1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/tcp.h> 103 #include <net/udp.h> 104 #include <net/udplite.h> 105 #include <net/ping.h> 106 #include <linux/skbuff.h> 107 #include <net/sock.h> 108 #include <net/raw.h> 109 #include <net/icmp.h> 110 #include <net/inet_common.h> 111 #include <net/ip_tunnels.h> 112 #include <net/xfrm.h> 113 #include <net/net_namespace.h> 114 #include <net/secure_seq.h> 115 #ifdef CONFIG_IP_MROUTE 116 #include <linux/mroute.h> 117 #endif 118 #include <net/l3mdev.h> 119 #include <net/compat.h> 120 121 #include <trace/events/sock.h> 122 123 /* The inetsw table contains everything that inet_create needs to 124 * build a new socket. 125 */ 126 static struct list_head inetsw[SOCK_MAX]; 127 static DEFINE_SPINLOCK(inetsw_lock); 128 129 /* New destruction routine */ 130 131 void inet_sock_destruct(struct sock *sk) 132 { 133 struct inet_sock *inet = inet_sk(sk); 134 135 __skb_queue_purge(&sk->sk_receive_queue); 136 if (sk->sk_rx_skb_cache) { 137 __kfree_skb(sk->sk_rx_skb_cache); 138 sk->sk_rx_skb_cache = NULL; 139 } 140 __skb_queue_purge(&sk->sk_error_queue); 141 142 sk_mem_reclaim(sk); 143 144 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 145 pr_err("Attempt to release TCP socket in state %d %p\n", 146 sk->sk_state, sk); 147 return; 148 } 149 if (!sock_flag(sk, SOCK_DEAD)) { 150 pr_err("Attempt to release alive inet socket %p\n", sk); 151 return; 152 } 153 154 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 155 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 156 WARN_ON(sk->sk_wmem_queued); 157 WARN_ON(sk->sk_forward_alloc); 158 159 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 160 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 161 dst_release(sk->sk_rx_dst); 162 sk_refcnt_debug_dec(sk); 163 } 164 EXPORT_SYMBOL(inet_sock_destruct); 165 166 /* 167 * The routines beyond this point handle the behaviour of an AF_INET 168 * socket object. Mostly it punts to the subprotocols of IP to do 169 * the work. 170 */ 171 172 /* 173 * Automatically bind an unbound socket. 174 */ 175 176 static int inet_autobind(struct sock *sk) 177 { 178 struct inet_sock *inet; 179 /* We may need to bind the socket. */ 180 lock_sock(sk); 181 inet = inet_sk(sk); 182 if (!inet->inet_num) { 183 if (sk->sk_prot->get_port(sk, 0)) { 184 release_sock(sk); 185 return -EAGAIN; 186 } 187 inet->inet_sport = htons(inet->inet_num); 188 } 189 release_sock(sk); 190 return 0; 191 } 192 193 /* 194 * Move a socket into listening state. 195 */ 196 int inet_listen(struct socket *sock, int backlog) 197 { 198 struct sock *sk = sock->sk; 199 unsigned char old_state; 200 int err, tcp_fastopen; 201 202 lock_sock(sk); 203 204 err = -EINVAL; 205 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 206 goto out; 207 208 old_state = sk->sk_state; 209 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 210 goto out; 211 212 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 213 /* Really, if the socket is already in listen state 214 * we can only allow the backlog to be adjusted. 215 */ 216 if (old_state != TCP_LISTEN) { 217 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 218 * Note that only TCP sockets (SOCK_STREAM) will reach here. 219 * Also fastopen backlog may already been set via the option 220 * because the socket was in TCP_LISTEN state previously but 221 * was shutdown() rather than close(). 222 */ 223 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 224 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 225 (tcp_fastopen & TFO_SERVER_ENABLE) && 226 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 227 fastopen_queue_tune(sk, backlog); 228 tcp_fastopen_init_key_once(sock_net(sk)); 229 } 230 231 err = inet_csk_listen_start(sk, backlog); 232 if (err) 233 goto out; 234 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 235 } 236 err = 0; 237 238 out: 239 release_sock(sk); 240 return err; 241 } 242 EXPORT_SYMBOL(inet_listen); 243 244 /* 245 * Create an inet socket. 246 */ 247 248 static int inet_create(struct net *net, struct socket *sock, int protocol, 249 int kern) 250 { 251 struct sock *sk; 252 struct inet_protosw *answer; 253 struct inet_sock *inet; 254 struct proto *answer_prot; 255 unsigned char answer_flags; 256 int try_loading_module = 0; 257 int err; 258 259 if (protocol < 0 || protocol >= IPPROTO_MAX) 260 return -EINVAL; 261 262 sock->state = SS_UNCONNECTED; 263 264 /* Look for the requested type/protocol pair. */ 265 lookup_protocol: 266 err = -ESOCKTNOSUPPORT; 267 rcu_read_lock(); 268 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 269 270 err = 0; 271 /* Check the non-wild match. */ 272 if (protocol == answer->protocol) { 273 if (protocol != IPPROTO_IP) 274 break; 275 } else { 276 /* Check for the two wild cases. */ 277 if (IPPROTO_IP == protocol) { 278 protocol = answer->protocol; 279 break; 280 } 281 if (IPPROTO_IP == answer->protocol) 282 break; 283 } 284 err = -EPROTONOSUPPORT; 285 } 286 287 if (unlikely(err)) { 288 if (try_loading_module < 2) { 289 rcu_read_unlock(); 290 /* 291 * Be more specific, e.g. net-pf-2-proto-132-type-1 292 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 293 */ 294 if (++try_loading_module == 1) 295 request_module("net-pf-%d-proto-%d-type-%d", 296 PF_INET, protocol, sock->type); 297 /* 298 * Fall back to generic, e.g. net-pf-2-proto-132 299 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 300 */ 301 else 302 request_module("net-pf-%d-proto-%d", 303 PF_INET, protocol); 304 goto lookup_protocol; 305 } else 306 goto out_rcu_unlock; 307 } 308 309 err = -EPERM; 310 if (sock->type == SOCK_RAW && !kern && 311 !ns_capable(net->user_ns, CAP_NET_RAW)) 312 goto out_rcu_unlock; 313 314 sock->ops = answer->ops; 315 answer_prot = answer->prot; 316 answer_flags = answer->flags; 317 rcu_read_unlock(); 318 319 WARN_ON(!answer_prot->slab); 320 321 err = -ENOBUFS; 322 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 323 if (!sk) 324 goto out; 325 326 err = 0; 327 if (INET_PROTOSW_REUSE & answer_flags) 328 sk->sk_reuse = SK_CAN_REUSE; 329 330 inet = inet_sk(sk); 331 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 332 333 inet->nodefrag = 0; 334 335 if (SOCK_RAW == sock->type) { 336 inet->inet_num = protocol; 337 if (IPPROTO_RAW == protocol) 338 inet->hdrincl = 1; 339 } 340 341 if (net->ipv4.sysctl_ip_no_pmtu_disc) 342 inet->pmtudisc = IP_PMTUDISC_DONT; 343 else 344 inet->pmtudisc = IP_PMTUDISC_WANT; 345 346 inet->inet_id = 0; 347 348 sock_init_data(sock, sk); 349 350 sk->sk_destruct = inet_sock_destruct; 351 sk->sk_protocol = protocol; 352 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 353 354 inet->uc_ttl = -1; 355 inet->mc_loop = 1; 356 inet->mc_ttl = 1; 357 inet->mc_all = 1; 358 inet->mc_index = 0; 359 inet->mc_list = NULL; 360 inet->rcv_tos = 0; 361 362 sk_refcnt_debug_inc(sk); 363 364 if (inet->inet_num) { 365 /* It assumes that any protocol which allows 366 * the user to assign a number at socket 367 * creation time automatically 368 * shares. 369 */ 370 inet->inet_sport = htons(inet->inet_num); 371 /* Add to protocol hash chains. */ 372 err = sk->sk_prot->hash(sk); 373 if (err) { 374 sk_common_release(sk); 375 goto out; 376 } 377 } 378 379 if (sk->sk_prot->init) { 380 err = sk->sk_prot->init(sk); 381 if (err) { 382 sk_common_release(sk); 383 goto out; 384 } 385 } 386 387 if (!kern) { 388 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 389 if (err) { 390 sk_common_release(sk); 391 goto out; 392 } 393 } 394 out: 395 return err; 396 out_rcu_unlock: 397 rcu_read_unlock(); 398 goto out; 399 } 400 401 402 /* 403 * The peer socket should always be NULL (or else). When we call this 404 * function we are destroying the object and from then on nobody 405 * should refer to it. 406 */ 407 int inet_release(struct socket *sock) 408 { 409 struct sock *sk = sock->sk; 410 411 if (sk) { 412 long timeout; 413 414 if (!sk->sk_kern_sock) 415 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 416 417 /* Applications forget to leave groups before exiting */ 418 ip_mc_drop_socket(sk); 419 420 /* If linger is set, we don't return until the close 421 * is complete. Otherwise we return immediately. The 422 * actually closing is done the same either way. 423 * 424 * If the close is due to the process exiting, we never 425 * linger.. 426 */ 427 timeout = 0; 428 if (sock_flag(sk, SOCK_LINGER) && 429 !(current->flags & PF_EXITING)) 430 timeout = sk->sk_lingertime; 431 sk->sk_prot->close(sk, timeout); 432 sock->sk = NULL; 433 } 434 return 0; 435 } 436 EXPORT_SYMBOL(inet_release); 437 438 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 439 { 440 struct sock *sk = sock->sk; 441 int err; 442 443 /* If the socket has its own bind function then use it. (RAW) */ 444 if (sk->sk_prot->bind) { 445 return sk->sk_prot->bind(sk, uaddr, addr_len); 446 } 447 if (addr_len < sizeof(struct sockaddr_in)) 448 return -EINVAL; 449 450 /* BPF prog is run before any checks are done so that if the prog 451 * changes context in a wrong way it will be caught. 452 */ 453 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); 454 if (err) 455 return err; 456 457 return __inet_bind(sk, uaddr, addr_len, BIND_WITH_LOCK); 458 } 459 EXPORT_SYMBOL(inet_bind); 460 461 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 462 u32 flags) 463 { 464 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 465 struct inet_sock *inet = inet_sk(sk); 466 struct net *net = sock_net(sk); 467 unsigned short snum; 468 int chk_addr_ret; 469 u32 tb_id = RT_TABLE_LOCAL; 470 int err; 471 472 if (addr->sin_family != AF_INET) { 473 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 474 * only if s_addr is INADDR_ANY. 475 */ 476 err = -EAFNOSUPPORT; 477 if (addr->sin_family != AF_UNSPEC || 478 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 479 goto out; 480 } 481 482 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 483 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 484 485 /* Not specified by any standard per-se, however it breaks too 486 * many applications when removed. It is unfortunate since 487 * allowing applications to make a non-local bind solves 488 * several problems with systems using dynamic addressing. 489 * (ie. your servers still start up even if your ISDN link 490 * is temporarily down) 491 */ 492 err = -EADDRNOTAVAIL; 493 if (!inet_can_nonlocal_bind(net, inet) && 494 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 495 chk_addr_ret != RTN_LOCAL && 496 chk_addr_ret != RTN_MULTICAST && 497 chk_addr_ret != RTN_BROADCAST) 498 goto out; 499 500 snum = ntohs(addr->sin_port); 501 err = -EACCES; 502 if (snum && inet_port_requires_bind_service(net, snum) && 503 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 504 goto out; 505 506 /* We keep a pair of addresses. rcv_saddr is the one 507 * used by hash lookups, and saddr is used for transmit. 508 * 509 * In the BSD API these are the same except where it 510 * would be illegal to use them (multicast/broadcast) in 511 * which case the sending device address is used. 512 */ 513 if (flags & BIND_WITH_LOCK) 514 lock_sock(sk); 515 516 /* Check these errors (active socket, double bind). */ 517 err = -EINVAL; 518 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 519 goto out_release_sock; 520 521 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 522 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 523 inet->inet_saddr = 0; /* Use device */ 524 525 /* Make sure we are allowed to bind here. */ 526 if (snum || !(inet->bind_address_no_port || 527 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 528 if (sk->sk_prot->get_port(sk, snum)) { 529 inet->inet_saddr = inet->inet_rcv_saddr = 0; 530 err = -EADDRINUSE; 531 goto out_release_sock; 532 } 533 if (!(flags & BIND_FROM_BPF)) { 534 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 535 if (err) { 536 inet->inet_saddr = inet->inet_rcv_saddr = 0; 537 goto out_release_sock; 538 } 539 } 540 } 541 542 if (inet->inet_rcv_saddr) 543 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 544 if (snum) 545 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 546 inet->inet_sport = htons(inet->inet_num); 547 inet->inet_daddr = 0; 548 inet->inet_dport = 0; 549 sk_dst_reset(sk); 550 err = 0; 551 out_release_sock: 552 if (flags & BIND_WITH_LOCK) 553 release_sock(sk); 554 out: 555 return err; 556 } 557 558 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 559 int addr_len, int flags) 560 { 561 struct sock *sk = sock->sk; 562 int err; 563 564 if (addr_len < sizeof(uaddr->sa_family)) 565 return -EINVAL; 566 if (uaddr->sa_family == AF_UNSPEC) 567 return sk->sk_prot->disconnect(sk, flags); 568 569 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 570 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 571 if (err) 572 return err; 573 } 574 575 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 576 return -EAGAIN; 577 return sk->sk_prot->connect(sk, uaddr, addr_len); 578 } 579 EXPORT_SYMBOL(inet_dgram_connect); 580 581 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 582 { 583 DEFINE_WAIT_FUNC(wait, woken_wake_function); 584 585 add_wait_queue(sk_sleep(sk), &wait); 586 sk->sk_write_pending += writebias; 587 588 /* Basic assumption: if someone sets sk->sk_err, he _must_ 589 * change state of the socket from TCP_SYN_*. 590 * Connect() does not allow to get error notifications 591 * without closing the socket. 592 */ 593 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 594 release_sock(sk); 595 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 596 lock_sock(sk); 597 if (signal_pending(current) || !timeo) 598 break; 599 } 600 remove_wait_queue(sk_sleep(sk), &wait); 601 sk->sk_write_pending -= writebias; 602 return timeo; 603 } 604 605 /* 606 * Connect to a remote host. There is regrettably still a little 607 * TCP 'magic' in here. 608 */ 609 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 610 int addr_len, int flags, int is_sendmsg) 611 { 612 struct sock *sk = sock->sk; 613 int err; 614 long timeo; 615 616 /* 617 * uaddr can be NULL and addr_len can be 0 if: 618 * sk is a TCP fastopen active socket and 619 * TCP_FASTOPEN_CONNECT sockopt is set and 620 * we already have a valid cookie for this socket. 621 * In this case, user can call write() after connect(). 622 * write() will invoke tcp_sendmsg_fastopen() which calls 623 * __inet_stream_connect(). 624 */ 625 if (uaddr) { 626 if (addr_len < sizeof(uaddr->sa_family)) 627 return -EINVAL; 628 629 if (uaddr->sa_family == AF_UNSPEC) { 630 err = sk->sk_prot->disconnect(sk, flags); 631 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 632 goto out; 633 } 634 } 635 636 switch (sock->state) { 637 default: 638 err = -EINVAL; 639 goto out; 640 case SS_CONNECTED: 641 err = -EISCONN; 642 goto out; 643 case SS_CONNECTING: 644 if (inet_sk(sk)->defer_connect) 645 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 646 else 647 err = -EALREADY; 648 /* Fall out of switch with err, set for this state */ 649 break; 650 case SS_UNCONNECTED: 651 err = -EISCONN; 652 if (sk->sk_state != TCP_CLOSE) 653 goto out; 654 655 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 656 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 657 if (err) 658 goto out; 659 } 660 661 err = sk->sk_prot->connect(sk, uaddr, addr_len); 662 if (err < 0) 663 goto out; 664 665 sock->state = SS_CONNECTING; 666 667 if (!err && inet_sk(sk)->defer_connect) 668 goto out; 669 670 /* Just entered SS_CONNECTING state; the only 671 * difference is that return value in non-blocking 672 * case is EINPROGRESS, rather than EALREADY. 673 */ 674 err = -EINPROGRESS; 675 break; 676 } 677 678 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 679 680 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 681 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 682 tcp_sk(sk)->fastopen_req && 683 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 684 685 /* Error code is set above */ 686 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 687 goto out; 688 689 err = sock_intr_errno(timeo); 690 if (signal_pending(current)) 691 goto out; 692 } 693 694 /* Connection was closed by RST, timeout, ICMP error 695 * or another process disconnected us. 696 */ 697 if (sk->sk_state == TCP_CLOSE) 698 goto sock_error; 699 700 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 701 * and error was received after socket entered established state. 702 * Hence, it is handled normally after connect() return successfully. 703 */ 704 705 sock->state = SS_CONNECTED; 706 err = 0; 707 out: 708 return err; 709 710 sock_error: 711 err = sock_error(sk) ? : -ECONNABORTED; 712 sock->state = SS_UNCONNECTED; 713 if (sk->sk_prot->disconnect(sk, flags)) 714 sock->state = SS_DISCONNECTING; 715 goto out; 716 } 717 EXPORT_SYMBOL(__inet_stream_connect); 718 719 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 720 int addr_len, int flags) 721 { 722 int err; 723 724 lock_sock(sock->sk); 725 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 726 release_sock(sock->sk); 727 return err; 728 } 729 EXPORT_SYMBOL(inet_stream_connect); 730 731 /* 732 * Accept a pending connection. The TCP layer now gives BSD semantics. 733 */ 734 735 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 736 bool kern) 737 { 738 struct sock *sk1 = sock->sk; 739 int err = -EINVAL; 740 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 741 742 if (!sk2) 743 goto do_err; 744 745 lock_sock(sk2); 746 747 sock_rps_record_flow(sk2); 748 WARN_ON(!((1 << sk2->sk_state) & 749 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 750 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 751 752 sock_graft(sk2, newsock); 753 754 newsock->state = SS_CONNECTED; 755 err = 0; 756 release_sock(sk2); 757 do_err: 758 return err; 759 } 760 EXPORT_SYMBOL(inet_accept); 761 762 /* 763 * This does both peername and sockname. 764 */ 765 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 766 int peer) 767 { 768 struct sock *sk = sock->sk; 769 struct inet_sock *inet = inet_sk(sk); 770 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 771 772 sin->sin_family = AF_INET; 773 if (peer) { 774 if (!inet->inet_dport || 775 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 776 peer == 1)) 777 return -ENOTCONN; 778 sin->sin_port = inet->inet_dport; 779 sin->sin_addr.s_addr = inet->inet_daddr; 780 } else { 781 __be32 addr = inet->inet_rcv_saddr; 782 if (!addr) 783 addr = inet->inet_saddr; 784 sin->sin_port = inet->inet_sport; 785 sin->sin_addr.s_addr = addr; 786 } 787 if (cgroup_bpf_enabled) 788 BPF_CGROUP_RUN_SA_PROG_LOCK(sk, (struct sockaddr *)sin, 789 peer ? BPF_CGROUP_INET4_GETPEERNAME : 790 BPF_CGROUP_INET4_GETSOCKNAME, 791 NULL); 792 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 793 return sizeof(*sin); 794 } 795 EXPORT_SYMBOL(inet_getname); 796 797 int inet_send_prepare(struct sock *sk) 798 { 799 sock_rps_record_flow(sk); 800 801 /* We may need to bind the socket. */ 802 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 803 inet_autobind(sk)) 804 return -EAGAIN; 805 806 return 0; 807 } 808 EXPORT_SYMBOL_GPL(inet_send_prepare); 809 810 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 811 { 812 struct sock *sk = sock->sk; 813 814 if (unlikely(inet_send_prepare(sk))) 815 return -EAGAIN; 816 817 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 818 sk, msg, size); 819 } 820 EXPORT_SYMBOL(inet_sendmsg); 821 822 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 823 size_t size, int flags) 824 { 825 struct sock *sk = sock->sk; 826 827 if (unlikely(inet_send_prepare(sk))) 828 return -EAGAIN; 829 830 if (sk->sk_prot->sendpage) 831 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 832 return sock_no_sendpage(sock, page, offset, size, flags); 833 } 834 EXPORT_SYMBOL(inet_sendpage); 835 836 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 837 size_t, int, int, int *)); 838 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 839 int flags) 840 { 841 struct sock *sk = sock->sk; 842 int addr_len = 0; 843 int err; 844 845 if (likely(!(flags & MSG_ERRQUEUE))) 846 sock_rps_record_flow(sk); 847 848 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 849 sk, msg, size, flags & MSG_DONTWAIT, 850 flags & ~MSG_DONTWAIT, &addr_len); 851 if (err >= 0) 852 msg->msg_namelen = addr_len; 853 return err; 854 } 855 EXPORT_SYMBOL(inet_recvmsg); 856 857 int inet_shutdown(struct socket *sock, int how) 858 { 859 struct sock *sk = sock->sk; 860 int err = 0; 861 862 /* This should really check to make sure 863 * the socket is a TCP socket. (WHY AC...) 864 */ 865 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 866 1->2 bit 2 snds. 867 2->3 */ 868 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 869 return -EINVAL; 870 871 lock_sock(sk); 872 if (sock->state == SS_CONNECTING) { 873 if ((1 << sk->sk_state) & 874 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 875 sock->state = SS_DISCONNECTING; 876 else 877 sock->state = SS_CONNECTED; 878 } 879 880 switch (sk->sk_state) { 881 case TCP_CLOSE: 882 err = -ENOTCONN; 883 /* Hack to wake up other listeners, who can poll for 884 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 885 fallthrough; 886 default: 887 sk->sk_shutdown |= how; 888 if (sk->sk_prot->shutdown) 889 sk->sk_prot->shutdown(sk, how); 890 break; 891 892 /* Remaining two branches are temporary solution for missing 893 * close() in multithreaded environment. It is _not_ a good idea, 894 * but we have no choice until close() is repaired at VFS level. 895 */ 896 case TCP_LISTEN: 897 if (!(how & RCV_SHUTDOWN)) 898 break; 899 fallthrough; 900 case TCP_SYN_SENT: 901 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 902 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 903 break; 904 } 905 906 /* Wake up anyone sleeping in poll. */ 907 sk->sk_state_change(sk); 908 release_sock(sk); 909 return err; 910 } 911 EXPORT_SYMBOL(inet_shutdown); 912 913 /* 914 * ioctl() calls you can issue on an INET socket. Most of these are 915 * device configuration and stuff and very rarely used. Some ioctls 916 * pass on to the socket itself. 917 * 918 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 919 * loads the devconfigure module does its configuring and unloads it. 920 * There's a good 20K of config code hanging around the kernel. 921 */ 922 923 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 924 { 925 struct sock *sk = sock->sk; 926 int err = 0; 927 struct net *net = sock_net(sk); 928 void __user *p = (void __user *)arg; 929 struct ifreq ifr; 930 struct rtentry rt; 931 932 switch (cmd) { 933 case SIOCADDRT: 934 case SIOCDELRT: 935 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 936 return -EFAULT; 937 err = ip_rt_ioctl(net, cmd, &rt); 938 break; 939 case SIOCRTMSG: 940 err = -EINVAL; 941 break; 942 case SIOCDARP: 943 case SIOCGARP: 944 case SIOCSARP: 945 err = arp_ioctl(net, cmd, (void __user *)arg); 946 break; 947 case SIOCGIFADDR: 948 case SIOCGIFBRDADDR: 949 case SIOCGIFNETMASK: 950 case SIOCGIFDSTADDR: 951 case SIOCGIFPFLAGS: 952 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 953 return -EFAULT; 954 err = devinet_ioctl(net, cmd, &ifr); 955 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 956 err = -EFAULT; 957 break; 958 959 case SIOCSIFADDR: 960 case SIOCSIFBRDADDR: 961 case SIOCSIFNETMASK: 962 case SIOCSIFDSTADDR: 963 case SIOCSIFPFLAGS: 964 case SIOCSIFFLAGS: 965 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 966 return -EFAULT; 967 err = devinet_ioctl(net, cmd, &ifr); 968 break; 969 default: 970 if (sk->sk_prot->ioctl) 971 err = sk->sk_prot->ioctl(sk, cmd, arg); 972 else 973 err = -ENOIOCTLCMD; 974 break; 975 } 976 return err; 977 } 978 EXPORT_SYMBOL(inet_ioctl); 979 980 #ifdef CONFIG_COMPAT 981 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 982 struct compat_rtentry __user *ur) 983 { 984 compat_uptr_t rtdev; 985 struct rtentry rt; 986 987 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 988 3 * sizeof(struct sockaddr)) || 989 get_user(rt.rt_flags, &ur->rt_flags) || 990 get_user(rt.rt_metric, &ur->rt_metric) || 991 get_user(rt.rt_mtu, &ur->rt_mtu) || 992 get_user(rt.rt_window, &ur->rt_window) || 993 get_user(rt.rt_irtt, &ur->rt_irtt) || 994 get_user(rtdev, &ur->rt_dev)) 995 return -EFAULT; 996 997 rt.rt_dev = compat_ptr(rtdev); 998 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 999 } 1000 1001 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1002 { 1003 void __user *argp = compat_ptr(arg); 1004 struct sock *sk = sock->sk; 1005 1006 switch (cmd) { 1007 case SIOCADDRT: 1008 case SIOCDELRT: 1009 return inet_compat_routing_ioctl(sk, cmd, argp); 1010 default: 1011 if (!sk->sk_prot->compat_ioctl) 1012 return -ENOIOCTLCMD; 1013 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1014 } 1015 } 1016 #endif /* CONFIG_COMPAT */ 1017 1018 const struct proto_ops inet_stream_ops = { 1019 .family = PF_INET, 1020 .owner = THIS_MODULE, 1021 .release = inet_release, 1022 .bind = inet_bind, 1023 .connect = inet_stream_connect, 1024 .socketpair = sock_no_socketpair, 1025 .accept = inet_accept, 1026 .getname = inet_getname, 1027 .poll = tcp_poll, 1028 .ioctl = inet_ioctl, 1029 .gettstamp = sock_gettstamp, 1030 .listen = inet_listen, 1031 .shutdown = inet_shutdown, 1032 .setsockopt = sock_common_setsockopt, 1033 .getsockopt = sock_common_getsockopt, 1034 .sendmsg = inet_sendmsg, 1035 .recvmsg = inet_recvmsg, 1036 #ifdef CONFIG_MMU 1037 .mmap = tcp_mmap, 1038 #endif 1039 .sendpage = inet_sendpage, 1040 .splice_read = tcp_splice_read, 1041 .read_sock = tcp_read_sock, 1042 .sendmsg_locked = tcp_sendmsg_locked, 1043 .sendpage_locked = tcp_sendpage_locked, 1044 .peek_len = tcp_peek_len, 1045 #ifdef CONFIG_COMPAT 1046 .compat_ioctl = inet_compat_ioctl, 1047 #endif 1048 .set_rcvlowat = tcp_set_rcvlowat, 1049 }; 1050 EXPORT_SYMBOL(inet_stream_ops); 1051 1052 const struct proto_ops inet_dgram_ops = { 1053 .family = PF_INET, 1054 .owner = THIS_MODULE, 1055 .release = inet_release, 1056 .bind = inet_bind, 1057 .connect = inet_dgram_connect, 1058 .socketpair = sock_no_socketpair, 1059 .accept = sock_no_accept, 1060 .getname = inet_getname, 1061 .poll = udp_poll, 1062 .ioctl = inet_ioctl, 1063 .gettstamp = sock_gettstamp, 1064 .listen = sock_no_listen, 1065 .shutdown = inet_shutdown, 1066 .setsockopt = sock_common_setsockopt, 1067 .getsockopt = sock_common_getsockopt, 1068 .sendmsg = inet_sendmsg, 1069 .recvmsg = inet_recvmsg, 1070 .mmap = sock_no_mmap, 1071 .sendpage = inet_sendpage, 1072 .set_peek_off = sk_set_peek_off, 1073 #ifdef CONFIG_COMPAT 1074 .compat_ioctl = inet_compat_ioctl, 1075 #endif 1076 }; 1077 EXPORT_SYMBOL(inet_dgram_ops); 1078 1079 /* 1080 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1081 * udp_poll 1082 */ 1083 static const struct proto_ops inet_sockraw_ops = { 1084 .family = PF_INET, 1085 .owner = THIS_MODULE, 1086 .release = inet_release, 1087 .bind = inet_bind, 1088 .connect = inet_dgram_connect, 1089 .socketpair = sock_no_socketpair, 1090 .accept = sock_no_accept, 1091 .getname = inet_getname, 1092 .poll = datagram_poll, 1093 .ioctl = inet_ioctl, 1094 .gettstamp = sock_gettstamp, 1095 .listen = sock_no_listen, 1096 .shutdown = inet_shutdown, 1097 .setsockopt = sock_common_setsockopt, 1098 .getsockopt = sock_common_getsockopt, 1099 .sendmsg = inet_sendmsg, 1100 .recvmsg = inet_recvmsg, 1101 .mmap = sock_no_mmap, 1102 .sendpage = inet_sendpage, 1103 #ifdef CONFIG_COMPAT 1104 .compat_ioctl = inet_compat_ioctl, 1105 #endif 1106 }; 1107 1108 static const struct net_proto_family inet_family_ops = { 1109 .family = PF_INET, 1110 .create = inet_create, 1111 .owner = THIS_MODULE, 1112 }; 1113 1114 /* Upon startup we insert all the elements in inetsw_array[] into 1115 * the linked list inetsw. 1116 */ 1117 static struct inet_protosw inetsw_array[] = 1118 { 1119 { 1120 .type = SOCK_STREAM, 1121 .protocol = IPPROTO_TCP, 1122 .prot = &tcp_prot, 1123 .ops = &inet_stream_ops, 1124 .flags = INET_PROTOSW_PERMANENT | 1125 INET_PROTOSW_ICSK, 1126 }, 1127 1128 { 1129 .type = SOCK_DGRAM, 1130 .protocol = IPPROTO_UDP, 1131 .prot = &udp_prot, 1132 .ops = &inet_dgram_ops, 1133 .flags = INET_PROTOSW_PERMANENT, 1134 }, 1135 1136 { 1137 .type = SOCK_DGRAM, 1138 .protocol = IPPROTO_ICMP, 1139 .prot = &ping_prot, 1140 .ops = &inet_sockraw_ops, 1141 .flags = INET_PROTOSW_REUSE, 1142 }, 1143 1144 { 1145 .type = SOCK_RAW, 1146 .protocol = IPPROTO_IP, /* wild card */ 1147 .prot = &raw_prot, 1148 .ops = &inet_sockraw_ops, 1149 .flags = INET_PROTOSW_REUSE, 1150 } 1151 }; 1152 1153 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1154 1155 void inet_register_protosw(struct inet_protosw *p) 1156 { 1157 struct list_head *lh; 1158 struct inet_protosw *answer; 1159 int protocol = p->protocol; 1160 struct list_head *last_perm; 1161 1162 spin_lock_bh(&inetsw_lock); 1163 1164 if (p->type >= SOCK_MAX) 1165 goto out_illegal; 1166 1167 /* If we are trying to override a permanent protocol, bail. */ 1168 last_perm = &inetsw[p->type]; 1169 list_for_each(lh, &inetsw[p->type]) { 1170 answer = list_entry(lh, struct inet_protosw, list); 1171 /* Check only the non-wild match. */ 1172 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1173 break; 1174 if (protocol == answer->protocol) 1175 goto out_permanent; 1176 last_perm = lh; 1177 } 1178 1179 /* Add the new entry after the last permanent entry if any, so that 1180 * the new entry does not override a permanent entry when matched with 1181 * a wild-card protocol. But it is allowed to override any existing 1182 * non-permanent entry. This means that when we remove this entry, the 1183 * system automatically returns to the old behavior. 1184 */ 1185 list_add_rcu(&p->list, last_perm); 1186 out: 1187 spin_unlock_bh(&inetsw_lock); 1188 1189 return; 1190 1191 out_permanent: 1192 pr_err("Attempt to override permanent protocol %d\n", protocol); 1193 goto out; 1194 1195 out_illegal: 1196 pr_err("Ignoring attempt to register invalid socket type %d\n", 1197 p->type); 1198 goto out; 1199 } 1200 EXPORT_SYMBOL(inet_register_protosw); 1201 1202 void inet_unregister_protosw(struct inet_protosw *p) 1203 { 1204 if (INET_PROTOSW_PERMANENT & p->flags) { 1205 pr_err("Attempt to unregister permanent protocol %d\n", 1206 p->protocol); 1207 } else { 1208 spin_lock_bh(&inetsw_lock); 1209 list_del_rcu(&p->list); 1210 spin_unlock_bh(&inetsw_lock); 1211 1212 synchronize_net(); 1213 } 1214 } 1215 EXPORT_SYMBOL(inet_unregister_protosw); 1216 1217 static int inet_sk_reselect_saddr(struct sock *sk) 1218 { 1219 struct inet_sock *inet = inet_sk(sk); 1220 __be32 old_saddr = inet->inet_saddr; 1221 __be32 daddr = inet->inet_daddr; 1222 struct flowi4 *fl4; 1223 struct rtable *rt; 1224 __be32 new_saddr; 1225 struct ip_options_rcu *inet_opt; 1226 1227 inet_opt = rcu_dereference_protected(inet->inet_opt, 1228 lockdep_sock_is_held(sk)); 1229 if (inet_opt && inet_opt->opt.srr) 1230 daddr = inet_opt->opt.faddr; 1231 1232 /* Query new route. */ 1233 fl4 = &inet->cork.fl.u.ip4; 1234 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1235 sk->sk_bound_dev_if, sk->sk_protocol, 1236 inet->inet_sport, inet->inet_dport, sk); 1237 if (IS_ERR(rt)) 1238 return PTR_ERR(rt); 1239 1240 sk_setup_caps(sk, &rt->dst); 1241 1242 new_saddr = fl4->saddr; 1243 1244 if (new_saddr == old_saddr) 1245 return 0; 1246 1247 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1248 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1249 __func__, &old_saddr, &new_saddr); 1250 } 1251 1252 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1253 1254 /* 1255 * XXX The only one ugly spot where we need to 1256 * XXX really change the sockets identity after 1257 * XXX it has entered the hashes. -DaveM 1258 * 1259 * Besides that, it does not check for connection 1260 * uniqueness. Wait for troubles. 1261 */ 1262 return __sk_prot_rehash(sk); 1263 } 1264 1265 int inet_sk_rebuild_header(struct sock *sk) 1266 { 1267 struct inet_sock *inet = inet_sk(sk); 1268 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1269 __be32 daddr; 1270 struct ip_options_rcu *inet_opt; 1271 struct flowi4 *fl4; 1272 int err; 1273 1274 /* Route is OK, nothing to do. */ 1275 if (rt) 1276 return 0; 1277 1278 /* Reroute. */ 1279 rcu_read_lock(); 1280 inet_opt = rcu_dereference(inet->inet_opt); 1281 daddr = inet->inet_daddr; 1282 if (inet_opt && inet_opt->opt.srr) 1283 daddr = inet_opt->opt.faddr; 1284 rcu_read_unlock(); 1285 fl4 = &inet->cork.fl.u.ip4; 1286 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1287 inet->inet_dport, inet->inet_sport, 1288 sk->sk_protocol, RT_CONN_FLAGS(sk), 1289 sk->sk_bound_dev_if); 1290 if (!IS_ERR(rt)) { 1291 err = 0; 1292 sk_setup_caps(sk, &rt->dst); 1293 } else { 1294 err = PTR_ERR(rt); 1295 1296 /* Routing failed... */ 1297 sk->sk_route_caps = 0; 1298 /* 1299 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1300 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1301 */ 1302 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1303 sk->sk_state != TCP_SYN_SENT || 1304 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1305 (err = inet_sk_reselect_saddr(sk)) != 0) 1306 sk->sk_err_soft = -err; 1307 } 1308 1309 return err; 1310 } 1311 EXPORT_SYMBOL(inet_sk_rebuild_header); 1312 1313 void inet_sk_set_state(struct sock *sk, int state) 1314 { 1315 trace_inet_sock_set_state(sk, sk->sk_state, state); 1316 sk->sk_state = state; 1317 } 1318 EXPORT_SYMBOL(inet_sk_set_state); 1319 1320 void inet_sk_state_store(struct sock *sk, int newstate) 1321 { 1322 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1323 smp_store_release(&sk->sk_state, newstate); 1324 } 1325 1326 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1327 netdev_features_t features) 1328 { 1329 bool udpfrag = false, fixedid = false, gso_partial, encap; 1330 struct sk_buff *segs = ERR_PTR(-EINVAL); 1331 const struct net_offload *ops; 1332 unsigned int offset = 0; 1333 struct iphdr *iph; 1334 int proto, tot_len; 1335 int nhoff; 1336 int ihl; 1337 int id; 1338 1339 skb_reset_network_header(skb); 1340 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1341 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1342 goto out; 1343 1344 iph = ip_hdr(skb); 1345 ihl = iph->ihl * 4; 1346 if (ihl < sizeof(*iph)) 1347 goto out; 1348 1349 id = ntohs(iph->id); 1350 proto = iph->protocol; 1351 1352 /* Warning: after this point, iph might be no longer valid */ 1353 if (unlikely(!pskb_may_pull(skb, ihl))) 1354 goto out; 1355 __skb_pull(skb, ihl); 1356 1357 encap = SKB_GSO_CB(skb)->encap_level > 0; 1358 if (encap) 1359 features &= skb->dev->hw_enc_features; 1360 SKB_GSO_CB(skb)->encap_level += ihl; 1361 1362 skb_reset_transport_header(skb); 1363 1364 segs = ERR_PTR(-EPROTONOSUPPORT); 1365 1366 if (!skb->encapsulation || encap) { 1367 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1368 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1369 1370 /* fixed ID is invalid if DF bit is not set */ 1371 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1372 goto out; 1373 } 1374 1375 ops = rcu_dereference(inet_offloads[proto]); 1376 if (likely(ops && ops->callbacks.gso_segment)) 1377 segs = ops->callbacks.gso_segment(skb, features); 1378 1379 if (IS_ERR_OR_NULL(segs)) 1380 goto out; 1381 1382 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1383 1384 skb = segs; 1385 do { 1386 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1387 if (udpfrag) { 1388 iph->frag_off = htons(offset >> 3); 1389 if (skb->next) 1390 iph->frag_off |= htons(IP_MF); 1391 offset += skb->len - nhoff - ihl; 1392 tot_len = skb->len - nhoff; 1393 } else if (skb_is_gso(skb)) { 1394 if (!fixedid) { 1395 iph->id = htons(id); 1396 id += skb_shinfo(skb)->gso_segs; 1397 } 1398 1399 if (gso_partial) 1400 tot_len = skb_shinfo(skb)->gso_size + 1401 SKB_GSO_CB(skb)->data_offset + 1402 skb->head - (unsigned char *)iph; 1403 else 1404 tot_len = skb->len - nhoff; 1405 } else { 1406 if (!fixedid) 1407 iph->id = htons(id++); 1408 tot_len = skb->len - nhoff; 1409 } 1410 iph->tot_len = htons(tot_len); 1411 ip_send_check(iph); 1412 if (encap) 1413 skb_reset_inner_headers(skb); 1414 skb->network_header = (u8 *)iph - skb->head; 1415 skb_reset_mac_len(skb); 1416 } while ((skb = skb->next)); 1417 1418 out: 1419 return segs; 1420 } 1421 EXPORT_SYMBOL(inet_gso_segment); 1422 1423 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1424 netdev_features_t features) 1425 { 1426 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1427 return ERR_PTR(-EINVAL); 1428 1429 return inet_gso_segment(skb, features); 1430 } 1431 1432 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1433 { 1434 const struct net_offload *ops; 1435 struct sk_buff *pp = NULL; 1436 const struct iphdr *iph; 1437 struct sk_buff *p; 1438 unsigned int hlen; 1439 unsigned int off; 1440 unsigned int id; 1441 int flush = 1; 1442 int proto; 1443 1444 off = skb_gro_offset(skb); 1445 hlen = off + sizeof(*iph); 1446 iph = skb_gro_header_fast(skb, off); 1447 if (skb_gro_header_hard(skb, hlen)) { 1448 iph = skb_gro_header_slow(skb, hlen, off); 1449 if (unlikely(!iph)) 1450 goto out; 1451 } 1452 1453 proto = iph->protocol; 1454 1455 rcu_read_lock(); 1456 ops = rcu_dereference(inet_offloads[proto]); 1457 if (!ops || !ops->callbacks.gro_receive) 1458 goto out_unlock; 1459 1460 if (*(u8 *)iph != 0x45) 1461 goto out_unlock; 1462 1463 if (ip_is_fragment(iph)) 1464 goto out_unlock; 1465 1466 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1467 goto out_unlock; 1468 1469 id = ntohl(*(__be32 *)&iph->id); 1470 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1471 id >>= 16; 1472 1473 list_for_each_entry(p, head, list) { 1474 struct iphdr *iph2; 1475 u16 flush_id; 1476 1477 if (!NAPI_GRO_CB(p)->same_flow) 1478 continue; 1479 1480 iph2 = (struct iphdr *)(p->data + off); 1481 /* The above works because, with the exception of the top 1482 * (inner most) layer, we only aggregate pkts with the same 1483 * hdr length so all the hdrs we'll need to verify will start 1484 * at the same offset. 1485 */ 1486 if ((iph->protocol ^ iph2->protocol) | 1487 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1488 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1489 NAPI_GRO_CB(p)->same_flow = 0; 1490 continue; 1491 } 1492 1493 /* All fields must match except length and checksum. */ 1494 NAPI_GRO_CB(p)->flush |= 1495 (iph->ttl ^ iph2->ttl) | 1496 (iph->tos ^ iph2->tos) | 1497 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1498 1499 NAPI_GRO_CB(p)->flush |= flush; 1500 1501 /* We need to store of the IP ID check to be included later 1502 * when we can verify that this packet does in fact belong 1503 * to a given flow. 1504 */ 1505 flush_id = (u16)(id - ntohs(iph2->id)); 1506 1507 /* This bit of code makes it much easier for us to identify 1508 * the cases where we are doing atomic vs non-atomic IP ID 1509 * checks. Specifically an atomic check can return IP ID 1510 * values 0 - 0xFFFF, while a non-atomic check can only 1511 * return 0 or 0xFFFF. 1512 */ 1513 if (!NAPI_GRO_CB(p)->is_atomic || 1514 !(iph->frag_off & htons(IP_DF))) { 1515 flush_id ^= NAPI_GRO_CB(p)->count; 1516 flush_id = flush_id ? 0xFFFF : 0; 1517 } 1518 1519 /* If the previous IP ID value was based on an atomic 1520 * datagram we can overwrite the value and ignore it. 1521 */ 1522 if (NAPI_GRO_CB(skb)->is_atomic) 1523 NAPI_GRO_CB(p)->flush_id = flush_id; 1524 else 1525 NAPI_GRO_CB(p)->flush_id |= flush_id; 1526 } 1527 1528 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1529 NAPI_GRO_CB(skb)->flush |= flush; 1530 skb_set_network_header(skb, off); 1531 /* The above will be needed by the transport layer if there is one 1532 * immediately following this IP hdr. 1533 */ 1534 1535 /* Note : No need to call skb_gro_postpull_rcsum() here, 1536 * as we already checked checksum over ipv4 header was 0 1537 */ 1538 skb_gro_pull(skb, sizeof(*iph)); 1539 skb_set_transport_header(skb, skb_gro_offset(skb)); 1540 1541 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1542 ops->callbacks.gro_receive, head, skb); 1543 1544 out_unlock: 1545 rcu_read_unlock(); 1546 1547 out: 1548 skb_gro_flush_final(skb, pp, flush); 1549 1550 return pp; 1551 } 1552 EXPORT_SYMBOL(inet_gro_receive); 1553 1554 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1555 struct sk_buff *skb) 1556 { 1557 if (NAPI_GRO_CB(skb)->encap_mark) { 1558 NAPI_GRO_CB(skb)->flush = 1; 1559 return NULL; 1560 } 1561 1562 NAPI_GRO_CB(skb)->encap_mark = 1; 1563 1564 return inet_gro_receive(head, skb); 1565 } 1566 1567 #define SECONDS_PER_DAY 86400 1568 1569 /* inet_current_timestamp - Return IP network timestamp 1570 * 1571 * Return milliseconds since midnight in network byte order. 1572 */ 1573 __be32 inet_current_timestamp(void) 1574 { 1575 u32 secs; 1576 u32 msecs; 1577 struct timespec64 ts; 1578 1579 ktime_get_real_ts64(&ts); 1580 1581 /* Get secs since midnight. */ 1582 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1583 /* Convert to msecs. */ 1584 msecs = secs * MSEC_PER_SEC; 1585 /* Convert nsec to msec. */ 1586 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1587 1588 /* Convert to network byte order. */ 1589 return htonl(msecs); 1590 } 1591 EXPORT_SYMBOL(inet_current_timestamp); 1592 1593 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1594 { 1595 if (sk->sk_family == AF_INET) 1596 return ip_recv_error(sk, msg, len, addr_len); 1597 #if IS_ENABLED(CONFIG_IPV6) 1598 if (sk->sk_family == AF_INET6) 1599 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1600 #endif 1601 return -EINVAL; 1602 } 1603 1604 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1605 { 1606 __be16 newlen = htons(skb->len - nhoff); 1607 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1608 const struct net_offload *ops; 1609 int proto = iph->protocol; 1610 int err = -ENOSYS; 1611 1612 if (skb->encapsulation) { 1613 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1614 skb_set_inner_network_header(skb, nhoff); 1615 } 1616 1617 csum_replace2(&iph->check, iph->tot_len, newlen); 1618 iph->tot_len = newlen; 1619 1620 rcu_read_lock(); 1621 ops = rcu_dereference(inet_offloads[proto]); 1622 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1623 goto out_unlock; 1624 1625 /* Only need to add sizeof(*iph) to get to the next hdr below 1626 * because any hdr with option will have been flushed in 1627 * inet_gro_receive(). 1628 */ 1629 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1630 tcp4_gro_complete, udp4_gro_complete, 1631 skb, nhoff + sizeof(*iph)); 1632 1633 out_unlock: 1634 rcu_read_unlock(); 1635 1636 return err; 1637 } 1638 EXPORT_SYMBOL(inet_gro_complete); 1639 1640 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1641 { 1642 skb->encapsulation = 1; 1643 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1644 return inet_gro_complete(skb, nhoff); 1645 } 1646 1647 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1648 unsigned short type, unsigned char protocol, 1649 struct net *net) 1650 { 1651 struct socket *sock; 1652 int rc = sock_create_kern(net, family, type, protocol, &sock); 1653 1654 if (rc == 0) { 1655 *sk = sock->sk; 1656 (*sk)->sk_allocation = GFP_ATOMIC; 1657 /* 1658 * Unhash it so that IP input processing does not even see it, 1659 * we do not wish this socket to see incoming packets. 1660 */ 1661 (*sk)->sk_prot->unhash(*sk); 1662 } 1663 return rc; 1664 } 1665 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1666 1667 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1668 { 1669 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1670 } 1671 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1672 1673 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1674 { 1675 unsigned long res = 0; 1676 int i; 1677 1678 for_each_possible_cpu(i) 1679 res += snmp_get_cpu_field(mib, i, offt); 1680 return res; 1681 } 1682 EXPORT_SYMBOL_GPL(snmp_fold_field); 1683 1684 #if BITS_PER_LONG==32 1685 1686 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1687 size_t syncp_offset) 1688 { 1689 void *bhptr; 1690 struct u64_stats_sync *syncp; 1691 u64 v; 1692 unsigned int start; 1693 1694 bhptr = per_cpu_ptr(mib, cpu); 1695 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1696 do { 1697 start = u64_stats_fetch_begin_irq(syncp); 1698 v = *(((u64 *)bhptr) + offt); 1699 } while (u64_stats_fetch_retry_irq(syncp, start)); 1700 1701 return v; 1702 } 1703 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1704 1705 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1706 { 1707 u64 res = 0; 1708 int cpu; 1709 1710 for_each_possible_cpu(cpu) { 1711 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1712 } 1713 return res; 1714 } 1715 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1716 #endif 1717 1718 #ifdef CONFIG_IP_MULTICAST 1719 static const struct net_protocol igmp_protocol = { 1720 .handler = igmp_rcv, 1721 .netns_ok = 1, 1722 }; 1723 #endif 1724 1725 /* thinking of making this const? Don't. 1726 * early_demux can change based on sysctl. 1727 */ 1728 static struct net_protocol tcp_protocol = { 1729 .early_demux = tcp_v4_early_demux, 1730 .early_demux_handler = tcp_v4_early_demux, 1731 .handler = tcp_v4_rcv, 1732 .err_handler = tcp_v4_err, 1733 .no_policy = 1, 1734 .netns_ok = 1, 1735 .icmp_strict_tag_validation = 1, 1736 }; 1737 1738 /* thinking of making this const? Don't. 1739 * early_demux can change based on sysctl. 1740 */ 1741 static struct net_protocol udp_protocol = { 1742 .early_demux = udp_v4_early_demux, 1743 .early_demux_handler = udp_v4_early_demux, 1744 .handler = udp_rcv, 1745 .err_handler = udp_err, 1746 .no_policy = 1, 1747 .netns_ok = 1, 1748 }; 1749 1750 static const struct net_protocol icmp_protocol = { 1751 .handler = icmp_rcv, 1752 .err_handler = icmp_err, 1753 .no_policy = 1, 1754 .netns_ok = 1, 1755 }; 1756 1757 static __net_init int ipv4_mib_init_net(struct net *net) 1758 { 1759 int i; 1760 1761 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1762 if (!net->mib.tcp_statistics) 1763 goto err_tcp_mib; 1764 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1765 if (!net->mib.ip_statistics) 1766 goto err_ip_mib; 1767 1768 for_each_possible_cpu(i) { 1769 struct ipstats_mib *af_inet_stats; 1770 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1771 u64_stats_init(&af_inet_stats->syncp); 1772 } 1773 1774 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1775 if (!net->mib.net_statistics) 1776 goto err_net_mib; 1777 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1778 if (!net->mib.udp_statistics) 1779 goto err_udp_mib; 1780 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1781 if (!net->mib.udplite_statistics) 1782 goto err_udplite_mib; 1783 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1784 if (!net->mib.icmp_statistics) 1785 goto err_icmp_mib; 1786 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1787 GFP_KERNEL); 1788 if (!net->mib.icmpmsg_statistics) 1789 goto err_icmpmsg_mib; 1790 1791 tcp_mib_init(net); 1792 return 0; 1793 1794 err_icmpmsg_mib: 1795 free_percpu(net->mib.icmp_statistics); 1796 err_icmp_mib: 1797 free_percpu(net->mib.udplite_statistics); 1798 err_udplite_mib: 1799 free_percpu(net->mib.udp_statistics); 1800 err_udp_mib: 1801 free_percpu(net->mib.net_statistics); 1802 err_net_mib: 1803 free_percpu(net->mib.ip_statistics); 1804 err_ip_mib: 1805 free_percpu(net->mib.tcp_statistics); 1806 err_tcp_mib: 1807 return -ENOMEM; 1808 } 1809 1810 static __net_exit void ipv4_mib_exit_net(struct net *net) 1811 { 1812 kfree(net->mib.icmpmsg_statistics); 1813 free_percpu(net->mib.icmp_statistics); 1814 free_percpu(net->mib.udplite_statistics); 1815 free_percpu(net->mib.udp_statistics); 1816 free_percpu(net->mib.net_statistics); 1817 free_percpu(net->mib.ip_statistics); 1818 free_percpu(net->mib.tcp_statistics); 1819 #ifdef CONFIG_MPTCP 1820 /* allocated on demand, see mptcp_init_sock() */ 1821 free_percpu(net->mib.mptcp_statistics); 1822 #endif 1823 } 1824 1825 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1826 .init = ipv4_mib_init_net, 1827 .exit = ipv4_mib_exit_net, 1828 }; 1829 1830 static int __init init_ipv4_mibs(void) 1831 { 1832 return register_pernet_subsys(&ipv4_mib_ops); 1833 } 1834 1835 static __net_init int inet_init_net(struct net *net) 1836 { 1837 /* 1838 * Set defaults for local port range 1839 */ 1840 seqlock_init(&net->ipv4.ip_local_ports.lock); 1841 net->ipv4.ip_local_ports.range[0] = 32768; 1842 net->ipv4.ip_local_ports.range[1] = 60999; 1843 1844 seqlock_init(&net->ipv4.ping_group_range.lock); 1845 /* 1846 * Sane defaults - nobody may create ping sockets. 1847 * Boot scripts should set this to distro-specific group. 1848 */ 1849 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1850 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1851 1852 /* Default values for sysctl-controlled parameters. 1853 * We set them here, in case sysctl is not compiled. 1854 */ 1855 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1856 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1857 net->ipv4.sysctl_ip_dynaddr = 0; 1858 net->ipv4.sysctl_ip_early_demux = 1; 1859 net->ipv4.sysctl_udp_early_demux = 1; 1860 net->ipv4.sysctl_tcp_early_demux = 1; 1861 net->ipv4.sysctl_nexthop_compat_mode = 1; 1862 #ifdef CONFIG_SYSCTL 1863 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1864 #endif 1865 1866 /* Some igmp sysctl, whose values are always used */ 1867 net->ipv4.sysctl_igmp_max_memberships = 20; 1868 net->ipv4.sysctl_igmp_max_msf = 10; 1869 /* IGMP reports for link-local multicast groups are enabled by default */ 1870 net->ipv4.sysctl_igmp_llm_reports = 1; 1871 net->ipv4.sysctl_igmp_qrv = 2; 1872 1873 return 0; 1874 } 1875 1876 static __net_initdata struct pernet_operations af_inet_ops = { 1877 .init = inet_init_net, 1878 }; 1879 1880 static int __init init_inet_pernet_ops(void) 1881 { 1882 return register_pernet_subsys(&af_inet_ops); 1883 } 1884 1885 static int ipv4_proc_init(void); 1886 1887 /* 1888 * IP protocol layer initialiser 1889 */ 1890 1891 static struct packet_offload ip_packet_offload __read_mostly = { 1892 .type = cpu_to_be16(ETH_P_IP), 1893 .callbacks = { 1894 .gso_segment = inet_gso_segment, 1895 .gro_receive = inet_gro_receive, 1896 .gro_complete = inet_gro_complete, 1897 }, 1898 }; 1899 1900 static const struct net_offload ipip_offload = { 1901 .callbacks = { 1902 .gso_segment = ipip_gso_segment, 1903 .gro_receive = ipip_gro_receive, 1904 .gro_complete = ipip_gro_complete, 1905 }, 1906 }; 1907 1908 static int __init ipip_offload_init(void) 1909 { 1910 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1911 } 1912 1913 static int __init ipv4_offload_init(void) 1914 { 1915 /* 1916 * Add offloads 1917 */ 1918 if (udpv4_offload_init() < 0) 1919 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1920 if (tcpv4_offload_init() < 0) 1921 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1922 if (ipip_offload_init() < 0) 1923 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1924 1925 dev_add_offload(&ip_packet_offload); 1926 return 0; 1927 } 1928 1929 fs_initcall(ipv4_offload_init); 1930 1931 static struct packet_type ip_packet_type __read_mostly = { 1932 .type = cpu_to_be16(ETH_P_IP), 1933 .func = ip_rcv, 1934 .list_func = ip_list_rcv, 1935 }; 1936 1937 static int __init inet_init(void) 1938 { 1939 struct inet_protosw *q; 1940 struct list_head *r; 1941 int rc; 1942 1943 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1944 1945 rc = proto_register(&tcp_prot, 1); 1946 if (rc) 1947 goto out; 1948 1949 rc = proto_register(&udp_prot, 1); 1950 if (rc) 1951 goto out_unregister_tcp_proto; 1952 1953 rc = proto_register(&raw_prot, 1); 1954 if (rc) 1955 goto out_unregister_udp_proto; 1956 1957 rc = proto_register(&ping_prot, 1); 1958 if (rc) 1959 goto out_unregister_raw_proto; 1960 1961 /* 1962 * Tell SOCKET that we are alive... 1963 */ 1964 1965 (void)sock_register(&inet_family_ops); 1966 1967 #ifdef CONFIG_SYSCTL 1968 ip_static_sysctl_init(); 1969 #endif 1970 1971 /* 1972 * Add all the base protocols. 1973 */ 1974 1975 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1976 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1977 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1978 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1979 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1980 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1981 #ifdef CONFIG_IP_MULTICAST 1982 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1983 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1984 #endif 1985 1986 /* Register the socket-side information for inet_create. */ 1987 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1988 INIT_LIST_HEAD(r); 1989 1990 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1991 inet_register_protosw(q); 1992 1993 /* 1994 * Set the ARP module up 1995 */ 1996 1997 arp_init(); 1998 1999 /* 2000 * Set the IP module up 2001 */ 2002 2003 ip_init(); 2004 2005 /* Setup TCP slab cache for open requests. */ 2006 tcp_init(); 2007 2008 /* Setup UDP memory threshold */ 2009 udp_init(); 2010 2011 /* Add UDP-Lite (RFC 3828) */ 2012 udplite4_register(); 2013 2014 raw_init(); 2015 2016 ping_init(); 2017 2018 /* 2019 * Set the ICMP layer up 2020 */ 2021 2022 if (icmp_init() < 0) 2023 panic("Failed to create the ICMP control socket.\n"); 2024 2025 /* 2026 * Initialise the multicast router 2027 */ 2028 #if defined(CONFIG_IP_MROUTE) 2029 if (ip_mr_init()) 2030 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2031 #endif 2032 2033 if (init_inet_pernet_ops()) 2034 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2035 /* 2036 * Initialise per-cpu ipv4 mibs 2037 */ 2038 2039 if (init_ipv4_mibs()) 2040 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 2041 2042 ipv4_proc_init(); 2043 2044 ipfrag_init(); 2045 2046 dev_add_pack(&ip_packet_type); 2047 2048 ip_tunnel_core_init(); 2049 2050 rc = 0; 2051 out: 2052 return rc; 2053 out_unregister_raw_proto: 2054 proto_unregister(&raw_prot); 2055 out_unregister_udp_proto: 2056 proto_unregister(&udp_prot); 2057 out_unregister_tcp_proto: 2058 proto_unregister(&tcp_prot); 2059 goto out; 2060 } 2061 2062 fs_initcall(inet_init); 2063 2064 /* ------------------------------------------------------------------------ */ 2065 2066 #ifdef CONFIG_PROC_FS 2067 static int __init ipv4_proc_init(void) 2068 { 2069 int rc = 0; 2070 2071 if (raw_proc_init()) 2072 goto out_raw; 2073 if (tcp4_proc_init()) 2074 goto out_tcp; 2075 if (udp4_proc_init()) 2076 goto out_udp; 2077 if (ping_proc_init()) 2078 goto out_ping; 2079 if (ip_misc_proc_init()) 2080 goto out_misc; 2081 out: 2082 return rc; 2083 out_misc: 2084 ping_proc_exit(); 2085 out_ping: 2086 udp4_proc_exit(); 2087 out_udp: 2088 tcp4_proc_exit(); 2089 out_tcp: 2090 raw_proc_exit(); 2091 out_raw: 2092 rc = -ENOMEM; 2093 goto out; 2094 } 2095 2096 #else /* CONFIG_PROC_FS */ 2097 static int __init ipv4_proc_init(void) 2098 { 2099 return 0; 2100 } 2101 #endif /* CONFIG_PROC_FS */ 2102