1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 } 160 EXPORT_SYMBOL(inet_sock_destruct); 161 162 /* 163 * The routines beyond this point handle the behaviour of an AF_INET 164 * socket object. Mostly it punts to the subprotocols of IP to do 165 * the work. 166 */ 167 168 /* 169 * Automatically bind an unbound socket. 170 */ 171 172 static int inet_autobind(struct sock *sk) 173 { 174 struct inet_sock *inet; 175 /* We may need to bind the socket. */ 176 lock_sock(sk); 177 inet = inet_sk(sk); 178 if (!inet->inet_num) { 179 if (sk->sk_prot->get_port(sk, 0)) { 180 release_sock(sk); 181 return -EAGAIN; 182 } 183 inet->inet_sport = htons(inet->inet_num); 184 } 185 release_sock(sk); 186 return 0; 187 } 188 189 /* 190 * Move a socket into listening state. 191 */ 192 int inet_listen(struct socket *sock, int backlog) 193 { 194 struct sock *sk = sock->sk; 195 unsigned char old_state; 196 int err, tcp_fastopen; 197 198 lock_sock(sk); 199 200 err = -EINVAL; 201 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 202 goto out; 203 204 old_state = sk->sk_state; 205 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 206 goto out; 207 208 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 209 /* Really, if the socket is already in listen state 210 * we can only allow the backlog to be adjusted. 211 */ 212 if (old_state != TCP_LISTEN) { 213 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 214 * Note that only TCP sockets (SOCK_STREAM) will reach here. 215 * Also fastopen backlog may already been set via the option 216 * because the socket was in TCP_LISTEN state previously but 217 * was shutdown() rather than close(). 218 */ 219 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 220 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 221 (tcp_fastopen & TFO_SERVER_ENABLE) && 222 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 223 fastopen_queue_tune(sk, backlog); 224 tcp_fastopen_init_key_once(sock_net(sk)); 225 } 226 227 err = inet_csk_listen_start(sk); 228 if (err) 229 goto out; 230 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 231 } 232 err = 0; 233 234 out: 235 release_sock(sk); 236 return err; 237 } 238 EXPORT_SYMBOL(inet_listen); 239 240 /* 241 * Create an inet socket. 242 */ 243 244 static int inet_create(struct net *net, struct socket *sock, int protocol, 245 int kern) 246 { 247 struct sock *sk; 248 struct inet_protosw *answer; 249 struct inet_sock *inet; 250 struct proto *answer_prot; 251 unsigned char answer_flags; 252 int try_loading_module = 0; 253 int err; 254 255 if (protocol < 0 || protocol >= IPPROTO_MAX) 256 return -EINVAL; 257 258 sock->state = SS_UNCONNECTED; 259 260 /* Look for the requested type/protocol pair. */ 261 lookup_protocol: 262 err = -ESOCKTNOSUPPORT; 263 rcu_read_lock(); 264 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 265 266 err = 0; 267 /* Check the non-wild match. */ 268 if (protocol == answer->protocol) { 269 if (protocol != IPPROTO_IP) 270 break; 271 } else { 272 /* Check for the two wild cases. */ 273 if (IPPROTO_IP == protocol) { 274 protocol = answer->protocol; 275 break; 276 } 277 if (IPPROTO_IP == answer->protocol) 278 break; 279 } 280 err = -EPROTONOSUPPORT; 281 } 282 283 if (unlikely(err)) { 284 if (try_loading_module < 2) { 285 rcu_read_unlock(); 286 /* 287 * Be more specific, e.g. net-pf-2-proto-132-type-1 288 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 289 */ 290 if (++try_loading_module == 1) 291 request_module("net-pf-%d-proto-%d-type-%d", 292 PF_INET, protocol, sock->type); 293 /* 294 * Fall back to generic, e.g. net-pf-2-proto-132 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 296 */ 297 else 298 request_module("net-pf-%d-proto-%d", 299 PF_INET, protocol); 300 goto lookup_protocol; 301 } else 302 goto out_rcu_unlock; 303 } 304 305 err = -EPERM; 306 if (sock->type == SOCK_RAW && !kern && 307 !ns_capable(net->user_ns, CAP_NET_RAW)) 308 goto out_rcu_unlock; 309 310 sock->ops = answer->ops; 311 answer_prot = answer->prot; 312 answer_flags = answer->flags; 313 rcu_read_unlock(); 314 315 WARN_ON(!answer_prot->slab); 316 317 err = -ENOMEM; 318 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 319 if (!sk) 320 goto out; 321 322 err = 0; 323 if (INET_PROTOSW_REUSE & answer_flags) 324 sk->sk_reuse = SK_CAN_REUSE; 325 326 inet = inet_sk(sk); 327 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 328 329 inet->nodefrag = 0; 330 331 if (SOCK_RAW == sock->type) { 332 inet->inet_num = protocol; 333 if (IPPROTO_RAW == protocol) 334 inet->hdrincl = 1; 335 } 336 337 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 338 inet->pmtudisc = IP_PMTUDISC_DONT; 339 else 340 inet->pmtudisc = IP_PMTUDISC_WANT; 341 342 inet->inet_id = 0; 343 344 sock_init_data(sock, sk); 345 346 sk->sk_destruct = inet_sock_destruct; 347 sk->sk_protocol = protocol; 348 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 349 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 if (inet->inet_num) { 360 /* It assumes that any protocol which allows 361 * the user to assign a number at socket 362 * creation time automatically 363 * shares. 364 */ 365 inet->inet_sport = htons(inet->inet_num); 366 /* Add to protocol hash chains. */ 367 err = sk->sk_prot->hash(sk); 368 if (err) { 369 sk_common_release(sk); 370 goto out; 371 } 372 } 373 374 if (sk->sk_prot->init) { 375 err = sk->sk_prot->init(sk); 376 if (err) { 377 sk_common_release(sk); 378 goto out; 379 } 380 } 381 382 if (!kern) { 383 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 384 if (err) { 385 sk_common_release(sk); 386 goto out; 387 } 388 } 389 out: 390 return err; 391 out_rcu_unlock: 392 rcu_read_unlock(); 393 goto out; 394 } 395 396 397 /* 398 * The peer socket should always be NULL (or else). When we call this 399 * function we are destroying the object and from then on nobody 400 * should refer to it. 401 */ 402 int inet_release(struct socket *sock) 403 { 404 struct sock *sk = sock->sk; 405 406 if (sk) { 407 long timeout; 408 409 if (!sk->sk_kern_sock) 410 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 411 412 /* Applications forget to leave groups before exiting */ 413 ip_mc_drop_socket(sk); 414 415 /* If linger is set, we don't return until the close 416 * is complete. Otherwise we return immediately. The 417 * actually closing is done the same either way. 418 * 419 * If the close is due to the process exiting, we never 420 * linger.. 421 */ 422 timeout = 0; 423 if (sock_flag(sk, SOCK_LINGER) && 424 !(current->flags & PF_EXITING)) 425 timeout = sk->sk_lingertime; 426 sk->sk_prot->close(sk, timeout); 427 sock->sk = NULL; 428 } 429 return 0; 430 } 431 EXPORT_SYMBOL(inet_release); 432 433 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 434 { 435 struct sock *sk = sock->sk; 436 u32 flags = BIND_WITH_LOCK; 437 int err; 438 439 /* If the socket has its own bind function then use it. (RAW) */ 440 if (sk->sk_prot->bind) { 441 return sk->sk_prot->bind(sk, uaddr, addr_len); 442 } 443 if (addr_len < sizeof(struct sockaddr_in)) 444 return -EINVAL; 445 446 /* BPF prog is run before any checks are done so that if the prog 447 * changes context in a wrong way it will be caught. 448 */ 449 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 450 CGROUP_INET4_BIND, &flags); 451 if (err) 452 return err; 453 454 return __inet_bind(sk, uaddr, addr_len, flags); 455 } 456 EXPORT_SYMBOL(inet_bind); 457 458 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 459 u32 flags) 460 { 461 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 462 struct inet_sock *inet = inet_sk(sk); 463 struct net *net = sock_net(sk); 464 unsigned short snum; 465 int chk_addr_ret; 466 u32 tb_id = RT_TABLE_LOCAL; 467 int err; 468 469 if (addr->sin_family != AF_INET) { 470 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 471 * only if s_addr is INADDR_ANY. 472 */ 473 err = -EAFNOSUPPORT; 474 if (addr->sin_family != AF_UNSPEC || 475 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 476 goto out; 477 } 478 479 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 480 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 481 482 /* Not specified by any standard per-se, however it breaks too 483 * many applications when removed. It is unfortunate since 484 * allowing applications to make a non-local bind solves 485 * several problems with systems using dynamic addressing. 486 * (ie. your servers still start up even if your ISDN link 487 * is temporarily down) 488 */ 489 err = -EADDRNOTAVAIL; 490 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 491 chk_addr_ret)) 492 goto out; 493 494 snum = ntohs(addr->sin_port); 495 err = -EACCES; 496 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 497 snum && inet_port_requires_bind_service(net, snum) && 498 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 499 goto out; 500 501 /* We keep a pair of addresses. rcv_saddr is the one 502 * used by hash lookups, and saddr is used for transmit. 503 * 504 * In the BSD API these are the same except where it 505 * would be illegal to use them (multicast/broadcast) in 506 * which case the sending device address is used. 507 */ 508 if (flags & BIND_WITH_LOCK) 509 lock_sock(sk); 510 511 /* Check these errors (active socket, double bind). */ 512 err = -EINVAL; 513 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 514 goto out_release_sock; 515 516 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 517 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 518 inet->inet_saddr = 0; /* Use device */ 519 520 /* Make sure we are allowed to bind here. */ 521 if (snum || !(inet->bind_address_no_port || 522 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 523 err = sk->sk_prot->get_port(sk, snum); 524 if (err) { 525 inet->inet_saddr = inet->inet_rcv_saddr = 0; 526 goto out_release_sock; 527 } 528 if (!(flags & BIND_FROM_BPF)) { 529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 530 if (err) { 531 inet->inet_saddr = inet->inet_rcv_saddr = 0; 532 if (sk->sk_prot->put_port) 533 sk->sk_prot->put_port(sk); 534 goto out_release_sock; 535 } 536 } 537 } 538 539 if (inet->inet_rcv_saddr) 540 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 541 if (snum) 542 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 543 inet->inet_sport = htons(inet->inet_num); 544 inet->inet_daddr = 0; 545 inet->inet_dport = 0; 546 sk_dst_reset(sk); 547 err = 0; 548 out_release_sock: 549 if (flags & BIND_WITH_LOCK) 550 release_sock(sk); 551 out: 552 return err; 553 } 554 555 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 556 int addr_len, int flags) 557 { 558 struct sock *sk = sock->sk; 559 const struct proto *prot; 560 int err; 561 562 if (addr_len < sizeof(uaddr->sa_family)) 563 return -EINVAL; 564 565 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 566 prot = READ_ONCE(sk->sk_prot); 567 568 if (uaddr->sa_family == AF_UNSPEC) 569 return prot->disconnect(sk, flags); 570 571 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 572 err = prot->pre_connect(sk, uaddr, addr_len); 573 if (err) 574 return err; 575 } 576 577 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 578 return -EAGAIN; 579 return prot->connect(sk, uaddr, addr_len); 580 } 581 EXPORT_SYMBOL(inet_dgram_connect); 582 583 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 584 { 585 DEFINE_WAIT_FUNC(wait, woken_wake_function); 586 587 add_wait_queue(sk_sleep(sk), &wait); 588 sk->sk_write_pending += writebias; 589 590 /* Basic assumption: if someone sets sk->sk_err, he _must_ 591 * change state of the socket from TCP_SYN_*. 592 * Connect() does not allow to get error notifications 593 * without closing the socket. 594 */ 595 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 596 release_sock(sk); 597 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 598 lock_sock(sk); 599 if (signal_pending(current) || !timeo) 600 break; 601 } 602 remove_wait_queue(sk_sleep(sk), &wait); 603 sk->sk_write_pending -= writebias; 604 return timeo; 605 } 606 607 /* 608 * Connect to a remote host. There is regrettably still a little 609 * TCP 'magic' in here. 610 */ 611 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 612 int addr_len, int flags, int is_sendmsg) 613 { 614 struct sock *sk = sock->sk; 615 int err; 616 long timeo; 617 618 /* 619 * uaddr can be NULL and addr_len can be 0 if: 620 * sk is a TCP fastopen active socket and 621 * TCP_FASTOPEN_CONNECT sockopt is set and 622 * we already have a valid cookie for this socket. 623 * In this case, user can call write() after connect(). 624 * write() will invoke tcp_sendmsg_fastopen() which calls 625 * __inet_stream_connect(). 626 */ 627 if (uaddr) { 628 if (addr_len < sizeof(uaddr->sa_family)) 629 return -EINVAL; 630 631 if (uaddr->sa_family == AF_UNSPEC) { 632 err = sk->sk_prot->disconnect(sk, flags); 633 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 634 goto out; 635 } 636 } 637 638 switch (sock->state) { 639 default: 640 err = -EINVAL; 641 goto out; 642 case SS_CONNECTED: 643 err = -EISCONN; 644 goto out; 645 case SS_CONNECTING: 646 if (inet_sk(sk)->defer_connect) 647 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 648 else 649 err = -EALREADY; 650 /* Fall out of switch with err, set for this state */ 651 break; 652 case SS_UNCONNECTED: 653 err = -EISCONN; 654 if (sk->sk_state != TCP_CLOSE) 655 goto out; 656 657 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 658 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 659 if (err) 660 goto out; 661 } 662 663 err = sk->sk_prot->connect(sk, uaddr, addr_len); 664 if (err < 0) 665 goto out; 666 667 sock->state = SS_CONNECTING; 668 669 if (!err && inet_sk(sk)->defer_connect) 670 goto out; 671 672 /* Just entered SS_CONNECTING state; the only 673 * difference is that return value in non-blocking 674 * case is EINPROGRESS, rather than EALREADY. 675 */ 676 err = -EINPROGRESS; 677 break; 678 } 679 680 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 681 682 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 683 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 684 tcp_sk(sk)->fastopen_req && 685 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 686 687 /* Error code is set above */ 688 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 689 goto out; 690 691 err = sock_intr_errno(timeo); 692 if (signal_pending(current)) 693 goto out; 694 } 695 696 /* Connection was closed by RST, timeout, ICMP error 697 * or another process disconnected us. 698 */ 699 if (sk->sk_state == TCP_CLOSE) 700 goto sock_error; 701 702 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 703 * and error was received after socket entered established state. 704 * Hence, it is handled normally after connect() return successfully. 705 */ 706 707 sock->state = SS_CONNECTED; 708 err = 0; 709 out: 710 return err; 711 712 sock_error: 713 err = sock_error(sk) ? : -ECONNABORTED; 714 sock->state = SS_UNCONNECTED; 715 if (sk->sk_prot->disconnect(sk, flags)) 716 sock->state = SS_DISCONNECTING; 717 goto out; 718 } 719 EXPORT_SYMBOL(__inet_stream_connect); 720 721 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 722 int addr_len, int flags) 723 { 724 int err; 725 726 lock_sock(sock->sk); 727 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 728 release_sock(sock->sk); 729 return err; 730 } 731 EXPORT_SYMBOL(inet_stream_connect); 732 733 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 734 { 735 sock_rps_record_flow(newsk); 736 WARN_ON(!((1 << newsk->sk_state) & 737 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 738 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 739 740 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 741 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 742 sock_graft(newsk, newsock); 743 744 newsock->state = SS_CONNECTED; 745 } 746 747 /* 748 * Accept a pending connection. The TCP layer now gives BSD semantics. 749 */ 750 751 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 752 bool kern) 753 { 754 struct sock *sk1 = sock->sk, *sk2; 755 int err = -EINVAL; 756 757 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 758 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 759 if (!sk2) 760 return err; 761 762 lock_sock(sk2); 763 __inet_accept(sock, newsock, sk2); 764 release_sock(sk2); 765 return 0; 766 } 767 EXPORT_SYMBOL(inet_accept); 768 769 /* 770 * This does both peername and sockname. 771 */ 772 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 773 int peer) 774 { 775 struct sock *sk = sock->sk; 776 struct inet_sock *inet = inet_sk(sk); 777 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 778 779 sin->sin_family = AF_INET; 780 lock_sock(sk); 781 if (peer) { 782 if (!inet->inet_dport || 783 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 784 peer == 1)) { 785 release_sock(sk); 786 return -ENOTCONN; 787 } 788 sin->sin_port = inet->inet_dport; 789 sin->sin_addr.s_addr = inet->inet_daddr; 790 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 791 CGROUP_INET4_GETPEERNAME); 792 } else { 793 __be32 addr = inet->inet_rcv_saddr; 794 if (!addr) 795 addr = inet->inet_saddr; 796 sin->sin_port = inet->inet_sport; 797 sin->sin_addr.s_addr = addr; 798 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 799 CGROUP_INET4_GETSOCKNAME); 800 } 801 release_sock(sk); 802 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 803 return sizeof(*sin); 804 } 805 EXPORT_SYMBOL(inet_getname); 806 807 int inet_send_prepare(struct sock *sk) 808 { 809 sock_rps_record_flow(sk); 810 811 /* We may need to bind the socket. */ 812 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 813 inet_autobind(sk)) 814 return -EAGAIN; 815 816 return 0; 817 } 818 EXPORT_SYMBOL_GPL(inet_send_prepare); 819 820 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 821 { 822 struct sock *sk = sock->sk; 823 824 if (unlikely(inet_send_prepare(sk))) 825 return -EAGAIN; 826 827 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 828 sk, msg, size); 829 } 830 EXPORT_SYMBOL(inet_sendmsg); 831 832 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 833 size_t size, int flags) 834 { 835 struct sock *sk = sock->sk; 836 const struct proto *prot; 837 838 if (unlikely(inet_send_prepare(sk))) 839 return -EAGAIN; 840 841 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 842 prot = READ_ONCE(sk->sk_prot); 843 if (prot->sendpage) 844 return prot->sendpage(sk, page, offset, size, flags); 845 return sock_no_sendpage(sock, page, offset, size, flags); 846 } 847 EXPORT_SYMBOL(inet_sendpage); 848 849 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 850 size_t, int, int *)); 851 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 852 int flags) 853 { 854 struct sock *sk = sock->sk; 855 int addr_len = 0; 856 int err; 857 858 if (likely(!(flags & MSG_ERRQUEUE))) 859 sock_rps_record_flow(sk); 860 861 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 862 sk, msg, size, flags, &addr_len); 863 if (err >= 0) 864 msg->msg_namelen = addr_len; 865 return err; 866 } 867 EXPORT_SYMBOL(inet_recvmsg); 868 869 int inet_shutdown(struct socket *sock, int how) 870 { 871 struct sock *sk = sock->sk; 872 int err = 0; 873 874 /* This should really check to make sure 875 * the socket is a TCP socket. (WHY AC...) 876 */ 877 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 878 1->2 bit 2 snds. 879 2->3 */ 880 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 881 return -EINVAL; 882 883 lock_sock(sk); 884 if (sock->state == SS_CONNECTING) { 885 if ((1 << sk->sk_state) & 886 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 887 sock->state = SS_DISCONNECTING; 888 else 889 sock->state = SS_CONNECTED; 890 } 891 892 switch (sk->sk_state) { 893 case TCP_CLOSE: 894 err = -ENOTCONN; 895 /* Hack to wake up other listeners, who can poll for 896 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 897 fallthrough; 898 default: 899 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 900 if (sk->sk_prot->shutdown) 901 sk->sk_prot->shutdown(sk, how); 902 break; 903 904 /* Remaining two branches are temporary solution for missing 905 * close() in multithreaded environment. It is _not_ a good idea, 906 * but we have no choice until close() is repaired at VFS level. 907 */ 908 case TCP_LISTEN: 909 if (!(how & RCV_SHUTDOWN)) 910 break; 911 fallthrough; 912 case TCP_SYN_SENT: 913 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 914 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 915 break; 916 } 917 918 /* Wake up anyone sleeping in poll. */ 919 sk->sk_state_change(sk); 920 release_sock(sk); 921 return err; 922 } 923 EXPORT_SYMBOL(inet_shutdown); 924 925 /* 926 * ioctl() calls you can issue on an INET socket. Most of these are 927 * device configuration and stuff and very rarely used. Some ioctls 928 * pass on to the socket itself. 929 * 930 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 931 * loads the devconfigure module does its configuring and unloads it. 932 * There's a good 20K of config code hanging around the kernel. 933 */ 934 935 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 936 { 937 struct sock *sk = sock->sk; 938 int err = 0; 939 struct net *net = sock_net(sk); 940 void __user *p = (void __user *)arg; 941 struct ifreq ifr; 942 struct rtentry rt; 943 944 switch (cmd) { 945 case SIOCADDRT: 946 case SIOCDELRT: 947 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 948 return -EFAULT; 949 err = ip_rt_ioctl(net, cmd, &rt); 950 break; 951 case SIOCRTMSG: 952 err = -EINVAL; 953 break; 954 case SIOCDARP: 955 case SIOCGARP: 956 case SIOCSARP: 957 err = arp_ioctl(net, cmd, (void __user *)arg); 958 break; 959 case SIOCGIFADDR: 960 case SIOCGIFBRDADDR: 961 case SIOCGIFNETMASK: 962 case SIOCGIFDSTADDR: 963 case SIOCGIFPFLAGS: 964 if (get_user_ifreq(&ifr, NULL, p)) 965 return -EFAULT; 966 err = devinet_ioctl(net, cmd, &ifr); 967 if (!err && put_user_ifreq(&ifr, p)) 968 err = -EFAULT; 969 break; 970 971 case SIOCSIFADDR: 972 case SIOCSIFBRDADDR: 973 case SIOCSIFNETMASK: 974 case SIOCSIFDSTADDR: 975 case SIOCSIFPFLAGS: 976 case SIOCSIFFLAGS: 977 if (get_user_ifreq(&ifr, NULL, p)) 978 return -EFAULT; 979 err = devinet_ioctl(net, cmd, &ifr); 980 break; 981 default: 982 if (sk->sk_prot->ioctl) 983 err = sk->sk_prot->ioctl(sk, cmd, arg); 984 else 985 err = -ENOIOCTLCMD; 986 break; 987 } 988 return err; 989 } 990 EXPORT_SYMBOL(inet_ioctl); 991 992 #ifdef CONFIG_COMPAT 993 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 994 struct compat_rtentry __user *ur) 995 { 996 compat_uptr_t rtdev; 997 struct rtentry rt; 998 999 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1000 3 * sizeof(struct sockaddr)) || 1001 get_user(rt.rt_flags, &ur->rt_flags) || 1002 get_user(rt.rt_metric, &ur->rt_metric) || 1003 get_user(rt.rt_mtu, &ur->rt_mtu) || 1004 get_user(rt.rt_window, &ur->rt_window) || 1005 get_user(rt.rt_irtt, &ur->rt_irtt) || 1006 get_user(rtdev, &ur->rt_dev)) 1007 return -EFAULT; 1008 1009 rt.rt_dev = compat_ptr(rtdev); 1010 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1011 } 1012 1013 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1014 { 1015 void __user *argp = compat_ptr(arg); 1016 struct sock *sk = sock->sk; 1017 1018 switch (cmd) { 1019 case SIOCADDRT: 1020 case SIOCDELRT: 1021 return inet_compat_routing_ioctl(sk, cmd, argp); 1022 default: 1023 if (!sk->sk_prot->compat_ioctl) 1024 return -ENOIOCTLCMD; 1025 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1026 } 1027 } 1028 #endif /* CONFIG_COMPAT */ 1029 1030 const struct proto_ops inet_stream_ops = { 1031 .family = PF_INET, 1032 .owner = THIS_MODULE, 1033 .release = inet_release, 1034 .bind = inet_bind, 1035 .connect = inet_stream_connect, 1036 .socketpair = sock_no_socketpair, 1037 .accept = inet_accept, 1038 .getname = inet_getname, 1039 .poll = tcp_poll, 1040 .ioctl = inet_ioctl, 1041 .gettstamp = sock_gettstamp, 1042 .listen = inet_listen, 1043 .shutdown = inet_shutdown, 1044 .setsockopt = sock_common_setsockopt, 1045 .getsockopt = sock_common_getsockopt, 1046 .sendmsg = inet_sendmsg, 1047 .recvmsg = inet_recvmsg, 1048 #ifdef CONFIG_MMU 1049 .mmap = tcp_mmap, 1050 #endif 1051 .sendpage = inet_sendpage, 1052 .splice_read = tcp_splice_read, 1053 .read_sock = tcp_read_sock, 1054 .read_skb = tcp_read_skb, 1055 .sendmsg_locked = tcp_sendmsg_locked, 1056 .sendpage_locked = tcp_sendpage_locked, 1057 .peek_len = tcp_peek_len, 1058 #ifdef CONFIG_COMPAT 1059 .compat_ioctl = inet_compat_ioctl, 1060 #endif 1061 .set_rcvlowat = tcp_set_rcvlowat, 1062 }; 1063 EXPORT_SYMBOL(inet_stream_ops); 1064 1065 const struct proto_ops inet_dgram_ops = { 1066 .family = PF_INET, 1067 .owner = THIS_MODULE, 1068 .release = inet_release, 1069 .bind = inet_bind, 1070 .connect = inet_dgram_connect, 1071 .socketpair = sock_no_socketpair, 1072 .accept = sock_no_accept, 1073 .getname = inet_getname, 1074 .poll = udp_poll, 1075 .ioctl = inet_ioctl, 1076 .gettstamp = sock_gettstamp, 1077 .listen = sock_no_listen, 1078 .shutdown = inet_shutdown, 1079 .setsockopt = sock_common_setsockopt, 1080 .getsockopt = sock_common_getsockopt, 1081 .sendmsg = inet_sendmsg, 1082 .read_skb = udp_read_skb, 1083 .recvmsg = inet_recvmsg, 1084 .mmap = sock_no_mmap, 1085 .sendpage = inet_sendpage, 1086 .set_peek_off = sk_set_peek_off, 1087 #ifdef CONFIG_COMPAT 1088 .compat_ioctl = inet_compat_ioctl, 1089 #endif 1090 }; 1091 EXPORT_SYMBOL(inet_dgram_ops); 1092 1093 /* 1094 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1095 * udp_poll 1096 */ 1097 static const struct proto_ops inet_sockraw_ops = { 1098 .family = PF_INET, 1099 .owner = THIS_MODULE, 1100 .release = inet_release, 1101 .bind = inet_bind, 1102 .connect = inet_dgram_connect, 1103 .socketpair = sock_no_socketpair, 1104 .accept = sock_no_accept, 1105 .getname = inet_getname, 1106 .poll = datagram_poll, 1107 .ioctl = inet_ioctl, 1108 .gettstamp = sock_gettstamp, 1109 .listen = sock_no_listen, 1110 .shutdown = inet_shutdown, 1111 .setsockopt = sock_common_setsockopt, 1112 .getsockopt = sock_common_getsockopt, 1113 .sendmsg = inet_sendmsg, 1114 .recvmsg = inet_recvmsg, 1115 .mmap = sock_no_mmap, 1116 .sendpage = inet_sendpage, 1117 #ifdef CONFIG_COMPAT 1118 .compat_ioctl = inet_compat_ioctl, 1119 #endif 1120 }; 1121 1122 static const struct net_proto_family inet_family_ops = { 1123 .family = PF_INET, 1124 .create = inet_create, 1125 .owner = THIS_MODULE, 1126 }; 1127 1128 /* Upon startup we insert all the elements in inetsw_array[] into 1129 * the linked list inetsw. 1130 */ 1131 static struct inet_protosw inetsw_array[] = 1132 { 1133 { 1134 .type = SOCK_STREAM, 1135 .protocol = IPPROTO_TCP, 1136 .prot = &tcp_prot, 1137 .ops = &inet_stream_ops, 1138 .flags = INET_PROTOSW_PERMANENT | 1139 INET_PROTOSW_ICSK, 1140 }, 1141 1142 { 1143 .type = SOCK_DGRAM, 1144 .protocol = IPPROTO_UDP, 1145 .prot = &udp_prot, 1146 .ops = &inet_dgram_ops, 1147 .flags = INET_PROTOSW_PERMANENT, 1148 }, 1149 1150 { 1151 .type = SOCK_DGRAM, 1152 .protocol = IPPROTO_ICMP, 1153 .prot = &ping_prot, 1154 .ops = &inet_sockraw_ops, 1155 .flags = INET_PROTOSW_REUSE, 1156 }, 1157 1158 { 1159 .type = SOCK_RAW, 1160 .protocol = IPPROTO_IP, /* wild card */ 1161 .prot = &raw_prot, 1162 .ops = &inet_sockraw_ops, 1163 .flags = INET_PROTOSW_REUSE, 1164 } 1165 }; 1166 1167 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1168 1169 void inet_register_protosw(struct inet_protosw *p) 1170 { 1171 struct list_head *lh; 1172 struct inet_protosw *answer; 1173 int protocol = p->protocol; 1174 struct list_head *last_perm; 1175 1176 spin_lock_bh(&inetsw_lock); 1177 1178 if (p->type >= SOCK_MAX) 1179 goto out_illegal; 1180 1181 /* If we are trying to override a permanent protocol, bail. */ 1182 last_perm = &inetsw[p->type]; 1183 list_for_each(lh, &inetsw[p->type]) { 1184 answer = list_entry(lh, struct inet_protosw, list); 1185 /* Check only the non-wild match. */ 1186 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1187 break; 1188 if (protocol == answer->protocol) 1189 goto out_permanent; 1190 last_perm = lh; 1191 } 1192 1193 /* Add the new entry after the last permanent entry if any, so that 1194 * the new entry does not override a permanent entry when matched with 1195 * a wild-card protocol. But it is allowed to override any existing 1196 * non-permanent entry. This means that when we remove this entry, the 1197 * system automatically returns to the old behavior. 1198 */ 1199 list_add_rcu(&p->list, last_perm); 1200 out: 1201 spin_unlock_bh(&inetsw_lock); 1202 1203 return; 1204 1205 out_permanent: 1206 pr_err("Attempt to override permanent protocol %d\n", protocol); 1207 goto out; 1208 1209 out_illegal: 1210 pr_err("Ignoring attempt to register invalid socket type %d\n", 1211 p->type); 1212 goto out; 1213 } 1214 EXPORT_SYMBOL(inet_register_protosw); 1215 1216 void inet_unregister_protosw(struct inet_protosw *p) 1217 { 1218 if (INET_PROTOSW_PERMANENT & p->flags) { 1219 pr_err("Attempt to unregister permanent protocol %d\n", 1220 p->protocol); 1221 } else { 1222 spin_lock_bh(&inetsw_lock); 1223 list_del_rcu(&p->list); 1224 spin_unlock_bh(&inetsw_lock); 1225 1226 synchronize_net(); 1227 } 1228 } 1229 EXPORT_SYMBOL(inet_unregister_protosw); 1230 1231 static int inet_sk_reselect_saddr(struct sock *sk) 1232 { 1233 struct inet_sock *inet = inet_sk(sk); 1234 __be32 old_saddr = inet->inet_saddr; 1235 __be32 daddr = inet->inet_daddr; 1236 struct flowi4 *fl4; 1237 struct rtable *rt; 1238 __be32 new_saddr; 1239 struct ip_options_rcu *inet_opt; 1240 int err; 1241 1242 inet_opt = rcu_dereference_protected(inet->inet_opt, 1243 lockdep_sock_is_held(sk)); 1244 if (inet_opt && inet_opt->opt.srr) 1245 daddr = inet_opt->opt.faddr; 1246 1247 /* Query new route. */ 1248 fl4 = &inet->cork.fl.u.ip4; 1249 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1250 sk->sk_protocol, inet->inet_sport, 1251 inet->inet_dport, sk); 1252 if (IS_ERR(rt)) 1253 return PTR_ERR(rt); 1254 1255 new_saddr = fl4->saddr; 1256 1257 if (new_saddr == old_saddr) { 1258 sk_setup_caps(sk, &rt->dst); 1259 return 0; 1260 } 1261 1262 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1263 if (err) { 1264 ip_rt_put(rt); 1265 return err; 1266 } 1267 1268 sk_setup_caps(sk, &rt->dst); 1269 1270 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1271 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1272 __func__, &old_saddr, &new_saddr); 1273 } 1274 1275 /* 1276 * XXX The only one ugly spot where we need to 1277 * XXX really change the sockets identity after 1278 * XXX it has entered the hashes. -DaveM 1279 * 1280 * Besides that, it does not check for connection 1281 * uniqueness. Wait for troubles. 1282 */ 1283 return __sk_prot_rehash(sk); 1284 } 1285 1286 int inet_sk_rebuild_header(struct sock *sk) 1287 { 1288 struct inet_sock *inet = inet_sk(sk); 1289 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1290 __be32 daddr; 1291 struct ip_options_rcu *inet_opt; 1292 struct flowi4 *fl4; 1293 int err; 1294 1295 /* Route is OK, nothing to do. */ 1296 if (rt) 1297 return 0; 1298 1299 /* Reroute. */ 1300 rcu_read_lock(); 1301 inet_opt = rcu_dereference(inet->inet_opt); 1302 daddr = inet->inet_daddr; 1303 if (inet_opt && inet_opt->opt.srr) 1304 daddr = inet_opt->opt.faddr; 1305 rcu_read_unlock(); 1306 fl4 = &inet->cork.fl.u.ip4; 1307 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1308 inet->inet_dport, inet->inet_sport, 1309 sk->sk_protocol, RT_CONN_FLAGS(sk), 1310 sk->sk_bound_dev_if); 1311 if (!IS_ERR(rt)) { 1312 err = 0; 1313 sk_setup_caps(sk, &rt->dst); 1314 } else { 1315 err = PTR_ERR(rt); 1316 1317 /* Routing failed... */ 1318 sk->sk_route_caps = 0; 1319 /* 1320 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1321 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1322 */ 1323 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1324 sk->sk_state != TCP_SYN_SENT || 1325 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1326 (err = inet_sk_reselect_saddr(sk)) != 0) 1327 WRITE_ONCE(sk->sk_err_soft, -err); 1328 } 1329 1330 return err; 1331 } 1332 EXPORT_SYMBOL(inet_sk_rebuild_header); 1333 1334 void inet_sk_set_state(struct sock *sk, int state) 1335 { 1336 trace_inet_sock_set_state(sk, sk->sk_state, state); 1337 sk->sk_state = state; 1338 } 1339 EXPORT_SYMBOL(inet_sk_set_state); 1340 1341 void inet_sk_state_store(struct sock *sk, int newstate) 1342 { 1343 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1344 smp_store_release(&sk->sk_state, newstate); 1345 } 1346 1347 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1348 netdev_features_t features) 1349 { 1350 bool udpfrag = false, fixedid = false, gso_partial, encap; 1351 struct sk_buff *segs = ERR_PTR(-EINVAL); 1352 const struct net_offload *ops; 1353 unsigned int offset = 0; 1354 struct iphdr *iph; 1355 int proto, tot_len; 1356 int nhoff; 1357 int ihl; 1358 int id; 1359 1360 skb_reset_network_header(skb); 1361 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1362 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1363 goto out; 1364 1365 iph = ip_hdr(skb); 1366 ihl = iph->ihl * 4; 1367 if (ihl < sizeof(*iph)) 1368 goto out; 1369 1370 id = ntohs(iph->id); 1371 proto = iph->protocol; 1372 1373 /* Warning: after this point, iph might be no longer valid */ 1374 if (unlikely(!pskb_may_pull(skb, ihl))) 1375 goto out; 1376 __skb_pull(skb, ihl); 1377 1378 encap = SKB_GSO_CB(skb)->encap_level > 0; 1379 if (encap) 1380 features &= skb->dev->hw_enc_features; 1381 SKB_GSO_CB(skb)->encap_level += ihl; 1382 1383 skb_reset_transport_header(skb); 1384 1385 segs = ERR_PTR(-EPROTONOSUPPORT); 1386 1387 if (!skb->encapsulation || encap) { 1388 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1389 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1390 1391 /* fixed ID is invalid if DF bit is not set */ 1392 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1393 goto out; 1394 } 1395 1396 ops = rcu_dereference(inet_offloads[proto]); 1397 if (likely(ops && ops->callbacks.gso_segment)) { 1398 segs = ops->callbacks.gso_segment(skb, features); 1399 if (!segs) 1400 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1401 } 1402 1403 if (IS_ERR_OR_NULL(segs)) 1404 goto out; 1405 1406 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1407 1408 skb = segs; 1409 do { 1410 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1411 if (udpfrag) { 1412 iph->frag_off = htons(offset >> 3); 1413 if (skb->next) 1414 iph->frag_off |= htons(IP_MF); 1415 offset += skb->len - nhoff - ihl; 1416 tot_len = skb->len - nhoff; 1417 } else if (skb_is_gso(skb)) { 1418 if (!fixedid) { 1419 iph->id = htons(id); 1420 id += skb_shinfo(skb)->gso_segs; 1421 } 1422 1423 if (gso_partial) 1424 tot_len = skb_shinfo(skb)->gso_size + 1425 SKB_GSO_CB(skb)->data_offset + 1426 skb->head - (unsigned char *)iph; 1427 else 1428 tot_len = skb->len - nhoff; 1429 } else { 1430 if (!fixedid) 1431 iph->id = htons(id++); 1432 tot_len = skb->len - nhoff; 1433 } 1434 iph->tot_len = htons(tot_len); 1435 ip_send_check(iph); 1436 if (encap) 1437 skb_reset_inner_headers(skb); 1438 skb->network_header = (u8 *)iph - skb->head; 1439 skb_reset_mac_len(skb); 1440 } while ((skb = skb->next)); 1441 1442 out: 1443 return segs; 1444 } 1445 1446 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1447 netdev_features_t features) 1448 { 1449 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1450 return ERR_PTR(-EINVAL); 1451 1452 return inet_gso_segment(skb, features); 1453 } 1454 1455 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1456 { 1457 const struct net_offload *ops; 1458 struct sk_buff *pp = NULL; 1459 const struct iphdr *iph; 1460 struct sk_buff *p; 1461 unsigned int hlen; 1462 unsigned int off; 1463 unsigned int id; 1464 int flush = 1; 1465 int proto; 1466 1467 off = skb_gro_offset(skb); 1468 hlen = off + sizeof(*iph); 1469 iph = skb_gro_header(skb, hlen, off); 1470 if (unlikely(!iph)) 1471 goto out; 1472 1473 proto = iph->protocol; 1474 1475 ops = rcu_dereference(inet_offloads[proto]); 1476 if (!ops || !ops->callbacks.gro_receive) 1477 goto out; 1478 1479 if (*(u8 *)iph != 0x45) 1480 goto out; 1481 1482 if (ip_is_fragment(iph)) 1483 goto out; 1484 1485 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1486 goto out; 1487 1488 NAPI_GRO_CB(skb)->proto = proto; 1489 id = ntohl(*(__be32 *)&iph->id); 1490 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1491 id >>= 16; 1492 1493 list_for_each_entry(p, head, list) { 1494 struct iphdr *iph2; 1495 u16 flush_id; 1496 1497 if (!NAPI_GRO_CB(p)->same_flow) 1498 continue; 1499 1500 iph2 = (struct iphdr *)(p->data + off); 1501 /* The above works because, with the exception of the top 1502 * (inner most) layer, we only aggregate pkts with the same 1503 * hdr length so all the hdrs we'll need to verify will start 1504 * at the same offset. 1505 */ 1506 if ((iph->protocol ^ iph2->protocol) | 1507 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1508 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1509 NAPI_GRO_CB(p)->same_flow = 0; 1510 continue; 1511 } 1512 1513 /* All fields must match except length and checksum. */ 1514 NAPI_GRO_CB(p)->flush |= 1515 (iph->ttl ^ iph2->ttl) | 1516 (iph->tos ^ iph2->tos) | 1517 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1518 1519 NAPI_GRO_CB(p)->flush |= flush; 1520 1521 /* We need to store of the IP ID check to be included later 1522 * when we can verify that this packet does in fact belong 1523 * to a given flow. 1524 */ 1525 flush_id = (u16)(id - ntohs(iph2->id)); 1526 1527 /* This bit of code makes it much easier for us to identify 1528 * the cases where we are doing atomic vs non-atomic IP ID 1529 * checks. Specifically an atomic check can return IP ID 1530 * values 0 - 0xFFFF, while a non-atomic check can only 1531 * return 0 or 0xFFFF. 1532 */ 1533 if (!NAPI_GRO_CB(p)->is_atomic || 1534 !(iph->frag_off & htons(IP_DF))) { 1535 flush_id ^= NAPI_GRO_CB(p)->count; 1536 flush_id = flush_id ? 0xFFFF : 0; 1537 } 1538 1539 /* If the previous IP ID value was based on an atomic 1540 * datagram we can overwrite the value and ignore it. 1541 */ 1542 if (NAPI_GRO_CB(skb)->is_atomic) 1543 NAPI_GRO_CB(p)->flush_id = flush_id; 1544 else 1545 NAPI_GRO_CB(p)->flush_id |= flush_id; 1546 } 1547 1548 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1549 NAPI_GRO_CB(skb)->flush |= flush; 1550 skb_set_network_header(skb, off); 1551 /* The above will be needed by the transport layer if there is one 1552 * immediately following this IP hdr. 1553 */ 1554 1555 /* Note : No need to call skb_gro_postpull_rcsum() here, 1556 * as we already checked checksum over ipv4 header was 0 1557 */ 1558 skb_gro_pull(skb, sizeof(*iph)); 1559 skb_set_transport_header(skb, skb_gro_offset(skb)); 1560 1561 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1562 ops->callbacks.gro_receive, head, skb); 1563 1564 out: 1565 skb_gro_flush_final(skb, pp, flush); 1566 1567 return pp; 1568 } 1569 1570 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1571 struct sk_buff *skb) 1572 { 1573 if (NAPI_GRO_CB(skb)->encap_mark) { 1574 NAPI_GRO_CB(skb)->flush = 1; 1575 return NULL; 1576 } 1577 1578 NAPI_GRO_CB(skb)->encap_mark = 1; 1579 1580 return inet_gro_receive(head, skb); 1581 } 1582 1583 #define SECONDS_PER_DAY 86400 1584 1585 /* inet_current_timestamp - Return IP network timestamp 1586 * 1587 * Return milliseconds since midnight in network byte order. 1588 */ 1589 __be32 inet_current_timestamp(void) 1590 { 1591 u32 secs; 1592 u32 msecs; 1593 struct timespec64 ts; 1594 1595 ktime_get_real_ts64(&ts); 1596 1597 /* Get secs since midnight. */ 1598 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1599 /* Convert to msecs. */ 1600 msecs = secs * MSEC_PER_SEC; 1601 /* Convert nsec to msec. */ 1602 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1603 1604 /* Convert to network byte order. */ 1605 return htonl(msecs); 1606 } 1607 EXPORT_SYMBOL(inet_current_timestamp); 1608 1609 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1610 { 1611 if (sk->sk_family == AF_INET) 1612 return ip_recv_error(sk, msg, len, addr_len); 1613 #if IS_ENABLED(CONFIG_IPV6) 1614 if (sk->sk_family == AF_INET6) 1615 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1616 #endif 1617 return -EINVAL; 1618 } 1619 1620 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1621 { 1622 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1623 const struct net_offload *ops; 1624 __be16 totlen = iph->tot_len; 1625 int proto = iph->protocol; 1626 int err = -ENOSYS; 1627 1628 if (skb->encapsulation) { 1629 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1630 skb_set_inner_network_header(skb, nhoff); 1631 } 1632 1633 iph_set_totlen(iph, skb->len - nhoff); 1634 csum_replace2(&iph->check, totlen, iph->tot_len); 1635 1636 ops = rcu_dereference(inet_offloads[proto]); 1637 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1638 goto out; 1639 1640 /* Only need to add sizeof(*iph) to get to the next hdr below 1641 * because any hdr with option will have been flushed in 1642 * inet_gro_receive(). 1643 */ 1644 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1645 tcp4_gro_complete, udp4_gro_complete, 1646 skb, nhoff + sizeof(*iph)); 1647 1648 out: 1649 return err; 1650 } 1651 1652 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1653 { 1654 skb->encapsulation = 1; 1655 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1656 return inet_gro_complete(skb, nhoff); 1657 } 1658 1659 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1660 unsigned short type, unsigned char protocol, 1661 struct net *net) 1662 { 1663 struct socket *sock; 1664 int rc = sock_create_kern(net, family, type, protocol, &sock); 1665 1666 if (rc == 0) { 1667 *sk = sock->sk; 1668 (*sk)->sk_allocation = GFP_ATOMIC; 1669 (*sk)->sk_use_task_frag = false; 1670 /* 1671 * Unhash it so that IP input processing does not even see it, 1672 * we do not wish this socket to see incoming packets. 1673 */ 1674 (*sk)->sk_prot->unhash(*sk); 1675 } 1676 return rc; 1677 } 1678 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1679 1680 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1681 { 1682 unsigned long res = 0; 1683 int i; 1684 1685 for_each_possible_cpu(i) 1686 res += snmp_get_cpu_field(mib, i, offt); 1687 return res; 1688 } 1689 EXPORT_SYMBOL_GPL(snmp_fold_field); 1690 1691 #if BITS_PER_LONG==32 1692 1693 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1694 size_t syncp_offset) 1695 { 1696 void *bhptr; 1697 struct u64_stats_sync *syncp; 1698 u64 v; 1699 unsigned int start; 1700 1701 bhptr = per_cpu_ptr(mib, cpu); 1702 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1703 do { 1704 start = u64_stats_fetch_begin(syncp); 1705 v = *(((u64 *)bhptr) + offt); 1706 } while (u64_stats_fetch_retry(syncp, start)); 1707 1708 return v; 1709 } 1710 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1711 1712 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1713 { 1714 u64 res = 0; 1715 int cpu; 1716 1717 for_each_possible_cpu(cpu) { 1718 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1719 } 1720 return res; 1721 } 1722 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1723 #endif 1724 1725 #ifdef CONFIG_IP_MULTICAST 1726 static const struct net_protocol igmp_protocol = { 1727 .handler = igmp_rcv, 1728 }; 1729 #endif 1730 1731 static const struct net_protocol tcp_protocol = { 1732 .handler = tcp_v4_rcv, 1733 .err_handler = tcp_v4_err, 1734 .no_policy = 1, 1735 .icmp_strict_tag_validation = 1, 1736 }; 1737 1738 static const struct net_protocol udp_protocol = { 1739 .handler = udp_rcv, 1740 .err_handler = udp_err, 1741 .no_policy = 1, 1742 }; 1743 1744 static const struct net_protocol icmp_protocol = { 1745 .handler = icmp_rcv, 1746 .err_handler = icmp_err, 1747 .no_policy = 1, 1748 }; 1749 1750 static __net_init int ipv4_mib_init_net(struct net *net) 1751 { 1752 int i; 1753 1754 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1755 if (!net->mib.tcp_statistics) 1756 goto err_tcp_mib; 1757 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1758 if (!net->mib.ip_statistics) 1759 goto err_ip_mib; 1760 1761 for_each_possible_cpu(i) { 1762 struct ipstats_mib *af_inet_stats; 1763 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1764 u64_stats_init(&af_inet_stats->syncp); 1765 } 1766 1767 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1768 if (!net->mib.net_statistics) 1769 goto err_net_mib; 1770 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1771 if (!net->mib.udp_statistics) 1772 goto err_udp_mib; 1773 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1774 if (!net->mib.udplite_statistics) 1775 goto err_udplite_mib; 1776 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1777 if (!net->mib.icmp_statistics) 1778 goto err_icmp_mib; 1779 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1780 GFP_KERNEL); 1781 if (!net->mib.icmpmsg_statistics) 1782 goto err_icmpmsg_mib; 1783 1784 tcp_mib_init(net); 1785 return 0; 1786 1787 err_icmpmsg_mib: 1788 free_percpu(net->mib.icmp_statistics); 1789 err_icmp_mib: 1790 free_percpu(net->mib.udplite_statistics); 1791 err_udplite_mib: 1792 free_percpu(net->mib.udp_statistics); 1793 err_udp_mib: 1794 free_percpu(net->mib.net_statistics); 1795 err_net_mib: 1796 free_percpu(net->mib.ip_statistics); 1797 err_ip_mib: 1798 free_percpu(net->mib.tcp_statistics); 1799 err_tcp_mib: 1800 return -ENOMEM; 1801 } 1802 1803 static __net_exit void ipv4_mib_exit_net(struct net *net) 1804 { 1805 kfree(net->mib.icmpmsg_statistics); 1806 free_percpu(net->mib.icmp_statistics); 1807 free_percpu(net->mib.udplite_statistics); 1808 free_percpu(net->mib.udp_statistics); 1809 free_percpu(net->mib.net_statistics); 1810 free_percpu(net->mib.ip_statistics); 1811 free_percpu(net->mib.tcp_statistics); 1812 #ifdef CONFIG_MPTCP 1813 /* allocated on demand, see mptcp_init_sock() */ 1814 free_percpu(net->mib.mptcp_statistics); 1815 #endif 1816 } 1817 1818 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1819 .init = ipv4_mib_init_net, 1820 .exit = ipv4_mib_exit_net, 1821 }; 1822 1823 static int __init init_ipv4_mibs(void) 1824 { 1825 return register_pernet_subsys(&ipv4_mib_ops); 1826 } 1827 1828 static __net_init int inet_init_net(struct net *net) 1829 { 1830 /* 1831 * Set defaults for local port range 1832 */ 1833 seqlock_init(&net->ipv4.ip_local_ports.lock); 1834 net->ipv4.ip_local_ports.range[0] = 32768; 1835 net->ipv4.ip_local_ports.range[1] = 60999; 1836 1837 seqlock_init(&net->ipv4.ping_group_range.lock); 1838 /* 1839 * Sane defaults - nobody may create ping sockets. 1840 * Boot scripts should set this to distro-specific group. 1841 */ 1842 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1843 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1844 1845 /* Default values for sysctl-controlled parameters. 1846 * We set them here, in case sysctl is not compiled. 1847 */ 1848 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1849 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1850 net->ipv4.sysctl_ip_dynaddr = 0; 1851 net->ipv4.sysctl_ip_early_demux = 1; 1852 net->ipv4.sysctl_udp_early_demux = 1; 1853 net->ipv4.sysctl_tcp_early_demux = 1; 1854 net->ipv4.sysctl_nexthop_compat_mode = 1; 1855 #ifdef CONFIG_SYSCTL 1856 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1857 #endif 1858 1859 /* Some igmp sysctl, whose values are always used */ 1860 net->ipv4.sysctl_igmp_max_memberships = 20; 1861 net->ipv4.sysctl_igmp_max_msf = 10; 1862 /* IGMP reports for link-local multicast groups are enabled by default */ 1863 net->ipv4.sysctl_igmp_llm_reports = 1; 1864 net->ipv4.sysctl_igmp_qrv = 2; 1865 1866 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1867 1868 return 0; 1869 } 1870 1871 static __net_initdata struct pernet_operations af_inet_ops = { 1872 .init = inet_init_net, 1873 }; 1874 1875 static int __init init_inet_pernet_ops(void) 1876 { 1877 return register_pernet_subsys(&af_inet_ops); 1878 } 1879 1880 static int ipv4_proc_init(void); 1881 1882 /* 1883 * IP protocol layer initialiser 1884 */ 1885 1886 static struct packet_offload ip_packet_offload __read_mostly = { 1887 .type = cpu_to_be16(ETH_P_IP), 1888 .callbacks = { 1889 .gso_segment = inet_gso_segment, 1890 .gro_receive = inet_gro_receive, 1891 .gro_complete = inet_gro_complete, 1892 }, 1893 }; 1894 1895 static const struct net_offload ipip_offload = { 1896 .callbacks = { 1897 .gso_segment = ipip_gso_segment, 1898 .gro_receive = ipip_gro_receive, 1899 .gro_complete = ipip_gro_complete, 1900 }, 1901 }; 1902 1903 static int __init ipip_offload_init(void) 1904 { 1905 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1906 } 1907 1908 static int __init ipv4_offload_init(void) 1909 { 1910 /* 1911 * Add offloads 1912 */ 1913 if (udpv4_offload_init() < 0) 1914 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1915 if (tcpv4_offload_init() < 0) 1916 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1917 if (ipip_offload_init() < 0) 1918 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1919 1920 dev_add_offload(&ip_packet_offload); 1921 return 0; 1922 } 1923 1924 fs_initcall(ipv4_offload_init); 1925 1926 static struct packet_type ip_packet_type __read_mostly = { 1927 .type = cpu_to_be16(ETH_P_IP), 1928 .func = ip_rcv, 1929 .list_func = ip_list_rcv, 1930 }; 1931 1932 static int __init inet_init(void) 1933 { 1934 struct inet_protosw *q; 1935 struct list_head *r; 1936 int rc; 1937 1938 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1939 1940 raw_hashinfo_init(&raw_v4_hashinfo); 1941 1942 rc = proto_register(&tcp_prot, 1); 1943 if (rc) 1944 goto out; 1945 1946 rc = proto_register(&udp_prot, 1); 1947 if (rc) 1948 goto out_unregister_tcp_proto; 1949 1950 rc = proto_register(&raw_prot, 1); 1951 if (rc) 1952 goto out_unregister_udp_proto; 1953 1954 rc = proto_register(&ping_prot, 1); 1955 if (rc) 1956 goto out_unregister_raw_proto; 1957 1958 /* 1959 * Tell SOCKET that we are alive... 1960 */ 1961 1962 (void)sock_register(&inet_family_ops); 1963 1964 #ifdef CONFIG_SYSCTL 1965 ip_static_sysctl_init(); 1966 #endif 1967 1968 /* 1969 * Add all the base protocols. 1970 */ 1971 1972 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1973 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1974 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1975 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1976 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1977 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1978 #ifdef CONFIG_IP_MULTICAST 1979 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1980 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1981 #endif 1982 1983 /* Register the socket-side information for inet_create. */ 1984 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1985 INIT_LIST_HEAD(r); 1986 1987 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1988 inet_register_protosw(q); 1989 1990 /* 1991 * Set the ARP module up 1992 */ 1993 1994 arp_init(); 1995 1996 /* 1997 * Set the IP module up 1998 */ 1999 2000 ip_init(); 2001 2002 /* Initialise per-cpu ipv4 mibs */ 2003 if (init_ipv4_mibs()) 2004 panic("%s: Cannot init ipv4 mibs\n", __func__); 2005 2006 /* Setup TCP slab cache for open requests. */ 2007 tcp_init(); 2008 2009 /* Setup UDP memory threshold */ 2010 udp_init(); 2011 2012 /* Add UDP-Lite (RFC 3828) */ 2013 udplite4_register(); 2014 2015 raw_init(); 2016 2017 ping_init(); 2018 2019 /* 2020 * Set the ICMP layer up 2021 */ 2022 2023 if (icmp_init() < 0) 2024 panic("Failed to create the ICMP control socket.\n"); 2025 2026 /* 2027 * Initialise the multicast router 2028 */ 2029 #if defined(CONFIG_IP_MROUTE) 2030 if (ip_mr_init()) 2031 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2032 #endif 2033 2034 if (init_inet_pernet_ops()) 2035 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2036 2037 ipv4_proc_init(); 2038 2039 ipfrag_init(); 2040 2041 dev_add_pack(&ip_packet_type); 2042 2043 ip_tunnel_core_init(); 2044 2045 rc = 0; 2046 out: 2047 return rc; 2048 out_unregister_raw_proto: 2049 proto_unregister(&raw_prot); 2050 out_unregister_udp_proto: 2051 proto_unregister(&udp_prot); 2052 out_unregister_tcp_proto: 2053 proto_unregister(&tcp_prot); 2054 goto out; 2055 } 2056 2057 fs_initcall(inet_init); 2058 2059 /* ------------------------------------------------------------------------ */ 2060 2061 #ifdef CONFIG_PROC_FS 2062 static int __init ipv4_proc_init(void) 2063 { 2064 int rc = 0; 2065 2066 if (raw_proc_init()) 2067 goto out_raw; 2068 if (tcp4_proc_init()) 2069 goto out_tcp; 2070 if (udp4_proc_init()) 2071 goto out_udp; 2072 if (ping_proc_init()) 2073 goto out_ping; 2074 if (ip_misc_proc_init()) 2075 goto out_misc; 2076 out: 2077 return rc; 2078 out_misc: 2079 ping_proc_exit(); 2080 out_ping: 2081 udp4_proc_exit(); 2082 out_udp: 2083 tcp4_proc_exit(); 2084 out_tcp: 2085 raw_proc_exit(); 2086 out_raw: 2087 rc = -ENOMEM; 2088 goto out; 2089 } 2090 2091 #else /* CONFIG_PROC_FS */ 2092 static int __init ipv4_proc_init(void) 2093 { 2094 return 0; 2095 } 2096 #endif /* CONFIG_PROC_FS */ 2097