xref: /openbmc/linux/net/ipv4/arp.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *	Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 
129 static const struct neigh_ops arp_generic_ops = {
130 	.family =		AF_INET,
131 	.solicit =		arp_solicit,
132 	.error_report =		arp_error_report,
133 	.output =		neigh_resolve_output,
134 	.connected_output =	neigh_connected_output,
135 };
136 
137 static const struct neigh_ops arp_hh_ops = {
138 	.family =		AF_INET,
139 	.solicit =		arp_solicit,
140 	.error_report =		arp_error_report,
141 	.output =		neigh_resolve_output,
142 	.connected_output =	neigh_resolve_output,
143 };
144 
145 static const struct neigh_ops arp_direct_ops = {
146 	.family =		AF_INET,
147 	.output =		neigh_direct_output,
148 	.connected_output =	neigh_direct_output,
149 };
150 
151 struct neigh_table arp_tbl = {
152 	.family		= AF_INET,
153 	.key_len	= 4,
154 	.protocol	= cpu_to_be16(ETH_P_IP),
155 	.hash		= arp_hash,
156 	.key_eq		= arp_key_eq,
157 	.constructor	= arp_constructor,
158 	.proxy_redo	= parp_redo,
159 	.id		= "arp_cache",
160 	.parms		= {
161 		.tbl			= &arp_tbl,
162 		.reachable_time		= 30 * HZ,
163 		.data	= {
164 			[NEIGH_VAR_MCAST_PROBES] = 3,
165 			[NEIGH_VAR_UCAST_PROBES] = 3,
166 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
167 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
168 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
169 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
170 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
171 			[NEIGH_VAR_PROXY_QLEN] = 64,
172 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
173 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
174 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
175 		},
176 	},
177 	.gc_interval	= 30 * HZ,
178 	.gc_thresh1	= 128,
179 	.gc_thresh2	= 512,
180 	.gc_thresh3	= 1024,
181 };
182 EXPORT_SYMBOL(arp_tbl);
183 
184 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
185 {
186 	switch (dev->type) {
187 	case ARPHRD_ETHER:
188 	case ARPHRD_FDDI:
189 	case ARPHRD_IEEE802:
190 		ip_eth_mc_map(addr, haddr);
191 		return 0;
192 	case ARPHRD_INFINIBAND:
193 		ip_ib_mc_map(addr, dev->broadcast, haddr);
194 		return 0;
195 	case ARPHRD_IPGRE:
196 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
197 		return 0;
198 	default:
199 		if (dir) {
200 			memcpy(haddr, dev->broadcast, dev->addr_len);
201 			return 0;
202 		}
203 	}
204 	return -EINVAL;
205 }
206 
207 
208 static u32 arp_hash(const void *pkey,
209 		    const struct net_device *dev,
210 		    __u32 *hash_rnd)
211 {
212 	return arp_hashfn(pkey, dev, hash_rnd);
213 }
214 
215 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
216 {
217 	return neigh_key_eq32(neigh, pkey);
218 }
219 
220 static int arp_constructor(struct neighbour *neigh)
221 {
222 	__be32 addr;
223 	struct net_device *dev = neigh->dev;
224 	struct in_device *in_dev;
225 	struct neigh_parms *parms;
226 	u32 inaddr_any = INADDR_ANY;
227 
228 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
229 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
230 
231 	addr = *(__be32 *)neigh->primary_key;
232 	rcu_read_lock();
233 	in_dev = __in_dev_get_rcu(dev);
234 	if (!in_dev) {
235 		rcu_read_unlock();
236 		return -EINVAL;
237 	}
238 
239 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
240 
241 	parms = in_dev->arp_parms;
242 	__neigh_parms_put(neigh->parms);
243 	neigh->parms = neigh_parms_clone(parms);
244 	rcu_read_unlock();
245 
246 	if (!dev->header_ops) {
247 		neigh->nud_state = NUD_NOARP;
248 		neigh->ops = &arp_direct_ops;
249 		neigh->output = neigh_direct_output;
250 	} else {
251 		/* Good devices (checked by reading texts, but only Ethernet is
252 		   tested)
253 
254 		   ARPHRD_ETHER: (ethernet, apfddi)
255 		   ARPHRD_FDDI: (fddi)
256 		   ARPHRD_IEEE802: (tr)
257 		   ARPHRD_METRICOM: (strip)
258 		   ARPHRD_ARCNET:
259 		   etc. etc. etc.
260 
261 		   ARPHRD_IPDDP will also work, if author repairs it.
262 		   I did not it, because this driver does not work even
263 		   in old paradigm.
264 		 */
265 
266 		if (neigh->type == RTN_MULTICAST) {
267 			neigh->nud_state = NUD_NOARP;
268 			arp_mc_map(addr, neigh->ha, dev, 1);
269 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
270 			neigh->nud_state = NUD_NOARP;
271 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
272 		} else if (neigh->type == RTN_BROADCAST ||
273 			   (dev->flags & IFF_POINTOPOINT)) {
274 			neigh->nud_state = NUD_NOARP;
275 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
276 		}
277 
278 		if (dev->header_ops->cache)
279 			neigh->ops = &arp_hh_ops;
280 		else
281 			neigh->ops = &arp_generic_ops;
282 
283 		if (neigh->nud_state & NUD_VALID)
284 			neigh->output = neigh->ops->connected_output;
285 		else
286 			neigh->output = neigh->ops->output;
287 	}
288 	return 0;
289 }
290 
291 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
292 {
293 	dst_link_failure(skb);
294 	kfree_skb(skb);
295 }
296 
297 /* Create and send an arp packet. */
298 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
299 			 struct net_device *dev, __be32 src_ip,
300 			 const unsigned char *dest_hw,
301 			 const unsigned char *src_hw,
302 			 const unsigned char *target_hw,
303 			 struct dst_entry *dst)
304 {
305 	struct sk_buff *skb;
306 
307 	/* arp on this interface. */
308 	if (dev->flags & IFF_NOARP)
309 		return;
310 
311 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
312 			 dest_hw, src_hw, target_hw);
313 	if (!skb)
314 		return;
315 
316 	skb_dst_set(skb, dst_clone(dst));
317 	arp_xmit(skb);
318 }
319 
320 void arp_send(int type, int ptype, __be32 dest_ip,
321 	      struct net_device *dev, __be32 src_ip,
322 	      const unsigned char *dest_hw, const unsigned char *src_hw,
323 	      const unsigned char *target_hw)
324 {
325 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
326 		     target_hw, NULL);
327 }
328 EXPORT_SYMBOL(arp_send);
329 
330 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 {
332 	__be32 saddr = 0;
333 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
334 	struct net_device *dev = neigh->dev;
335 	__be32 target = *(__be32 *)neigh->primary_key;
336 	int probes = atomic_read(&neigh->probes);
337 	struct in_device *in_dev;
338 	struct dst_entry *dst = NULL;
339 
340 	rcu_read_lock();
341 	in_dev = __in_dev_get_rcu(dev);
342 	if (!in_dev) {
343 		rcu_read_unlock();
344 		return;
345 	}
346 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
347 	default:
348 	case 0:		/* By default announce any local IP */
349 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
350 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
351 			saddr = ip_hdr(skb)->saddr;
352 		break;
353 	case 1:		/* Restrict announcements of saddr in same subnet */
354 		if (!skb)
355 			break;
356 		saddr = ip_hdr(skb)->saddr;
357 		if (inet_addr_type_dev_table(dev_net(dev), dev,
358 					     saddr) == RTN_LOCAL) {
359 			/* saddr should be known to target */
360 			if (inet_addr_onlink(in_dev, target, saddr))
361 				break;
362 		}
363 		saddr = 0;
364 		break;
365 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
366 		break;
367 	}
368 	rcu_read_unlock();
369 
370 	if (!saddr)
371 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
372 
373 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
374 	if (probes < 0) {
375 		if (!(neigh->nud_state & NUD_VALID))
376 			pr_debug("trying to ucast probe in NUD_INVALID\n");
377 		neigh_ha_snapshot(dst_ha, neigh, dev);
378 		dst_hw = dst_ha;
379 	} else {
380 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
381 		if (probes < 0) {
382 			neigh_app_ns(neigh);
383 			return;
384 		}
385 	}
386 
387 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
388 		dst = skb_dst(skb);
389 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
390 		     dst_hw, dev->dev_addr, NULL, dst);
391 }
392 
393 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
394 {
395 	struct net *net = dev_net(in_dev->dev);
396 	int scope;
397 
398 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
399 	case 0:	/* Reply, the tip is already validated */
400 		return 0;
401 	case 1:	/* Reply only if tip is configured on the incoming interface */
402 		sip = 0;
403 		scope = RT_SCOPE_HOST;
404 		break;
405 	case 2:	/*
406 		 * Reply only if tip is configured on the incoming interface
407 		 * and is in same subnet as sip
408 		 */
409 		scope = RT_SCOPE_HOST;
410 		break;
411 	case 3:	/* Do not reply for scope host addresses */
412 		sip = 0;
413 		scope = RT_SCOPE_LINK;
414 		in_dev = NULL;
415 		break;
416 	case 4:	/* Reserved */
417 	case 5:
418 	case 6:
419 	case 7:
420 		return 0;
421 	case 8:	/* Do not reply */
422 		return 1;
423 	default:
424 		return 0;
425 	}
426 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
427 }
428 
429 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
430 {
431 	struct rtable *rt;
432 	int flag = 0;
433 	/*unsigned long now; */
434 	struct net *net = dev_net(dev);
435 
436 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
437 	if (IS_ERR(rt))
438 		return 1;
439 	if (rt->dst.dev != dev) {
440 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
441 		flag = 1;
442 	}
443 	ip_rt_put(rt);
444 	return flag;
445 }
446 
447 /*
448  * Check if we can use proxy ARP for this path
449  */
450 static inline int arp_fwd_proxy(struct in_device *in_dev,
451 				struct net_device *dev,	struct rtable *rt)
452 {
453 	struct in_device *out_dev;
454 	int imi, omi = -1;
455 
456 	if (rt->dst.dev == dev)
457 		return 0;
458 
459 	if (!IN_DEV_PROXY_ARP(in_dev))
460 		return 0;
461 	imi = IN_DEV_MEDIUM_ID(in_dev);
462 	if (imi == 0)
463 		return 1;
464 	if (imi == -1)
465 		return 0;
466 
467 	/* place to check for proxy_arp for routes */
468 
469 	out_dev = __in_dev_get_rcu(rt->dst.dev);
470 	if (out_dev)
471 		omi = IN_DEV_MEDIUM_ID(out_dev);
472 
473 	return omi != imi && omi != -1;
474 }
475 
476 /*
477  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
478  *
479  * RFC3069 supports proxy arp replies back to the same interface.  This
480  * is done to support (ethernet) switch features, like RFC 3069, where
481  * the individual ports are not allowed to communicate with each
482  * other, BUT they are allowed to talk to the upstream router.  As
483  * described in RFC 3069, it is possible to allow these hosts to
484  * communicate through the upstream router, by proxy_arp'ing.
485  *
486  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
487  *
488  *  This technology is known by different names:
489  *    In RFC 3069 it is called VLAN Aggregation.
490  *    Cisco and Allied Telesyn call it Private VLAN.
491  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
492  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
493  *
494  */
495 static inline int arp_fwd_pvlan(struct in_device *in_dev,
496 				struct net_device *dev,	struct rtable *rt,
497 				__be32 sip, __be32 tip)
498 {
499 	/* Private VLAN is only concerned about the same ethernet segment */
500 	if (rt->dst.dev != dev)
501 		return 0;
502 
503 	/* Don't reply on self probes (often done by windowz boxes)*/
504 	if (sip == tip)
505 		return 0;
506 
507 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
508 		return 1;
509 	else
510 		return 0;
511 }
512 
513 /*
514  *	Interface to link layer: send routine and receive handler.
515  */
516 
517 /*
518  *	Create an arp packet. If dest_hw is not set, we create a broadcast
519  *	message.
520  */
521 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
522 			   struct net_device *dev, __be32 src_ip,
523 			   const unsigned char *dest_hw,
524 			   const unsigned char *src_hw,
525 			   const unsigned char *target_hw)
526 {
527 	struct sk_buff *skb;
528 	struct arphdr *arp;
529 	unsigned char *arp_ptr;
530 	int hlen = LL_RESERVED_SPACE(dev);
531 	int tlen = dev->needed_tailroom;
532 
533 	/*
534 	 *	Allocate a buffer
535 	 */
536 
537 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
538 	if (!skb)
539 		return NULL;
540 
541 	skb_reserve(skb, hlen);
542 	skb_reset_network_header(skb);
543 	arp = skb_put(skb, arp_hdr_len(dev));
544 	skb->dev = dev;
545 	skb->protocol = htons(ETH_P_ARP);
546 	if (!src_hw)
547 		src_hw = dev->dev_addr;
548 	if (!dest_hw)
549 		dest_hw = dev->broadcast;
550 
551 	/*
552 	 *	Fill the device header for the ARP frame
553 	 */
554 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
555 		goto out;
556 
557 	/*
558 	 * Fill out the arp protocol part.
559 	 *
560 	 * The arp hardware type should match the device type, except for FDDI,
561 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
562 	 */
563 	/*
564 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
565 	 *	DIX code for the protocol. Make these device structure fields.
566 	 */
567 	switch (dev->type) {
568 	default:
569 		arp->ar_hrd = htons(dev->type);
570 		arp->ar_pro = htons(ETH_P_IP);
571 		break;
572 
573 #if IS_ENABLED(CONFIG_AX25)
574 	case ARPHRD_AX25:
575 		arp->ar_hrd = htons(ARPHRD_AX25);
576 		arp->ar_pro = htons(AX25_P_IP);
577 		break;
578 
579 #if IS_ENABLED(CONFIG_NETROM)
580 	case ARPHRD_NETROM:
581 		arp->ar_hrd = htons(ARPHRD_NETROM);
582 		arp->ar_pro = htons(AX25_P_IP);
583 		break;
584 #endif
585 #endif
586 
587 #if IS_ENABLED(CONFIG_FDDI)
588 	case ARPHRD_FDDI:
589 		arp->ar_hrd = htons(ARPHRD_ETHER);
590 		arp->ar_pro = htons(ETH_P_IP);
591 		break;
592 #endif
593 	}
594 
595 	arp->ar_hln = dev->addr_len;
596 	arp->ar_pln = 4;
597 	arp->ar_op = htons(type);
598 
599 	arp_ptr = (unsigned char *)(arp + 1);
600 
601 	memcpy(arp_ptr, src_hw, dev->addr_len);
602 	arp_ptr += dev->addr_len;
603 	memcpy(arp_ptr, &src_ip, 4);
604 	arp_ptr += 4;
605 
606 	switch (dev->type) {
607 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
608 	case ARPHRD_IEEE1394:
609 		break;
610 #endif
611 	default:
612 		if (target_hw)
613 			memcpy(arp_ptr, target_hw, dev->addr_len);
614 		else
615 			memset(arp_ptr, 0, dev->addr_len);
616 		arp_ptr += dev->addr_len;
617 	}
618 	memcpy(arp_ptr, &dest_ip, 4);
619 
620 	return skb;
621 
622 out:
623 	kfree_skb(skb);
624 	return NULL;
625 }
626 EXPORT_SYMBOL(arp_create);
627 
628 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
629 {
630 	return dev_queue_xmit(skb);
631 }
632 
633 /*
634  *	Send an arp packet.
635  */
636 void arp_xmit(struct sk_buff *skb)
637 {
638 	/* Send it off, maybe filter it using firewalling first.  */
639 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
640 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
641 		arp_xmit_finish);
642 }
643 EXPORT_SYMBOL(arp_xmit);
644 
645 static bool arp_is_garp(struct net *net, struct net_device *dev,
646 			int *addr_type, __be16 ar_op,
647 			__be32 sip, __be32 tip,
648 			unsigned char *sha, unsigned char *tha)
649 {
650 	bool is_garp = tip == sip;
651 
652 	/* Gratuitous ARP _replies_ also require target hwaddr to be
653 	 * the same as source.
654 	 */
655 	if (is_garp && ar_op == htons(ARPOP_REPLY))
656 		is_garp =
657 			/* IPv4 over IEEE 1394 doesn't provide target
658 			 * hardware address field in its ARP payload.
659 			 */
660 			tha &&
661 			!memcmp(tha, sha, dev->addr_len);
662 
663 	if (is_garp) {
664 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
665 		if (*addr_type != RTN_UNICAST)
666 			is_garp = false;
667 	}
668 	return is_garp;
669 }
670 
671 /*
672  *	Process an arp request.
673  */
674 
675 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
676 {
677 	struct net_device *dev = skb->dev;
678 	struct in_device *in_dev = __in_dev_get_rcu(dev);
679 	struct arphdr *arp;
680 	unsigned char *arp_ptr;
681 	struct rtable *rt;
682 	unsigned char *sha;
683 	unsigned char *tha = NULL;
684 	__be32 sip, tip;
685 	u16 dev_type = dev->type;
686 	int addr_type;
687 	struct neighbour *n;
688 	struct dst_entry *reply_dst = NULL;
689 	bool is_garp = false;
690 
691 	/* arp_rcv below verifies the ARP header and verifies the device
692 	 * is ARP'able.
693 	 */
694 
695 	if (!in_dev)
696 		goto out_free_skb;
697 
698 	arp = arp_hdr(skb);
699 
700 	switch (dev_type) {
701 	default:
702 		if (arp->ar_pro != htons(ETH_P_IP) ||
703 		    htons(dev_type) != arp->ar_hrd)
704 			goto out_free_skb;
705 		break;
706 	case ARPHRD_ETHER:
707 	case ARPHRD_FDDI:
708 	case ARPHRD_IEEE802:
709 		/*
710 		 * ETHERNET, and Fibre Channel (which are IEEE 802
711 		 * devices, according to RFC 2625) devices will accept ARP
712 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
713 		 * This is the case also of FDDI, where the RFC 1390 says that
714 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
715 		 * however, to be more robust, we'll accept both 1 (Ethernet)
716 		 * or 6 (IEEE 802.2)
717 		 */
718 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
719 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
720 		    arp->ar_pro != htons(ETH_P_IP))
721 			goto out_free_skb;
722 		break;
723 	case ARPHRD_AX25:
724 		if (arp->ar_pro != htons(AX25_P_IP) ||
725 		    arp->ar_hrd != htons(ARPHRD_AX25))
726 			goto out_free_skb;
727 		break;
728 	case ARPHRD_NETROM:
729 		if (arp->ar_pro != htons(AX25_P_IP) ||
730 		    arp->ar_hrd != htons(ARPHRD_NETROM))
731 			goto out_free_skb;
732 		break;
733 	}
734 
735 	/* Understand only these message types */
736 
737 	if (arp->ar_op != htons(ARPOP_REPLY) &&
738 	    arp->ar_op != htons(ARPOP_REQUEST))
739 		goto out_free_skb;
740 
741 /*
742  *	Extract fields
743  */
744 	arp_ptr = (unsigned char *)(arp + 1);
745 	sha	= arp_ptr;
746 	arp_ptr += dev->addr_len;
747 	memcpy(&sip, arp_ptr, 4);
748 	arp_ptr += 4;
749 	switch (dev_type) {
750 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
751 	case ARPHRD_IEEE1394:
752 		break;
753 #endif
754 	default:
755 		tha = arp_ptr;
756 		arp_ptr += dev->addr_len;
757 	}
758 	memcpy(&tip, arp_ptr, 4);
759 /*
760  *	Check for bad requests for 127.x.x.x and requests for multicast
761  *	addresses.  If this is one such, delete it.
762  */
763 	if (ipv4_is_multicast(tip) ||
764 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
765 		goto out_free_skb;
766 
767  /*
768   *	For some 802.11 wireless deployments (and possibly other networks),
769   *	there will be an ARP proxy and gratuitous ARP frames are attacks
770   *	and thus should not be accepted.
771   */
772 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
773 		goto out_free_skb;
774 
775 /*
776  *     Special case: We must set Frame Relay source Q.922 address
777  */
778 	if (dev_type == ARPHRD_DLCI)
779 		sha = dev->broadcast;
780 
781 /*
782  *  Process entry.  The idea here is we want to send a reply if it is a
783  *  request for us or if it is a request for someone else that we hold
784  *  a proxy for.  We want to add an entry to our cache if it is a reply
785  *  to us or if it is a request for our address.
786  *  (The assumption for this last is that if someone is requesting our
787  *  address, they are probably intending to talk to us, so it saves time
788  *  if we cache their address.  Their address is also probably not in
789  *  our cache, since ours is not in their cache.)
790  *
791  *  Putting this another way, we only care about replies if they are to
792  *  us, in which case we add them to the cache.  For requests, we care
793  *  about those for us and those for our proxies.  We reply to both,
794  *  and in the case of requests for us we add the requester to the arp
795  *  cache.
796  */
797 
798 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
799 		reply_dst = (struct dst_entry *)
800 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
801 						    GFP_ATOMIC);
802 
803 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
804 	if (sip == 0) {
805 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
806 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
807 		    !arp_ignore(in_dev, sip, tip))
808 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
809 				     sha, dev->dev_addr, sha, reply_dst);
810 		goto out_consume_skb;
811 	}
812 
813 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
814 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
815 
816 		rt = skb_rtable(skb);
817 		addr_type = rt->rt_type;
818 
819 		if (addr_type == RTN_LOCAL) {
820 			int dont_send;
821 
822 			dont_send = arp_ignore(in_dev, sip, tip);
823 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
824 				dont_send = arp_filter(sip, tip, dev);
825 			if (!dont_send) {
826 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
827 				if (n) {
828 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
829 						     sip, dev, tip, sha,
830 						     dev->dev_addr, sha,
831 						     reply_dst);
832 					neigh_release(n);
833 				}
834 			}
835 			goto out_consume_skb;
836 		} else if (IN_DEV_FORWARD(in_dev)) {
837 			if (addr_type == RTN_UNICAST  &&
838 			    (arp_fwd_proxy(in_dev, dev, rt) ||
839 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
840 			     (rt->dst.dev != dev &&
841 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
842 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843 				if (n)
844 					neigh_release(n);
845 
846 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
847 				    skb->pkt_type == PACKET_HOST ||
848 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
849 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
850 						     sip, dev, tip, sha,
851 						     dev->dev_addr, sha,
852 						     reply_dst);
853 				} else {
854 					pneigh_enqueue(&arp_tbl,
855 						       in_dev->arp_parms, skb);
856 					goto out_free_dst;
857 				}
858 				goto out_consume_skb;
859 			}
860 		}
861 	}
862 
863 	/* Update our ARP tables */
864 
865 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
866 
867 	addr_type = -1;
868 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
869 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
870 				      sip, tip, sha, tha);
871 	}
872 
873 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
874 		/* Unsolicited ARP is not accepted by default.
875 		   It is possible, that this option should be enabled for some
876 		   devices (strip is candidate)
877 		 */
878 		if (!n &&
879 		    (is_garp ||
880 		     (arp->ar_op == htons(ARPOP_REPLY) &&
881 		      (addr_type == RTN_UNICAST ||
882 		       (addr_type < 0 &&
883 			/* postpone calculation to as late as possible */
884 			inet_addr_type_dev_table(net, dev, sip) ==
885 				RTN_UNICAST)))))
886 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
887 	}
888 
889 	if (n) {
890 		int state = NUD_REACHABLE;
891 		int override;
892 
893 		/* If several different ARP replies follows back-to-back,
894 		   use the FIRST one. It is possible, if several proxy
895 		   agents are active. Taking the first reply prevents
896 		   arp trashing and chooses the fastest router.
897 		 */
898 		override = time_after(jiffies,
899 				      n->updated +
900 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
901 			   is_garp;
902 
903 		/* Broadcast replies and request packets
904 		   do not assert neighbour reachability.
905 		 */
906 		if (arp->ar_op != htons(ARPOP_REPLY) ||
907 		    skb->pkt_type != PACKET_HOST)
908 			state = NUD_STALE;
909 		neigh_update(n, sha, state,
910 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
911 		neigh_release(n);
912 	}
913 
914 out_consume_skb:
915 	consume_skb(skb);
916 
917 out_free_dst:
918 	dst_release(reply_dst);
919 	return NET_RX_SUCCESS;
920 
921 out_free_skb:
922 	kfree_skb(skb);
923 	return NET_RX_DROP;
924 }
925 
926 static void parp_redo(struct sk_buff *skb)
927 {
928 	arp_process(dev_net(skb->dev), NULL, skb);
929 }
930 
931 
932 /*
933  *	Receive an arp request from the device layer.
934  */
935 
936 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
937 		   struct packet_type *pt, struct net_device *orig_dev)
938 {
939 	const struct arphdr *arp;
940 
941 	/* do not tweak dropwatch on an ARP we will ignore */
942 	if (dev->flags & IFF_NOARP ||
943 	    skb->pkt_type == PACKET_OTHERHOST ||
944 	    skb->pkt_type == PACKET_LOOPBACK)
945 		goto consumeskb;
946 
947 	skb = skb_share_check(skb, GFP_ATOMIC);
948 	if (!skb)
949 		goto out_of_mem;
950 
951 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
952 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
953 		goto freeskb;
954 
955 	arp = arp_hdr(skb);
956 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
957 		goto freeskb;
958 
959 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
960 
961 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
962 		       dev_net(dev), NULL, skb, dev, NULL,
963 		       arp_process);
964 
965 consumeskb:
966 	consume_skb(skb);
967 	return NET_RX_SUCCESS;
968 freeskb:
969 	kfree_skb(skb);
970 out_of_mem:
971 	return NET_RX_DROP;
972 }
973 
974 /*
975  *	User level interface (ioctl)
976  */
977 
978 /*
979  *	Set (create) an ARP cache entry.
980  */
981 
982 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
983 {
984 	if (!dev) {
985 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
986 		return 0;
987 	}
988 	if (__in_dev_get_rtnl(dev)) {
989 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
990 		return 0;
991 	}
992 	return -ENXIO;
993 }
994 
995 static int arp_req_set_public(struct net *net, struct arpreq *r,
996 		struct net_device *dev)
997 {
998 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
999 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1000 
1001 	if (mask && mask != htonl(0xFFFFFFFF))
1002 		return -EINVAL;
1003 	if (!dev && (r->arp_flags & ATF_COM)) {
1004 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1005 				      r->arp_ha.sa_data);
1006 		if (!dev)
1007 			return -ENODEV;
1008 	}
1009 	if (mask) {
1010 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1011 			return -ENOBUFS;
1012 		return 0;
1013 	}
1014 
1015 	return arp_req_set_proxy(net, dev, 1);
1016 }
1017 
1018 static int arp_req_set(struct net *net, struct arpreq *r,
1019 		       struct net_device *dev)
1020 {
1021 	__be32 ip;
1022 	struct neighbour *neigh;
1023 	int err;
1024 
1025 	if (r->arp_flags & ATF_PUBL)
1026 		return arp_req_set_public(net, r, dev);
1027 
1028 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1029 	if (r->arp_flags & ATF_PERM)
1030 		r->arp_flags |= ATF_COM;
1031 	if (!dev) {
1032 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1033 
1034 		if (IS_ERR(rt))
1035 			return PTR_ERR(rt);
1036 		dev = rt->dst.dev;
1037 		ip_rt_put(rt);
1038 		if (!dev)
1039 			return -EINVAL;
1040 	}
1041 	switch (dev->type) {
1042 #if IS_ENABLED(CONFIG_FDDI)
1043 	case ARPHRD_FDDI:
1044 		/*
1045 		 * According to RFC 1390, FDDI devices should accept ARP
1046 		 * hardware types of 1 (Ethernet).  However, to be more
1047 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1048 		 * or 6 (IEEE 802.2).
1049 		 */
1050 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1051 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1052 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1053 			return -EINVAL;
1054 		break;
1055 #endif
1056 	default:
1057 		if (r->arp_ha.sa_family != dev->type)
1058 			return -EINVAL;
1059 		break;
1060 	}
1061 
1062 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1063 	err = PTR_ERR(neigh);
1064 	if (!IS_ERR(neigh)) {
1065 		unsigned int state = NUD_STALE;
1066 		if (r->arp_flags & ATF_PERM)
1067 			state = NUD_PERMANENT;
1068 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1069 				   r->arp_ha.sa_data : NULL, state,
1070 				   NEIGH_UPDATE_F_OVERRIDE |
1071 				   NEIGH_UPDATE_F_ADMIN, 0);
1072 		neigh_release(neigh);
1073 	}
1074 	return err;
1075 }
1076 
1077 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1078 {
1079 	if (neigh->nud_state&NUD_PERMANENT)
1080 		return ATF_PERM | ATF_COM;
1081 	else if (neigh->nud_state&NUD_VALID)
1082 		return ATF_COM;
1083 	else
1084 		return 0;
1085 }
1086 
1087 /*
1088  *	Get an ARP cache entry.
1089  */
1090 
1091 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1092 {
1093 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1094 	struct neighbour *neigh;
1095 	int err = -ENXIO;
1096 
1097 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1098 	if (neigh) {
1099 		if (!(neigh->nud_state & NUD_NOARP)) {
1100 			read_lock_bh(&neigh->lock);
1101 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102 			r->arp_flags = arp_state_to_flags(neigh);
1103 			read_unlock_bh(&neigh->lock);
1104 			r->arp_ha.sa_family = dev->type;
1105 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106 			err = 0;
1107 		}
1108 		neigh_release(neigh);
1109 	}
1110 	return err;
1111 }
1112 
1113 static int arp_invalidate(struct net_device *dev, __be32 ip)
1114 {
1115 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116 	int err = -ENXIO;
1117 	struct neigh_table *tbl = &arp_tbl;
1118 
1119 	if (neigh) {
1120 		if (neigh->nud_state & ~NUD_NOARP)
1121 			err = neigh_update(neigh, NULL, NUD_FAILED,
1122 					   NEIGH_UPDATE_F_OVERRIDE|
1123 					   NEIGH_UPDATE_F_ADMIN, 0);
1124 		write_lock_bh(&tbl->lock);
1125 		neigh_release(neigh);
1126 		neigh_remove_one(neigh, tbl);
1127 		write_unlock_bh(&tbl->lock);
1128 	}
1129 
1130 	return err;
1131 }
1132 
1133 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1134 		struct net_device *dev)
1135 {
1136 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1137 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1138 
1139 	if (mask == htonl(0xFFFFFFFF))
1140 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1141 
1142 	if (mask)
1143 		return -EINVAL;
1144 
1145 	return arp_req_set_proxy(net, dev, 0);
1146 }
1147 
1148 static int arp_req_delete(struct net *net, struct arpreq *r,
1149 			  struct net_device *dev)
1150 {
1151 	__be32 ip;
1152 
1153 	if (r->arp_flags & ATF_PUBL)
1154 		return arp_req_delete_public(net, r, dev);
1155 
1156 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1157 	if (!dev) {
1158 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1159 		if (IS_ERR(rt))
1160 			return PTR_ERR(rt);
1161 		dev = rt->dst.dev;
1162 		ip_rt_put(rt);
1163 		if (!dev)
1164 			return -EINVAL;
1165 	}
1166 	return arp_invalidate(dev, ip);
1167 }
1168 
1169 /*
1170  *	Handle an ARP layer I/O control request.
1171  */
1172 
1173 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1174 {
1175 	int err;
1176 	struct arpreq r;
1177 	struct net_device *dev = NULL;
1178 
1179 	switch (cmd) {
1180 	case SIOCDARP:
1181 	case SIOCSARP:
1182 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1183 			return -EPERM;
1184 		fallthrough;
1185 	case SIOCGARP:
1186 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1187 		if (err)
1188 			return -EFAULT;
1189 		break;
1190 	default:
1191 		return -EINVAL;
1192 	}
1193 
1194 	if (r.arp_pa.sa_family != AF_INET)
1195 		return -EPFNOSUPPORT;
1196 
1197 	if (!(r.arp_flags & ATF_PUBL) &&
1198 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1199 		return -EINVAL;
1200 	if (!(r.arp_flags & ATF_NETMASK))
1201 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1202 							   htonl(0xFFFFFFFFUL);
1203 	rtnl_lock();
1204 	if (r.arp_dev[0]) {
1205 		err = -ENODEV;
1206 		dev = __dev_get_by_name(net, r.arp_dev);
1207 		if (!dev)
1208 			goto out;
1209 
1210 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211 		if (!r.arp_ha.sa_family)
1212 			r.arp_ha.sa_family = dev->type;
1213 		err = -EINVAL;
1214 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215 			goto out;
1216 	} else if (cmd == SIOCGARP) {
1217 		err = -ENODEV;
1218 		goto out;
1219 	}
1220 
1221 	switch (cmd) {
1222 	case SIOCDARP:
1223 		err = arp_req_delete(net, &r, dev);
1224 		break;
1225 	case SIOCSARP:
1226 		err = arp_req_set(net, &r, dev);
1227 		break;
1228 	case SIOCGARP:
1229 		err = arp_req_get(&r, dev);
1230 		break;
1231 	}
1232 out:
1233 	rtnl_unlock();
1234 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1235 		err = -EFAULT;
1236 	return err;
1237 }
1238 
1239 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1240 			    void *ptr)
1241 {
1242 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1243 	struct netdev_notifier_change_info *change_info;
1244 
1245 	switch (event) {
1246 	case NETDEV_CHANGEADDR:
1247 		neigh_changeaddr(&arp_tbl, dev);
1248 		rt_cache_flush(dev_net(dev));
1249 		break;
1250 	case NETDEV_CHANGE:
1251 		change_info = ptr;
1252 		if (change_info->flags_changed & IFF_NOARP)
1253 			neigh_changeaddr(&arp_tbl, dev);
1254 		if (!netif_carrier_ok(dev))
1255 			neigh_carrier_down(&arp_tbl, dev);
1256 		break;
1257 	default:
1258 		break;
1259 	}
1260 
1261 	return NOTIFY_DONE;
1262 }
1263 
1264 static struct notifier_block arp_netdev_notifier = {
1265 	.notifier_call = arp_netdev_event,
1266 };
1267 
1268 /* Note, that it is not on notifier chain.
1269    It is necessary, that this routine was called after route cache will be
1270    flushed.
1271  */
1272 void arp_ifdown(struct net_device *dev)
1273 {
1274 	neigh_ifdown(&arp_tbl, dev);
1275 }
1276 
1277 
1278 /*
1279  *	Called once on startup.
1280  */
1281 
1282 static struct packet_type arp_packet_type __read_mostly = {
1283 	.type =	cpu_to_be16(ETH_P_ARP),
1284 	.func =	arp_rcv,
1285 };
1286 
1287 static int arp_proc_init(void);
1288 
1289 void __init arp_init(void)
1290 {
1291 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1292 
1293 	dev_add_pack(&arp_packet_type);
1294 	arp_proc_init();
1295 #ifdef CONFIG_SYSCTL
1296 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297 #endif
1298 	register_netdevice_notifier(&arp_netdev_notifier);
1299 }
1300 
1301 #ifdef CONFIG_PROC_FS
1302 #if IS_ENABLED(CONFIG_AX25)
1303 
1304 /* ------------------------------------------------------------------------ */
1305 /*
1306  *	ax25 -> ASCII conversion
1307  */
1308 static void ax2asc2(ax25_address *a, char *buf)
1309 {
1310 	char c, *s;
1311 	int n;
1312 
1313 	for (n = 0, s = buf; n < 6; n++) {
1314 		c = (a->ax25_call[n] >> 1) & 0x7F;
1315 
1316 		if (c != ' ')
1317 			*s++ = c;
1318 	}
1319 
1320 	*s++ = '-';
1321 	n = (a->ax25_call[6] >> 1) & 0x0F;
1322 	if (n > 9) {
1323 		*s++ = '1';
1324 		n -= 10;
1325 	}
1326 
1327 	*s++ = n + '0';
1328 	*s++ = '\0';
1329 
1330 	if (*buf == '\0' || *buf == '-') {
1331 		buf[0] = '*';
1332 		buf[1] = '\0';
1333 	}
1334 }
1335 #endif /* CONFIG_AX25 */
1336 
1337 #define HBUFFERLEN 30
1338 
1339 static void arp_format_neigh_entry(struct seq_file *seq,
1340 				   struct neighbour *n)
1341 {
1342 	char hbuffer[HBUFFERLEN];
1343 	int k, j;
1344 	char tbuf[16];
1345 	struct net_device *dev = n->dev;
1346 	int hatype = dev->type;
1347 
1348 	read_lock(&n->lock);
1349 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1350 #if IS_ENABLED(CONFIG_AX25)
1351 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352 		ax2asc2((ax25_address *)n->ha, hbuffer);
1353 	else {
1354 #endif
1355 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358 		hbuffer[k++] = ':';
1359 	}
1360 	if (k != 0)
1361 		--k;
1362 	hbuffer[k] = 0;
1363 #if IS_ENABLED(CONFIG_AX25)
1364 	}
1365 #endif
1366 	sprintf(tbuf, "%pI4", n->primary_key);
1367 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1368 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369 	read_unlock(&n->lock);
1370 }
1371 
1372 static void arp_format_pneigh_entry(struct seq_file *seq,
1373 				    struct pneigh_entry *n)
1374 {
1375 	struct net_device *dev = n->dev;
1376 	int hatype = dev ? dev->type : 0;
1377 	char tbuf[16];
1378 
1379 	sprintf(tbuf, "%pI4", n->key);
1380 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382 		   dev ? dev->name : "*");
1383 }
1384 
1385 static int arp_seq_show(struct seq_file *seq, void *v)
1386 {
1387 	if (v == SEQ_START_TOKEN) {
1388 		seq_puts(seq, "IP address       HW type     Flags       "
1389 			      "HW address            Mask     Device\n");
1390 	} else {
1391 		struct neigh_seq_state *state = seq->private;
1392 
1393 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394 			arp_format_pneigh_entry(seq, v);
1395 		else
1396 			arp_format_neigh_entry(seq, v);
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403 {
1404 	/* Don't want to confuse "arp -a" w/ magic entries,
1405 	 * so we tell the generic iterator to skip NUD_NOARP.
1406 	 */
1407 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408 }
1409 
1410 /* ------------------------------------------------------------------------ */
1411 
1412 static const struct seq_operations arp_seq_ops = {
1413 	.start	= arp_seq_start,
1414 	.next	= neigh_seq_next,
1415 	.stop	= neigh_seq_stop,
1416 	.show	= arp_seq_show,
1417 };
1418 
1419 /* ------------------------------------------------------------------------ */
1420 
1421 static int __net_init arp_net_init(struct net *net)
1422 {
1423 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1424 			sizeof(struct neigh_seq_state)))
1425 		return -ENOMEM;
1426 	return 0;
1427 }
1428 
1429 static void __net_exit arp_net_exit(struct net *net)
1430 {
1431 	remove_proc_entry("arp", net->proc_net);
1432 }
1433 
1434 static struct pernet_operations arp_net_ops = {
1435 	.init = arp_net_init,
1436 	.exit = arp_net_exit,
1437 };
1438 
1439 static int __init arp_proc_init(void)
1440 {
1441 	return register_pernet_subsys(&arp_net_ops);
1442 }
1443 
1444 #else /* CONFIG_PROC_FS */
1445 
1446 static int __init arp_proc_init(void)
1447 {
1448 	return 0;
1449 }
1450 
1451 #endif /* CONFIG_PROC_FS */
1452