dev) {
971 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
972 
973 		if (IS_ERR(rt))
974 			return PTR_ERR(rt);
975 		dev = rt->dst.dev;
976 		ip_rt_put(rt);
977 		if (!dev)
978 			return -EINVAL;
979 	}
980 	switch (dev->type) {
981 #if IS_ENABLED(CONFIG_FDDI)
982 	case ARPHRD_FDDI:
983 		/*
984 		 * According to RFC 1390, FDDI devices should accept ARP
985 		 * hardware types of 1 (Ethernet).  However, to be more
986 		 * robust, we'll accept hardware types of either 1 (Ethernet)
987 		 * or 6 (IEEE 802.2).
988 		 */
989 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
990 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
991 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
992 			return -EINVAL;
993 		break;
994 #endif
995 	default:
996 		if (r->arp_ha.sa_family != dev->type)
997 			return -EINVAL;
998 		break;
999 	}
1000 
1001 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1002 	err = PTR_ERR(neigh);
1003 	if (!IS_ERR(neigh)) {
1004 		unsigned int state = NUD_STALE;
1005 		if (r->arp_flags & ATF_PERM)
1006 			state = NUD_PERMANENT;
1007 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1008 				   r->arp_ha.sa_data : NULL, state,
1009 				   NEIGH_UPDATE_F_OVERRIDE |
1010 				   NEIGH_UPDATE_F_ADMIN);
1011 		neigh_release(neigh);
1012 	}
1013 	return err;
1014 }
1015 
1016 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1017 {
1018 	if (neigh->nud_state&NUD_PERMANENT)
1019 		return ATF_PERM | ATF_COM;
1020 	else if (neigh->nud_state&NUD_VALID)
1021 		return ATF_COM;
1022 	else
1023 		return 0;
1024 }
1025 
1026 /*
1027  *	Get an ARP cache entry.
1028  */
1029 
1030 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1031 {
1032 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1033 	struct neighbour *neigh;
1034 	int err = -ENXIO;
1035 
1036 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1037 	if (neigh) {
1038 		if (!(neigh->nud_state & NUD_NOARP)) {
1039 			read_lock_bh(&neigh->lock);
1040 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1041 			r->arp_flags = arp_state_to_flags(neigh);
1042 			read_unlock_bh(&neigh->lock);
1043 			r->arp_ha.sa_family = dev->type;
1044 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1045 			err = 0;
1046 		}
1047 		neigh_release(neigh);
1048 	}
1049 	return err;
1050 }
1051 
1052 static int arp_invalidate(struct net_device *dev, __be32 ip)
1053 {
1054 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1055 	int err = -ENXIO;
1056 
1057 	if (neigh) {
1058 		if (neigh->nud_state & ~NUD_NOARP)
1059 			err = neigh_update(neigh, NULL, NUD_FAILED,
1060 					   NEIGH_UPDATE_F_OVERRIDE|
1061 					   NEIGH_UPDATE_F_ADMIN);
1062 		neigh_release(neigh);
1063 	}
1064 
1065 	return err;
1066 }
1067 
1068 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1069 		struct net_device *dev)
1070 {
1071 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1072 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1073 
1074 	if (mask == htonl(0xFFFFFFFF))
1075 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1076 
1077 	if (mask)
1078 		return -EINVAL;
1079 
1080 	return arp_req_set_proxy(net, dev, 0);
1081 }
1082 
1083 static int arp_req_delete(struct net *net, struct arpreq *r,
1084 			  struct net_device *dev)
1085 {
1086 	__be32 ip;
1087 
1088 	if (r->arp_flags & ATF_PUBL)
1089 		return arp_req_delete_public(net, r, dev);
1090 
1091 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1092 	if (!dev) {
1093 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1094 		if (IS_ERR(rt))
1095 			return PTR_ERR(rt);
1096 		dev = rt->dst.dev;
1097 		ip_rt_put(rt);
1098 		if (!dev)
1099 			return -EINVAL;
1100 	}
1101 	return arp_invalidate(dev, ip);
1102 }
1103 
1104 /*
1105  *	Handle an ARP layer I/O control request.
1106  */
1107 
1108 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1109 {
1110 	int err;
1111 	struct arpreq r;
1112 	struct net_device *dev = NULL;
1113 
1114 	switch (cmd) {
1115 	case SIOCDARP:
1116 	case SIOCSARP:
1117 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1118 			return -EPERM;
1119 	case SIOCGARP:
1120 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1121 		if (err)
1122 			return -EFAULT;
1123 		break;
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 
1128 	if (r.arp_pa.sa_family != AF_INET)
1129 		return -EPFNOSUPPORT;
1130 
1131 	if (!(r.arp_flags & ATF_PUBL) &&
1132 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1133 		return -EINVAL;
1134 	if (!(r.arp_flags & ATF_NETMASK))
1135 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1136 							   htonl(0xFFFFFFFFUL);
1137 	rtnl_lock();
1138 	if (r.arp_dev[0]) {
1139 		err = -ENODEV;
1140 		dev = __dev_get_by_name(net, r.arp_dev);
1141 		if (!dev)
1142 			goto out;
1143 
1144 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1145 		if (!r.arp_ha.sa_family)
1146 			r.arp_ha.sa_family = dev->type;
1147 		err = -EINVAL;
1148 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1149 			goto out;
1150 	} else if (cmd == SIOCGARP) {
1151 		err = -ENODEV;
1152 		goto out;
1153 	}
1154 
1155 	switch (cmd) {
1156 	case SIOCDARP:
1157 		err = arp_req_delete(net, &r, dev);
1158 		break;
1159 	case SIOCSARP:
1160 		err = arp_req_set(net, &r, dev);
1161 		break;
1162 	case SIOCGARP:
1163 		err = arp_req_get(&r, dev);
1164 		break;
1165 	}
1166 out:
1167 	rtnl_unlock();
1168 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1169 		err = -EFAULT;
1170 	return err;
1171 }
1172 
1173 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1174 			    void *ptr)
1175 {
1176 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1177 	struct netdev_notifier_change_info *change_info;
1178 
1179 	switch (event) {
1180 	case NETDEV_CHANGEADDR:
1181 		neigh_changeaddr(&arp_tbl, dev);
1182 		rt_cache_flush(dev_net(dev));
1183 		break;
1184 	case NETDEV_CHANGE:
1185 		change_info = ptr;
1186 		if (change_info->flags_changed & IFF_NOARP)
1187 			neigh_changeaddr(&arp_tbl, dev);
1188 		break;
1189 	default:
1190 		break;
1191 	}
1192 
1193 	return NOTIFY_DONE;
1194 }
1195 
1196 static struct notifier_block arp_netdev_notifier = {
1197 	.notifier_call = arp_netdev_event,
1198 };
1199 
1200 /* Note, that it is not on notifier chain.
1201    It is necessary, that this routine was called after route cache will be
1202    flushed.
1203  */
1204 void arp_ifdown(struct net_device *dev)
1205 {
1206 	neigh_ifdown(&arp_tbl, dev);
1207 }
1208 
1209 
1210 /*
1211  *	Called once on startup.
1212  */
1213 
1214 static struct packet_type arp_packet_type __read_mostly = {
1215 	.type =	cpu_to_be16(ETH_P_ARP),
1216 	.func =	arp_rcv,
1217 };
1218 
1219 static int arp_proc_init(void);
1220 
1221 void __init arp_init(void)
1222 {
1223 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1224 
1225 	dev_add_pack(&arp_packet_type);
1226 	arp_proc_init();
1227 #ifdef CONFIG_SYSCTL
1228 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1229 #endif
1230 	register_netdevice_notifier(&arp_netdev_notifier);
1231 }
1232 
1233 #ifdef CONFIG_PROC_FS
1234 #if IS_ENABLED(CONFIG_AX25)
1235 
1236 /* ------------------------------------------------------------------------ */
1237 /*
1238  *	ax25 -> ASCII conversion
1239  */
1240 static char *ax2asc2(ax25_address *a, char *buf)
1241 {
1242 	char c, *s;
1243 	int n;
1244 
1245 	for (n = 0, s = buf; n < 6; n++) {
1246 		c = (a->ax25_call[n] >> 1) & 0x7F;
1247 
1248 		if (c != ' ')
1249 			*s++ = c;
1250 	}
1251 
1252 	*s++ = '-';
1253 	n = (a->ax25_call[6] >> 1) & 0x0F;
1254 	if (n > 9) {
1255 		*s++ = '1';
1256 		n -= 10;
1257 	}
1258 
1259 	*s++ = n + '0';
1260 	*s++ = '\0';
1261 
1262 	if (*buf == '\0' || *buf == '-')
1263 		return "*";
1264 
1265 	return buf;
1266 }
1267 #endif /* CONFIG_AX25 */
1268 
1269 #define HBUFFERLEN 30
1270 
1271 static void arp_format_neigh_entry(struct seq_file *seq,
1272 				   struct neighbour *n)
1273 {
1274 	char hbuffer[HBUFFERLEN];
1275 	int k, j;
1276 	char tbuf[16];
1277 	struct net_device *dev = n->dev;
1278 	int hatype = dev->type;
1279 
1280 	read_lock(&n->lock);
1281 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1282 #if IS_ENABLED(CONFIG_AX25)
1283 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1284 		ax2asc2((ax25_address *)n->ha, hbuffer);
1285 	else {
1286 #endif
1287 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1288 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1289 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1290 		hbuffer[k++] = ':';
1291 	}
1292 	if (k != 0)
1293 		--k;
1294 	hbuffer[k] = 0;
1295 #if IS_ENABLED(CONFIG_AX25)
1296 	}
1297 #endif
1298 	sprintf(tbuf, "%pI4", n->primary_key);
1299 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1300 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1301 	read_unlock(&n->lock);
1302 }
1303 
1304 static void arp_format_pneigh_entry(struct seq_file *seq,
1305 				    struct pneigh_entry *n)
1306 {
1307 	struct net_device *dev = n->dev;
1308 	int hatype = dev ? dev->type : 0;
1309 	char tbuf[16];
1310 
1311 	sprintf(tbuf, "%pI4", n->key);
1312 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1313 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1314 		   dev ? dev->name : "*");
1315 }
1316 
1317 static int arp_seq_show(struct seq_file *seq, void *v)
1318 {
1319 	if (v == SEQ_START_TOKEN) {
1320 		seq_puts(seq, "IP address       HW type     Flags       "
1321 			      "HW address            Mask     Device\n");
1322 	} else {
1323 		struct neigh_seq_state *state = seq->private;
1324 
1325 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1326 			arp_format_pneigh_entry(seq, v);
1327 		else
1328 			arp_format_neigh_entry(seq, v);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1335 {
1336 	/* Don't want to confuse "arp -a" w/ magic entries,
1337 	 * so we tell the generic iterator to skip NUD_NOARP.
1338 	 */
1339 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1340 }
1341 
1342 /* ------------------------------------------------------------------------ */
1343 
1344 static const struct seq_operations arp_seq_ops = {
1345 	.start	= arp_seq_start,
1346 	.next	= neigh_seq_next,
1347 	.stop	= neigh_seq_stop,
1348 	.show	= arp_seq_show,
1349 };
1350 
1351 static int arp_seq_open(struct inode *inode, struct file *file)
1352 {
1353 	return seq_open_net(inode, file, &arp_seq_ops,
1354 			    sizeof(struct neigh_seq_state));
1355 }
1356 
1357 static const struct file_operations arp_seq_fops = {
1358 	.owner		= THIS_MODULE,
1359 	.open           = arp_seq_open,
1360 	.read           = seq_read,
1361 	.llseek         = seq_lseek,
1362 	.release	= seq_release_net,
1363 };
1364 
1365 
1366 static int __net_init arp_net_init(struct net *net)
1367 {
1368 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1369 		return -ENOMEM;
1370 	return 0;
1371 }
1372 
1373 static void __net_exit arp_net_exit(struct net *net)
1374 {
1375 	remove_proc_entry("arp", net->proc_net);
1376 }
1377 
1378 static struct pernet_operations arp_net_ops = {
1379 	.init = arp_net_init,
1380 	.exit = arp_net_exit,
1381 };
1382 
1383 static int __init arp_proc_init(void)
1384 {
1385 	return register_pernet_subsys(&arp_net_ops);
1386 }
1387 
1388 #else /* CONFIG_PROC_FS */
1389 
1390 static int __init arp_proc_init(void)
1391 {
1392 	return 0;
1393 }
1394 
1395 #endif /* CONFIG_PROC_FS */
1396