1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 } 160 EXPORT_SYMBOL(inet_sock_destruct); 161 162 /* 163 * The routines beyond this point handle the behaviour of an AF_INET 164 * socket object. Mostly it punts to the subprotocols of IP to do 165 * the work. 166 */ 167 168 /* 169 * Automatically bind an unbound socket. 170 */ 171 172 static int inet_autobind(struct sock *sk) 173 { 174 struct inet_sock *inet; 175 /* We may need to bind the socket. */ 176 lock_sock(sk); 177 inet = inet_sk(sk); 178 if (!inet->inet_num) { 179 if (sk->sk_prot->get_port(sk, 0)) { 180 release_sock(sk); 181 return -EAGAIN; 182 } 183 inet->inet_sport = htons(inet->inet_num); 184 } 185 release_sock(sk); 186 return 0; 187 } 188 189 /* 190 * Move a socket into listening state. 191 */ 192 int inet_listen(struct socket *sock, int backlog) 193 { 194 struct sock *sk = sock->sk; 195 unsigned char old_state; 196 int err, tcp_fastopen; 197 198 lock_sock(sk); 199 200 err = -EINVAL; 201 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 202 goto out; 203 204 old_state = sk->sk_state; 205 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 206 goto out; 207 208 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 209 /* Really, if the socket is already in listen state 210 * we can only allow the backlog to be adjusted. 211 */ 212 if (old_state != TCP_LISTEN) { 213 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 214 * Note that only TCP sockets (SOCK_STREAM) will reach here. 215 * Also fastopen backlog may already been set via the option 216 * because the socket was in TCP_LISTEN state previously but 217 * was shutdown() rather than close(). 218 */ 219 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 220 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 221 (tcp_fastopen & TFO_SERVER_ENABLE) && 222 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 223 fastopen_queue_tune(sk, backlog); 224 tcp_fastopen_init_key_once(sock_net(sk)); 225 } 226 227 err = inet_csk_listen_start(sk); 228 if (err) 229 goto out; 230 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 231 } 232 err = 0; 233 234 out: 235 release_sock(sk); 236 return err; 237 } 238 EXPORT_SYMBOL(inet_listen); 239 240 /* 241 * Create an inet socket. 242 */ 243 244 static int inet_create(struct net *net, struct socket *sock, int protocol, 245 int kern) 246 { 247 struct sock *sk; 248 struct inet_protosw *answer; 249 struct inet_sock *inet; 250 struct proto *answer_prot; 251 unsigned char answer_flags; 252 int try_loading_module = 0; 253 int err; 254 255 if (protocol < 0 || protocol >= IPPROTO_MAX) 256 return -EINVAL; 257 258 sock->state = SS_UNCONNECTED; 259 260 /* Look for the requested type/protocol pair. */ 261 lookup_protocol: 262 err = -ESOCKTNOSUPPORT; 263 rcu_read_lock(); 264 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 265 266 err = 0; 267 /* Check the non-wild match. */ 268 if (protocol == answer->protocol) { 269 if (protocol != IPPROTO_IP) 270 break; 271 } else { 272 /* Check for the two wild cases. */ 273 if (IPPROTO_IP == protocol) { 274 protocol = answer->protocol; 275 break; 276 } 277 if (IPPROTO_IP == answer->protocol) 278 break; 279 } 280 err = -EPROTONOSUPPORT; 281 } 282 283 if (unlikely(err)) { 284 if (try_loading_module < 2) { 285 rcu_read_unlock(); 286 /* 287 * Be more specific, e.g. net-pf-2-proto-132-type-1 288 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 289 */ 290 if (++try_loading_module == 1) 291 request_module("net-pf-%d-proto-%d-type-%d", 292 PF_INET, protocol, sock->type); 293 /* 294 * Fall back to generic, e.g. net-pf-2-proto-132 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 296 */ 297 else 298 request_module("net-pf-%d-proto-%d", 299 PF_INET, protocol); 300 goto lookup_protocol; 301 } else 302 goto out_rcu_unlock; 303 } 304 305 err = -EPERM; 306 if (sock->type == SOCK_RAW && !kern && 307 !ns_capable(net->user_ns, CAP_NET_RAW)) 308 goto out_rcu_unlock; 309 310 sock->ops = answer->ops; 311 answer_prot = answer->prot; 312 answer_flags = answer->flags; 313 rcu_read_unlock(); 314 315 WARN_ON(!answer_prot->slab); 316 317 err = -ENOMEM; 318 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 319 if (!sk) 320 goto out; 321 322 err = 0; 323 if (INET_PROTOSW_REUSE & answer_flags) 324 sk->sk_reuse = SK_CAN_REUSE; 325 326 inet = inet_sk(sk); 327 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 328 329 inet->nodefrag = 0; 330 331 if (SOCK_RAW == sock->type) { 332 inet->inet_num = protocol; 333 if (IPPROTO_RAW == protocol) 334 inet->hdrincl = 1; 335 } 336 337 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 338 inet->pmtudisc = IP_PMTUDISC_DONT; 339 else 340 inet->pmtudisc = IP_PMTUDISC_WANT; 341 342 inet->inet_id = 0; 343 344 sock_init_data(sock, sk); 345 346 sk->sk_destruct = inet_sock_destruct; 347 sk->sk_protocol = protocol; 348 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 349 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 if (inet->inet_num) { 360 /* It assumes that any protocol which allows 361 * the user to assign a number at socket 362 * creation time automatically 363 * shares. 364 */ 365 inet->inet_sport = htons(inet->inet_num); 366 /* Add to protocol hash chains. */ 367 err = sk->sk_prot->hash(sk); 368 if (err) { 369 sk_common_release(sk); 370 goto out; 371 } 372 } 373 374 if (sk->sk_prot->init) { 375 err = sk->sk_prot->init(sk); 376 if (err) { 377 sk_common_release(sk); 378 goto out; 379 } 380 } 381 382 if (!kern) { 383 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 384 if (err) { 385 sk_common_release(sk); 386 goto out; 387 } 388 } 389 out: 390 return err; 391 out_rcu_unlock: 392 rcu_read_unlock(); 393 goto out; 394 } 395 396 397 /* 398 * The peer socket should always be NULL (or else). When we call this 399 * function we are destroying the object and from then on nobody 400 * should refer to it. 401 */ 402 int inet_release(struct socket *sock) 403 { 404 struct sock *sk = sock->sk; 405 406 if (sk) { 407 long timeout; 408 409 if (!sk->sk_kern_sock) 410 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 411 412 /* Applications forget to leave groups before exiting */ 413 ip_mc_drop_socket(sk); 414 415 /* If linger is set, we don't return until the close 416 * is complete. Otherwise we return immediately. The 417 * actually closing is done the same either way. 418 * 419 * If the close is due to the process exiting, we never 420 * linger.. 421 */ 422 timeout = 0; 423 if (sock_flag(sk, SOCK_LINGER) && 424 !(current->flags & PF_EXITING)) 425 timeout = sk->sk_lingertime; 426 sk->sk_prot->close(sk, timeout); 427 sock->sk = NULL; 428 } 429 return 0; 430 } 431 EXPORT_SYMBOL(inet_release); 432 433 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 434 { 435 struct sock *sk = sock->sk; 436 u32 flags = BIND_WITH_LOCK; 437 int err; 438 439 /* If the socket has its own bind function then use it. (RAW) */ 440 if (sk->sk_prot->bind) { 441 return sk->sk_prot->bind(sk, uaddr, addr_len); 442 } 443 if (addr_len < sizeof(struct sockaddr_in)) 444 return -EINVAL; 445 446 /* BPF prog is run before any checks are done so that if the prog 447 * changes context in a wrong way it will be caught. 448 */ 449 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 450 CGROUP_INET4_BIND, &flags); 451 if (err) 452 return err; 453 454 return __inet_bind(sk, uaddr, addr_len, flags); 455 } 456 EXPORT_SYMBOL(inet_bind); 457 458 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 459 u32 flags) 460 { 461 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 462 struct inet_sock *inet = inet_sk(sk); 463 struct net *net = sock_net(sk); 464 unsigned short snum; 465 int chk_addr_ret; 466 u32 tb_id = RT_TABLE_LOCAL; 467 int err; 468 469 if (addr->sin_family != AF_INET) { 470 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 471 * only if s_addr is INADDR_ANY. 472 */ 473 err = -EAFNOSUPPORT; 474 if (addr->sin_family != AF_UNSPEC || 475 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 476 goto out; 477 } 478 479 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 480 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 481 482 /* Not specified by any standard per-se, however it breaks too 483 * many applications when removed. It is unfortunate since 484 * allowing applications to make a non-local bind solves 485 * several problems with systems using dynamic addressing. 486 * (ie. your servers still start up even if your ISDN link 487 * is temporarily down) 488 */ 489 err = -EADDRNOTAVAIL; 490 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 491 chk_addr_ret)) 492 goto out; 493 494 snum = ntohs(addr->sin_port); 495 err = -EACCES; 496 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 497 snum && inet_port_requires_bind_service(net, snum) && 498 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 499 goto out; 500 501 /* We keep a pair of addresses. rcv_saddr is the one 502 * used by hash lookups, and saddr is used for transmit. 503 * 504 * In the BSD API these are the same except where it 505 * would be illegal to use them (multicast/broadcast) in 506 * which case the sending device address is used. 507 */ 508 if (flags & BIND_WITH_LOCK) 509 lock_sock(sk); 510 511 /* Check these errors (active socket, double bind). */ 512 err = -EINVAL; 513 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 514 goto out_release_sock; 515 516 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 517 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 518 inet->inet_saddr = 0; /* Use device */ 519 520 /* Make sure we are allowed to bind here. */ 521 if (snum || !(inet->bind_address_no_port || 522 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 523 err = sk->sk_prot->get_port(sk, snum); 524 if (err) { 525 inet->inet_saddr = inet->inet_rcv_saddr = 0; 526 goto out_release_sock; 527 } 528 if (!(flags & BIND_FROM_BPF)) { 529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 530 if (err) { 531 inet->inet_saddr = inet->inet_rcv_saddr = 0; 532 if (sk->sk_prot->put_port) 533 sk->sk_prot->put_port(sk); 534 goto out_release_sock; 535 } 536 } 537 } 538 539 if (inet->inet_rcv_saddr) 540 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 541 if (snum) 542 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 543 inet->inet_sport = htons(inet->inet_num); 544 inet->inet_daddr = 0; 545 inet->inet_dport = 0; 546 sk_dst_reset(sk); 547 err = 0; 548 out_release_sock: 549 if (flags & BIND_WITH_LOCK) 550 release_sock(sk); 551 out: 552 return err; 553 } 554 555 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 556 int addr_len, int flags) 557 { 558 struct sock *sk = sock->sk; 559 const struct proto *prot; 560 int err; 561 562 if (addr_len < sizeof(uaddr->sa_family)) 563 return -EINVAL; 564 565 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 566 prot = READ_ONCE(sk->sk_prot); 567 568 if (uaddr->sa_family == AF_UNSPEC) 569 return prot->disconnect(sk, flags); 570 571 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 572 err = prot->pre_connect(sk, uaddr, addr_len); 573 if (err) 574 return err; 575 } 576 577 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 578 return -EAGAIN; 579 return prot->connect(sk, uaddr, addr_len); 580 } 581 EXPORT_SYMBOL(inet_dgram_connect); 582 583 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 584 { 585 DEFINE_WAIT_FUNC(wait, woken_wake_function); 586 587 add_wait_queue(sk_sleep(sk), &wait); 588 sk->sk_write_pending += writebias; 589 sk->sk_wait_pending++; 590 591 /* Basic assumption: if someone sets sk->sk_err, he _must_ 592 * change state of the socket from TCP_SYN_*. 593 * Connect() does not allow to get error notifications 594 * without closing the socket. 595 */ 596 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 597 release_sock(sk); 598 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 599 lock_sock(sk); 600 if (signal_pending(current) || !timeo) 601 break; 602 } 603 remove_wait_queue(sk_sleep(sk), &wait); 604 sk->sk_write_pending -= writebias; 605 sk->sk_wait_pending--; 606 return timeo; 607 } 608 609 /* 610 * Connect to a remote host. There is regrettably still a little 611 * TCP 'magic' in here. 612 */ 613 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 614 int addr_len, int flags, int is_sendmsg) 615 { 616 struct sock *sk = sock->sk; 617 int err; 618 long timeo; 619 620 /* 621 * uaddr can be NULL and addr_len can be 0 if: 622 * sk is a TCP fastopen active socket and 623 * TCP_FASTOPEN_CONNECT sockopt is set and 624 * we already have a valid cookie for this socket. 625 * In this case, user can call write() after connect(). 626 * write() will invoke tcp_sendmsg_fastopen() which calls 627 * __inet_stream_connect(). 628 */ 629 if (uaddr) { 630 if (addr_len < sizeof(uaddr->sa_family)) 631 return -EINVAL; 632 633 if (uaddr->sa_family == AF_UNSPEC) { 634 err = sk->sk_prot->disconnect(sk, flags); 635 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 636 goto out; 637 } 638 } 639 640 switch (sock->state) { 641 default: 642 err = -EINVAL; 643 goto out; 644 case SS_CONNECTED: 645 err = -EISCONN; 646 goto out; 647 case SS_CONNECTING: 648 if (inet_sk(sk)->defer_connect) 649 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 650 else 651 err = -EALREADY; 652 /* Fall out of switch with err, set for this state */ 653 break; 654 case SS_UNCONNECTED: 655 err = -EISCONN; 656 if (sk->sk_state != TCP_CLOSE) 657 goto out; 658 659 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 660 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 661 if (err) 662 goto out; 663 } 664 665 err = sk->sk_prot->connect(sk, uaddr, addr_len); 666 if (err < 0) 667 goto out; 668 669 sock->state = SS_CONNECTING; 670 671 if (!err && inet_sk(sk)->defer_connect) 672 goto out; 673 674 /* Just entered SS_CONNECTING state; the only 675 * difference is that return value in non-blocking 676 * case is EINPROGRESS, rather than EALREADY. 677 */ 678 err = -EINPROGRESS; 679 break; 680 } 681 682 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 683 684 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 685 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 686 tcp_sk(sk)->fastopen_req && 687 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 688 689 /* Error code is set above */ 690 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 691 goto out; 692 693 err = sock_intr_errno(timeo); 694 if (signal_pending(current)) 695 goto out; 696 } 697 698 /* Connection was closed by RST, timeout, ICMP error 699 * or another process disconnected us. 700 */ 701 if (sk->sk_state == TCP_CLOSE) 702 goto sock_error; 703 704 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 705 * and error was received after socket entered established state. 706 * Hence, it is handled normally after connect() return successfully. 707 */ 708 709 sock->state = SS_CONNECTED; 710 err = 0; 711 out: 712 return err; 713 714 sock_error: 715 err = sock_error(sk) ? : -ECONNABORTED; 716 sock->state = SS_UNCONNECTED; 717 if (sk->sk_prot->disconnect(sk, flags)) 718 sock->state = SS_DISCONNECTING; 719 goto out; 720 } 721 EXPORT_SYMBOL(__inet_stream_connect); 722 723 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 724 int addr_len, int flags) 725 { 726 int err; 727 728 lock_sock(sock->sk); 729 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 730 release_sock(sock->sk); 731 return err; 732 } 733 EXPORT_SYMBOL(inet_stream_connect); 734 735 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 736 { 737 sock_rps_record_flow(newsk); 738 WARN_ON(!((1 << newsk->sk_state) & 739 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 740 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 741 742 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 743 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 744 sock_graft(newsk, newsock); 745 746 newsock->state = SS_CONNECTED; 747 } 748 749 /* 750 * Accept a pending connection. The TCP layer now gives BSD semantics. 751 */ 752 753 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 754 bool kern) 755 { 756 struct sock *sk1 = sock->sk, *sk2; 757 int err = -EINVAL; 758 759 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 760 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 761 if (!sk2) 762 return err; 763 764 lock_sock(sk2); 765 __inet_accept(sock, newsock, sk2); 766 release_sock(sk2); 767 return 0; 768 } 769 EXPORT_SYMBOL(inet_accept); 770 771 /* 772 * This does both peername and sockname. 773 */ 774 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 775 int peer) 776 { 777 struct sock *sk = sock->sk; 778 struct inet_sock *inet = inet_sk(sk); 779 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 780 781 sin->sin_family = AF_INET; 782 lock_sock(sk); 783 if (peer) { 784 if (!inet->inet_dport || 785 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 786 peer == 1)) { 787 release_sock(sk); 788 return -ENOTCONN; 789 } 790 sin->sin_port = inet->inet_dport; 791 sin->sin_addr.s_addr = inet->inet_daddr; 792 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 793 CGROUP_INET4_GETPEERNAME); 794 } else { 795 __be32 addr = inet->inet_rcv_saddr; 796 if (!addr) 797 addr = inet->inet_saddr; 798 sin->sin_port = inet->inet_sport; 799 sin->sin_addr.s_addr = addr; 800 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 801 CGROUP_INET4_GETSOCKNAME); 802 } 803 release_sock(sk); 804 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 805 return sizeof(*sin); 806 } 807 EXPORT_SYMBOL(inet_getname); 808 809 int inet_send_prepare(struct sock *sk) 810 { 811 sock_rps_record_flow(sk); 812 813 /* We may need to bind the socket. */ 814 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 815 inet_autobind(sk)) 816 return -EAGAIN; 817 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(inet_send_prepare); 821 822 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 823 { 824 struct sock *sk = sock->sk; 825 826 if (unlikely(inet_send_prepare(sk))) 827 return -EAGAIN; 828 829 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 830 sk, msg, size); 831 } 832 EXPORT_SYMBOL(inet_sendmsg); 833 834 void inet_splice_eof(struct socket *sock) 835 { 836 const struct proto *prot; 837 struct sock *sk = sock->sk; 838 839 if (unlikely(inet_send_prepare(sk))) 840 return; 841 842 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 843 prot = READ_ONCE(sk->sk_prot); 844 if (prot->splice_eof) 845 prot->splice_eof(sock); 846 } 847 EXPORT_SYMBOL_GPL(inet_splice_eof); 848 849 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 850 size_t size, int flags) 851 { 852 struct sock *sk = sock->sk; 853 const struct proto *prot; 854 855 if (unlikely(inet_send_prepare(sk))) 856 return -EAGAIN; 857 858 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 859 prot = READ_ONCE(sk->sk_prot); 860 if (prot->sendpage) 861 return prot->sendpage(sk, page, offset, size, flags); 862 return sock_no_sendpage(sock, page, offset, size, flags); 863 } 864 EXPORT_SYMBOL(inet_sendpage); 865 866 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 867 size_t, int, int *)); 868 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 869 int flags) 870 { 871 struct sock *sk = sock->sk; 872 int addr_len = 0; 873 int err; 874 875 if (likely(!(flags & MSG_ERRQUEUE))) 876 sock_rps_record_flow(sk); 877 878 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 879 sk, msg, size, flags, &addr_len); 880 if (err >= 0) 881 msg->msg_namelen = addr_len; 882 return err; 883 } 884 EXPORT_SYMBOL(inet_recvmsg); 885 886 int inet_shutdown(struct socket *sock, int how) 887 { 888 struct sock *sk = sock->sk; 889 int err = 0; 890 891 /* This should really check to make sure 892 * the socket is a TCP socket. (WHY AC...) 893 */ 894 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 895 1->2 bit 2 snds. 896 2->3 */ 897 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 898 return -EINVAL; 899 900 lock_sock(sk); 901 if (sock->state == SS_CONNECTING) { 902 if ((1 << sk->sk_state) & 903 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 904 sock->state = SS_DISCONNECTING; 905 else 906 sock->state = SS_CONNECTED; 907 } 908 909 switch (sk->sk_state) { 910 case TCP_CLOSE: 911 err = -ENOTCONN; 912 /* Hack to wake up other listeners, who can poll for 913 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 914 fallthrough; 915 default: 916 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 917 if (sk->sk_prot->shutdown) 918 sk->sk_prot->shutdown(sk, how); 919 break; 920 921 /* Remaining two branches are temporary solution for missing 922 * close() in multithreaded environment. It is _not_ a good idea, 923 * but we have no choice until close() is repaired at VFS level. 924 */ 925 case TCP_LISTEN: 926 if (!(how & RCV_SHUTDOWN)) 927 break; 928 fallthrough; 929 case TCP_SYN_SENT: 930 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 931 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 932 break; 933 } 934 935 /* Wake up anyone sleeping in poll. */ 936 sk->sk_state_change(sk); 937 release_sock(sk); 938 return err; 939 } 940 EXPORT_SYMBOL(inet_shutdown); 941 942 /* 943 * ioctl() calls you can issue on an INET socket. Most of these are 944 * device configuration and stuff and very rarely used. Some ioctls 945 * pass on to the socket itself. 946 * 947 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 948 * loads the devconfigure module does its configuring and unloads it. 949 * There's a good 20K of config code hanging around the kernel. 950 */ 951 952 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 953 { 954 struct sock *sk = sock->sk; 955 int err = 0; 956 struct net *net = sock_net(sk); 957 void __user *p = (void __user *)arg; 958 struct ifreq ifr; 959 struct rtentry rt; 960 961 switch (cmd) { 962 case SIOCADDRT: 963 case SIOCDELRT: 964 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 965 return -EFAULT; 966 err = ip_rt_ioctl(net, cmd, &rt); 967 break; 968 case SIOCRTMSG: 969 err = -EINVAL; 970 break; 971 case SIOCDARP: 972 case SIOCGARP: 973 case SIOCSARP: 974 err = arp_ioctl(net, cmd, (void __user *)arg); 975 break; 976 case SIOCGIFADDR: 977 case SIOCGIFBRDADDR: 978 case SIOCGIFNETMASK: 979 case SIOCGIFDSTADDR: 980 case SIOCGIFPFLAGS: 981 if (get_user_ifreq(&ifr, NULL, p)) 982 return -EFAULT; 983 err = devinet_ioctl(net, cmd, &ifr); 984 if (!err && put_user_ifreq(&ifr, p)) 985 err = -EFAULT; 986 break; 987 988 case SIOCSIFADDR: 989 case SIOCSIFBRDADDR: 990 case SIOCSIFNETMASK: 991 case SIOCSIFDSTADDR: 992 case SIOCSIFPFLAGS: 993 case SIOCSIFFLAGS: 994 if (get_user_ifreq(&ifr, NULL, p)) 995 return -EFAULT; 996 err = devinet_ioctl(net, cmd, &ifr); 997 break; 998 default: 999 if (sk->sk_prot->ioctl) 1000 err = sk->sk_prot->ioctl(sk, cmd, arg); 1001 else 1002 err = -ENOIOCTLCMD; 1003 break; 1004 } 1005 return err; 1006 } 1007 EXPORT_SYMBOL(inet_ioctl); 1008 1009 #ifdef CONFIG_COMPAT 1010 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1011 struct compat_rtentry __user *ur) 1012 { 1013 compat_uptr_t rtdev; 1014 struct rtentry rt; 1015 1016 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1017 3 * sizeof(struct sockaddr)) || 1018 get_user(rt.rt_flags, &ur->rt_flags) || 1019 get_user(rt.rt_metric, &ur->rt_metric) || 1020 get_user(rt.rt_mtu, &ur->rt_mtu) || 1021 get_user(rt.rt_window, &ur->rt_window) || 1022 get_user(rt.rt_irtt, &ur->rt_irtt) || 1023 get_user(rtdev, &ur->rt_dev)) 1024 return -EFAULT; 1025 1026 rt.rt_dev = compat_ptr(rtdev); 1027 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1028 } 1029 1030 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1031 { 1032 void __user *argp = compat_ptr(arg); 1033 struct sock *sk = sock->sk; 1034 1035 switch (cmd) { 1036 case SIOCADDRT: 1037 case SIOCDELRT: 1038 return inet_compat_routing_ioctl(sk, cmd, argp); 1039 default: 1040 if (!sk->sk_prot->compat_ioctl) 1041 return -ENOIOCTLCMD; 1042 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1043 } 1044 } 1045 #endif /* CONFIG_COMPAT */ 1046 1047 const struct proto_ops inet_stream_ops = { 1048 .family = PF_INET, 1049 .owner = THIS_MODULE, 1050 .release = inet_release, 1051 .bind = inet_bind, 1052 .connect = inet_stream_connect, 1053 .socketpair = sock_no_socketpair, 1054 .accept = inet_accept, 1055 .getname = inet_getname, 1056 .poll = tcp_poll, 1057 .ioctl = inet_ioctl, 1058 .gettstamp = sock_gettstamp, 1059 .listen = inet_listen, 1060 .shutdown = inet_shutdown, 1061 .setsockopt = sock_common_setsockopt, 1062 .getsockopt = sock_common_getsockopt, 1063 .sendmsg = inet_sendmsg, 1064 .recvmsg = inet_recvmsg, 1065 #ifdef CONFIG_MMU 1066 .mmap = tcp_mmap, 1067 #endif 1068 .splice_eof = inet_splice_eof, 1069 .sendpage = inet_sendpage, 1070 .splice_read = tcp_splice_read, 1071 .read_sock = tcp_read_sock, 1072 .read_skb = tcp_read_skb, 1073 .sendmsg_locked = tcp_sendmsg_locked, 1074 .sendpage_locked = tcp_sendpage_locked, 1075 .peek_len = tcp_peek_len, 1076 #ifdef CONFIG_COMPAT 1077 .compat_ioctl = inet_compat_ioctl, 1078 #endif 1079 .set_rcvlowat = tcp_set_rcvlowat, 1080 }; 1081 EXPORT_SYMBOL(inet_stream_ops); 1082 1083 const struct proto_ops inet_dgram_ops = { 1084 .family = PF_INET, 1085 .owner = THIS_MODULE, 1086 .release = inet_release, 1087 .bind = inet_bind, 1088 .connect = inet_dgram_connect, 1089 .socketpair = sock_no_socketpair, 1090 .accept = sock_no_accept, 1091 .getname = inet_getname, 1092 .poll = udp_poll, 1093 .ioctl = inet_ioctl, 1094 .gettstamp = sock_gettstamp, 1095 .listen = sock_no_listen, 1096 .shutdown = inet_shutdown, 1097 .setsockopt = sock_common_setsockopt, 1098 .getsockopt = sock_common_getsockopt, 1099 .sendmsg = inet_sendmsg, 1100 .read_skb = udp_read_skb, 1101 .recvmsg = inet_recvmsg, 1102 .mmap = sock_no_mmap, 1103 .splice_eof = inet_splice_eof, 1104 .sendpage = inet_sendpage, 1105 .set_peek_off = sk_set_peek_off, 1106 #ifdef CONFIG_COMPAT 1107 .compat_ioctl = inet_compat_ioctl, 1108 #endif 1109 }; 1110 EXPORT_SYMBOL(inet_dgram_ops); 1111 1112 /* 1113 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1114 * udp_poll 1115 */ 1116 static const struct proto_ops inet_sockraw_ops = { 1117 .family = PF_INET, 1118 .owner = THIS_MODULE, 1119 .release = inet_release, 1120 .bind = inet_bind, 1121 .connect = inet_dgram_connect, 1122 .socketpair = sock_no_socketpair, 1123 .accept = sock_no_accept, 1124 .getname = inet_getname, 1125 .poll = datagram_poll, 1126 .ioctl = inet_ioctl, 1127 .gettstamp = sock_gettstamp, 1128 .listen = sock_no_listen, 1129 .shutdown = inet_shutdown, 1130 .setsockopt = sock_common_setsockopt, 1131 .getsockopt = sock_common_getsockopt, 1132 .sendmsg = inet_sendmsg, 1133 .recvmsg = inet_recvmsg, 1134 .mmap = sock_no_mmap, 1135 .splice_eof = inet_splice_eof, 1136 .sendpage = inet_sendpage, 1137 #ifdef CONFIG_COMPAT 1138 .compat_ioctl = inet_compat_ioctl, 1139 #endif 1140 }; 1141 1142 static const struct net_proto_family inet_family_ops = { 1143 .family = PF_INET, 1144 .create = inet_create, 1145 .owner = THIS_MODULE, 1146 }; 1147 1148 /* Upon startup we insert all the elements in inetsw_array[] into 1149 * the linked list inetsw. 1150 */ 1151 static struct inet_protosw inetsw_array[] = 1152 { 1153 { 1154 .type = SOCK_STREAM, 1155 .protocol = IPPROTO_TCP, 1156 .prot = &tcp_prot, 1157 .ops = &inet_stream_ops, 1158 .flags = INET_PROTOSW_PERMANENT | 1159 INET_PROTOSW_ICSK, 1160 }, 1161 1162 { 1163 .type = SOCK_DGRAM, 1164 .protocol = IPPROTO_UDP, 1165 .prot = &udp_prot, 1166 .ops = &inet_dgram_ops, 1167 .flags = INET_PROTOSW_PERMANENT, 1168 }, 1169 1170 { 1171 .type = SOCK_DGRAM, 1172 .protocol = IPPROTO_ICMP, 1173 .prot = &ping_prot, 1174 .ops = &inet_sockraw_ops, 1175 .flags = INET_PROTOSW_REUSE, 1176 }, 1177 1178 { 1179 .type = SOCK_RAW, 1180 .protocol = IPPROTO_IP, /* wild card */ 1181 .prot = &raw_prot, 1182 .ops = &inet_sockraw_ops, 1183 .flags = INET_PROTOSW_REUSE, 1184 } 1185 }; 1186 1187 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1188 1189 void inet_register_protosw(struct inet_protosw *p) 1190 { 1191 struct list_head *lh; 1192 struct inet_protosw *answer; 1193 int protocol = p->protocol; 1194 struct list_head *last_perm; 1195 1196 spin_lock_bh(&inetsw_lock); 1197 1198 if (p->type >= SOCK_MAX) 1199 goto out_illegal; 1200 1201 /* If we are trying to override a permanent protocol, bail. */ 1202 last_perm = &inetsw[p->type]; 1203 list_for_each(lh, &inetsw[p->type]) { 1204 answer = list_entry(lh, struct inet_protosw, list); 1205 /* Check only the non-wild match. */ 1206 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1207 break; 1208 if (protocol == answer->protocol) 1209 goto out_permanent; 1210 last_perm = lh; 1211 } 1212 1213 /* Add the new entry after the last permanent entry if any, so that 1214 * the new entry does not override a permanent entry when matched with 1215 * a wild-card protocol. But it is allowed to override any existing 1216 * non-permanent entry. This means that when we remove this entry, the 1217 * system automatically returns to the old behavior. 1218 */ 1219 list_add_rcu(&p->list, last_perm); 1220 out: 1221 spin_unlock_bh(&inetsw_lock); 1222 1223 return; 1224 1225 out_permanent: 1226 pr_err("Attempt to override permanent protocol %d\n", protocol); 1227 goto out; 1228 1229 out_illegal: 1230 pr_err("Ignoring attempt to register invalid socket type %d\n", 1231 p->type); 1232 goto out; 1233 } 1234 EXPORT_SYMBOL(inet_register_protosw); 1235 1236 void inet_unregister_protosw(struct inet_protosw *p) 1237 { 1238 if (INET_PROTOSW_PERMANENT & p->flags) { 1239 pr_err("Attempt to unregister permanent protocol %d\n", 1240 p->protocol); 1241 } else { 1242 spin_lock_bh(&inetsw_lock); 1243 list_del_rcu(&p->list); 1244 spin_unlock_bh(&inetsw_lock); 1245 1246 synchronize_net(); 1247 } 1248 } 1249 EXPORT_SYMBOL(inet_unregister_protosw); 1250 1251 static int inet_sk_reselect_saddr(struct sock *sk) 1252 { 1253 struct inet_sock *inet = inet_sk(sk); 1254 __be32 old_saddr = inet->inet_saddr; 1255 __be32 daddr = inet->inet_daddr; 1256 struct flowi4 *fl4; 1257 struct rtable *rt; 1258 __be32 new_saddr; 1259 struct ip_options_rcu *inet_opt; 1260 int err; 1261 1262 inet_opt = rcu_dereference_protected(inet->inet_opt, 1263 lockdep_sock_is_held(sk)); 1264 if (inet_opt && inet_opt->opt.srr) 1265 daddr = inet_opt->opt.faddr; 1266 1267 /* Query new route. */ 1268 fl4 = &inet->cork.fl.u.ip4; 1269 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1270 sk->sk_protocol, inet->inet_sport, 1271 inet->inet_dport, sk); 1272 if (IS_ERR(rt)) 1273 return PTR_ERR(rt); 1274 1275 new_saddr = fl4->saddr; 1276 1277 if (new_saddr == old_saddr) { 1278 sk_setup_caps(sk, &rt->dst); 1279 return 0; 1280 } 1281 1282 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1283 if (err) { 1284 ip_rt_put(rt); 1285 return err; 1286 } 1287 1288 sk_setup_caps(sk, &rt->dst); 1289 1290 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1291 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1292 __func__, &old_saddr, &new_saddr); 1293 } 1294 1295 /* 1296 * XXX The only one ugly spot where we need to 1297 * XXX really change the sockets identity after 1298 * XXX it has entered the hashes. -DaveM 1299 * 1300 * Besides that, it does not check for connection 1301 * uniqueness. Wait for troubles. 1302 */ 1303 return __sk_prot_rehash(sk); 1304 } 1305 1306 int inet_sk_rebuild_header(struct sock *sk) 1307 { 1308 struct inet_sock *inet = inet_sk(sk); 1309 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1310 __be32 daddr; 1311 struct ip_options_rcu *inet_opt; 1312 struct flowi4 *fl4; 1313 int err; 1314 1315 /* Route is OK, nothing to do. */ 1316 if (rt) 1317 return 0; 1318 1319 /* Reroute. */ 1320 rcu_read_lock(); 1321 inet_opt = rcu_dereference(inet->inet_opt); 1322 daddr = inet->inet_daddr; 1323 if (inet_opt && inet_opt->opt.srr) 1324 daddr = inet_opt->opt.faddr; 1325 rcu_read_unlock(); 1326 fl4 = &inet->cork.fl.u.ip4; 1327 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1328 inet->inet_dport, inet->inet_sport, 1329 sk->sk_protocol, RT_CONN_FLAGS(sk), 1330 sk->sk_bound_dev_if); 1331 if (!IS_ERR(rt)) { 1332 err = 0; 1333 sk_setup_caps(sk, &rt->dst); 1334 } else { 1335 err = PTR_ERR(rt); 1336 1337 /* Routing failed... */ 1338 sk->sk_route_caps = 0; 1339 /* 1340 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1341 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1342 */ 1343 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1344 sk->sk_state != TCP_SYN_SENT || 1345 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1346 (err = inet_sk_reselect_saddr(sk)) != 0) 1347 WRITE_ONCE(sk->sk_err_soft, -err); 1348 } 1349 1350 return err; 1351 } 1352 EXPORT_SYMBOL(inet_sk_rebuild_header); 1353 1354 void inet_sk_set_state(struct sock *sk, int state) 1355 { 1356 trace_inet_sock_set_state(sk, sk->sk_state, state); 1357 sk->sk_state = state; 1358 } 1359 EXPORT_SYMBOL(inet_sk_set_state); 1360 1361 void inet_sk_state_store(struct sock *sk, int newstate) 1362 { 1363 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1364 smp_store_release(&sk->sk_state, newstate); 1365 } 1366 1367 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1368 netdev_features_t features) 1369 { 1370 bool udpfrag = false, fixedid = false, gso_partial, encap; 1371 struct sk_buff *segs = ERR_PTR(-EINVAL); 1372 const struct net_offload *ops; 1373 unsigned int offset = 0; 1374 struct iphdr *iph; 1375 int proto, tot_len; 1376 int nhoff; 1377 int ihl; 1378 int id; 1379 1380 skb_reset_network_header(skb); 1381 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1382 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1383 goto out; 1384 1385 iph = ip_hdr(skb); 1386 ihl = iph->ihl * 4; 1387 if (ihl < sizeof(*iph)) 1388 goto out; 1389 1390 id = ntohs(iph->id); 1391 proto = iph->protocol; 1392 1393 /* Warning: after this point, iph might be no longer valid */ 1394 if (unlikely(!pskb_may_pull(skb, ihl))) 1395 goto out; 1396 __skb_pull(skb, ihl); 1397 1398 encap = SKB_GSO_CB(skb)->encap_level > 0; 1399 if (encap) 1400 features &= skb->dev->hw_enc_features; 1401 SKB_GSO_CB(skb)->encap_level += ihl; 1402 1403 skb_reset_transport_header(skb); 1404 1405 segs = ERR_PTR(-EPROTONOSUPPORT); 1406 1407 if (!skb->encapsulation || encap) { 1408 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1409 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1410 1411 /* fixed ID is invalid if DF bit is not set */ 1412 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1413 goto out; 1414 } 1415 1416 ops = rcu_dereference(inet_offloads[proto]); 1417 if (likely(ops && ops->callbacks.gso_segment)) { 1418 segs = ops->callbacks.gso_segment(skb, features); 1419 if (!segs) 1420 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1421 } 1422 1423 if (IS_ERR_OR_NULL(segs)) 1424 goto out; 1425 1426 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1427 1428 skb = segs; 1429 do { 1430 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1431 if (udpfrag) { 1432 iph->frag_off = htons(offset >> 3); 1433 if (skb->next) 1434 iph->frag_off |= htons(IP_MF); 1435 offset += skb->len - nhoff - ihl; 1436 tot_len = skb->len - nhoff; 1437 } else if (skb_is_gso(skb)) { 1438 if (!fixedid) { 1439 iph->id = htons(id); 1440 id += skb_shinfo(skb)->gso_segs; 1441 } 1442 1443 if (gso_partial) 1444 tot_len = skb_shinfo(skb)->gso_size + 1445 SKB_GSO_CB(skb)->data_offset + 1446 skb->head - (unsigned char *)iph; 1447 else 1448 tot_len = skb->len - nhoff; 1449 } else { 1450 if (!fixedid) 1451 iph->id = htons(id++); 1452 tot_len = skb->len - nhoff; 1453 } 1454 iph->tot_len = htons(tot_len); 1455 ip_send_check(iph); 1456 if (encap) 1457 skb_reset_inner_headers(skb); 1458 skb->network_header = (u8 *)iph - skb->head; 1459 skb_reset_mac_len(skb); 1460 } while ((skb = skb->next)); 1461 1462 out: 1463 return segs; 1464 } 1465 1466 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1467 netdev_features_t features) 1468 { 1469 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1470 return ERR_PTR(-EINVAL); 1471 1472 return inet_gso_segment(skb, features); 1473 } 1474 1475 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1476 { 1477 const struct net_offload *ops; 1478 struct sk_buff *pp = NULL; 1479 const struct iphdr *iph; 1480 struct sk_buff *p; 1481 unsigned int hlen; 1482 unsigned int off; 1483 unsigned int id; 1484 int flush = 1; 1485 int proto; 1486 1487 off = skb_gro_offset(skb); 1488 hlen = off + sizeof(*iph); 1489 iph = skb_gro_header(skb, hlen, off); 1490 if (unlikely(!iph)) 1491 goto out; 1492 1493 proto = iph->protocol; 1494 1495 ops = rcu_dereference(inet_offloads[proto]); 1496 if (!ops || !ops->callbacks.gro_receive) 1497 goto out; 1498 1499 if (*(u8 *)iph != 0x45) 1500 goto out; 1501 1502 if (ip_is_fragment(iph)) 1503 goto out; 1504 1505 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1506 goto out; 1507 1508 NAPI_GRO_CB(skb)->proto = proto; 1509 id = ntohl(*(__be32 *)&iph->id); 1510 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1511 id >>= 16; 1512 1513 list_for_each_entry(p, head, list) { 1514 struct iphdr *iph2; 1515 u16 flush_id; 1516 1517 if (!NAPI_GRO_CB(p)->same_flow) 1518 continue; 1519 1520 iph2 = (struct iphdr *)(p->data + off); 1521 /* The above works because, with the exception of the top 1522 * (inner most) layer, we only aggregate pkts with the same 1523 * hdr length so all the hdrs we'll need to verify will start 1524 * at the same offset. 1525 */ 1526 if ((iph->protocol ^ iph2->protocol) | 1527 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1528 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1529 NAPI_GRO_CB(p)->same_flow = 0; 1530 continue; 1531 } 1532 1533 /* All fields must match except length and checksum. */ 1534 NAPI_GRO_CB(p)->flush |= 1535 (iph->ttl ^ iph2->ttl) | 1536 (iph->tos ^ iph2->tos) | 1537 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1538 1539 NAPI_GRO_CB(p)->flush |= flush; 1540 1541 /* We need to store of the IP ID check to be included later 1542 * when we can verify that this packet does in fact belong 1543 * to a given flow. 1544 */ 1545 flush_id = (u16)(id - ntohs(iph2->id)); 1546 1547 /* This bit of code makes it much easier for us to identify 1548 * the cases where we are doing atomic vs non-atomic IP ID 1549 * checks. Specifically an atomic check can return IP ID 1550 * values 0 - 0xFFFF, while a non-atomic check can only 1551 * return 0 or 0xFFFF. 1552 */ 1553 if (!NAPI_GRO_CB(p)->is_atomic || 1554 !(iph->frag_off & htons(IP_DF))) { 1555 flush_id ^= NAPI_GRO_CB(p)->count; 1556 flush_id = flush_id ? 0xFFFF : 0; 1557 } 1558 1559 /* If the previous IP ID value was based on an atomic 1560 * datagram we can overwrite the value and ignore it. 1561 */ 1562 if (NAPI_GRO_CB(skb)->is_atomic) 1563 NAPI_GRO_CB(p)->flush_id = flush_id; 1564 else 1565 NAPI_GRO_CB(p)->flush_id |= flush_id; 1566 } 1567 1568 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1569 NAPI_GRO_CB(skb)->flush |= flush; 1570 skb_set_network_header(skb, off); 1571 /* The above will be needed by the transport layer if there is one 1572 * immediately following this IP hdr. 1573 */ 1574 1575 /* Note : No need to call skb_gro_postpull_rcsum() here, 1576 * as we already checked checksum over ipv4 header was 0 1577 */ 1578 skb_gro_pull(skb, sizeof(*iph)); 1579 skb_set_transport_header(skb, skb_gro_offset(skb)); 1580 1581 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1582 ops->callbacks.gro_receive, head, skb); 1583 1584 out: 1585 skb_gro_flush_final(skb, pp, flush); 1586 1587 return pp; 1588 } 1589 1590 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1591 struct sk_buff *skb) 1592 { 1593 if (NAPI_GRO_CB(skb)->encap_mark) { 1594 NAPI_GRO_CB(skb)->flush = 1; 1595 return NULL; 1596 } 1597 1598 NAPI_GRO_CB(skb)->encap_mark = 1; 1599 1600 return inet_gro_receive(head, skb); 1601 } 1602 1603 #define SECONDS_PER_DAY 86400 1604 1605 /* inet_current_timestamp - Return IP network timestamp 1606 * 1607 * Return milliseconds since midnight in network byte order. 1608 */ 1609 __be32 inet_current_timestamp(void) 1610 { 1611 u32 secs; 1612 u32 msecs; 1613 struct timespec64 ts; 1614 1615 ktime_get_real_ts64(&ts); 1616 1617 /* Get secs since midnight. */ 1618 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1619 /* Convert to msecs. */ 1620 msecs = secs * MSEC_PER_SEC; 1621 /* Convert nsec to msec. */ 1622 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1623 1624 /* Convert to network byte order. */ 1625 return htonl(msecs); 1626 } 1627 EXPORT_SYMBOL(inet_current_timestamp); 1628 1629 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1630 { 1631 if (sk->sk_family == AF_INET) 1632 return ip_recv_error(sk, msg, len, addr_len); 1633 #if IS_ENABLED(CONFIG_IPV6) 1634 if (sk->sk_family == AF_INET6) 1635 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1636 #endif 1637 return -EINVAL; 1638 } 1639 1640 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1641 { 1642 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1643 const struct net_offload *ops; 1644 __be16 totlen = iph->tot_len; 1645 int proto = iph->protocol; 1646 int err = -ENOSYS; 1647 1648 if (skb->encapsulation) { 1649 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1650 skb_set_inner_network_header(skb, nhoff); 1651 } 1652 1653 iph_set_totlen(iph, skb->len - nhoff); 1654 csum_replace2(&iph->check, totlen, iph->tot_len); 1655 1656 ops = rcu_dereference(inet_offloads[proto]); 1657 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1658 goto out; 1659 1660 /* Only need to add sizeof(*iph) to get to the next hdr below 1661 * because any hdr with option will have been flushed in 1662 * inet_gro_receive(). 1663 */ 1664 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1665 tcp4_gro_complete, udp4_gro_complete, 1666 skb, nhoff + sizeof(*iph)); 1667 1668 out: 1669 return err; 1670 } 1671 1672 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1673 { 1674 skb->encapsulation = 1; 1675 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1676 return inet_gro_complete(skb, nhoff); 1677 } 1678 1679 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1680 unsigned short type, unsigned char protocol, 1681 struct net *net) 1682 { 1683 struct socket *sock; 1684 int rc = sock_create_kern(net, family, type, protocol, &sock); 1685 1686 if (rc == 0) { 1687 *sk = sock->sk; 1688 (*sk)->sk_allocation = GFP_ATOMIC; 1689 (*sk)->sk_use_task_frag = false; 1690 /* 1691 * Unhash it so that IP input processing does not even see it, 1692 * we do not wish this socket to see incoming packets. 1693 */ 1694 (*sk)->sk_prot->unhash(*sk); 1695 } 1696 return rc; 1697 } 1698 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1699 1700 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1701 { 1702 unsigned long res = 0; 1703 int i; 1704 1705 for_each_possible_cpu(i) 1706 res += snmp_get_cpu_field(mib, i, offt); 1707 return res; 1708 } 1709 EXPORT_SYMBOL_GPL(snmp_fold_field); 1710 1711 #if BITS_PER_LONG==32 1712 1713 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1714 size_t syncp_offset) 1715 { 1716 void *bhptr; 1717 struct u64_stats_sync *syncp; 1718 u64 v; 1719 unsigned int start; 1720 1721 bhptr = per_cpu_ptr(mib, cpu); 1722 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1723 do { 1724 start = u64_stats_fetch_begin(syncp); 1725 v = *(((u64 *)bhptr) + offt); 1726 } while (u64_stats_fetch_retry(syncp, start)); 1727 1728 return v; 1729 } 1730 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1731 1732 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1733 { 1734 u64 res = 0; 1735 int cpu; 1736 1737 for_each_possible_cpu(cpu) { 1738 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1739 } 1740 return res; 1741 } 1742 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1743 #endif 1744 1745 #ifdef CONFIG_IP_MULTICAST 1746 static const struct net_protocol igmp_protocol = { 1747 .handler = igmp_rcv, 1748 }; 1749 #endif 1750 1751 static const struct net_protocol tcp_protocol = { 1752 .handler = tcp_v4_rcv, 1753 .err_handler = tcp_v4_err, 1754 .no_policy = 1, 1755 .icmp_strict_tag_validation = 1, 1756 }; 1757 1758 static const struct net_protocol udp_protocol = { 1759 .handler = udp_rcv, 1760 .err_handler = udp_err, 1761 .no_policy = 1, 1762 }; 1763 1764 static const struct net_protocol icmp_protocol = { 1765 .handler = icmp_rcv, 1766 .err_handler = icmp_err, 1767 .no_policy = 1, 1768 }; 1769 1770 static __net_init int ipv4_mib_init_net(struct net *net) 1771 { 1772 int i; 1773 1774 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1775 if (!net->mib.tcp_statistics) 1776 goto err_tcp_mib; 1777 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1778 if (!net->mib.ip_statistics) 1779 goto err_ip_mib; 1780 1781 for_each_possible_cpu(i) { 1782 struct ipstats_mib *af_inet_stats; 1783 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1784 u64_stats_init(&af_inet_stats->syncp); 1785 } 1786 1787 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1788 if (!net->mib.net_statistics) 1789 goto err_net_mib; 1790 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1791 if (!net->mib.udp_statistics) 1792 goto err_udp_mib; 1793 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1794 if (!net->mib.udplite_statistics) 1795 goto err_udplite_mib; 1796 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1797 if (!net->mib.icmp_statistics) 1798 goto err_icmp_mib; 1799 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1800 GFP_KERNEL); 1801 if (!net->mib.icmpmsg_statistics) 1802 goto err_icmpmsg_mib; 1803 1804 tcp_mib_init(net); 1805 return 0; 1806 1807 err_icmpmsg_mib: 1808 free_percpu(net->mib.icmp_statistics); 1809 err_icmp_mib: 1810 free_percpu(net->mib.udplite_statistics); 1811 err_udplite_mib: 1812 free_percpu(net->mib.udp_statistics); 1813 err_udp_mib: 1814 free_percpu(net->mib.net_statistics); 1815 err_net_mib: 1816 free_percpu(net->mib.ip_statistics); 1817 err_ip_mib: 1818 free_percpu(net->mib.tcp_statistics); 1819 err_tcp_mib: 1820 return -ENOMEM; 1821 } 1822 1823 static __net_exit void ipv4_mib_exit_net(struct net *net) 1824 { 1825 kfree(net->mib.icmpmsg_statistics); 1826 free_percpu(net->mib.icmp_statistics); 1827 free_percpu(net->mib.udplite_statistics); 1828 free_percpu(net->mib.udp_statistics); 1829 free_percpu(net->mib.net_statistics); 1830 free_percpu(net->mib.ip_statistics); 1831 free_percpu(net->mib.tcp_statistics); 1832 #ifdef CONFIG_MPTCP 1833 /* allocated on demand, see mptcp_init_sock() */ 1834 free_percpu(net->mib.mptcp_statistics); 1835 #endif 1836 } 1837 1838 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1839 .init = ipv4_mib_init_net, 1840 .exit = ipv4_mib_exit_net, 1841 }; 1842 1843 static int __init init_ipv4_mibs(void) 1844 { 1845 return register_pernet_subsys(&ipv4_mib_ops); 1846 } 1847 1848 static __net_init int inet_init_net(struct net *net) 1849 { 1850 /* 1851 * Set defaults for local port range 1852 */ 1853 seqlock_init(&net->ipv4.ip_local_ports.lock); 1854 net->ipv4.ip_local_ports.range[0] = 32768; 1855 net->ipv4.ip_local_ports.range[1] = 60999; 1856 1857 seqlock_init(&net->ipv4.ping_group_range.lock); 1858 /* 1859 * Sane defaults - nobody may create ping sockets. 1860 * Boot scripts should set this to distro-specific group. 1861 */ 1862 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1863 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1864 1865 /* Default values for sysctl-controlled parameters. 1866 * We set them here, in case sysctl is not compiled. 1867 */ 1868 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1869 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1870 net->ipv4.sysctl_ip_dynaddr = 0; 1871 net->ipv4.sysctl_ip_early_demux = 1; 1872 net->ipv4.sysctl_udp_early_demux = 1; 1873 net->ipv4.sysctl_tcp_early_demux = 1; 1874 net->ipv4.sysctl_nexthop_compat_mode = 1; 1875 #ifdef CONFIG_SYSCTL 1876 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1877 #endif 1878 1879 /* Some igmp sysctl, whose values are always used */ 1880 net->ipv4.sysctl_igmp_max_memberships = 20; 1881 net->ipv4.sysctl_igmp_max_msf = 10; 1882 /* IGMP reports for link-local multicast groups are enabled by default */ 1883 net->ipv4.sysctl_igmp_llm_reports = 1; 1884 net->ipv4.sysctl_igmp_qrv = 2; 1885 1886 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1887 1888 return 0; 1889 } 1890 1891 static __net_initdata struct pernet_operations af_inet_ops = { 1892 .init = inet_init_net, 1893 }; 1894 1895 static int __init init_inet_pernet_ops(void) 1896 { 1897 return register_pernet_subsys(&af_inet_ops); 1898 } 1899 1900 static int ipv4_proc_init(void); 1901 1902 /* 1903 * IP protocol layer initialiser 1904 */ 1905 1906 static struct packet_offload ip_packet_offload __read_mostly = { 1907 .type = cpu_to_be16(ETH_P_IP), 1908 .callbacks = { 1909 .gso_segment = inet_gso_segment, 1910 .gro_receive = inet_gro_receive, 1911 .gro_complete = inet_gro_complete, 1912 }, 1913 }; 1914 1915 static const struct net_offload ipip_offload = { 1916 .callbacks = { 1917 .gso_segment = ipip_gso_segment, 1918 .gro_receive = ipip_gro_receive, 1919 .gro_complete = ipip_gro_complete, 1920 }, 1921 }; 1922 1923 static int __init ipip_offload_init(void) 1924 { 1925 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1926 } 1927 1928 static int __init ipv4_offload_init(void) 1929 { 1930 /* 1931 * Add offloads 1932 */ 1933 if (udpv4_offload_init() < 0) 1934 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1935 if (tcpv4_offload_init() < 0) 1936 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1937 if (ipip_offload_init() < 0) 1938 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1939 1940 dev_add_offload(&ip_packet_offload); 1941 return 0; 1942 } 1943 1944 fs_initcall(ipv4_offload_init); 1945 1946 static struct packet_type ip_packet_type __read_mostly = { 1947 .type = cpu_to_be16(ETH_P_IP), 1948 .func = ip_rcv, 1949 .list_func = ip_list_rcv, 1950 }; 1951 1952 static int __init inet_init(void) 1953 { 1954 struct inet_protosw *q; 1955 struct list_head *r; 1956 int rc; 1957 1958 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1959 1960 raw_hashinfo_init(&raw_v4_hashinfo); 1961 1962 rc = proto_register(&tcp_prot, 1); 1963 if (rc) 1964 goto out; 1965 1966 rc = proto_register(&udp_prot, 1); 1967 if (rc) 1968 goto out_unregister_tcp_proto; 1969 1970 rc = proto_register(&raw_prot, 1); 1971 if (rc) 1972 goto out_unregister_udp_proto; 1973 1974 rc = proto_register(&ping_prot, 1); 1975 if (rc) 1976 goto out_unregister_raw_proto; 1977 1978 /* 1979 * Tell SOCKET that we are alive... 1980 */ 1981 1982 (void)sock_register(&inet_family_ops); 1983 1984 #ifdef CONFIG_SYSCTL 1985 ip_static_sysctl_init(); 1986 #endif 1987 1988 /* 1989 * Add all the base protocols. 1990 */ 1991 1992 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1993 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1994 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1995 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1996 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1997 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1998 #ifdef CONFIG_IP_MULTICAST 1999 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 2000 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 2001 #endif 2002 2003 /* Register the socket-side information for inet_create. */ 2004 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 2005 INIT_LIST_HEAD(r); 2006 2007 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 2008 inet_register_protosw(q); 2009 2010 /* 2011 * Set the ARP module up 2012 */ 2013 2014 arp_init(); 2015 2016 /* 2017 * Set the IP module up 2018 */ 2019 2020 ip_init(); 2021 2022 /* Initialise per-cpu ipv4 mibs */ 2023 if (init_ipv4_mibs()) 2024 panic("%s: Cannot init ipv4 mibs\n", __func__); 2025 2026 /* Setup TCP slab cache for open requests. */ 2027 tcp_init(); 2028 2029 /* Setup UDP memory threshold */ 2030 udp_init(); 2031 2032 /* Add UDP-Lite (RFC 3828) */ 2033 udplite4_register(); 2034 2035 raw_init(); 2036 2037 ping_init(); 2038 2039 /* 2040 * Set the ICMP layer up 2041 */ 2042 2043 if (icmp_init() < 0) 2044 panic("Failed to create the ICMP control socket.\n"); 2045 2046 /* 2047 * Initialise the multicast router 2048 */ 2049 #if defined(CONFIG_IP_MROUTE) 2050 if (ip_mr_init()) 2051 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2052 #endif 2053 2054 if (init_inet_pernet_ops()) 2055 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2056 2057 ipv4_proc_init(); 2058 2059 ipfrag_init(); 2060 2061 dev_add_pack(&ip_packet_type); 2062 2063 ip_tunnel_core_init(); 2064 2065 rc = 0; 2066 out: 2067 return rc; 2068 out_unregister_raw_proto: 2069 proto_unregister(&raw_prot); 2070 out_unregister_udp_proto: 2071 proto_unregister(&udp_prot); 2072 out_unregister_tcp_proto: 2073 proto_unregister(&tcp_prot); 2074 goto out; 2075 } 2076 2077 fs_initcall(inet_init); 2078 2079 /* ------------------------------------------------------------------------ */ 2080 2081 #ifdef CONFIG_PROC_FS 2082 static int __init ipv4_proc_init(void) 2083 { 2084 int rc = 0; 2085 2086 if (raw_proc_init()) 2087 goto out_raw; 2088 if (tcp4_proc_init()) 2089 goto out_tcp; 2090 if (udp4_proc_init()) 2091 goto out_udp; 2092 if (ping_proc_init()) 2093 goto out_ping; 2094 if (ip_misc_proc_init()) 2095 goto out_misc; 2096 out: 2097 return rc; 2098 out_misc: 2099 ping_proc_exit(); 2100 out_ping: 2101 udp4_proc_exit(); 2102 out_udp: 2103 tcp4_proc_exit(); 2104 out_tcp: 2105 raw_proc_exit(); 2106 out_raw: 2107 rc = -ENOMEM; 2108 goto out; 2109 } 2110 2111 #else /* CONFIG_PROC_FS */ 2112 static int __init ipv4_proc_init(void) 2113 { 2114 return 0; 2115 } 2116 #endif /* CONFIG_PROC_FS */ 2117