1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 sk_refcnt_debug_dec(sk); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 /* 191 * Move a socket into listening state. 192 */ 193 int inet_listen(struct socket *sock, int backlog) 194 { 195 struct sock *sk = sock->sk; 196 unsigned char old_state; 197 int err, tcp_fastopen; 198 199 lock_sock(sk); 200 201 err = -EINVAL; 202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 203 goto out; 204 205 old_state = sk->sk_state; 206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 207 goto out; 208 209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 210 /* Really, if the socket is already in listen state 211 * we can only allow the backlog to be adjusted. 212 */ 213 if (old_state != TCP_LISTEN) { 214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 215 * Note that only TCP sockets (SOCK_STREAM) will reach here. 216 * Also fastopen backlog may already been set via the option 217 * because the socket was in TCP_LISTEN state previously but 218 * was shutdown() rather than close(). 219 */ 220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 222 (tcp_fastopen & TFO_SERVER_ENABLE) && 223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 224 fastopen_queue_tune(sk, backlog); 225 tcp_fastopen_init_key_once(sock_net(sk)); 226 } 227 228 err = inet_csk_listen_start(sk); 229 if (err) 230 goto out; 231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 232 } 233 err = 0; 234 235 out: 236 release_sock(sk); 237 return err; 238 } 239 EXPORT_SYMBOL(inet_listen); 240 241 /* 242 * Create an inet socket. 243 */ 244 245 static int inet_create(struct net *net, struct socket *sock, int protocol, 246 int kern) 247 { 248 struct sock *sk; 249 struct inet_protosw *answer; 250 struct inet_sock *inet; 251 struct proto *answer_prot; 252 unsigned char answer_flags; 253 int try_loading_module = 0; 254 int err; 255 256 if (protocol < 0 || protocol >= IPPROTO_MAX) 257 return -EINVAL; 258 259 sock->state = SS_UNCONNECTED; 260 261 /* Look for the requested type/protocol pair. */ 262 lookup_protocol: 263 err = -ESOCKTNOSUPPORT; 264 rcu_read_lock(); 265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 266 267 err = 0; 268 /* Check the non-wild match. */ 269 if (protocol == answer->protocol) { 270 if (protocol != IPPROTO_IP) 271 break; 272 } else { 273 /* Check for the two wild cases. */ 274 if (IPPROTO_IP == protocol) { 275 protocol = answer->protocol; 276 break; 277 } 278 if (IPPROTO_IP == answer->protocol) 279 break; 280 } 281 err = -EPROTONOSUPPORT; 282 } 283 284 if (unlikely(err)) { 285 if (try_loading_module < 2) { 286 rcu_read_unlock(); 287 /* 288 * Be more specific, e.g. net-pf-2-proto-132-type-1 289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 290 */ 291 if (++try_loading_module == 1) 292 request_module("net-pf-%d-proto-%d-type-%d", 293 PF_INET, protocol, sock->type); 294 /* 295 * Fall back to generic, e.g. net-pf-2-proto-132 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 297 */ 298 else 299 request_module("net-pf-%d-proto-%d", 300 PF_INET, protocol); 301 goto lookup_protocol; 302 } else 303 goto out_rcu_unlock; 304 } 305 306 err = -EPERM; 307 if (sock->type == SOCK_RAW && !kern && 308 !ns_capable(net->user_ns, CAP_NET_RAW)) 309 goto out_rcu_unlock; 310 311 sock->ops = answer->ops; 312 answer_prot = answer->prot; 313 answer_flags = answer->flags; 314 rcu_read_unlock(); 315 316 WARN_ON(!answer_prot->slab); 317 318 err = -ENOMEM; 319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 320 if (!sk) 321 goto out; 322 323 err = 0; 324 if (INET_PROTOSW_REUSE & answer_flags) 325 sk->sk_reuse = SK_CAN_REUSE; 326 327 inet = inet_sk(sk); 328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 329 330 inet->nodefrag = 0; 331 332 if (SOCK_RAW == sock->type) { 333 inet->inet_num = protocol; 334 if (IPPROTO_RAW == protocol) 335 inet->hdrincl = 1; 336 } 337 338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 339 inet->pmtudisc = IP_PMTUDISC_DONT; 340 else 341 inet->pmtudisc = IP_PMTUDISC_WANT; 342 343 inet->inet_id = 0; 344 345 sock_init_data(sock, sk); 346 347 sk->sk_destruct = inet_sock_destruct; 348 sk->sk_protocol = protocol; 349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 sk_refcnt_debug_inc(sk); 360 361 if (inet->inet_num) { 362 /* It assumes that any protocol which allows 363 * the user to assign a number at socket 364 * creation time automatically 365 * shares. 366 */ 367 inet->inet_sport = htons(inet->inet_num); 368 /* Add to protocol hash chains. */ 369 err = sk->sk_prot->hash(sk); 370 if (err) { 371 sk_common_release(sk); 372 goto out; 373 } 374 } 375 376 if (sk->sk_prot->init) { 377 err = sk->sk_prot->init(sk); 378 if (err) { 379 sk_common_release(sk); 380 goto out; 381 } 382 } 383 384 if (!kern) { 385 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 386 if (err) { 387 sk_common_release(sk); 388 goto out; 389 } 390 } 391 out: 392 return err; 393 out_rcu_unlock: 394 rcu_read_unlock(); 395 goto out; 396 } 397 398 399 /* 400 * The peer socket should always be NULL (or else). When we call this 401 * function we are destroying the object and from then on nobody 402 * should refer to it. 403 */ 404 int inet_release(struct socket *sock) 405 { 406 struct sock *sk = sock->sk; 407 408 if (sk) { 409 long timeout; 410 411 if (!sk->sk_kern_sock) 412 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 413 414 /* Applications forget to leave groups before exiting */ 415 ip_mc_drop_socket(sk); 416 417 /* If linger is set, we don't return until the close 418 * is complete. Otherwise we return immediately. The 419 * actually closing is done the same either way. 420 * 421 * If the close is due to the process exiting, we never 422 * linger.. 423 */ 424 timeout = 0; 425 if (sock_flag(sk, SOCK_LINGER) && 426 !(current->flags & PF_EXITING)) 427 timeout = sk->sk_lingertime; 428 sk->sk_prot->close(sk, timeout); 429 sock->sk = NULL; 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(inet_release); 434 435 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 436 { 437 struct sock *sk = sock->sk; 438 u32 flags = BIND_WITH_LOCK; 439 int err; 440 441 /* If the socket has its own bind function then use it. (RAW) */ 442 if (sk->sk_prot->bind) { 443 return sk->sk_prot->bind(sk, uaddr, addr_len); 444 } 445 if (addr_len < sizeof(struct sockaddr_in)) 446 return -EINVAL; 447 448 /* BPF prog is run before any checks are done so that if the prog 449 * changes context in a wrong way it will be caught. 450 */ 451 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 452 CGROUP_INET4_BIND, &flags); 453 if (err) 454 return err; 455 456 return __inet_bind(sk, uaddr, addr_len, flags); 457 } 458 EXPORT_SYMBOL(inet_bind); 459 460 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 461 u32 flags) 462 { 463 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 464 struct inet_sock *inet = inet_sk(sk); 465 struct net *net = sock_net(sk); 466 unsigned short snum; 467 int chk_addr_ret; 468 u32 tb_id = RT_TABLE_LOCAL; 469 int err; 470 471 if (addr->sin_family != AF_INET) { 472 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 473 * only if s_addr is INADDR_ANY. 474 */ 475 err = -EAFNOSUPPORT; 476 if (addr->sin_family != AF_UNSPEC || 477 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 478 goto out; 479 } 480 481 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 482 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 483 484 /* Not specified by any standard per-se, however it breaks too 485 * many applications when removed. It is unfortunate since 486 * allowing applications to make a non-local bind solves 487 * several problems with systems using dynamic addressing. 488 * (ie. your servers still start up even if your ISDN link 489 * is temporarily down) 490 */ 491 err = -EADDRNOTAVAIL; 492 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 493 chk_addr_ret)) 494 goto out; 495 496 snum = ntohs(addr->sin_port); 497 err = -EACCES; 498 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 499 snum && inet_port_requires_bind_service(net, snum) && 500 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 501 goto out; 502 503 /* We keep a pair of addresses. rcv_saddr is the one 504 * used by hash lookups, and saddr is used for transmit. 505 * 506 * In the BSD API these are the same except where it 507 * would be illegal to use them (multicast/broadcast) in 508 * which case the sending device address is used. 509 */ 510 if (flags & BIND_WITH_LOCK) 511 lock_sock(sk); 512 513 /* Check these errors (active socket, double bind). */ 514 err = -EINVAL; 515 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 516 goto out_release_sock; 517 518 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 519 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 520 inet->inet_saddr = 0; /* Use device */ 521 522 /* Make sure we are allowed to bind here. */ 523 if (snum || !(inet->bind_address_no_port || 524 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 525 if (sk->sk_prot->get_port(sk, snum)) { 526 inet->inet_saddr = inet->inet_rcv_saddr = 0; 527 err = -EADDRINUSE; 528 goto out_release_sock; 529 } 530 if (!(flags & BIND_FROM_BPF)) { 531 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 532 if (err) { 533 inet->inet_saddr = inet->inet_rcv_saddr = 0; 534 if (sk->sk_prot->put_port) 535 sk->sk_prot->put_port(sk); 536 goto out_release_sock; 537 } 538 } 539 } 540 541 if (inet->inet_rcv_saddr) 542 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 543 if (snum) 544 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 545 inet->inet_sport = htons(inet->inet_num); 546 inet->inet_daddr = 0; 547 inet->inet_dport = 0; 548 sk_dst_reset(sk); 549 err = 0; 550 out_release_sock: 551 if (flags & BIND_WITH_LOCK) 552 release_sock(sk); 553 out: 554 return err; 555 } 556 557 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 558 int addr_len, int flags) 559 { 560 struct sock *sk = sock->sk; 561 const struct proto *prot; 562 int err; 563 564 if (addr_len < sizeof(uaddr->sa_family)) 565 return -EINVAL; 566 567 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 568 prot = READ_ONCE(sk->sk_prot); 569 570 if (uaddr->sa_family == AF_UNSPEC) 571 return prot->disconnect(sk, flags); 572 573 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 574 err = prot->pre_connect(sk, uaddr, addr_len); 575 if (err) 576 return err; 577 } 578 579 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 580 return -EAGAIN; 581 return prot->connect(sk, uaddr, addr_len); 582 } 583 EXPORT_SYMBOL(inet_dgram_connect); 584 585 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 586 { 587 DEFINE_WAIT_FUNC(wait, woken_wake_function); 588 589 add_wait_queue(sk_sleep(sk), &wait); 590 sk->sk_write_pending += writebias; 591 592 /* Basic assumption: if someone sets sk->sk_err, he _must_ 593 * change state of the socket from TCP_SYN_*. 594 * Connect() does not allow to get error notifications 595 * without closing the socket. 596 */ 597 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 598 release_sock(sk); 599 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 600 lock_sock(sk); 601 if (signal_pending(current) || !timeo) 602 break; 603 } 604 remove_wait_queue(sk_sleep(sk), &wait); 605 sk->sk_write_pending -= writebias; 606 return timeo; 607 } 608 609 /* 610 * Connect to a remote host. There is regrettably still a little 611 * TCP 'magic' in here. 612 */ 613 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 614 int addr_len, int flags, int is_sendmsg) 615 { 616 struct sock *sk = sock->sk; 617 int err; 618 long timeo; 619 620 /* 621 * uaddr can be NULL and addr_len can be 0 if: 622 * sk is a TCP fastopen active socket and 623 * TCP_FASTOPEN_CONNECT sockopt is set and 624 * we already have a valid cookie for this socket. 625 * In this case, user can call write() after connect(). 626 * write() will invoke tcp_sendmsg_fastopen() which calls 627 * __inet_stream_connect(). 628 */ 629 if (uaddr) { 630 if (addr_len < sizeof(uaddr->sa_family)) 631 return -EINVAL; 632 633 if (uaddr->sa_family == AF_UNSPEC) { 634 err = sk->sk_prot->disconnect(sk, flags); 635 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 636 goto out; 637 } 638 } 639 640 switch (sock->state) { 641 default: 642 err = -EINVAL; 643 goto out; 644 case SS_CONNECTED: 645 err = -EISCONN; 646 goto out; 647 case SS_CONNECTING: 648 if (inet_sk(sk)->defer_connect) 649 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 650 else 651 err = -EALREADY; 652 /* Fall out of switch with err, set for this state */ 653 break; 654 case SS_UNCONNECTED: 655 err = -EISCONN; 656 if (sk->sk_state != TCP_CLOSE) 657 goto out; 658 659 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 660 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 661 if (err) 662 goto out; 663 } 664 665 err = sk->sk_prot->connect(sk, uaddr, addr_len); 666 if (err < 0) 667 goto out; 668 669 sock->state = SS_CONNECTING; 670 671 if (!err && inet_sk(sk)->defer_connect) 672 goto out; 673 674 /* Just entered SS_CONNECTING state; the only 675 * difference is that return value in non-blocking 676 * case is EINPROGRESS, rather than EALREADY. 677 */ 678 err = -EINPROGRESS; 679 break; 680 } 681 682 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 683 684 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 685 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 686 tcp_sk(sk)->fastopen_req && 687 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 688 689 /* Error code is set above */ 690 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 691 goto out; 692 693 err = sock_intr_errno(timeo); 694 if (signal_pending(current)) 695 goto out; 696 } 697 698 /* Connection was closed by RST, timeout, ICMP error 699 * or another process disconnected us. 700 */ 701 if (sk->sk_state == TCP_CLOSE) 702 goto sock_error; 703 704 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 705 * and error was received after socket entered established state. 706 * Hence, it is handled normally after connect() return successfully. 707 */ 708 709 sock->state = SS_CONNECTED; 710 err = 0; 711 out: 712 return err; 713 714 sock_error: 715 err = sock_error(sk) ? : -ECONNABORTED; 716 sock->state = SS_UNCONNECTED; 717 if (sk->sk_prot->disconnect(sk, flags)) 718 sock->state = SS_DISCONNECTING; 719 goto out; 720 } 721 EXPORT_SYMBOL(__inet_stream_connect); 722 723 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 724 int addr_len, int flags) 725 { 726 int err; 727 728 lock_sock(sock->sk); 729 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 730 release_sock(sock->sk); 731 return err; 732 } 733 EXPORT_SYMBOL(inet_stream_connect); 734 735 /* 736 * Accept a pending connection. The TCP layer now gives BSD semantics. 737 */ 738 739 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 740 bool kern) 741 { 742 struct sock *sk1 = sock->sk, *sk2; 743 int err = -EINVAL; 744 745 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 746 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 747 if (!sk2) 748 goto do_err; 749 750 lock_sock(sk2); 751 752 sock_rps_record_flow(sk2); 753 WARN_ON(!((1 << sk2->sk_state) & 754 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 755 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 756 757 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 758 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 759 sock_graft(sk2, newsock); 760 761 newsock->state = SS_CONNECTED; 762 err = 0; 763 release_sock(sk2); 764 do_err: 765 return err; 766 } 767 EXPORT_SYMBOL(inet_accept); 768 769 /* 770 * This does both peername and sockname. 771 */ 772 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 773 int peer) 774 { 775 struct sock *sk = sock->sk; 776 struct inet_sock *inet = inet_sk(sk); 777 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 778 779 sin->sin_family = AF_INET; 780 lock_sock(sk); 781 if (peer) { 782 if (!inet->inet_dport || 783 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 784 peer == 1)) { 785 release_sock(sk); 786 return -ENOTCONN; 787 } 788 sin->sin_port = inet->inet_dport; 789 sin->sin_addr.s_addr = inet->inet_daddr; 790 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 791 CGROUP_INET4_GETPEERNAME); 792 } else { 793 __be32 addr = inet->inet_rcv_saddr; 794 if (!addr) 795 addr = inet->inet_saddr; 796 sin->sin_port = inet->inet_sport; 797 sin->sin_addr.s_addr = addr; 798 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 799 CGROUP_INET4_GETSOCKNAME); 800 } 801 release_sock(sk); 802 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 803 return sizeof(*sin); 804 } 805 EXPORT_SYMBOL(inet_getname); 806 807 int inet_send_prepare(struct sock *sk) 808 { 809 sock_rps_record_flow(sk); 810 811 /* We may need to bind the socket. */ 812 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 813 inet_autobind(sk)) 814 return -EAGAIN; 815 816 return 0; 817 } 818 EXPORT_SYMBOL_GPL(inet_send_prepare); 819 820 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 821 { 822 struct sock *sk = sock->sk; 823 824 if (unlikely(inet_send_prepare(sk))) 825 return -EAGAIN; 826 827 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 828 sk, msg, size); 829 } 830 EXPORT_SYMBOL(inet_sendmsg); 831 832 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 833 size_t size, int flags) 834 { 835 struct sock *sk = sock->sk; 836 const struct proto *prot; 837 838 if (unlikely(inet_send_prepare(sk))) 839 return -EAGAIN; 840 841 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 842 prot = READ_ONCE(sk->sk_prot); 843 if (prot->sendpage) 844 return prot->sendpage(sk, page, offset, size, flags); 845 return sock_no_sendpage(sock, page, offset, size, flags); 846 } 847 EXPORT_SYMBOL(inet_sendpage); 848 849 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 850 size_t, int, int *)); 851 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 852 int flags) 853 { 854 struct sock *sk = sock->sk; 855 int addr_len = 0; 856 int err; 857 858 if (likely(!(flags & MSG_ERRQUEUE))) 859 sock_rps_record_flow(sk); 860 861 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 862 sk, msg, size, flags, &addr_len); 863 if (err >= 0) 864 msg->msg_namelen = addr_len; 865 return err; 866 } 867 EXPORT_SYMBOL(inet_recvmsg); 868 869 int inet_shutdown(struct socket *sock, int how) 870 { 871 struct sock *sk = sock->sk; 872 int err = 0; 873 874 /* This should really check to make sure 875 * the socket is a TCP socket. (WHY AC...) 876 */ 877 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 878 1->2 bit 2 snds. 879 2->3 */ 880 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 881 return -EINVAL; 882 883 lock_sock(sk); 884 if (sock->state == SS_CONNECTING) { 885 if ((1 << sk->sk_state) & 886 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 887 sock->state = SS_DISCONNECTING; 888 else 889 sock->state = SS_CONNECTED; 890 } 891 892 switch (sk->sk_state) { 893 case TCP_CLOSE: 894 err = -ENOTCONN; 895 /* Hack to wake up other listeners, who can poll for 896 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 897 fallthrough; 898 default: 899 sk->sk_shutdown |= how; 900 if (sk->sk_prot->shutdown) 901 sk->sk_prot->shutdown(sk, how); 902 break; 903 904 /* Remaining two branches are temporary solution for missing 905 * close() in multithreaded environment. It is _not_ a good idea, 906 * but we have no choice until close() is repaired at VFS level. 907 */ 908 case TCP_LISTEN: 909 if (!(how & RCV_SHUTDOWN)) 910 break; 911 fallthrough; 912 case TCP_SYN_SENT: 913 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 914 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 915 break; 916 } 917 918 /* Wake up anyone sleeping in poll. */ 919 sk->sk_state_change(sk); 920 release_sock(sk); 921 return err; 922 } 923 EXPORT_SYMBOL(inet_shutdown); 924 925 /* 926 * ioctl() calls you can issue on an INET socket. Most of these are 927 * device configuration and stuff and very rarely used. Some ioctls 928 * pass on to the socket itself. 929 * 930 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 931 * loads the devconfigure module does its configuring and unloads it. 932 * There's a good 20K of config code hanging around the kernel. 933 */ 934 935 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 936 { 937 struct sock *sk = sock->sk; 938 int err = 0; 939 struct net *net = sock_net(sk); 940 void __user *p = (void __user *)arg; 941 struct ifreq ifr; 942 struct rtentry rt; 943 944 switch (cmd) { 945 case SIOCADDRT: 946 case SIOCDELRT: 947 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 948 return -EFAULT; 949 err = ip_rt_ioctl(net, cmd, &rt); 950 break; 951 case SIOCRTMSG: 952 err = -EINVAL; 953 break; 954 case SIOCDARP: 955 case SIOCGARP: 956 case SIOCSARP: 957 err = arp_ioctl(net, cmd, (void __user *)arg); 958 break; 959 case SIOCGIFADDR: 960 case SIOCGIFBRDADDR: 961 case SIOCGIFNETMASK: 962 case SIOCGIFDSTADDR: 963 case SIOCGIFPFLAGS: 964 if (get_user_ifreq(&ifr, NULL, p)) 965 return -EFAULT; 966 err = devinet_ioctl(net, cmd, &ifr); 967 if (!err && put_user_ifreq(&ifr, p)) 968 err = -EFAULT; 969 break; 970 971 case SIOCSIFADDR: 972 case SIOCSIFBRDADDR: 973 case SIOCSIFNETMASK: 974 case SIOCSIFDSTADDR: 975 case SIOCSIFPFLAGS: 976 case SIOCSIFFLAGS: 977 if (get_user_ifreq(&ifr, NULL, p)) 978 return -EFAULT; 979 err = devinet_ioctl(net, cmd, &ifr); 980 break; 981 default: 982 if (sk->sk_prot->ioctl) 983 err = sk->sk_prot->ioctl(sk, cmd, arg); 984 else 985 err = -ENOIOCTLCMD; 986 break; 987 } 988 return err; 989 } 990 EXPORT_SYMBOL(inet_ioctl); 991 992 #ifdef CONFIG_COMPAT 993 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 994 struct compat_rtentry __user *ur) 995 { 996 compat_uptr_t rtdev; 997 struct rtentry rt; 998 999 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1000 3 * sizeof(struct sockaddr)) || 1001 get_user(rt.rt_flags, &ur->rt_flags) || 1002 get_user(rt.rt_metric, &ur->rt_metric) || 1003 get_user(rt.rt_mtu, &ur->rt_mtu) || 1004 get_user(rt.rt_window, &ur->rt_window) || 1005 get_user(rt.rt_irtt, &ur->rt_irtt) || 1006 get_user(rtdev, &ur->rt_dev)) 1007 return -EFAULT; 1008 1009 rt.rt_dev = compat_ptr(rtdev); 1010 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1011 } 1012 1013 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1014 { 1015 void __user *argp = compat_ptr(arg); 1016 struct sock *sk = sock->sk; 1017 1018 switch (cmd) { 1019 case SIOCADDRT: 1020 case SIOCDELRT: 1021 return inet_compat_routing_ioctl(sk, cmd, argp); 1022 default: 1023 if (!sk->sk_prot->compat_ioctl) 1024 return -ENOIOCTLCMD; 1025 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1026 } 1027 } 1028 #endif /* CONFIG_COMPAT */ 1029 1030 const struct proto_ops inet_stream_ops = { 1031 .family = PF_INET, 1032 .owner = THIS_MODULE, 1033 .release = inet_release, 1034 .bind = inet_bind, 1035 .connect = inet_stream_connect, 1036 .socketpair = sock_no_socketpair, 1037 .accept = inet_accept, 1038 .getname = inet_getname, 1039 .poll = tcp_poll, 1040 .ioctl = inet_ioctl, 1041 .gettstamp = sock_gettstamp, 1042 .listen = inet_listen, 1043 .shutdown = inet_shutdown, 1044 .setsockopt = sock_common_setsockopt, 1045 .getsockopt = sock_common_getsockopt, 1046 .sendmsg = inet_sendmsg, 1047 .recvmsg = inet_recvmsg, 1048 #ifdef CONFIG_MMU 1049 .mmap = tcp_mmap, 1050 #endif 1051 .sendpage = inet_sendpage, 1052 .splice_read = tcp_splice_read, 1053 .read_sock = tcp_read_sock, 1054 .read_skb = tcp_read_skb, 1055 .sendmsg_locked = tcp_sendmsg_locked, 1056 .sendpage_locked = tcp_sendpage_locked, 1057 .peek_len = tcp_peek_len, 1058 #ifdef CONFIG_COMPAT 1059 .compat_ioctl = inet_compat_ioctl, 1060 #endif 1061 .set_rcvlowat = tcp_set_rcvlowat, 1062 }; 1063 EXPORT_SYMBOL(inet_stream_ops); 1064 1065 const struct proto_ops inet_dgram_ops = { 1066 .family = PF_INET, 1067 .owner = THIS_MODULE, 1068 .release = inet_release, 1069 .bind = inet_bind, 1070 .connect = inet_dgram_connect, 1071 .socketpair = sock_no_socketpair, 1072 .accept = sock_no_accept, 1073 .getname = inet_getname, 1074 .poll = udp_poll, 1075 .ioctl = inet_ioctl, 1076 .gettstamp = sock_gettstamp, 1077 .listen = sock_no_listen, 1078 .shutdown = inet_shutdown, 1079 .setsockopt = sock_common_setsockopt, 1080 .getsockopt = sock_common_getsockopt, 1081 .sendmsg = inet_sendmsg, 1082 .read_skb = udp_read_skb, 1083 .recvmsg = inet_recvmsg, 1084 .mmap = sock_no_mmap, 1085 .sendpage = inet_sendpage, 1086 .set_peek_off = sk_set_peek_off, 1087 #ifdef CONFIG_COMPAT 1088 .compat_ioctl = inet_compat_ioctl, 1089 #endif 1090 }; 1091 EXPORT_SYMBOL(inet_dgram_ops); 1092 1093 /* 1094 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1095 * udp_poll 1096 */ 1097 static const struct proto_ops inet_sockraw_ops = { 1098 .family = PF_INET, 1099 .owner = THIS_MODULE, 1100 .release = inet_release, 1101 .bind = inet_bind, 1102 .connect = inet_dgram_connect, 1103 .socketpair = sock_no_socketpair, 1104 .accept = sock_no_accept, 1105 .getname = inet_getname, 1106 .poll = datagram_poll, 1107 .ioctl = inet_ioctl, 1108 .gettstamp = sock_gettstamp, 1109 .listen = sock_no_listen, 1110 .shutdown = inet_shutdown, 1111 .setsockopt = sock_common_setsockopt, 1112 .getsockopt = sock_common_getsockopt, 1113 .sendmsg = inet_sendmsg, 1114 .recvmsg = inet_recvmsg, 1115 .mmap = sock_no_mmap, 1116 .sendpage = inet_sendpage, 1117 #ifdef CONFIG_COMPAT 1118 .compat_ioctl = inet_compat_ioctl, 1119 #endif 1120 }; 1121 1122 static const struct net_proto_family inet_family_ops = { 1123 .family = PF_INET, 1124 .create = inet_create, 1125 .owner = THIS_MODULE, 1126 }; 1127 1128 /* Upon startup we insert all the elements in inetsw_array[] into 1129 * the linked list inetsw. 1130 */ 1131 static struct inet_protosw inetsw_array[] = 1132 { 1133 { 1134 .type = SOCK_STREAM, 1135 .protocol = IPPROTO_TCP, 1136 .prot = &tcp_prot, 1137 .ops = &inet_stream_ops, 1138 .flags = INET_PROTOSW_PERMANENT | 1139 INET_PROTOSW_ICSK, 1140 }, 1141 1142 { 1143 .type = SOCK_DGRAM, 1144 .protocol = IPPROTO_UDP, 1145 .prot = &udp_prot, 1146 .ops = &inet_dgram_ops, 1147 .flags = INET_PROTOSW_PERMANENT, 1148 }, 1149 1150 { 1151 .type = SOCK_DGRAM, 1152 .protocol = IPPROTO_ICMP, 1153 .prot = &ping_prot, 1154 .ops = &inet_sockraw_ops, 1155 .flags = INET_PROTOSW_REUSE, 1156 }, 1157 1158 { 1159 .type = SOCK_RAW, 1160 .protocol = IPPROTO_IP, /* wild card */ 1161 .prot = &raw_prot, 1162 .ops = &inet_sockraw_ops, 1163 .flags = INET_PROTOSW_REUSE, 1164 } 1165 }; 1166 1167 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1168 1169 void inet_register_protosw(struct inet_protosw *p) 1170 { 1171 struct list_head *lh; 1172 struct inet_protosw *answer; 1173 int protocol = p->protocol; 1174 struct list_head *last_perm; 1175 1176 spin_lock_bh(&inetsw_lock); 1177 1178 if (p->type >= SOCK_MAX) 1179 goto out_illegal; 1180 1181 /* If we are trying to override a permanent protocol, bail. */ 1182 last_perm = &inetsw[p->type]; 1183 list_for_each(lh, &inetsw[p->type]) { 1184 answer = list_entry(lh, struct inet_protosw, list); 1185 /* Check only the non-wild match. */ 1186 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1187 break; 1188 if (protocol == answer->protocol) 1189 goto out_permanent; 1190 last_perm = lh; 1191 } 1192 1193 /* Add the new entry after the last permanent entry if any, so that 1194 * the new entry does not override a permanent entry when matched with 1195 * a wild-card protocol. But it is allowed to override any existing 1196 * non-permanent entry. This means that when we remove this entry, the 1197 * system automatically returns to the old behavior. 1198 */ 1199 list_add_rcu(&p->list, last_perm); 1200 out: 1201 spin_unlock_bh(&inetsw_lock); 1202 1203 return; 1204 1205 out_permanent: 1206 pr_err("Attempt to override permanent protocol %d\n", protocol); 1207 goto out; 1208 1209 out_illegal: 1210 pr_err("Ignoring attempt to register invalid socket type %d\n", 1211 p->type); 1212 goto out; 1213 } 1214 EXPORT_SYMBOL(inet_register_protosw); 1215 1216 void inet_unregister_protosw(struct inet_protosw *p) 1217 { 1218 if (INET_PROTOSW_PERMANENT & p->flags) { 1219 pr_err("Attempt to unregister permanent protocol %d\n", 1220 p->protocol); 1221 } else { 1222 spin_lock_bh(&inetsw_lock); 1223 list_del_rcu(&p->list); 1224 spin_unlock_bh(&inetsw_lock); 1225 1226 synchronize_net(); 1227 } 1228 } 1229 EXPORT_SYMBOL(inet_unregister_protosw); 1230 1231 static int inet_sk_reselect_saddr(struct sock *sk) 1232 { 1233 struct inet_bind_hashbucket *prev_addr_hashbucket; 1234 struct inet_sock *inet = inet_sk(sk); 1235 __be32 old_saddr = inet->inet_saddr; 1236 __be32 daddr = inet->inet_daddr; 1237 struct flowi4 *fl4; 1238 struct rtable *rt; 1239 __be32 new_saddr; 1240 struct ip_options_rcu *inet_opt; 1241 int err; 1242 1243 inet_opt = rcu_dereference_protected(inet->inet_opt, 1244 lockdep_sock_is_held(sk)); 1245 if (inet_opt && inet_opt->opt.srr) 1246 daddr = inet_opt->opt.faddr; 1247 1248 /* Query new route. */ 1249 fl4 = &inet->cork.fl.u.ip4; 1250 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1251 sk->sk_protocol, inet->inet_sport, 1252 inet->inet_dport, sk); 1253 if (IS_ERR(rt)) 1254 return PTR_ERR(rt); 1255 1256 new_saddr = fl4->saddr; 1257 1258 if (new_saddr == old_saddr) { 1259 sk_setup_caps(sk, &rt->dst); 1260 return 0; 1261 } 1262 1263 prev_addr_hashbucket = 1264 inet_bhashfn_portaddr(tcp_or_dccp_get_hashinfo(sk), sk, 1265 sock_net(sk), inet->inet_num); 1266 1267 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1268 1269 err = inet_bhash2_update_saddr(prev_addr_hashbucket, sk); 1270 if (err) { 1271 inet->inet_saddr = old_saddr; 1272 inet->inet_rcv_saddr = old_saddr; 1273 ip_rt_put(rt); 1274 return err; 1275 } 1276 1277 sk_setup_caps(sk, &rt->dst); 1278 1279 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1280 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1281 __func__, &old_saddr, &new_saddr); 1282 } 1283 1284 /* 1285 * XXX The only one ugly spot where we need to 1286 * XXX really change the sockets identity after 1287 * XXX it has entered the hashes. -DaveM 1288 * 1289 * Besides that, it does not check for connection 1290 * uniqueness. Wait for troubles. 1291 */ 1292 return __sk_prot_rehash(sk); 1293 } 1294 1295 int inet_sk_rebuild_header(struct sock *sk) 1296 { 1297 struct inet_sock *inet = inet_sk(sk); 1298 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1299 __be32 daddr; 1300 struct ip_options_rcu *inet_opt; 1301 struct flowi4 *fl4; 1302 int err; 1303 1304 /* Route is OK, nothing to do. */ 1305 if (rt) 1306 return 0; 1307 1308 /* Reroute. */ 1309 rcu_read_lock(); 1310 inet_opt = rcu_dereference(inet->inet_opt); 1311 daddr = inet->inet_daddr; 1312 if (inet_opt && inet_opt->opt.srr) 1313 daddr = inet_opt->opt.faddr; 1314 rcu_read_unlock(); 1315 fl4 = &inet->cork.fl.u.ip4; 1316 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1317 inet->inet_dport, inet->inet_sport, 1318 sk->sk_protocol, RT_CONN_FLAGS(sk), 1319 sk->sk_bound_dev_if); 1320 if (!IS_ERR(rt)) { 1321 err = 0; 1322 sk_setup_caps(sk, &rt->dst); 1323 } else { 1324 err = PTR_ERR(rt); 1325 1326 /* Routing failed... */ 1327 sk->sk_route_caps = 0; 1328 /* 1329 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1330 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1331 */ 1332 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1333 sk->sk_state != TCP_SYN_SENT || 1334 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1335 (err = inet_sk_reselect_saddr(sk)) != 0) 1336 sk->sk_err_soft = -err; 1337 } 1338 1339 return err; 1340 } 1341 EXPORT_SYMBOL(inet_sk_rebuild_header); 1342 1343 void inet_sk_set_state(struct sock *sk, int state) 1344 { 1345 trace_inet_sock_set_state(sk, sk->sk_state, state); 1346 sk->sk_state = state; 1347 } 1348 EXPORT_SYMBOL(inet_sk_set_state); 1349 1350 void inet_sk_state_store(struct sock *sk, int newstate) 1351 { 1352 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1353 smp_store_release(&sk->sk_state, newstate); 1354 } 1355 1356 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1357 netdev_features_t features) 1358 { 1359 bool udpfrag = false, fixedid = false, gso_partial, encap; 1360 struct sk_buff *segs = ERR_PTR(-EINVAL); 1361 const struct net_offload *ops; 1362 unsigned int offset = 0; 1363 struct iphdr *iph; 1364 int proto, tot_len; 1365 int nhoff; 1366 int ihl; 1367 int id; 1368 1369 skb_reset_network_header(skb); 1370 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1371 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1372 goto out; 1373 1374 iph = ip_hdr(skb); 1375 ihl = iph->ihl * 4; 1376 if (ihl < sizeof(*iph)) 1377 goto out; 1378 1379 id = ntohs(iph->id); 1380 proto = iph->protocol; 1381 1382 /* Warning: after this point, iph might be no longer valid */ 1383 if (unlikely(!pskb_may_pull(skb, ihl))) 1384 goto out; 1385 __skb_pull(skb, ihl); 1386 1387 encap = SKB_GSO_CB(skb)->encap_level > 0; 1388 if (encap) 1389 features &= skb->dev->hw_enc_features; 1390 SKB_GSO_CB(skb)->encap_level += ihl; 1391 1392 skb_reset_transport_header(skb); 1393 1394 segs = ERR_PTR(-EPROTONOSUPPORT); 1395 1396 if (!skb->encapsulation || encap) { 1397 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1398 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1399 1400 /* fixed ID is invalid if DF bit is not set */ 1401 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1402 goto out; 1403 } 1404 1405 ops = rcu_dereference(inet_offloads[proto]); 1406 if (likely(ops && ops->callbacks.gso_segment)) { 1407 segs = ops->callbacks.gso_segment(skb, features); 1408 if (!segs) 1409 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1410 } 1411 1412 if (IS_ERR_OR_NULL(segs)) 1413 goto out; 1414 1415 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1416 1417 skb = segs; 1418 do { 1419 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1420 if (udpfrag) { 1421 iph->frag_off = htons(offset >> 3); 1422 if (skb->next) 1423 iph->frag_off |= htons(IP_MF); 1424 offset += skb->len - nhoff - ihl; 1425 tot_len = skb->len - nhoff; 1426 } else if (skb_is_gso(skb)) { 1427 if (!fixedid) { 1428 iph->id = htons(id); 1429 id += skb_shinfo(skb)->gso_segs; 1430 } 1431 1432 if (gso_partial) 1433 tot_len = skb_shinfo(skb)->gso_size + 1434 SKB_GSO_CB(skb)->data_offset + 1435 skb->head - (unsigned char *)iph; 1436 else 1437 tot_len = skb->len - nhoff; 1438 } else { 1439 if (!fixedid) 1440 iph->id = htons(id++); 1441 tot_len = skb->len - nhoff; 1442 } 1443 iph->tot_len = htons(tot_len); 1444 ip_send_check(iph); 1445 if (encap) 1446 skb_reset_inner_headers(skb); 1447 skb->network_header = (u8 *)iph - skb->head; 1448 skb_reset_mac_len(skb); 1449 } while ((skb = skb->next)); 1450 1451 out: 1452 return segs; 1453 } 1454 1455 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1456 netdev_features_t features) 1457 { 1458 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1459 return ERR_PTR(-EINVAL); 1460 1461 return inet_gso_segment(skb, features); 1462 } 1463 1464 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1465 { 1466 const struct net_offload *ops; 1467 struct sk_buff *pp = NULL; 1468 const struct iphdr *iph; 1469 struct sk_buff *p; 1470 unsigned int hlen; 1471 unsigned int off; 1472 unsigned int id; 1473 int flush = 1; 1474 int proto; 1475 1476 off = skb_gro_offset(skb); 1477 hlen = off + sizeof(*iph); 1478 iph = skb_gro_header(skb, hlen, off); 1479 if (unlikely(!iph)) 1480 goto out; 1481 1482 proto = iph->protocol; 1483 1484 ops = rcu_dereference(inet_offloads[proto]); 1485 if (!ops || !ops->callbacks.gro_receive) 1486 goto out; 1487 1488 if (*(u8 *)iph != 0x45) 1489 goto out; 1490 1491 if (ip_is_fragment(iph)) 1492 goto out; 1493 1494 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1495 goto out; 1496 1497 id = ntohl(*(__be32 *)&iph->id); 1498 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1499 id >>= 16; 1500 1501 list_for_each_entry(p, head, list) { 1502 struct iphdr *iph2; 1503 u16 flush_id; 1504 1505 if (!NAPI_GRO_CB(p)->same_flow) 1506 continue; 1507 1508 iph2 = (struct iphdr *)(p->data + off); 1509 /* The above works because, with the exception of the top 1510 * (inner most) layer, we only aggregate pkts with the same 1511 * hdr length so all the hdrs we'll need to verify will start 1512 * at the same offset. 1513 */ 1514 if ((iph->protocol ^ iph2->protocol) | 1515 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1516 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1517 NAPI_GRO_CB(p)->same_flow = 0; 1518 continue; 1519 } 1520 1521 /* All fields must match except length and checksum. */ 1522 NAPI_GRO_CB(p)->flush |= 1523 (iph->ttl ^ iph2->ttl) | 1524 (iph->tos ^ iph2->tos) | 1525 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1526 1527 NAPI_GRO_CB(p)->flush |= flush; 1528 1529 /* We need to store of the IP ID check to be included later 1530 * when we can verify that this packet does in fact belong 1531 * to a given flow. 1532 */ 1533 flush_id = (u16)(id - ntohs(iph2->id)); 1534 1535 /* This bit of code makes it much easier for us to identify 1536 * the cases where we are doing atomic vs non-atomic IP ID 1537 * checks. Specifically an atomic check can return IP ID 1538 * values 0 - 0xFFFF, while a non-atomic check can only 1539 * return 0 or 0xFFFF. 1540 */ 1541 if (!NAPI_GRO_CB(p)->is_atomic || 1542 !(iph->frag_off & htons(IP_DF))) { 1543 flush_id ^= NAPI_GRO_CB(p)->count; 1544 flush_id = flush_id ? 0xFFFF : 0; 1545 } 1546 1547 /* If the previous IP ID value was based on an atomic 1548 * datagram we can overwrite the value and ignore it. 1549 */ 1550 if (NAPI_GRO_CB(skb)->is_atomic) 1551 NAPI_GRO_CB(p)->flush_id = flush_id; 1552 else 1553 NAPI_GRO_CB(p)->flush_id |= flush_id; 1554 } 1555 1556 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1557 NAPI_GRO_CB(skb)->flush |= flush; 1558 skb_set_network_header(skb, off); 1559 /* The above will be needed by the transport layer if there is one 1560 * immediately following this IP hdr. 1561 */ 1562 1563 /* Note : No need to call skb_gro_postpull_rcsum() here, 1564 * as we already checked checksum over ipv4 header was 0 1565 */ 1566 skb_gro_pull(skb, sizeof(*iph)); 1567 skb_set_transport_header(skb, skb_gro_offset(skb)); 1568 1569 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1570 ops->callbacks.gro_receive, head, skb); 1571 1572 out: 1573 skb_gro_flush_final(skb, pp, flush); 1574 1575 return pp; 1576 } 1577 1578 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1579 struct sk_buff *skb) 1580 { 1581 if (NAPI_GRO_CB(skb)->encap_mark) { 1582 NAPI_GRO_CB(skb)->flush = 1; 1583 return NULL; 1584 } 1585 1586 NAPI_GRO_CB(skb)->encap_mark = 1; 1587 1588 return inet_gro_receive(head, skb); 1589 } 1590 1591 #define SECONDS_PER_DAY 86400 1592 1593 /* inet_current_timestamp - Return IP network timestamp 1594 * 1595 * Return milliseconds since midnight in network byte order. 1596 */ 1597 __be32 inet_current_timestamp(void) 1598 { 1599 u32 secs; 1600 u32 msecs; 1601 struct timespec64 ts; 1602 1603 ktime_get_real_ts64(&ts); 1604 1605 /* Get secs since midnight. */ 1606 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1607 /* Convert to msecs. */ 1608 msecs = secs * MSEC_PER_SEC; 1609 /* Convert nsec to msec. */ 1610 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1611 1612 /* Convert to network byte order. */ 1613 return htonl(msecs); 1614 } 1615 EXPORT_SYMBOL(inet_current_timestamp); 1616 1617 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1618 { 1619 if (sk->sk_family == AF_INET) 1620 return ip_recv_error(sk, msg, len, addr_len); 1621 #if IS_ENABLED(CONFIG_IPV6) 1622 if (sk->sk_family == AF_INET6) 1623 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1624 #endif 1625 return -EINVAL; 1626 } 1627 1628 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1629 { 1630 __be16 newlen = htons(skb->len - nhoff); 1631 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1632 const struct net_offload *ops; 1633 int proto = iph->protocol; 1634 int err = -ENOSYS; 1635 1636 if (skb->encapsulation) { 1637 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1638 skb_set_inner_network_header(skb, nhoff); 1639 } 1640 1641 csum_replace2(&iph->check, iph->tot_len, newlen); 1642 iph->tot_len = newlen; 1643 1644 ops = rcu_dereference(inet_offloads[proto]); 1645 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1646 goto out; 1647 1648 /* Only need to add sizeof(*iph) to get to the next hdr below 1649 * because any hdr with option will have been flushed in 1650 * inet_gro_receive(). 1651 */ 1652 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1653 tcp4_gro_complete, udp4_gro_complete, 1654 skb, nhoff + sizeof(*iph)); 1655 1656 out: 1657 return err; 1658 } 1659 1660 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1661 { 1662 skb->encapsulation = 1; 1663 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1664 return inet_gro_complete(skb, nhoff); 1665 } 1666 1667 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1668 unsigned short type, unsigned char protocol, 1669 struct net *net) 1670 { 1671 struct socket *sock; 1672 int rc = sock_create_kern(net, family, type, protocol, &sock); 1673 1674 if (rc == 0) { 1675 *sk = sock->sk; 1676 (*sk)->sk_allocation = GFP_ATOMIC; 1677 /* 1678 * Unhash it so that IP input processing does not even see it, 1679 * we do not wish this socket to see incoming packets. 1680 */ 1681 (*sk)->sk_prot->unhash(*sk); 1682 } 1683 return rc; 1684 } 1685 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1686 1687 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1688 { 1689 unsigned long res = 0; 1690 int i; 1691 1692 for_each_possible_cpu(i) 1693 res += snmp_get_cpu_field(mib, i, offt); 1694 return res; 1695 } 1696 EXPORT_SYMBOL_GPL(snmp_fold_field); 1697 1698 #if BITS_PER_LONG==32 1699 1700 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1701 size_t syncp_offset) 1702 { 1703 void *bhptr; 1704 struct u64_stats_sync *syncp; 1705 u64 v; 1706 unsigned int start; 1707 1708 bhptr = per_cpu_ptr(mib, cpu); 1709 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1710 do { 1711 start = u64_stats_fetch_begin(syncp); 1712 v = *(((u64 *)bhptr) + offt); 1713 } while (u64_stats_fetch_retry(syncp, start)); 1714 1715 return v; 1716 } 1717 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1718 1719 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1720 { 1721 u64 res = 0; 1722 int cpu; 1723 1724 for_each_possible_cpu(cpu) { 1725 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1726 } 1727 return res; 1728 } 1729 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1730 #endif 1731 1732 #ifdef CONFIG_IP_MULTICAST 1733 static const struct net_protocol igmp_protocol = { 1734 .handler = igmp_rcv, 1735 }; 1736 #endif 1737 1738 static const struct net_protocol tcp_protocol = { 1739 .handler = tcp_v4_rcv, 1740 .err_handler = tcp_v4_err, 1741 .no_policy = 1, 1742 .icmp_strict_tag_validation = 1, 1743 }; 1744 1745 static const struct net_protocol udp_protocol = { 1746 .handler = udp_rcv, 1747 .err_handler = udp_err, 1748 .no_policy = 1, 1749 }; 1750 1751 static const struct net_protocol icmp_protocol = { 1752 .handler = icmp_rcv, 1753 .err_handler = icmp_err, 1754 .no_policy = 1, 1755 }; 1756 1757 static __net_init int ipv4_mib_init_net(struct net *net) 1758 { 1759 int i; 1760 1761 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1762 if (!net->mib.tcp_statistics) 1763 goto err_tcp_mib; 1764 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1765 if (!net->mib.ip_statistics) 1766 goto err_ip_mib; 1767 1768 for_each_possible_cpu(i) { 1769 struct ipstats_mib *af_inet_stats; 1770 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1771 u64_stats_init(&af_inet_stats->syncp); 1772 } 1773 1774 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1775 if (!net->mib.net_statistics) 1776 goto err_net_mib; 1777 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1778 if (!net->mib.udp_statistics) 1779 goto err_udp_mib; 1780 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1781 if (!net->mib.udplite_statistics) 1782 goto err_udplite_mib; 1783 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1784 if (!net->mib.icmp_statistics) 1785 goto err_icmp_mib; 1786 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1787 GFP_KERNEL); 1788 if (!net->mib.icmpmsg_statistics) 1789 goto err_icmpmsg_mib; 1790 1791 tcp_mib_init(net); 1792 return 0; 1793 1794 err_icmpmsg_mib: 1795 free_percpu(net->mib.icmp_statistics); 1796 err_icmp_mib: 1797 free_percpu(net->mib.udplite_statistics); 1798 err_udplite_mib: 1799 free_percpu(net->mib.udp_statistics); 1800 err_udp_mib: 1801 free_percpu(net->mib.net_statistics); 1802 err_net_mib: 1803 free_percpu(net->mib.ip_statistics); 1804 err_ip_mib: 1805 free_percpu(net->mib.tcp_statistics); 1806 err_tcp_mib: 1807 return -ENOMEM; 1808 } 1809 1810 static __net_exit void ipv4_mib_exit_net(struct net *net) 1811 { 1812 kfree(net->mib.icmpmsg_statistics); 1813 free_percpu(net->mib.icmp_statistics); 1814 free_percpu(net->mib.udplite_statistics); 1815 free_percpu(net->mib.udp_statistics); 1816 free_percpu(net->mib.net_statistics); 1817 free_percpu(net->mib.ip_statistics); 1818 free_percpu(net->mib.tcp_statistics); 1819 #ifdef CONFIG_MPTCP 1820 /* allocated on demand, see mptcp_init_sock() */ 1821 free_percpu(net->mib.mptcp_statistics); 1822 #endif 1823 } 1824 1825 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1826 .init = ipv4_mib_init_net, 1827 .exit = ipv4_mib_exit_net, 1828 }; 1829 1830 static int __init init_ipv4_mibs(void) 1831 { 1832 return register_pernet_subsys(&ipv4_mib_ops); 1833 } 1834 1835 static __net_init int inet_init_net(struct net *net) 1836 { 1837 /* 1838 * Set defaults for local port range 1839 */ 1840 seqlock_init(&net->ipv4.ip_local_ports.lock); 1841 net->ipv4.ip_local_ports.range[0] = 32768; 1842 net->ipv4.ip_local_ports.range[1] = 60999; 1843 1844 seqlock_init(&net->ipv4.ping_group_range.lock); 1845 /* 1846 * Sane defaults - nobody may create ping sockets. 1847 * Boot scripts should set this to distro-specific group. 1848 */ 1849 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1850 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1851 1852 /* Default values for sysctl-controlled parameters. 1853 * We set them here, in case sysctl is not compiled. 1854 */ 1855 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1856 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1857 net->ipv4.sysctl_ip_dynaddr = 0; 1858 net->ipv4.sysctl_ip_early_demux = 1; 1859 net->ipv4.sysctl_udp_early_demux = 1; 1860 net->ipv4.sysctl_tcp_early_demux = 1; 1861 net->ipv4.sysctl_nexthop_compat_mode = 1; 1862 #ifdef CONFIG_SYSCTL 1863 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1864 #endif 1865 1866 /* Some igmp sysctl, whose values are always used */ 1867 net->ipv4.sysctl_igmp_max_memberships = 20; 1868 net->ipv4.sysctl_igmp_max_msf = 10; 1869 /* IGMP reports for link-local multicast groups are enabled by default */ 1870 net->ipv4.sysctl_igmp_llm_reports = 1; 1871 net->ipv4.sysctl_igmp_qrv = 2; 1872 1873 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1874 1875 return 0; 1876 } 1877 1878 static __net_initdata struct pernet_operations af_inet_ops = { 1879 .init = inet_init_net, 1880 }; 1881 1882 static int __init init_inet_pernet_ops(void) 1883 { 1884 return register_pernet_subsys(&af_inet_ops); 1885 } 1886 1887 static int ipv4_proc_init(void); 1888 1889 /* 1890 * IP protocol layer initialiser 1891 */ 1892 1893 static struct packet_offload ip_packet_offload __read_mostly = { 1894 .type = cpu_to_be16(ETH_P_IP), 1895 .callbacks = { 1896 .gso_segment = inet_gso_segment, 1897 .gro_receive = inet_gro_receive, 1898 .gro_complete = inet_gro_complete, 1899 }, 1900 }; 1901 1902 static const struct net_offload ipip_offload = { 1903 .callbacks = { 1904 .gso_segment = ipip_gso_segment, 1905 .gro_receive = ipip_gro_receive, 1906 .gro_complete = ipip_gro_complete, 1907 }, 1908 }; 1909 1910 static int __init ipip_offload_init(void) 1911 { 1912 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1913 } 1914 1915 static int __init ipv4_offload_init(void) 1916 { 1917 /* 1918 * Add offloads 1919 */ 1920 if (udpv4_offload_init() < 0) 1921 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1922 if (tcpv4_offload_init() < 0) 1923 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1924 if (ipip_offload_init() < 0) 1925 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1926 1927 dev_add_offload(&ip_packet_offload); 1928 return 0; 1929 } 1930 1931 fs_initcall(ipv4_offload_init); 1932 1933 static struct packet_type ip_packet_type __read_mostly = { 1934 .type = cpu_to_be16(ETH_P_IP), 1935 .func = ip_rcv, 1936 .list_func = ip_list_rcv, 1937 }; 1938 1939 static int __init inet_init(void) 1940 { 1941 struct inet_protosw *q; 1942 struct list_head *r; 1943 int rc; 1944 1945 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1946 1947 raw_hashinfo_init(&raw_v4_hashinfo); 1948 1949 rc = proto_register(&tcp_prot, 1); 1950 if (rc) 1951 goto out; 1952 1953 rc = proto_register(&udp_prot, 1); 1954 if (rc) 1955 goto out_unregister_tcp_proto; 1956 1957 rc = proto_register(&raw_prot, 1); 1958 if (rc) 1959 goto out_unregister_udp_proto; 1960 1961 rc = proto_register(&ping_prot, 1); 1962 if (rc) 1963 goto out_unregister_raw_proto; 1964 1965 /* 1966 * Tell SOCKET that we are alive... 1967 */ 1968 1969 (void)sock_register(&inet_family_ops); 1970 1971 #ifdef CONFIG_SYSCTL 1972 ip_static_sysctl_init(); 1973 #endif 1974 1975 /* 1976 * Add all the base protocols. 1977 */ 1978 1979 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1980 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1981 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1982 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1983 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1984 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1985 #ifdef CONFIG_IP_MULTICAST 1986 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1987 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1988 #endif 1989 1990 /* Register the socket-side information for inet_create. */ 1991 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1992 INIT_LIST_HEAD(r); 1993 1994 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1995 inet_register_protosw(q); 1996 1997 /* 1998 * Set the ARP module up 1999 */ 2000 2001 arp_init(); 2002 2003 /* 2004 * Set the IP module up 2005 */ 2006 2007 ip_init(); 2008 2009 /* Initialise per-cpu ipv4 mibs */ 2010 if (init_ipv4_mibs()) 2011 panic("%s: Cannot init ipv4 mibs\n", __func__); 2012 2013 /* Setup TCP slab cache for open requests. */ 2014 tcp_init(); 2015 2016 /* Setup UDP memory threshold */ 2017 udp_init(); 2018 2019 /* Add UDP-Lite (RFC 3828) */ 2020 udplite4_register(); 2021 2022 raw_init(); 2023 2024 ping_init(); 2025 2026 /* 2027 * Set the ICMP layer up 2028 */ 2029 2030 if (icmp_init() < 0) 2031 panic("Failed to create the ICMP control socket.\n"); 2032 2033 /* 2034 * Initialise the multicast router 2035 */ 2036 #if defined(CONFIG_IP_MROUTE) 2037 if (ip_mr_init()) 2038 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2039 #endif 2040 2041 if (init_inet_pernet_ops()) 2042 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2043 2044 ipv4_proc_init(); 2045 2046 ipfrag_init(); 2047 2048 dev_add_pack(&ip_packet_type); 2049 2050 ip_tunnel_core_init(); 2051 2052 rc = 0; 2053 out: 2054 return rc; 2055 out_unregister_raw_proto: 2056 proto_unregister(&raw_prot); 2057 out_unregister_udp_proto: 2058 proto_unregister(&udp_prot); 2059 out_unregister_tcp_proto: 2060 proto_unregister(&tcp_prot); 2061 goto out; 2062 } 2063 2064 fs_initcall(inet_init); 2065 2066 /* ------------------------------------------------------------------------ */ 2067 2068 #ifdef CONFIG_PROC_FS 2069 static int __init ipv4_proc_init(void) 2070 { 2071 int rc = 0; 2072 2073 if (raw_proc_init()) 2074 goto out_raw; 2075 if (tcp4_proc_init()) 2076 goto out_tcp; 2077 if (udp4_proc_init()) 2078 goto out_udp; 2079 if (ping_proc_init()) 2080 goto out_ping; 2081 if (ip_misc_proc_init()) 2082 goto out_misc; 2083 out: 2084 return rc; 2085 out_misc: 2086 ping_proc_exit(); 2087 out_ping: 2088 udp4_proc_exit(); 2089 out_udp: 2090 tcp4_proc_exit(); 2091 out_tcp: 2092 raw_proc_exit(); 2093 out_raw: 2094 rc = -ENOMEM; 2095 goto out; 2096 } 2097 2098 #else /* CONFIG_PROC_FS */ 2099 static int __init ipv4_proc_init(void) 2100 { 2101 return 0; 2102 } 2103 #endif /* CONFIG_PROC_FS */ 2104