1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PF_INET protocol family socket handler. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Florian La Roche, <flla@stud.uni-sb.de> 11 * Alan Cox, <A.Cox@swansea.ac.uk> 12 * 13 * Changes (see also sock.c) 14 * 15 * piggy, 16 * Karl Knutson : Socket protocol table 17 * A.N.Kuznetsov : Socket death error in accept(). 18 * John Richardson : Fix non blocking error in connect() 19 * so sockets that fail to connect 20 * don't return -EINPROGRESS. 21 * Alan Cox : Asynchronous I/O support 22 * Alan Cox : Keep correct socket pointer on sock 23 * structures 24 * when accept() ed 25 * Alan Cox : Semantics of SO_LINGER aren't state 26 * moved to close when you look carefully. 27 * With this fixed and the accept bug fixed 28 * some RPC stuff seems happier. 29 * Niibe Yutaka : 4.4BSD style write async I/O 30 * Alan Cox, 31 * Tony Gale : Fixed reuse semantics. 32 * Alan Cox : bind() shouldn't abort existing but dead 33 * sockets. Stops FTP netin:.. I hope. 34 * Alan Cox : bind() works correctly for RAW sockets. 35 * Note that FreeBSD at least was broken 36 * in this respect so be careful with 37 * compatibility tests... 38 * Alan Cox : routing cache support 39 * Alan Cox : memzero the socket structure for 40 * compactness. 41 * Matt Day : nonblock connect error handler 42 * Alan Cox : Allow large numbers of pending sockets 43 * (eg for big web sites), but only if 44 * specifically application requested. 45 * Alan Cox : New buffering throughout IP. Used 46 * dumbly. 47 * Alan Cox : New buffering now used smartly. 48 * Alan Cox : BSD rather than common sense 49 * interpretation of listen. 50 * Germano Caronni : Assorted small races. 51 * Alan Cox : sendmsg/recvmsg basic support. 52 * Alan Cox : Only sendmsg/recvmsg now supported. 53 * Alan Cox : Locked down bind (see security list). 54 * Alan Cox : Loosened bind a little. 55 * Mike McLagan : ADD/DEL DLCI Ioctls 56 * Willy Konynenberg : Transparent proxying support. 57 * David S. Miller : New socket lookup architecture. 58 * Some other random speedups. 59 * Cyrus Durgin : Cleaned up file for kmod hacks. 60 * Andi Kleen : Fix inet_stream_connect TCP race. 61 * 62 * This program is free software; you can redistribute it and/or 63 * modify it under the terms of the GNU General Public License 64 * as published by the Free Software Foundation; either version 65 * 2 of the License, or (at your option) any later version. 66 */ 67 68 #define pr_fmt(fmt) "IPv4: " fmt 69 70 #include <linux/err.h> 71 #include <linux/errno.h> 72 #include <linux/types.h> 73 #include <linux/socket.h> 74 #include <linux/in.h> 75 #include <linux/kernel.h> 76 #include <linux/kmod.h> 77 #include <linux/sched.h> 78 #include <linux/timer.h> 79 #include <linux/string.h> 80 #include <linux/sockios.h> 81 #include <linux/net.h> 82 #include <linux/capability.h> 83 #include <linux/fcntl.h> 84 #include <linux/mm.h> 85 #include <linux/interrupt.h> 86 #include <linux/stat.h> 87 #include <linux/init.h> 88 #include <linux/poll.h> 89 #include <linux/netfilter_ipv4.h> 90 #include <linux/random.h> 91 #include <linux/slab.h> 92 93 #include <linux/uaccess.h> 94 95 #include <linux/inet.h> 96 #include <linux/igmp.h> 97 #include <linux/inetdevice.h> 98 #include <linux/netdevice.h> 99 #include <net/checksum.h> 100 #include <net/ip.h> 101 #include <net/protocol.h> 102 #include <net/arp.h> 103 #include <net/route.h> 104 #include <net/ip_fib.h> 105 #include <net/inet_connection_sock.h> 106 #include <net/tcp.h> 107 #include <net/udp.h> 108 #include <net/udplite.h> 109 #include <net/ping.h> 110 #include <linux/skbuff.h> 111 #include <net/sock.h> 112 #include <net/raw.h> 113 #include <net/icmp.h> 114 #include <net/inet_common.h> 115 #include <net/ip_tunnels.h> 116 #include <net/xfrm.h> 117 #include <net/net_namespace.h> 118 #include <net/secure_seq.h> 119 #ifdef CONFIG_IP_MROUTE 120 #include <linux/mroute.h> 121 #endif 122 #include <net/l3mdev.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 if (sk->sk_rx_skb_cache) { 140 __kfree_skb(sk->sk_rx_skb_cache); 141 sk->sk_rx_skb_cache = NULL; 142 } 143 __skb_queue_purge(&sk->sk_error_queue); 144 145 sk_mem_reclaim(sk); 146 147 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 148 pr_err("Attempt to release TCP socket in state %d %p\n", 149 sk->sk_state, sk); 150 return; 151 } 152 if (!sock_flag(sk, SOCK_DEAD)) { 153 pr_err("Attempt to release alive inet socket %p\n", sk); 154 return; 155 } 156 157 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 158 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 159 WARN_ON(sk->sk_wmem_queued); 160 WARN_ON(sk->sk_forward_alloc); 161 162 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 163 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 164 dst_release(sk->sk_rx_dst); 165 sk_refcnt_debug_dec(sk); 166 } 167 EXPORT_SYMBOL(inet_sock_destruct); 168 169 /* 170 * The routines beyond this point handle the behaviour of an AF_INET 171 * socket object. Mostly it punts to the subprotocols of IP to do 172 * the work. 173 */ 174 175 /* 176 * Automatically bind an unbound socket. 177 */ 178 179 static int inet_autobind(struct sock *sk) 180 { 181 struct inet_sock *inet; 182 /* We may need to bind the socket. */ 183 lock_sock(sk); 184 inet = inet_sk(sk); 185 if (!inet->inet_num) { 186 if (sk->sk_prot->get_port(sk, 0)) { 187 release_sock(sk); 188 return -EAGAIN; 189 } 190 inet->inet_sport = htons(inet->inet_num); 191 } 192 release_sock(sk); 193 return 0; 194 } 195 196 /* 197 * Move a socket into listening state. 198 */ 199 int inet_listen(struct socket *sock, int backlog) 200 { 201 struct sock *sk = sock->sk; 202 unsigned char old_state; 203 int err, tcp_fastopen; 204 205 lock_sock(sk); 206 207 err = -EINVAL; 208 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 209 goto out; 210 211 old_state = sk->sk_state; 212 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 213 goto out; 214 215 sk->sk_max_ack_backlog = backlog; 216 /* Really, if the socket is already in listen state 217 * we can only allow the backlog to be adjusted. 218 */ 219 if (old_state != TCP_LISTEN) { 220 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 221 * Note that only TCP sockets (SOCK_STREAM) will reach here. 222 * Also fastopen backlog may already been set via the option 223 * because the socket was in TCP_LISTEN state previously but 224 * was shutdown() rather than close(). 225 */ 226 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 227 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 228 (tcp_fastopen & TFO_SERVER_ENABLE) && 229 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 230 fastopen_queue_tune(sk, backlog); 231 tcp_fastopen_init_key_once(sock_net(sk)); 232 } 233 234 err = inet_csk_listen_start(sk, backlog); 235 if (err) 236 goto out; 237 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 238 } 239 err = 0; 240 241 out: 242 release_sock(sk); 243 return err; 244 } 245 EXPORT_SYMBOL(inet_listen); 246 247 /* 248 * Create an inet socket. 249 */ 250 251 static int inet_create(struct net *net, struct socket *sock, int protocol, 252 int kern) 253 { 254 struct sock *sk; 255 struct inet_protosw *answer; 256 struct inet_sock *inet; 257 struct proto *answer_prot; 258 unsigned char answer_flags; 259 int try_loading_module = 0; 260 int err; 261 262 if (protocol < 0 || protocol >= IPPROTO_MAX) 263 return -EINVAL; 264 265 sock->state = SS_UNCONNECTED; 266 267 /* Look for the requested type/protocol pair. */ 268 lookup_protocol: 269 err = -ESOCKTNOSUPPORT; 270 rcu_read_lock(); 271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 272 273 err = 0; 274 /* Check the non-wild match. */ 275 if (protocol == answer->protocol) { 276 if (protocol != IPPROTO_IP) 277 break; 278 } else { 279 /* Check for the two wild cases. */ 280 if (IPPROTO_IP == protocol) { 281 protocol = answer->protocol; 282 break; 283 } 284 if (IPPROTO_IP == answer->protocol) 285 break; 286 } 287 err = -EPROTONOSUPPORT; 288 } 289 290 if (unlikely(err)) { 291 if (try_loading_module < 2) { 292 rcu_read_unlock(); 293 /* 294 * Be more specific, e.g. net-pf-2-proto-132-type-1 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 296 */ 297 if (++try_loading_module == 1) 298 request_module("net-pf-%d-proto-%d-type-%d", 299 PF_INET, protocol, sock->type); 300 /* 301 * Fall back to generic, e.g. net-pf-2-proto-132 302 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 303 */ 304 else 305 request_module("net-pf-%d-proto-%d", 306 PF_INET, protocol); 307 goto lookup_protocol; 308 } else 309 goto out_rcu_unlock; 310 } 311 312 err = -EPERM; 313 if (sock->type == SOCK_RAW && !kern && 314 !ns_capable(net->user_ns, CAP_NET_RAW)) 315 goto out_rcu_unlock; 316 317 sock->ops = answer->ops; 318 answer_prot = answer->prot; 319 answer_flags = answer->flags; 320 rcu_read_unlock(); 321 322 WARN_ON(!answer_prot->slab); 323 324 err = -ENOBUFS; 325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 326 if (!sk) 327 goto out; 328 329 err = 0; 330 if (INET_PROTOSW_REUSE & answer_flags) 331 sk->sk_reuse = SK_CAN_REUSE; 332 333 inet = inet_sk(sk); 334 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 335 336 inet->nodefrag = 0; 337 338 if (SOCK_RAW == sock->type) { 339 inet->inet_num = protocol; 340 if (IPPROTO_RAW == protocol) 341 inet->hdrincl = 1; 342 } 343 344 if (net->ipv4.sysctl_ip_no_pmtu_disc) 345 inet->pmtudisc = IP_PMTUDISC_DONT; 346 else 347 inet->pmtudisc = IP_PMTUDISC_WANT; 348 349 inet->inet_id = 0; 350 351 sock_init_data(sock, sk); 352 353 sk->sk_destruct = inet_sock_destruct; 354 sk->sk_protocol = protocol; 355 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 356 357 inet->uc_ttl = -1; 358 inet->mc_loop = 1; 359 inet->mc_ttl = 1; 360 inet->mc_all = 1; 361 inet->mc_index = 0; 362 inet->mc_list = NULL; 363 inet->rcv_tos = 0; 364 365 sk_refcnt_debug_inc(sk); 366 367 if (inet->inet_num) { 368 /* It assumes that any protocol which allows 369 * the user to assign a number at socket 370 * creation time automatically 371 * shares. 372 */ 373 inet->inet_sport = htons(inet->inet_num); 374 /* Add to protocol hash chains. */ 375 err = sk->sk_prot->hash(sk); 376 if (err) { 377 sk_common_release(sk); 378 goto out; 379 } 380 } 381 382 if (sk->sk_prot->init) { 383 err = sk->sk_prot->init(sk); 384 if (err) { 385 sk_common_release(sk); 386 goto out; 387 } 388 } 389 390 if (!kern) { 391 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 392 if (err) { 393 sk_common_release(sk); 394 goto out; 395 } 396 } 397 out: 398 return err; 399 out_rcu_unlock: 400 rcu_read_unlock(); 401 goto out; 402 } 403 404 405 /* 406 * The peer socket should always be NULL (or else). When we call this 407 * function we are destroying the object and from then on nobody 408 * should refer to it. 409 */ 410 int inet_release(struct socket *sock) 411 { 412 struct sock *sk = sock->sk; 413 414 if (sk) { 415 long timeout; 416 417 /* Applications forget to leave groups before exiting */ 418 ip_mc_drop_socket(sk); 419 420 /* If linger is set, we don't return until the close 421 * is complete. Otherwise we return immediately. The 422 * actually closing is done the same either way. 423 * 424 * If the close is due to the process exiting, we never 425 * linger.. 426 */ 427 timeout = 0; 428 if (sock_flag(sk, SOCK_LINGER) && 429 !(current->flags & PF_EXITING)) 430 timeout = sk->sk_lingertime; 431 sock->sk = NULL; 432 sk->sk_prot->close(sk, timeout); 433 } 434 return 0; 435 } 436 EXPORT_SYMBOL(inet_release); 437 438 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 439 { 440 struct sock *sk = sock->sk; 441 int err; 442 443 /* If the socket has its own bind function then use it. (RAW) */ 444 if (sk->sk_prot->bind) { 445 return sk->sk_prot->bind(sk, uaddr, addr_len); 446 } 447 if (addr_len < sizeof(struct sockaddr_in)) 448 return -EINVAL; 449 450 /* BPF prog is run before any checks are done so that if the prog 451 * changes context in a wrong way it will be caught. 452 */ 453 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); 454 if (err) 455 return err; 456 457 return __inet_bind(sk, uaddr, addr_len, false, true); 458 } 459 EXPORT_SYMBOL(inet_bind); 460 461 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 462 bool force_bind_address_no_port, bool with_lock) 463 { 464 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 465 struct inet_sock *inet = inet_sk(sk); 466 struct net *net = sock_net(sk); 467 unsigned short snum; 468 int chk_addr_ret; 469 u32 tb_id = RT_TABLE_LOCAL; 470 int err; 471 472 if (addr->sin_family != AF_INET) { 473 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 474 * only if s_addr is INADDR_ANY. 475 */ 476 err = -EAFNOSUPPORT; 477 if (addr->sin_family != AF_UNSPEC || 478 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 479 goto out; 480 } 481 482 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 483 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 484 485 /* Not specified by any standard per-se, however it breaks too 486 * many applications when removed. It is unfortunate since 487 * allowing applications to make a non-local bind solves 488 * several problems with systems using dynamic addressing. 489 * (ie. your servers still start up even if your ISDN link 490 * is temporarily down) 491 */ 492 err = -EADDRNOTAVAIL; 493 if (!inet_can_nonlocal_bind(net, inet) && 494 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 495 chk_addr_ret != RTN_LOCAL && 496 chk_addr_ret != RTN_MULTICAST && 497 chk_addr_ret != RTN_BROADCAST) 498 goto out; 499 500 snum = ntohs(addr->sin_port); 501 err = -EACCES; 502 if (snum && snum < inet_prot_sock(net) && 503 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 504 goto out; 505 506 /* We keep a pair of addresses. rcv_saddr is the one 507 * used by hash lookups, and saddr is used for transmit. 508 * 509 * In the BSD API these are the same except where it 510 * would be illegal to use them (multicast/broadcast) in 511 * which case the sending device address is used. 512 */ 513 if (with_lock) 514 lock_sock(sk); 515 516 /* Check these errors (active socket, double bind). */ 517 err = -EINVAL; 518 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 519 goto out_release_sock; 520 521 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 522 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 523 inet->inet_saddr = 0; /* Use device */ 524 525 /* Make sure we are allowed to bind here. */ 526 if (snum || !(inet->bind_address_no_port || 527 force_bind_address_no_port)) { 528 if (sk->sk_prot->get_port(sk, snum)) { 529 inet->inet_saddr = inet->inet_rcv_saddr = 0; 530 err = -EADDRINUSE; 531 goto out_release_sock; 532 } 533 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 534 if (err) { 535 inet->inet_saddr = inet->inet_rcv_saddr = 0; 536 goto out_release_sock; 537 } 538 } 539 540 if (inet->inet_rcv_saddr) 541 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 542 if (snum) 543 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 544 inet->inet_sport = htons(inet->inet_num); 545 inet->inet_daddr = 0; 546 inet->inet_dport = 0; 547 sk_dst_reset(sk); 548 err = 0; 549 out_release_sock: 550 if (with_lock) 551 release_sock(sk); 552 out: 553 return err; 554 } 555 556 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 557 int addr_len, int flags) 558 { 559 struct sock *sk = sock->sk; 560 int err; 561 562 if (addr_len < sizeof(uaddr->sa_family)) 563 return -EINVAL; 564 if (uaddr->sa_family == AF_UNSPEC) 565 return sk->sk_prot->disconnect(sk, flags); 566 567 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 568 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 569 if (err) 570 return err; 571 } 572 573 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 574 return -EAGAIN; 575 return sk->sk_prot->connect(sk, uaddr, addr_len); 576 } 577 EXPORT_SYMBOL(inet_dgram_connect); 578 579 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 580 { 581 DEFINE_WAIT_FUNC(wait, woken_wake_function); 582 583 add_wait_queue(sk_sleep(sk), &wait); 584 sk->sk_write_pending += writebias; 585 586 /* Basic assumption: if someone sets sk->sk_err, he _must_ 587 * change state of the socket from TCP_SYN_*. 588 * Connect() does not allow to get error notifications 589 * without closing the socket. 590 */ 591 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 592 release_sock(sk); 593 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 594 lock_sock(sk); 595 if (signal_pending(current) || !timeo) 596 break; 597 } 598 remove_wait_queue(sk_sleep(sk), &wait); 599 sk->sk_write_pending -= writebias; 600 return timeo; 601 } 602 603 /* 604 * Connect to a remote host. There is regrettably still a little 605 * TCP 'magic' in here. 606 */ 607 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 608 int addr_len, int flags, int is_sendmsg) 609 { 610 struct sock *sk = sock->sk; 611 int err; 612 long timeo; 613 614 /* 615 * uaddr can be NULL and addr_len can be 0 if: 616 * sk is a TCP fastopen active socket and 617 * TCP_FASTOPEN_CONNECT sockopt is set and 618 * we already have a valid cookie for this socket. 619 * In this case, user can call write() after connect(). 620 * write() will invoke tcp_sendmsg_fastopen() which calls 621 * __inet_stream_connect(). 622 */ 623 if (uaddr) { 624 if (addr_len < sizeof(uaddr->sa_family)) 625 return -EINVAL; 626 627 if (uaddr->sa_family == AF_UNSPEC) { 628 err = sk->sk_prot->disconnect(sk, flags); 629 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 630 goto out; 631 } 632 } 633 634 switch (sock->state) { 635 default: 636 err = -EINVAL; 637 goto out; 638 case SS_CONNECTED: 639 err = -EISCONN; 640 goto out; 641 case SS_CONNECTING: 642 if (inet_sk(sk)->defer_connect) 643 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 644 else 645 err = -EALREADY; 646 /* Fall out of switch with err, set for this state */ 647 break; 648 case SS_UNCONNECTED: 649 err = -EISCONN; 650 if (sk->sk_state != TCP_CLOSE) 651 goto out; 652 653 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 654 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 655 if (err) 656 goto out; 657 } 658 659 err = sk->sk_prot->connect(sk, uaddr, addr_len); 660 if (err < 0) 661 goto out; 662 663 sock->state = SS_CONNECTING; 664 665 if (!err && inet_sk(sk)->defer_connect) 666 goto out; 667 668 /* Just entered SS_CONNECTING state; the only 669 * difference is that return value in non-blocking 670 * case is EINPROGRESS, rather than EALREADY. 671 */ 672 err = -EINPROGRESS; 673 break; 674 } 675 676 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 677 678 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 679 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 680 tcp_sk(sk)->fastopen_req && 681 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 682 683 /* Error code is set above */ 684 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 685 goto out; 686 687 err = sock_intr_errno(timeo); 688 if (signal_pending(current)) 689 goto out; 690 } 691 692 /* Connection was closed by RST, timeout, ICMP error 693 * or another process disconnected us. 694 */ 695 if (sk->sk_state == TCP_CLOSE) 696 goto sock_error; 697 698 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 699 * and error was received after socket entered established state. 700 * Hence, it is handled normally after connect() return successfully. 701 */ 702 703 sock->state = SS_CONNECTED; 704 err = 0; 705 out: 706 return err; 707 708 sock_error: 709 err = sock_error(sk) ? : -ECONNABORTED; 710 sock->state = SS_UNCONNECTED; 711 if (sk->sk_prot->disconnect(sk, flags)) 712 sock->state = SS_DISCONNECTING; 713 goto out; 714 } 715 EXPORT_SYMBOL(__inet_stream_connect); 716 717 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 718 int addr_len, int flags) 719 { 720 int err; 721 722 lock_sock(sock->sk); 723 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 724 release_sock(sock->sk); 725 return err; 726 } 727 EXPORT_SYMBOL(inet_stream_connect); 728 729 /* 730 * Accept a pending connection. The TCP layer now gives BSD semantics. 731 */ 732 733 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 734 bool kern) 735 { 736 struct sock *sk1 = sock->sk; 737 int err = -EINVAL; 738 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 739 740 if (!sk2) 741 goto do_err; 742 743 lock_sock(sk2); 744 745 sock_rps_record_flow(sk2); 746 WARN_ON(!((1 << sk2->sk_state) & 747 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 748 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 749 750 sock_graft(sk2, newsock); 751 752 newsock->state = SS_CONNECTED; 753 err = 0; 754 release_sock(sk2); 755 do_err: 756 return err; 757 } 758 EXPORT_SYMBOL(inet_accept); 759 760 761 /* 762 * This does both peername and sockname. 763 */ 764 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 765 int peer) 766 { 767 struct sock *sk = sock->sk; 768 struct inet_sock *inet = inet_sk(sk); 769 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 770 771 sin->sin_family = AF_INET; 772 if (peer) { 773 if (!inet->inet_dport || 774 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 775 peer == 1)) 776 return -ENOTCONN; 777 sin->sin_port = inet->inet_dport; 778 sin->sin_addr.s_addr = inet->inet_daddr; 779 } else { 780 __be32 addr = inet->inet_rcv_saddr; 781 if (!addr) 782 addr = inet->inet_saddr; 783 sin->sin_port = inet->inet_sport; 784 sin->sin_addr.s_addr = addr; 785 } 786 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 787 return sizeof(*sin); 788 } 789 EXPORT_SYMBOL(inet_getname); 790 791 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 792 { 793 struct sock *sk = sock->sk; 794 795 sock_rps_record_flow(sk); 796 797 /* We may need to bind the socket. */ 798 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 799 inet_autobind(sk)) 800 return -EAGAIN; 801 802 return sk->sk_prot->sendmsg(sk, msg, size); 803 } 804 EXPORT_SYMBOL(inet_sendmsg); 805 806 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 807 size_t size, int flags) 808 { 809 struct sock *sk = sock->sk; 810 811 sock_rps_record_flow(sk); 812 813 /* We may need to bind the socket. */ 814 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 815 inet_autobind(sk)) 816 return -EAGAIN; 817 818 if (sk->sk_prot->sendpage) 819 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 820 return sock_no_sendpage(sock, page, offset, size, flags); 821 } 822 EXPORT_SYMBOL(inet_sendpage); 823 824 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 825 int flags) 826 { 827 struct sock *sk = sock->sk; 828 int addr_len = 0; 829 int err; 830 831 if (likely(!(flags & MSG_ERRQUEUE))) 832 sock_rps_record_flow(sk); 833 834 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 835 flags & ~MSG_DONTWAIT, &addr_len); 836 if (err >= 0) 837 msg->msg_namelen = addr_len; 838 return err; 839 } 840 EXPORT_SYMBOL(inet_recvmsg); 841 842 int inet_shutdown(struct socket *sock, int how) 843 { 844 struct sock *sk = sock->sk; 845 int err = 0; 846 847 /* This should really check to make sure 848 * the socket is a TCP socket. (WHY AC...) 849 */ 850 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 851 1->2 bit 2 snds. 852 2->3 */ 853 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 854 return -EINVAL; 855 856 lock_sock(sk); 857 if (sock->state == SS_CONNECTING) { 858 if ((1 << sk->sk_state) & 859 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 860 sock->state = SS_DISCONNECTING; 861 else 862 sock->state = SS_CONNECTED; 863 } 864 865 switch (sk->sk_state) { 866 case TCP_CLOSE: 867 err = -ENOTCONN; 868 /* Hack to wake up other listeners, who can poll for 869 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 870 /* fall through */ 871 default: 872 sk->sk_shutdown |= how; 873 if (sk->sk_prot->shutdown) 874 sk->sk_prot->shutdown(sk, how); 875 break; 876 877 /* Remaining two branches are temporary solution for missing 878 * close() in multithreaded environment. It is _not_ a good idea, 879 * but we have no choice until close() is repaired at VFS level. 880 */ 881 case TCP_LISTEN: 882 if (!(how & RCV_SHUTDOWN)) 883 break; 884 /* fall through */ 885 case TCP_SYN_SENT: 886 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 887 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 888 break; 889 } 890 891 /* Wake up anyone sleeping in poll. */ 892 sk->sk_state_change(sk); 893 release_sock(sk); 894 return err; 895 } 896 EXPORT_SYMBOL(inet_shutdown); 897 898 /* 899 * ioctl() calls you can issue on an INET socket. Most of these are 900 * device configuration and stuff and very rarely used. Some ioctls 901 * pass on to the socket itself. 902 * 903 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 904 * loads the devconfigure module does its configuring and unloads it. 905 * There's a good 20K of config code hanging around the kernel. 906 */ 907 908 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 909 { 910 struct sock *sk = sock->sk; 911 int err = 0; 912 struct net *net = sock_net(sk); 913 void __user *p = (void __user *)arg; 914 struct ifreq ifr; 915 struct rtentry rt; 916 917 switch (cmd) { 918 case SIOCADDRT: 919 case SIOCDELRT: 920 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 921 return -EFAULT; 922 err = ip_rt_ioctl(net, cmd, &rt); 923 break; 924 case SIOCRTMSG: 925 err = -EINVAL; 926 break; 927 case SIOCDARP: 928 case SIOCGARP: 929 case SIOCSARP: 930 err = arp_ioctl(net, cmd, (void __user *)arg); 931 break; 932 case SIOCGIFADDR: 933 case SIOCGIFBRDADDR: 934 case SIOCGIFNETMASK: 935 case SIOCGIFDSTADDR: 936 case SIOCGIFPFLAGS: 937 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 938 return -EFAULT; 939 err = devinet_ioctl(net, cmd, &ifr); 940 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 941 err = -EFAULT; 942 break; 943 944 case SIOCSIFADDR: 945 case SIOCSIFBRDADDR: 946 case SIOCSIFNETMASK: 947 case SIOCSIFDSTADDR: 948 case SIOCSIFPFLAGS: 949 case SIOCSIFFLAGS: 950 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 951 return -EFAULT; 952 err = devinet_ioctl(net, cmd, &ifr); 953 break; 954 default: 955 if (sk->sk_prot->ioctl) 956 err = sk->sk_prot->ioctl(sk, cmd, arg); 957 else 958 err = -ENOIOCTLCMD; 959 break; 960 } 961 return err; 962 } 963 EXPORT_SYMBOL(inet_ioctl); 964 965 #ifdef CONFIG_COMPAT 966 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 967 { 968 struct sock *sk = sock->sk; 969 int err = -ENOIOCTLCMD; 970 971 if (sk->sk_prot->compat_ioctl) 972 err = sk->sk_prot->compat_ioctl(sk, cmd, arg); 973 974 return err; 975 } 976 #endif 977 978 const struct proto_ops inet_stream_ops = { 979 .family = PF_INET, 980 .owner = THIS_MODULE, 981 .release = inet_release, 982 .bind = inet_bind, 983 .connect = inet_stream_connect, 984 .socketpair = sock_no_socketpair, 985 .accept = inet_accept, 986 .getname = inet_getname, 987 .poll = tcp_poll, 988 .ioctl = inet_ioctl, 989 .gettstamp = sock_gettstamp, 990 .listen = inet_listen, 991 .shutdown = inet_shutdown, 992 .setsockopt = sock_common_setsockopt, 993 .getsockopt = sock_common_getsockopt, 994 .sendmsg = inet_sendmsg, 995 .recvmsg = inet_recvmsg, 996 #ifdef CONFIG_MMU 997 .mmap = tcp_mmap, 998 #endif 999 .sendpage = inet_sendpage, 1000 .splice_read = tcp_splice_read, 1001 .read_sock = tcp_read_sock, 1002 .sendmsg_locked = tcp_sendmsg_locked, 1003 .sendpage_locked = tcp_sendpage_locked, 1004 .peek_len = tcp_peek_len, 1005 #ifdef CONFIG_COMPAT 1006 .compat_setsockopt = compat_sock_common_setsockopt, 1007 .compat_getsockopt = compat_sock_common_getsockopt, 1008 .compat_ioctl = inet_compat_ioctl, 1009 #endif 1010 .set_rcvlowat = tcp_set_rcvlowat, 1011 }; 1012 EXPORT_SYMBOL(inet_stream_ops); 1013 1014 const struct proto_ops inet_dgram_ops = { 1015 .family = PF_INET, 1016 .owner = THIS_MODULE, 1017 .release = inet_release, 1018 .bind = inet_bind, 1019 .connect = inet_dgram_connect, 1020 .socketpair = sock_no_socketpair, 1021 .accept = sock_no_accept, 1022 .getname = inet_getname, 1023 .poll = udp_poll, 1024 .ioctl = inet_ioctl, 1025 .gettstamp = sock_gettstamp, 1026 .listen = sock_no_listen, 1027 .shutdown = inet_shutdown, 1028 .setsockopt = sock_common_setsockopt, 1029 .getsockopt = sock_common_getsockopt, 1030 .sendmsg = inet_sendmsg, 1031 .recvmsg = inet_recvmsg, 1032 .mmap = sock_no_mmap, 1033 .sendpage = inet_sendpage, 1034 .set_peek_off = sk_set_peek_off, 1035 #ifdef CONFIG_COMPAT 1036 .compat_setsockopt = compat_sock_common_setsockopt, 1037 .compat_getsockopt = compat_sock_common_getsockopt, 1038 .compat_ioctl = inet_compat_ioctl, 1039 #endif 1040 }; 1041 EXPORT_SYMBOL(inet_dgram_ops); 1042 1043 /* 1044 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1045 * udp_poll 1046 */ 1047 static const struct proto_ops inet_sockraw_ops = { 1048 .family = PF_INET, 1049 .owner = THIS_MODULE, 1050 .release = inet_release, 1051 .bind = inet_bind, 1052 .connect = inet_dgram_connect, 1053 .socketpair = sock_no_socketpair, 1054 .accept = sock_no_accept, 1055 .getname = inet_getname, 1056 .poll = datagram_poll, 1057 .ioctl = inet_ioctl, 1058 .gettstamp = sock_gettstamp, 1059 .listen = sock_no_listen, 1060 .shutdown = inet_shutdown, 1061 .setsockopt = sock_common_setsockopt, 1062 .getsockopt = sock_common_getsockopt, 1063 .sendmsg = inet_sendmsg, 1064 .recvmsg = inet_recvmsg, 1065 .mmap = sock_no_mmap, 1066 .sendpage = inet_sendpage, 1067 #ifdef CONFIG_COMPAT 1068 .compat_setsockopt = compat_sock_common_setsockopt, 1069 .compat_getsockopt = compat_sock_common_getsockopt, 1070 .compat_ioctl = inet_compat_ioctl, 1071 #endif 1072 }; 1073 1074 static const struct net_proto_family inet_family_ops = { 1075 .family = PF_INET, 1076 .create = inet_create, 1077 .owner = THIS_MODULE, 1078 }; 1079 1080 /* Upon startup we insert all the elements in inetsw_array[] into 1081 * the linked list inetsw. 1082 */ 1083 static struct inet_protosw inetsw_array[] = 1084 { 1085 { 1086 .type = SOCK_STREAM, 1087 .protocol = IPPROTO_TCP, 1088 .prot = &tcp_prot, 1089 .ops = &inet_stream_ops, 1090 .flags = INET_PROTOSW_PERMANENT | 1091 INET_PROTOSW_ICSK, 1092 }, 1093 1094 { 1095 .type = SOCK_DGRAM, 1096 .protocol = IPPROTO_UDP, 1097 .prot = &udp_prot, 1098 .ops = &inet_dgram_ops, 1099 .flags = INET_PROTOSW_PERMANENT, 1100 }, 1101 1102 { 1103 .type = SOCK_DGRAM, 1104 .protocol = IPPROTO_ICMP, 1105 .prot = &ping_prot, 1106 .ops = &inet_sockraw_ops, 1107 .flags = INET_PROTOSW_REUSE, 1108 }, 1109 1110 { 1111 .type = SOCK_RAW, 1112 .protocol = IPPROTO_IP, /* wild card */ 1113 .prot = &raw_prot, 1114 .ops = &inet_sockraw_ops, 1115 .flags = INET_PROTOSW_REUSE, 1116 } 1117 }; 1118 1119 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1120 1121 void inet_register_protosw(struct inet_protosw *p) 1122 { 1123 struct list_head *lh; 1124 struct inet_protosw *answer; 1125 int protocol = p->protocol; 1126 struct list_head *last_perm; 1127 1128 spin_lock_bh(&inetsw_lock); 1129 1130 if (p->type >= SOCK_MAX) 1131 goto out_illegal; 1132 1133 /* If we are trying to override a permanent protocol, bail. */ 1134 last_perm = &inetsw[p->type]; 1135 list_for_each(lh, &inetsw[p->type]) { 1136 answer = list_entry(lh, struct inet_protosw, list); 1137 /* Check only the non-wild match. */ 1138 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1139 break; 1140 if (protocol == answer->protocol) 1141 goto out_permanent; 1142 last_perm = lh; 1143 } 1144 1145 /* Add the new entry after the last permanent entry if any, so that 1146 * the new entry does not override a permanent entry when matched with 1147 * a wild-card protocol. But it is allowed to override any existing 1148 * non-permanent entry. This means that when we remove this entry, the 1149 * system automatically returns to the old behavior. 1150 */ 1151 list_add_rcu(&p->list, last_perm); 1152 out: 1153 spin_unlock_bh(&inetsw_lock); 1154 1155 return; 1156 1157 out_permanent: 1158 pr_err("Attempt to override permanent protocol %d\n", protocol); 1159 goto out; 1160 1161 out_illegal: 1162 pr_err("Ignoring attempt to register invalid socket type %d\n", 1163 p->type); 1164 goto out; 1165 } 1166 EXPORT_SYMBOL(inet_register_protosw); 1167 1168 void inet_unregister_protosw(struct inet_protosw *p) 1169 { 1170 if (INET_PROTOSW_PERMANENT & p->flags) { 1171 pr_err("Attempt to unregister permanent protocol %d\n", 1172 p->protocol); 1173 } else { 1174 spin_lock_bh(&inetsw_lock); 1175 list_del_rcu(&p->list); 1176 spin_unlock_bh(&inetsw_lock); 1177 1178 synchronize_net(); 1179 } 1180 } 1181 EXPORT_SYMBOL(inet_unregister_protosw); 1182 1183 static int inet_sk_reselect_saddr(struct sock *sk) 1184 { 1185 struct inet_sock *inet = inet_sk(sk); 1186 __be32 old_saddr = inet->inet_saddr; 1187 __be32 daddr = inet->inet_daddr; 1188 struct flowi4 *fl4; 1189 struct rtable *rt; 1190 __be32 new_saddr; 1191 struct ip_options_rcu *inet_opt; 1192 1193 inet_opt = rcu_dereference_protected(inet->inet_opt, 1194 lockdep_sock_is_held(sk)); 1195 if (inet_opt && inet_opt->opt.srr) 1196 daddr = inet_opt->opt.faddr; 1197 1198 /* Query new route. */ 1199 fl4 = &inet->cork.fl.u.ip4; 1200 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1201 sk->sk_bound_dev_if, sk->sk_protocol, 1202 inet->inet_sport, inet->inet_dport, sk); 1203 if (IS_ERR(rt)) 1204 return PTR_ERR(rt); 1205 1206 sk_setup_caps(sk, &rt->dst); 1207 1208 new_saddr = fl4->saddr; 1209 1210 if (new_saddr == old_saddr) 1211 return 0; 1212 1213 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1214 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1215 __func__, &old_saddr, &new_saddr); 1216 } 1217 1218 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1219 1220 /* 1221 * XXX The only one ugly spot where we need to 1222 * XXX really change the sockets identity after 1223 * XXX it has entered the hashes. -DaveM 1224 * 1225 * Besides that, it does not check for connection 1226 * uniqueness. Wait for troubles. 1227 */ 1228 return __sk_prot_rehash(sk); 1229 } 1230 1231 int inet_sk_rebuild_header(struct sock *sk) 1232 { 1233 struct inet_sock *inet = inet_sk(sk); 1234 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1235 __be32 daddr; 1236 struct ip_options_rcu *inet_opt; 1237 struct flowi4 *fl4; 1238 int err; 1239 1240 /* Route is OK, nothing to do. */ 1241 if (rt) 1242 return 0; 1243 1244 /* Reroute. */ 1245 rcu_read_lock(); 1246 inet_opt = rcu_dereference(inet->inet_opt); 1247 daddr = inet->inet_daddr; 1248 if (inet_opt && inet_opt->opt.srr) 1249 daddr = inet_opt->opt.faddr; 1250 rcu_read_unlock(); 1251 fl4 = &inet->cork.fl.u.ip4; 1252 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1253 inet->inet_dport, inet->inet_sport, 1254 sk->sk_protocol, RT_CONN_FLAGS(sk), 1255 sk->sk_bound_dev_if); 1256 if (!IS_ERR(rt)) { 1257 err = 0; 1258 sk_setup_caps(sk, &rt->dst); 1259 } else { 1260 err = PTR_ERR(rt); 1261 1262 /* Routing failed... */ 1263 sk->sk_route_caps = 0; 1264 /* 1265 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1266 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1267 */ 1268 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1269 sk->sk_state != TCP_SYN_SENT || 1270 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1271 (err = inet_sk_reselect_saddr(sk)) != 0) 1272 sk->sk_err_soft = -err; 1273 } 1274 1275 return err; 1276 } 1277 EXPORT_SYMBOL(inet_sk_rebuild_header); 1278 1279 void inet_sk_set_state(struct sock *sk, int state) 1280 { 1281 trace_inet_sock_set_state(sk, sk->sk_state, state); 1282 sk->sk_state = state; 1283 } 1284 EXPORT_SYMBOL(inet_sk_set_state); 1285 1286 void inet_sk_state_store(struct sock *sk, int newstate) 1287 { 1288 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1289 smp_store_release(&sk->sk_state, newstate); 1290 } 1291 1292 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1293 netdev_features_t features) 1294 { 1295 bool udpfrag = false, fixedid = false, gso_partial, encap; 1296 struct sk_buff *segs = ERR_PTR(-EINVAL); 1297 const struct net_offload *ops; 1298 unsigned int offset = 0; 1299 struct iphdr *iph; 1300 int proto, tot_len; 1301 int nhoff; 1302 int ihl; 1303 int id; 1304 1305 skb_reset_network_header(skb); 1306 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1307 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1308 goto out; 1309 1310 iph = ip_hdr(skb); 1311 ihl = iph->ihl * 4; 1312 if (ihl < sizeof(*iph)) 1313 goto out; 1314 1315 id = ntohs(iph->id); 1316 proto = iph->protocol; 1317 1318 /* Warning: after this point, iph might be no longer valid */ 1319 if (unlikely(!pskb_may_pull(skb, ihl))) 1320 goto out; 1321 __skb_pull(skb, ihl); 1322 1323 encap = SKB_GSO_CB(skb)->encap_level > 0; 1324 if (encap) 1325 features &= skb->dev->hw_enc_features; 1326 SKB_GSO_CB(skb)->encap_level += ihl; 1327 1328 skb_reset_transport_header(skb); 1329 1330 segs = ERR_PTR(-EPROTONOSUPPORT); 1331 1332 if (!skb->encapsulation || encap) { 1333 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1334 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1335 1336 /* fixed ID is invalid if DF bit is not set */ 1337 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1338 goto out; 1339 } 1340 1341 ops = rcu_dereference(inet_offloads[proto]); 1342 if (likely(ops && ops->callbacks.gso_segment)) 1343 segs = ops->callbacks.gso_segment(skb, features); 1344 1345 if (IS_ERR_OR_NULL(segs)) 1346 goto out; 1347 1348 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1349 1350 skb = segs; 1351 do { 1352 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1353 if (udpfrag) { 1354 iph->frag_off = htons(offset >> 3); 1355 if (skb->next) 1356 iph->frag_off |= htons(IP_MF); 1357 offset += skb->len - nhoff - ihl; 1358 tot_len = skb->len - nhoff; 1359 } else if (skb_is_gso(skb)) { 1360 if (!fixedid) { 1361 iph->id = htons(id); 1362 id += skb_shinfo(skb)->gso_segs; 1363 } 1364 1365 if (gso_partial) 1366 tot_len = skb_shinfo(skb)->gso_size + 1367 SKB_GSO_CB(skb)->data_offset + 1368 skb->head - (unsigned char *)iph; 1369 else 1370 tot_len = skb->len - nhoff; 1371 } else { 1372 if (!fixedid) 1373 iph->id = htons(id++); 1374 tot_len = skb->len - nhoff; 1375 } 1376 iph->tot_len = htons(tot_len); 1377 ip_send_check(iph); 1378 if (encap) 1379 skb_reset_inner_headers(skb); 1380 skb->network_header = (u8 *)iph - skb->head; 1381 skb_reset_mac_len(skb); 1382 } while ((skb = skb->next)); 1383 1384 out: 1385 return segs; 1386 } 1387 EXPORT_SYMBOL(inet_gso_segment); 1388 1389 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1390 netdev_features_t features) 1391 { 1392 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1393 return ERR_PTR(-EINVAL); 1394 1395 return inet_gso_segment(skb, features); 1396 } 1397 1398 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *, 1399 struct sk_buff *)); 1400 INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *, 1401 struct sk_buff *)); 1402 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1403 { 1404 const struct net_offload *ops; 1405 struct sk_buff *pp = NULL; 1406 const struct iphdr *iph; 1407 struct sk_buff *p; 1408 unsigned int hlen; 1409 unsigned int off; 1410 unsigned int id; 1411 int flush = 1; 1412 int proto; 1413 1414 off = skb_gro_offset(skb); 1415 hlen = off + sizeof(*iph); 1416 iph = skb_gro_header_fast(skb, off); 1417 if (skb_gro_header_hard(skb, hlen)) { 1418 iph = skb_gro_header_slow(skb, hlen, off); 1419 if (unlikely(!iph)) 1420 goto out; 1421 } 1422 1423 proto = iph->protocol; 1424 1425 rcu_read_lock(); 1426 ops = rcu_dereference(inet_offloads[proto]); 1427 if (!ops || !ops->callbacks.gro_receive) 1428 goto out_unlock; 1429 1430 if (*(u8 *)iph != 0x45) 1431 goto out_unlock; 1432 1433 if (ip_is_fragment(iph)) 1434 goto out_unlock; 1435 1436 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1437 goto out_unlock; 1438 1439 id = ntohl(*(__be32 *)&iph->id); 1440 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1441 id >>= 16; 1442 1443 list_for_each_entry(p, head, list) { 1444 struct iphdr *iph2; 1445 u16 flush_id; 1446 1447 if (!NAPI_GRO_CB(p)->same_flow) 1448 continue; 1449 1450 iph2 = (struct iphdr *)(p->data + off); 1451 /* The above works because, with the exception of the top 1452 * (inner most) layer, we only aggregate pkts with the same 1453 * hdr length so all the hdrs we'll need to verify will start 1454 * at the same offset. 1455 */ 1456 if ((iph->protocol ^ iph2->protocol) | 1457 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1458 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1459 NAPI_GRO_CB(p)->same_flow = 0; 1460 continue; 1461 } 1462 1463 /* All fields must match except length and checksum. */ 1464 NAPI_GRO_CB(p)->flush |= 1465 (iph->ttl ^ iph2->ttl) | 1466 (iph->tos ^ iph2->tos) | 1467 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1468 1469 NAPI_GRO_CB(p)->flush |= flush; 1470 1471 /* We need to store of the IP ID check to be included later 1472 * when we can verify that this packet does in fact belong 1473 * to a given flow. 1474 */ 1475 flush_id = (u16)(id - ntohs(iph2->id)); 1476 1477 /* This bit of code makes it much easier for us to identify 1478 * the cases where we are doing atomic vs non-atomic IP ID 1479 * checks. Specifically an atomic check can return IP ID 1480 * values 0 - 0xFFFF, while a non-atomic check can only 1481 * return 0 or 0xFFFF. 1482 */ 1483 if (!NAPI_GRO_CB(p)->is_atomic || 1484 !(iph->frag_off & htons(IP_DF))) { 1485 flush_id ^= NAPI_GRO_CB(p)->count; 1486 flush_id = flush_id ? 0xFFFF : 0; 1487 } 1488 1489 /* If the previous IP ID value was based on an atomic 1490 * datagram we can overwrite the value and ignore it. 1491 */ 1492 if (NAPI_GRO_CB(skb)->is_atomic) 1493 NAPI_GRO_CB(p)->flush_id = flush_id; 1494 else 1495 NAPI_GRO_CB(p)->flush_id |= flush_id; 1496 } 1497 1498 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1499 NAPI_GRO_CB(skb)->flush |= flush; 1500 skb_set_network_header(skb, off); 1501 /* The above will be needed by the transport layer if there is one 1502 * immediately following this IP hdr. 1503 */ 1504 1505 /* Note : No need to call skb_gro_postpull_rcsum() here, 1506 * as we already checked checksum over ipv4 header was 0 1507 */ 1508 skb_gro_pull(skb, sizeof(*iph)); 1509 skb_set_transport_header(skb, skb_gro_offset(skb)); 1510 1511 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1512 ops->callbacks.gro_receive, head, skb); 1513 1514 out_unlock: 1515 rcu_read_unlock(); 1516 1517 out: 1518 skb_gro_flush_final(skb, pp, flush); 1519 1520 return pp; 1521 } 1522 EXPORT_SYMBOL(inet_gro_receive); 1523 1524 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1525 struct sk_buff *skb) 1526 { 1527 if (NAPI_GRO_CB(skb)->encap_mark) { 1528 NAPI_GRO_CB(skb)->flush = 1; 1529 return NULL; 1530 } 1531 1532 NAPI_GRO_CB(skb)->encap_mark = 1; 1533 1534 return inet_gro_receive(head, skb); 1535 } 1536 1537 #define SECONDS_PER_DAY 86400 1538 1539 /* inet_current_timestamp - Return IP network timestamp 1540 * 1541 * Return milliseconds since midnight in network byte order. 1542 */ 1543 __be32 inet_current_timestamp(void) 1544 { 1545 u32 secs; 1546 u32 msecs; 1547 struct timespec64 ts; 1548 1549 ktime_get_real_ts64(&ts); 1550 1551 /* Get secs since midnight. */ 1552 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1553 /* Convert to msecs. */ 1554 msecs = secs * MSEC_PER_SEC; 1555 /* Convert nsec to msec. */ 1556 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1557 1558 /* Convert to network byte order. */ 1559 return htonl(msecs); 1560 } 1561 EXPORT_SYMBOL(inet_current_timestamp); 1562 1563 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1564 { 1565 if (sk->sk_family == AF_INET) 1566 return ip_recv_error(sk, msg, len, addr_len); 1567 #if IS_ENABLED(CONFIG_IPV6) 1568 if (sk->sk_family == AF_INET6) 1569 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1570 #endif 1571 return -EINVAL; 1572 } 1573 1574 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *, int)); 1575 INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int)); 1576 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1577 { 1578 __be16 newlen = htons(skb->len - nhoff); 1579 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1580 const struct net_offload *ops; 1581 int proto = iph->protocol; 1582 int err = -ENOSYS; 1583 1584 if (skb->encapsulation) { 1585 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1586 skb_set_inner_network_header(skb, nhoff); 1587 } 1588 1589 csum_replace2(&iph->check, iph->tot_len, newlen); 1590 iph->tot_len = newlen; 1591 1592 rcu_read_lock(); 1593 ops = rcu_dereference(inet_offloads[proto]); 1594 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1595 goto out_unlock; 1596 1597 /* Only need to add sizeof(*iph) to get to the next hdr below 1598 * because any hdr with option will have been flushed in 1599 * inet_gro_receive(). 1600 */ 1601 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1602 tcp4_gro_complete, udp4_gro_complete, 1603 skb, nhoff + sizeof(*iph)); 1604 1605 out_unlock: 1606 rcu_read_unlock(); 1607 1608 return err; 1609 } 1610 EXPORT_SYMBOL(inet_gro_complete); 1611 1612 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1613 { 1614 skb->encapsulation = 1; 1615 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1616 return inet_gro_complete(skb, nhoff); 1617 } 1618 1619 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1620 unsigned short type, unsigned char protocol, 1621 struct net *net) 1622 { 1623 struct socket *sock; 1624 int rc = sock_create_kern(net, family, type, protocol, &sock); 1625 1626 if (rc == 0) { 1627 *sk = sock->sk; 1628 (*sk)->sk_allocation = GFP_ATOMIC; 1629 /* 1630 * Unhash it so that IP input processing does not even see it, 1631 * we do not wish this socket to see incoming packets. 1632 */ 1633 (*sk)->sk_prot->unhash(*sk); 1634 } 1635 return rc; 1636 } 1637 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1638 1639 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1640 { 1641 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1642 } 1643 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1644 1645 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1646 { 1647 unsigned long res = 0; 1648 int i; 1649 1650 for_each_possible_cpu(i) 1651 res += snmp_get_cpu_field(mib, i, offt); 1652 return res; 1653 } 1654 EXPORT_SYMBOL_GPL(snmp_fold_field); 1655 1656 #if BITS_PER_LONG==32 1657 1658 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1659 size_t syncp_offset) 1660 { 1661 void *bhptr; 1662 struct u64_stats_sync *syncp; 1663 u64 v; 1664 unsigned int start; 1665 1666 bhptr = per_cpu_ptr(mib, cpu); 1667 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1668 do { 1669 start = u64_stats_fetch_begin_irq(syncp); 1670 v = *(((u64 *)bhptr) + offt); 1671 } while (u64_stats_fetch_retry_irq(syncp, start)); 1672 1673 return v; 1674 } 1675 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1676 1677 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1678 { 1679 u64 res = 0; 1680 int cpu; 1681 1682 for_each_possible_cpu(cpu) { 1683 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1684 } 1685 return res; 1686 } 1687 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1688 #endif 1689 1690 #ifdef CONFIG_IP_MULTICAST 1691 static const struct net_protocol igmp_protocol = { 1692 .handler = igmp_rcv, 1693 .netns_ok = 1, 1694 }; 1695 #endif 1696 1697 /* thinking of making this const? Don't. 1698 * early_demux can change based on sysctl. 1699 */ 1700 static struct net_protocol tcp_protocol = { 1701 .early_demux = tcp_v4_early_demux, 1702 .early_demux_handler = tcp_v4_early_demux, 1703 .handler = tcp_v4_rcv, 1704 .err_handler = tcp_v4_err, 1705 .no_policy = 1, 1706 .netns_ok = 1, 1707 .icmp_strict_tag_validation = 1, 1708 }; 1709 1710 /* thinking of making this const? Don't. 1711 * early_demux can change based on sysctl. 1712 */ 1713 static struct net_protocol udp_protocol = { 1714 .early_demux = udp_v4_early_demux, 1715 .early_demux_handler = udp_v4_early_demux, 1716 .handler = udp_rcv, 1717 .err_handler = udp_err, 1718 .no_policy = 1, 1719 .netns_ok = 1, 1720 }; 1721 1722 static const struct net_protocol icmp_protocol = { 1723 .handler = icmp_rcv, 1724 .err_handler = icmp_err, 1725 .no_policy = 1, 1726 .netns_ok = 1, 1727 }; 1728 1729 static __net_init int ipv4_mib_init_net(struct net *net) 1730 { 1731 int i; 1732 1733 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1734 if (!net->mib.tcp_statistics) 1735 goto err_tcp_mib; 1736 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1737 if (!net->mib.ip_statistics) 1738 goto err_ip_mib; 1739 1740 for_each_possible_cpu(i) { 1741 struct ipstats_mib *af_inet_stats; 1742 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1743 u64_stats_init(&af_inet_stats->syncp); 1744 } 1745 1746 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1747 if (!net->mib.net_statistics) 1748 goto err_net_mib; 1749 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1750 if (!net->mib.udp_statistics) 1751 goto err_udp_mib; 1752 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1753 if (!net->mib.udplite_statistics) 1754 goto err_udplite_mib; 1755 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1756 if (!net->mib.icmp_statistics) 1757 goto err_icmp_mib; 1758 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1759 GFP_KERNEL); 1760 if (!net->mib.icmpmsg_statistics) 1761 goto err_icmpmsg_mib; 1762 1763 tcp_mib_init(net); 1764 return 0; 1765 1766 err_icmpmsg_mib: 1767 free_percpu(net->mib.icmp_statistics); 1768 err_icmp_mib: 1769 free_percpu(net->mib.udplite_statistics); 1770 err_udplite_mib: 1771 free_percpu(net->mib.udp_statistics); 1772 err_udp_mib: 1773 free_percpu(net->mib.net_statistics); 1774 err_net_mib: 1775 free_percpu(net->mib.ip_statistics); 1776 err_ip_mib: 1777 free_percpu(net->mib.tcp_statistics); 1778 err_tcp_mib: 1779 return -ENOMEM; 1780 } 1781 1782 static __net_exit void ipv4_mib_exit_net(struct net *net) 1783 { 1784 kfree(net->mib.icmpmsg_statistics); 1785 free_percpu(net->mib.icmp_statistics); 1786 free_percpu(net->mib.udplite_statistics); 1787 free_percpu(net->mib.udp_statistics); 1788 free_percpu(net->mib.net_statistics); 1789 free_percpu(net->mib.ip_statistics); 1790 free_percpu(net->mib.tcp_statistics); 1791 } 1792 1793 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1794 .init = ipv4_mib_init_net, 1795 .exit = ipv4_mib_exit_net, 1796 }; 1797 1798 static int __init init_ipv4_mibs(void) 1799 { 1800 return register_pernet_subsys(&ipv4_mib_ops); 1801 } 1802 1803 static __net_init int inet_init_net(struct net *net) 1804 { 1805 /* 1806 * Set defaults for local port range 1807 */ 1808 seqlock_init(&net->ipv4.ip_local_ports.lock); 1809 net->ipv4.ip_local_ports.range[0] = 32768; 1810 net->ipv4.ip_local_ports.range[1] = 60999; 1811 1812 seqlock_init(&net->ipv4.ping_group_range.lock); 1813 /* 1814 * Sane defaults - nobody may create ping sockets. 1815 * Boot scripts should set this to distro-specific group. 1816 */ 1817 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1818 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1819 1820 /* Default values for sysctl-controlled parameters. 1821 * We set them here, in case sysctl is not compiled. 1822 */ 1823 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1824 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1825 net->ipv4.sysctl_ip_dynaddr = 0; 1826 net->ipv4.sysctl_ip_early_demux = 1; 1827 net->ipv4.sysctl_udp_early_demux = 1; 1828 net->ipv4.sysctl_tcp_early_demux = 1; 1829 #ifdef CONFIG_SYSCTL 1830 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1831 #endif 1832 1833 /* Some igmp sysctl, whose values are always used */ 1834 net->ipv4.sysctl_igmp_max_memberships = 20; 1835 net->ipv4.sysctl_igmp_max_msf = 10; 1836 /* IGMP reports for link-local multicast groups are enabled by default */ 1837 net->ipv4.sysctl_igmp_llm_reports = 1; 1838 net->ipv4.sysctl_igmp_qrv = 2; 1839 1840 return 0; 1841 } 1842 1843 static __net_exit void inet_exit_net(struct net *net) 1844 { 1845 } 1846 1847 static __net_initdata struct pernet_operations af_inet_ops = { 1848 .init = inet_init_net, 1849 .exit = inet_exit_net, 1850 }; 1851 1852 static int __init init_inet_pernet_ops(void) 1853 { 1854 return register_pernet_subsys(&af_inet_ops); 1855 } 1856 1857 static int ipv4_proc_init(void); 1858 1859 /* 1860 * IP protocol layer initialiser 1861 */ 1862 1863 static struct packet_offload ip_packet_offload __read_mostly = { 1864 .type = cpu_to_be16(ETH_P_IP), 1865 .callbacks = { 1866 .gso_segment = inet_gso_segment, 1867 .gro_receive = inet_gro_receive, 1868 .gro_complete = inet_gro_complete, 1869 }, 1870 }; 1871 1872 static const struct net_offload ipip_offload = { 1873 .callbacks = { 1874 .gso_segment = ipip_gso_segment, 1875 .gro_receive = ipip_gro_receive, 1876 .gro_complete = ipip_gro_complete, 1877 }, 1878 }; 1879 1880 static int __init ipip_offload_init(void) 1881 { 1882 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1883 } 1884 1885 static int __init ipv4_offload_init(void) 1886 { 1887 /* 1888 * Add offloads 1889 */ 1890 if (udpv4_offload_init() < 0) 1891 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1892 if (tcpv4_offload_init() < 0) 1893 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1894 if (ipip_offload_init() < 0) 1895 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1896 1897 dev_add_offload(&ip_packet_offload); 1898 return 0; 1899 } 1900 1901 fs_initcall(ipv4_offload_init); 1902 1903 static struct packet_type ip_packet_type __read_mostly = { 1904 .type = cpu_to_be16(ETH_P_IP), 1905 .func = ip_rcv, 1906 .list_func = ip_list_rcv, 1907 }; 1908 1909 static int __init inet_init(void) 1910 { 1911 struct inet_protosw *q; 1912 struct list_head *r; 1913 int rc = -EINVAL; 1914 1915 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1916 1917 rc = proto_register(&tcp_prot, 1); 1918 if (rc) 1919 goto out; 1920 1921 rc = proto_register(&udp_prot, 1); 1922 if (rc) 1923 goto out_unregister_tcp_proto; 1924 1925 rc = proto_register(&raw_prot, 1); 1926 if (rc) 1927 goto out_unregister_udp_proto; 1928 1929 rc = proto_register(&ping_prot, 1); 1930 if (rc) 1931 goto out_unregister_raw_proto; 1932 1933 /* 1934 * Tell SOCKET that we are alive... 1935 */ 1936 1937 (void)sock_register(&inet_family_ops); 1938 1939 #ifdef CONFIG_SYSCTL 1940 ip_static_sysctl_init(); 1941 #endif 1942 1943 /* 1944 * Add all the base protocols. 1945 */ 1946 1947 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1948 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1949 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1950 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1951 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1952 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1953 #ifdef CONFIG_IP_MULTICAST 1954 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1955 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1956 #endif 1957 1958 /* Register the socket-side information for inet_create. */ 1959 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1960 INIT_LIST_HEAD(r); 1961 1962 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1963 inet_register_protosw(q); 1964 1965 /* 1966 * Set the ARP module up 1967 */ 1968 1969 arp_init(); 1970 1971 /* 1972 * Set the IP module up 1973 */ 1974 1975 ip_init(); 1976 1977 /* Setup TCP slab cache for open requests. */ 1978 tcp_init(); 1979 1980 /* Setup UDP memory threshold */ 1981 udp_init(); 1982 1983 /* Add UDP-Lite (RFC 3828) */ 1984 udplite4_register(); 1985 1986 raw_init(); 1987 1988 ping_init(); 1989 1990 /* 1991 * Set the ICMP layer up 1992 */ 1993 1994 if (icmp_init() < 0) 1995 panic("Failed to create the ICMP control socket.\n"); 1996 1997 /* 1998 * Initialise the multicast router 1999 */ 2000 #if defined(CONFIG_IP_MROUTE) 2001 if (ip_mr_init()) 2002 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2003 #endif 2004 2005 if (init_inet_pernet_ops()) 2006 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2007 /* 2008 * Initialise per-cpu ipv4 mibs 2009 */ 2010 2011 if (init_ipv4_mibs()) 2012 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 2013 2014 ipv4_proc_init(); 2015 2016 ipfrag_init(); 2017 2018 dev_add_pack(&ip_packet_type); 2019 2020 ip_tunnel_core_init(); 2021 2022 rc = 0; 2023 out: 2024 return rc; 2025 out_unregister_raw_proto: 2026 proto_unregister(&raw_prot); 2027 out_unregister_udp_proto: 2028 proto_unregister(&udp_prot); 2029 out_unregister_tcp_proto: 2030 proto_unregister(&tcp_prot); 2031 goto out; 2032 } 2033 2034 fs_initcall(inet_init); 2035 2036 /* ------------------------------------------------------------------------ */ 2037 2038 #ifdef CONFIG_PROC_FS 2039 static int __init ipv4_proc_init(void) 2040 { 2041 int rc = 0; 2042 2043 if (raw_proc_init()) 2044 goto out_raw; 2045 if (tcp4_proc_init()) 2046 goto out_tcp; 2047 if (udp4_proc_init()) 2048 goto out_udp; 2049 if (ping_proc_init()) 2050 goto out_ping; 2051 if (ip_misc_proc_init()) 2052 goto out_misc; 2053 out: 2054 return rc; 2055 out_misc: 2056 ping_proc_exit(); 2057 out_ping: 2058 udp4_proc_exit(); 2059 out_udp: 2060 tcp4_proc_exit(); 2061 out_tcp: 2062 raw_proc_exit(); 2063 out_raw: 2064 rc = -ENOMEM; 2065 goto out; 2066 } 2067 2068 #else /* CONFIG_PROC_FS */ 2069 static int __init ipv4_proc_init(void) 2070 { 2071 return 0; 2072 } 2073 #endif /* CONFIG_PROC_FS */ 2074