1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 sk_refcnt_debug_dec(sk); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 /* 191 * Move a socket into listening state. 192 */ 193 int inet_listen(struct socket *sock, int backlog) 194 { 195 struct sock *sk = sock->sk; 196 unsigned char old_state; 197 int err, tcp_fastopen; 198 199 lock_sock(sk); 200 201 err = -EINVAL; 202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 203 goto out; 204 205 old_state = sk->sk_state; 206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 207 goto out; 208 209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 210 /* Really, if the socket is already in listen state 211 * we can only allow the backlog to be adjusted. 212 */ 213 if (old_state != TCP_LISTEN) { 214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 215 * Note that only TCP sockets (SOCK_STREAM) will reach here. 216 * Also fastopen backlog may already been set via the option 217 * because the socket was in TCP_LISTEN state previously but 218 * was shutdown() rather than close(). 219 */ 220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 222 (tcp_fastopen & TFO_SERVER_ENABLE) && 223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 224 fastopen_queue_tune(sk, backlog); 225 tcp_fastopen_init_key_once(sock_net(sk)); 226 } 227 228 err = inet_csk_listen_start(sk); 229 if (err) 230 goto out; 231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 232 } 233 err = 0; 234 235 out: 236 release_sock(sk); 237 return err; 238 } 239 EXPORT_SYMBOL(inet_listen); 240 241 /* 242 * Create an inet socket. 243 */ 244 245 static int inet_create(struct net *net, struct socket *sock, int protocol, 246 int kern) 247 { 248 struct sock *sk; 249 struct inet_protosw *answer; 250 struct inet_sock *inet; 251 struct proto *answer_prot; 252 unsigned char answer_flags; 253 int try_loading_module = 0; 254 int err; 255 256 if (protocol < 0 || protocol >= IPPROTO_MAX) 257 return -EINVAL; 258 259 sock->state = SS_UNCONNECTED; 260 261 /* Look for the requested type/protocol pair. */ 262 lookup_protocol: 263 err = -ESOCKTNOSUPPORT; 264 rcu_read_lock(); 265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 266 267 err = 0; 268 /* Check the non-wild match. */ 269 if (protocol == answer->protocol) { 270 if (protocol != IPPROTO_IP) 271 break; 272 } else { 273 /* Check for the two wild cases. */ 274 if (IPPROTO_IP == protocol) { 275 protocol = answer->protocol; 276 break; 277 } 278 if (IPPROTO_IP == answer->protocol) 279 break; 280 } 281 err = -EPROTONOSUPPORT; 282 } 283 284 if (unlikely(err)) { 285 if (try_loading_module < 2) { 286 rcu_read_unlock(); 287 /* 288 * Be more specific, e.g. net-pf-2-proto-132-type-1 289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 290 */ 291 if (++try_loading_module == 1) 292 request_module("net-pf-%d-proto-%d-type-%d", 293 PF_INET, protocol, sock->type); 294 /* 295 * Fall back to generic, e.g. net-pf-2-proto-132 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 297 */ 298 else 299 request_module("net-pf-%d-proto-%d", 300 PF_INET, protocol); 301 goto lookup_protocol; 302 } else 303 goto out_rcu_unlock; 304 } 305 306 err = -EPERM; 307 if (sock->type == SOCK_RAW && !kern && 308 !ns_capable(net->user_ns, CAP_NET_RAW)) 309 goto out_rcu_unlock; 310 311 sock->ops = answer->ops; 312 answer_prot = answer->prot; 313 answer_flags = answer->flags; 314 rcu_read_unlock(); 315 316 WARN_ON(!answer_prot->slab); 317 318 err = -ENOMEM; 319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 320 if (!sk) 321 goto out; 322 323 err = 0; 324 if (INET_PROTOSW_REUSE & answer_flags) 325 sk->sk_reuse = SK_CAN_REUSE; 326 327 inet = inet_sk(sk); 328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 329 330 inet->nodefrag = 0; 331 332 if (SOCK_RAW == sock->type) { 333 inet->inet_num = protocol; 334 if (IPPROTO_RAW == protocol) 335 inet->hdrincl = 1; 336 } 337 338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 339 inet->pmtudisc = IP_PMTUDISC_DONT; 340 else 341 inet->pmtudisc = IP_PMTUDISC_WANT; 342 343 inet->inet_id = 0; 344 345 sock_init_data(sock, sk); 346 347 sk->sk_destruct = inet_sock_destruct; 348 sk->sk_protocol = protocol; 349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 350 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 351 352 inet->uc_ttl = -1; 353 inet->mc_loop = 1; 354 inet->mc_ttl = 1; 355 inet->mc_all = 1; 356 inet->mc_index = 0; 357 inet->mc_list = NULL; 358 inet->rcv_tos = 0; 359 360 sk_refcnt_debug_inc(sk); 361 362 if (inet->inet_num) { 363 /* It assumes that any protocol which allows 364 * the user to assign a number at socket 365 * creation time automatically 366 * shares. 367 */ 368 inet->inet_sport = htons(inet->inet_num); 369 /* Add to protocol hash chains. */ 370 err = sk->sk_prot->hash(sk); 371 if (err) { 372 sk_common_release(sk); 373 goto out; 374 } 375 } 376 377 if (sk->sk_prot->init) { 378 err = sk->sk_prot->init(sk); 379 if (err) { 380 sk_common_release(sk); 381 goto out; 382 } 383 } 384 385 if (!kern) { 386 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 387 if (err) { 388 sk_common_release(sk); 389 goto out; 390 } 391 } 392 out: 393 return err; 394 out_rcu_unlock: 395 rcu_read_unlock(); 396 goto out; 397 } 398 399 400 /* 401 * The peer socket should always be NULL (or else). When we call this 402 * function we are destroying the object and from then on nobody 403 * should refer to it. 404 */ 405 int inet_release(struct socket *sock) 406 { 407 struct sock *sk = sock->sk; 408 409 if (sk) { 410 long timeout; 411 412 if (!sk->sk_kern_sock) 413 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 414 415 /* Applications forget to leave groups before exiting */ 416 ip_mc_drop_socket(sk); 417 418 /* If linger is set, we don't return until the close 419 * is complete. Otherwise we return immediately. The 420 * actually closing is done the same either way. 421 * 422 * If the close is due to the process exiting, we never 423 * linger.. 424 */ 425 timeout = 0; 426 if (sock_flag(sk, SOCK_LINGER) && 427 !(current->flags & PF_EXITING)) 428 timeout = sk->sk_lingertime; 429 sk->sk_prot->close(sk, timeout); 430 sock->sk = NULL; 431 } 432 return 0; 433 } 434 EXPORT_SYMBOL(inet_release); 435 436 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 437 { 438 struct sock *sk = sock->sk; 439 u32 flags = BIND_WITH_LOCK; 440 int err; 441 442 /* If the socket has its own bind function then use it. (RAW) */ 443 if (sk->sk_prot->bind) { 444 return sk->sk_prot->bind(sk, uaddr, addr_len); 445 } 446 if (addr_len < sizeof(struct sockaddr_in)) 447 return -EINVAL; 448 449 /* BPF prog is run before any checks are done so that if the prog 450 * changes context in a wrong way it will be caught. 451 */ 452 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 453 CGROUP_INET4_BIND, &flags); 454 if (err) 455 return err; 456 457 return __inet_bind(sk, uaddr, addr_len, flags); 458 } 459 EXPORT_SYMBOL(inet_bind); 460 461 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 462 u32 flags) 463 { 464 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 465 struct inet_sock *inet = inet_sk(sk); 466 struct net *net = sock_net(sk); 467 unsigned short snum; 468 int chk_addr_ret; 469 u32 tb_id = RT_TABLE_LOCAL; 470 int err; 471 472 if (addr->sin_family != AF_INET) { 473 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 474 * only if s_addr is INADDR_ANY. 475 */ 476 err = -EAFNOSUPPORT; 477 if (addr->sin_family != AF_UNSPEC || 478 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 479 goto out; 480 } 481 482 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 483 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 484 485 /* Not specified by any standard per-se, however it breaks too 486 * many applications when removed. It is unfortunate since 487 * allowing applications to make a non-local bind solves 488 * several problems with systems using dynamic addressing. 489 * (ie. your servers still start up even if your ISDN link 490 * is temporarily down) 491 */ 492 err = -EADDRNOTAVAIL; 493 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 494 chk_addr_ret)) 495 goto out; 496 497 snum = ntohs(addr->sin_port); 498 err = -EACCES; 499 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 500 snum && inet_port_requires_bind_service(net, snum) && 501 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 502 goto out; 503 504 /* We keep a pair of addresses. rcv_saddr is the one 505 * used by hash lookups, and saddr is used for transmit. 506 * 507 * In the BSD API these are the same except where it 508 * would be illegal to use them (multicast/broadcast) in 509 * which case the sending device address is used. 510 */ 511 if (flags & BIND_WITH_LOCK) 512 lock_sock(sk); 513 514 /* Check these errors (active socket, double bind). */ 515 err = -EINVAL; 516 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 517 goto out_release_sock; 518 519 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 520 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 521 inet->inet_saddr = 0; /* Use device */ 522 523 /* Make sure we are allowed to bind here. */ 524 if (snum || !(inet->bind_address_no_port || 525 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 526 err = sk->sk_prot->get_port(sk, snum); 527 if (err) { 528 inet->inet_saddr = inet->inet_rcv_saddr = 0; 529 goto out_release_sock; 530 } 531 if (!(flags & BIND_FROM_BPF)) { 532 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 533 if (err) { 534 inet->inet_saddr = inet->inet_rcv_saddr = 0; 535 if (sk->sk_prot->put_port) 536 sk->sk_prot->put_port(sk); 537 goto out_release_sock; 538 } 539 } 540 } 541 542 if (inet->inet_rcv_saddr) 543 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 544 if (snum) 545 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 546 inet->inet_sport = htons(inet->inet_num); 547 inet->inet_daddr = 0; 548 inet->inet_dport = 0; 549 sk_dst_reset(sk); 550 err = 0; 551 out_release_sock: 552 if (flags & BIND_WITH_LOCK) 553 release_sock(sk); 554 out: 555 return err; 556 } 557 558 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 559 int addr_len, int flags) 560 { 561 struct sock *sk = sock->sk; 562 const struct proto *prot; 563 int err; 564 565 if (addr_len < sizeof(uaddr->sa_family)) 566 return -EINVAL; 567 568 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 569 prot = READ_ONCE(sk->sk_prot); 570 571 if (uaddr->sa_family == AF_UNSPEC) 572 return prot->disconnect(sk, flags); 573 574 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 575 err = prot->pre_connect(sk, uaddr, addr_len); 576 if (err) 577 return err; 578 } 579 580 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 581 return -EAGAIN; 582 return prot->connect(sk, uaddr, addr_len); 583 } 584 EXPORT_SYMBOL(inet_dgram_connect); 585 586 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 587 { 588 DEFINE_WAIT_FUNC(wait, woken_wake_function); 589 590 add_wait_queue(sk_sleep(sk), &wait); 591 sk->sk_write_pending += writebias; 592 593 /* Basic assumption: if someone sets sk->sk_err, he _must_ 594 * change state of the socket from TCP_SYN_*. 595 * Connect() does not allow to get error notifications 596 * without closing the socket. 597 */ 598 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 599 release_sock(sk); 600 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 601 lock_sock(sk); 602 if (signal_pending(current) || !timeo) 603 break; 604 } 605 remove_wait_queue(sk_sleep(sk), &wait); 606 sk->sk_write_pending -= writebias; 607 return timeo; 608 } 609 610 /* 611 * Connect to a remote host. There is regrettably still a little 612 * TCP 'magic' in here. 613 */ 614 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 615 int addr_len, int flags, int is_sendmsg) 616 { 617 struct sock *sk = sock->sk; 618 int err; 619 long timeo; 620 621 /* 622 * uaddr can be NULL and addr_len can be 0 if: 623 * sk is a TCP fastopen active socket and 624 * TCP_FASTOPEN_CONNECT sockopt is set and 625 * we already have a valid cookie for this socket. 626 * In this case, user can call write() after connect(). 627 * write() will invoke tcp_sendmsg_fastopen() which calls 628 * __inet_stream_connect(). 629 */ 630 if (uaddr) { 631 if (addr_len < sizeof(uaddr->sa_family)) 632 return -EINVAL; 633 634 if (uaddr->sa_family == AF_UNSPEC) { 635 err = sk->sk_prot->disconnect(sk, flags); 636 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 637 goto out; 638 } 639 } 640 641 switch (sock->state) { 642 default: 643 err = -EINVAL; 644 goto out; 645 case SS_CONNECTED: 646 err = -EISCONN; 647 goto out; 648 case SS_CONNECTING: 649 if (inet_sk(sk)->defer_connect) 650 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 651 else 652 err = -EALREADY; 653 /* Fall out of switch with err, set for this state */ 654 break; 655 case SS_UNCONNECTED: 656 err = -EISCONN; 657 if (sk->sk_state != TCP_CLOSE) 658 goto out; 659 660 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 661 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 662 if (err) 663 goto out; 664 } 665 666 err = sk->sk_prot->connect(sk, uaddr, addr_len); 667 if (err < 0) 668 goto out; 669 670 sock->state = SS_CONNECTING; 671 672 if (!err && inet_sk(sk)->defer_connect) 673 goto out; 674 675 /* Just entered SS_CONNECTING state; the only 676 * difference is that return value in non-blocking 677 * case is EINPROGRESS, rather than EALREADY. 678 */ 679 err = -EINPROGRESS; 680 break; 681 } 682 683 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 684 685 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 686 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 687 tcp_sk(sk)->fastopen_req && 688 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 689 690 /* Error code is set above */ 691 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 692 goto out; 693 694 err = sock_intr_errno(timeo); 695 if (signal_pending(current)) 696 goto out; 697 } 698 699 /* Connection was closed by RST, timeout, ICMP error 700 * or another process disconnected us. 701 */ 702 if (sk->sk_state == TCP_CLOSE) 703 goto sock_error; 704 705 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 706 * and error was received after socket entered established state. 707 * Hence, it is handled normally after connect() return successfully. 708 */ 709 710 sock->state = SS_CONNECTED; 711 err = 0; 712 out: 713 return err; 714 715 sock_error: 716 err = sock_error(sk) ? : -ECONNABORTED; 717 sock->state = SS_UNCONNECTED; 718 if (sk->sk_prot->disconnect(sk, flags)) 719 sock->state = SS_DISCONNECTING; 720 goto out; 721 } 722 EXPORT_SYMBOL(__inet_stream_connect); 723 724 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 725 int addr_len, int flags) 726 { 727 int err; 728 729 lock_sock(sock->sk); 730 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 731 release_sock(sock->sk); 732 return err; 733 } 734 EXPORT_SYMBOL(inet_stream_connect); 735 736 /* 737 * Accept a pending connection. The TCP layer now gives BSD semantics. 738 */ 739 740 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 741 bool kern) 742 { 743 struct sock *sk1 = sock->sk, *sk2; 744 int err = -EINVAL; 745 746 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 747 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 748 if (!sk2) 749 goto do_err; 750 751 lock_sock(sk2); 752 753 sock_rps_record_flow(sk2); 754 WARN_ON(!((1 << sk2->sk_state) & 755 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 756 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 757 758 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 759 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 760 sock_graft(sk2, newsock); 761 762 newsock->state = SS_CONNECTED; 763 err = 0; 764 release_sock(sk2); 765 do_err: 766 return err; 767 } 768 EXPORT_SYMBOL(inet_accept); 769 770 /* 771 * This does both peername and sockname. 772 */ 773 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 774 int peer) 775 { 776 struct sock *sk = sock->sk; 777 struct inet_sock *inet = inet_sk(sk); 778 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 779 780 sin->sin_family = AF_INET; 781 lock_sock(sk); 782 if (peer) { 783 if (!inet->inet_dport || 784 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 785 peer == 1)) { 786 release_sock(sk); 787 return -ENOTCONN; 788 } 789 sin->sin_port = inet->inet_dport; 790 sin->sin_addr.s_addr = inet->inet_daddr; 791 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 792 CGROUP_INET4_GETPEERNAME); 793 } else { 794 __be32 addr = inet->inet_rcv_saddr; 795 if (!addr) 796 addr = inet->inet_saddr; 797 sin->sin_port = inet->inet_sport; 798 sin->sin_addr.s_addr = addr; 799 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 800 CGROUP_INET4_GETSOCKNAME); 801 } 802 release_sock(sk); 803 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 804 return sizeof(*sin); 805 } 806 EXPORT_SYMBOL(inet_getname); 807 808 int inet_send_prepare(struct sock *sk) 809 { 810 sock_rps_record_flow(sk); 811 812 /* We may need to bind the socket. */ 813 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 814 inet_autobind(sk)) 815 return -EAGAIN; 816 817 return 0; 818 } 819 EXPORT_SYMBOL_GPL(inet_send_prepare); 820 821 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 822 { 823 struct sock *sk = sock->sk; 824 825 if (unlikely(inet_send_prepare(sk))) 826 return -EAGAIN; 827 828 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 829 sk, msg, size); 830 } 831 EXPORT_SYMBOL(inet_sendmsg); 832 833 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 834 size_t size, int flags) 835 { 836 struct sock *sk = sock->sk; 837 const struct proto *prot; 838 839 if (unlikely(inet_send_prepare(sk))) 840 return -EAGAIN; 841 842 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 843 prot = READ_ONCE(sk->sk_prot); 844 if (prot->sendpage) 845 return prot->sendpage(sk, page, offset, size, flags); 846 return sock_no_sendpage(sock, page, offset, size, flags); 847 } 848 EXPORT_SYMBOL(inet_sendpage); 849 850 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 851 size_t, int, int *)); 852 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 853 int flags) 854 { 855 struct sock *sk = sock->sk; 856 int addr_len = 0; 857 int err; 858 859 if (likely(!(flags & MSG_ERRQUEUE))) 860 sock_rps_record_flow(sk); 861 862 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 863 sk, msg, size, flags, &addr_len); 864 if (err >= 0) 865 msg->msg_namelen = addr_len; 866 return err; 867 } 868 EXPORT_SYMBOL(inet_recvmsg); 869 870 int inet_shutdown(struct socket *sock, int how) 871 { 872 struct sock *sk = sock->sk; 873 int err = 0; 874 875 /* This should really check to make sure 876 * the socket is a TCP socket. (WHY AC...) 877 */ 878 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 879 1->2 bit 2 snds. 880 2->3 */ 881 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 882 return -EINVAL; 883 884 lock_sock(sk); 885 if (sock->state == SS_CONNECTING) { 886 if ((1 << sk->sk_state) & 887 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 888 sock->state = SS_DISCONNECTING; 889 else 890 sock->state = SS_CONNECTED; 891 } 892 893 switch (sk->sk_state) { 894 case TCP_CLOSE: 895 err = -ENOTCONN; 896 /* Hack to wake up other listeners, who can poll for 897 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 898 fallthrough; 899 default: 900 sk->sk_shutdown |= how; 901 if (sk->sk_prot->shutdown) 902 sk->sk_prot->shutdown(sk, how); 903 break; 904 905 /* Remaining two branches are temporary solution for missing 906 * close() in multithreaded environment. It is _not_ a good idea, 907 * but we have no choice until close() is repaired at VFS level. 908 */ 909 case TCP_LISTEN: 910 if (!(how & RCV_SHUTDOWN)) 911 break; 912 fallthrough; 913 case TCP_SYN_SENT: 914 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 915 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 916 break; 917 } 918 919 /* Wake up anyone sleeping in poll. */ 920 sk->sk_state_change(sk); 921 release_sock(sk); 922 return err; 923 } 924 EXPORT_SYMBOL(inet_shutdown); 925 926 /* 927 * ioctl() calls you can issue on an INET socket. Most of these are 928 * device configuration and stuff and very rarely used. Some ioctls 929 * pass on to the socket itself. 930 * 931 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 932 * loads the devconfigure module does its configuring and unloads it. 933 * There's a good 20K of config code hanging around the kernel. 934 */ 935 936 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 937 { 938 struct sock *sk = sock->sk; 939 int err = 0; 940 struct net *net = sock_net(sk); 941 void __user *p = (void __user *)arg; 942 struct ifreq ifr; 943 struct rtentry rt; 944 945 switch (cmd) { 946 case SIOCADDRT: 947 case SIOCDELRT: 948 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 949 return -EFAULT; 950 err = ip_rt_ioctl(net, cmd, &rt); 951 break; 952 case SIOCRTMSG: 953 err = -EINVAL; 954 break; 955 case SIOCDARP: 956 case SIOCGARP: 957 case SIOCSARP: 958 err = arp_ioctl(net, cmd, (void __user *)arg); 959 break; 960 case SIOCGIFADDR: 961 case SIOCGIFBRDADDR: 962 case SIOCGIFNETMASK: 963 case SIOCGIFDSTADDR: 964 case SIOCGIFPFLAGS: 965 if (get_user_ifreq(&ifr, NULL, p)) 966 return -EFAULT; 967 err = devinet_ioctl(net, cmd, &ifr); 968 if (!err && put_user_ifreq(&ifr, p)) 969 err = -EFAULT; 970 break; 971 972 case SIOCSIFADDR: 973 case SIOCSIFBRDADDR: 974 case SIOCSIFNETMASK: 975 case SIOCSIFDSTADDR: 976 case SIOCSIFPFLAGS: 977 case SIOCSIFFLAGS: 978 if (get_user_ifreq(&ifr, NULL, p)) 979 return -EFAULT; 980 err = devinet_ioctl(net, cmd, &ifr); 981 break; 982 default: 983 if (sk->sk_prot->ioctl) 984 err = sk->sk_prot->ioctl(sk, cmd, arg); 985 else 986 err = -ENOIOCTLCMD; 987 break; 988 } 989 return err; 990 } 991 EXPORT_SYMBOL(inet_ioctl); 992 993 #ifdef CONFIG_COMPAT 994 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 995 struct compat_rtentry __user *ur) 996 { 997 compat_uptr_t rtdev; 998 struct rtentry rt; 999 1000 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1001 3 * sizeof(struct sockaddr)) || 1002 get_user(rt.rt_flags, &ur->rt_flags) || 1003 get_user(rt.rt_metric, &ur->rt_metric) || 1004 get_user(rt.rt_mtu, &ur->rt_mtu) || 1005 get_user(rt.rt_window, &ur->rt_window) || 1006 get_user(rt.rt_irtt, &ur->rt_irtt) || 1007 get_user(rtdev, &ur->rt_dev)) 1008 return -EFAULT; 1009 1010 rt.rt_dev = compat_ptr(rtdev); 1011 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1012 } 1013 1014 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1015 { 1016 void __user *argp = compat_ptr(arg); 1017 struct sock *sk = sock->sk; 1018 1019 switch (cmd) { 1020 case SIOCADDRT: 1021 case SIOCDELRT: 1022 return inet_compat_routing_ioctl(sk, cmd, argp); 1023 default: 1024 if (!sk->sk_prot->compat_ioctl) 1025 return -ENOIOCTLCMD; 1026 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1027 } 1028 } 1029 #endif /* CONFIG_COMPAT */ 1030 1031 const struct proto_ops inet_stream_ops = { 1032 .family = PF_INET, 1033 .owner = THIS_MODULE, 1034 .release = inet_release, 1035 .bind = inet_bind, 1036 .connect = inet_stream_connect, 1037 .socketpair = sock_no_socketpair, 1038 .accept = inet_accept, 1039 .getname = inet_getname, 1040 .poll = tcp_poll, 1041 .ioctl = inet_ioctl, 1042 .gettstamp = sock_gettstamp, 1043 .listen = inet_listen, 1044 .shutdown = inet_shutdown, 1045 .setsockopt = sock_common_setsockopt, 1046 .getsockopt = sock_common_getsockopt, 1047 .sendmsg = inet_sendmsg, 1048 .recvmsg = inet_recvmsg, 1049 #ifdef CONFIG_MMU 1050 .mmap = tcp_mmap, 1051 #endif 1052 .sendpage = inet_sendpage, 1053 .splice_read = tcp_splice_read, 1054 .read_sock = tcp_read_sock, 1055 .read_skb = tcp_read_skb, 1056 .sendmsg_locked = tcp_sendmsg_locked, 1057 .sendpage_locked = tcp_sendpage_locked, 1058 .peek_len = tcp_peek_len, 1059 #ifdef CONFIG_COMPAT 1060 .compat_ioctl = inet_compat_ioctl, 1061 #endif 1062 .set_rcvlowat = tcp_set_rcvlowat, 1063 }; 1064 EXPORT_SYMBOL(inet_stream_ops); 1065 1066 const struct proto_ops inet_dgram_ops = { 1067 .family = PF_INET, 1068 .owner = THIS_MODULE, 1069 .release = inet_release, 1070 .bind = inet_bind, 1071 .connect = inet_dgram_connect, 1072 .socketpair = sock_no_socketpair, 1073 .accept = sock_no_accept, 1074 .getname = inet_getname, 1075 .poll = udp_poll, 1076 .ioctl = inet_ioctl, 1077 .gettstamp = sock_gettstamp, 1078 .listen = sock_no_listen, 1079 .shutdown = inet_shutdown, 1080 .setsockopt = sock_common_setsockopt, 1081 .getsockopt = sock_common_getsockopt, 1082 .sendmsg = inet_sendmsg, 1083 .read_skb = udp_read_skb, 1084 .recvmsg = inet_recvmsg, 1085 .mmap = sock_no_mmap, 1086 .sendpage = inet_sendpage, 1087 .set_peek_off = sk_set_peek_off, 1088 #ifdef CONFIG_COMPAT 1089 .compat_ioctl = inet_compat_ioctl, 1090 #endif 1091 }; 1092 EXPORT_SYMBOL(inet_dgram_ops); 1093 1094 /* 1095 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1096 * udp_poll 1097 */ 1098 static const struct proto_ops inet_sockraw_ops = { 1099 .family = PF_INET, 1100 .owner = THIS_MODULE, 1101 .release = inet_release, 1102 .bind = inet_bind, 1103 .connect = inet_dgram_connect, 1104 .socketpair = sock_no_socketpair, 1105 .accept = sock_no_accept, 1106 .getname = inet_getname, 1107 .poll = datagram_poll, 1108 .ioctl = inet_ioctl, 1109 .gettstamp = sock_gettstamp, 1110 .listen = sock_no_listen, 1111 .shutdown = inet_shutdown, 1112 .setsockopt = sock_common_setsockopt, 1113 .getsockopt = sock_common_getsockopt, 1114 .sendmsg = inet_sendmsg, 1115 .recvmsg = inet_recvmsg, 1116 .mmap = sock_no_mmap, 1117 .sendpage = inet_sendpage, 1118 #ifdef CONFIG_COMPAT 1119 .compat_ioctl = inet_compat_ioctl, 1120 #endif 1121 }; 1122 1123 static const struct net_proto_family inet_family_ops = { 1124 .family = PF_INET, 1125 .create = inet_create, 1126 .owner = THIS_MODULE, 1127 }; 1128 1129 /* Upon startup we insert all the elements in inetsw_array[] into 1130 * the linked list inetsw. 1131 */ 1132 static struct inet_protosw inetsw_array[] = 1133 { 1134 { 1135 .type = SOCK_STREAM, 1136 .protocol = IPPROTO_TCP, 1137 .prot = &tcp_prot, 1138 .ops = &inet_stream_ops, 1139 .flags = INET_PROTOSW_PERMANENT | 1140 INET_PROTOSW_ICSK, 1141 }, 1142 1143 { 1144 .type = SOCK_DGRAM, 1145 .protocol = IPPROTO_UDP, 1146 .prot = &udp_prot, 1147 .ops = &inet_dgram_ops, 1148 .flags = INET_PROTOSW_PERMANENT, 1149 }, 1150 1151 { 1152 .type = SOCK_DGRAM, 1153 .protocol = IPPROTO_ICMP, 1154 .prot = &ping_prot, 1155 .ops = &inet_sockraw_ops, 1156 .flags = INET_PROTOSW_REUSE, 1157 }, 1158 1159 { 1160 .type = SOCK_RAW, 1161 .protocol = IPPROTO_IP, /* wild card */ 1162 .prot = &raw_prot, 1163 .ops = &inet_sockraw_ops, 1164 .flags = INET_PROTOSW_REUSE, 1165 } 1166 }; 1167 1168 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1169 1170 void inet_register_protosw(struct inet_protosw *p) 1171 { 1172 struct list_head *lh; 1173 struct inet_protosw *answer; 1174 int protocol = p->protocol; 1175 struct list_head *last_perm; 1176 1177 spin_lock_bh(&inetsw_lock); 1178 1179 if (p->type >= SOCK_MAX) 1180 goto out_illegal; 1181 1182 /* If we are trying to override a permanent protocol, bail. */ 1183 last_perm = &inetsw[p->type]; 1184 list_for_each(lh, &inetsw[p->type]) { 1185 answer = list_entry(lh, struct inet_protosw, list); 1186 /* Check only the non-wild match. */ 1187 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1188 break; 1189 if (protocol == answer->protocol) 1190 goto out_permanent; 1191 last_perm = lh; 1192 } 1193 1194 /* Add the new entry after the last permanent entry if any, so that 1195 * the new entry does not override a permanent entry when matched with 1196 * a wild-card protocol. But it is allowed to override any existing 1197 * non-permanent entry. This means that when we remove this entry, the 1198 * system automatically returns to the old behavior. 1199 */ 1200 list_add_rcu(&p->list, last_perm); 1201 out: 1202 spin_unlock_bh(&inetsw_lock); 1203 1204 return; 1205 1206 out_permanent: 1207 pr_err("Attempt to override permanent protocol %d\n", protocol); 1208 goto out; 1209 1210 out_illegal: 1211 pr_err("Ignoring attempt to register invalid socket type %d\n", 1212 p->type); 1213 goto out; 1214 } 1215 EXPORT_SYMBOL(inet_register_protosw); 1216 1217 void inet_unregister_protosw(struct inet_protosw *p) 1218 { 1219 if (INET_PROTOSW_PERMANENT & p->flags) { 1220 pr_err("Attempt to unregister permanent protocol %d\n", 1221 p->protocol); 1222 } else { 1223 spin_lock_bh(&inetsw_lock); 1224 list_del_rcu(&p->list); 1225 spin_unlock_bh(&inetsw_lock); 1226 1227 synchronize_net(); 1228 } 1229 } 1230 EXPORT_SYMBOL(inet_unregister_protosw); 1231 1232 static int inet_sk_reselect_saddr(struct sock *sk) 1233 { 1234 struct inet_sock *inet = inet_sk(sk); 1235 __be32 old_saddr = inet->inet_saddr; 1236 __be32 daddr = inet->inet_daddr; 1237 struct flowi4 *fl4; 1238 struct rtable *rt; 1239 __be32 new_saddr; 1240 struct ip_options_rcu *inet_opt; 1241 int err; 1242 1243 inet_opt = rcu_dereference_protected(inet->inet_opt, 1244 lockdep_sock_is_held(sk)); 1245 if (inet_opt && inet_opt->opt.srr) 1246 daddr = inet_opt->opt.faddr; 1247 1248 /* Query new route. */ 1249 fl4 = &inet->cork.fl.u.ip4; 1250 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1251 sk->sk_protocol, inet->inet_sport, 1252 inet->inet_dport, sk); 1253 if (IS_ERR(rt)) 1254 return PTR_ERR(rt); 1255 1256 new_saddr = fl4->saddr; 1257 1258 if (new_saddr == old_saddr) { 1259 sk_setup_caps(sk, &rt->dst); 1260 return 0; 1261 } 1262 1263 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1264 if (err) { 1265 ip_rt_put(rt); 1266 return err; 1267 } 1268 1269 sk_setup_caps(sk, &rt->dst); 1270 1271 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1272 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1273 __func__, &old_saddr, &new_saddr); 1274 } 1275 1276 /* 1277 * XXX The only one ugly spot where we need to 1278 * XXX really change the sockets identity after 1279 * XXX it has entered the hashes. -DaveM 1280 * 1281 * Besides that, it does not check for connection 1282 * uniqueness. Wait for troubles. 1283 */ 1284 return __sk_prot_rehash(sk); 1285 } 1286 1287 int inet_sk_rebuild_header(struct sock *sk) 1288 { 1289 struct inet_sock *inet = inet_sk(sk); 1290 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1291 __be32 daddr; 1292 struct ip_options_rcu *inet_opt; 1293 struct flowi4 *fl4; 1294 int err; 1295 1296 /* Route is OK, nothing to do. */ 1297 if (rt) 1298 return 0; 1299 1300 /* Reroute. */ 1301 rcu_read_lock(); 1302 inet_opt = rcu_dereference(inet->inet_opt); 1303 daddr = inet->inet_daddr; 1304 if (inet_opt && inet_opt->opt.srr) 1305 daddr = inet_opt->opt.faddr; 1306 rcu_read_unlock(); 1307 fl4 = &inet->cork.fl.u.ip4; 1308 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1309 inet->inet_dport, inet->inet_sport, 1310 sk->sk_protocol, RT_CONN_FLAGS(sk), 1311 sk->sk_bound_dev_if); 1312 if (!IS_ERR(rt)) { 1313 err = 0; 1314 sk_setup_caps(sk, &rt->dst); 1315 } else { 1316 err = PTR_ERR(rt); 1317 1318 /* Routing failed... */ 1319 sk->sk_route_caps = 0; 1320 /* 1321 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1322 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1323 */ 1324 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1325 sk->sk_state != TCP_SYN_SENT || 1326 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1327 (err = inet_sk_reselect_saddr(sk)) != 0) 1328 sk->sk_err_soft = -err; 1329 } 1330 1331 return err; 1332 } 1333 EXPORT_SYMBOL(inet_sk_rebuild_header); 1334 1335 void inet_sk_set_state(struct sock *sk, int state) 1336 { 1337 trace_inet_sock_set_state(sk, sk->sk_state, state); 1338 sk->sk_state = state; 1339 } 1340 EXPORT_SYMBOL(inet_sk_set_state); 1341 1342 void inet_sk_state_store(struct sock *sk, int newstate) 1343 { 1344 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1345 smp_store_release(&sk->sk_state, newstate); 1346 } 1347 1348 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1349 netdev_features_t features) 1350 { 1351 bool udpfrag = false, fixedid = false, gso_partial, encap; 1352 struct sk_buff *segs = ERR_PTR(-EINVAL); 1353 const struct net_offload *ops; 1354 unsigned int offset = 0; 1355 struct iphdr *iph; 1356 int proto, tot_len; 1357 int nhoff; 1358 int ihl; 1359 int id; 1360 1361 skb_reset_network_header(skb); 1362 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1363 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1364 goto out; 1365 1366 iph = ip_hdr(skb); 1367 ihl = iph->ihl * 4; 1368 if (ihl < sizeof(*iph)) 1369 goto out; 1370 1371 id = ntohs(iph->id); 1372 proto = iph->protocol; 1373 1374 /* Warning: after this point, iph might be no longer valid */ 1375 if (unlikely(!pskb_may_pull(skb, ihl))) 1376 goto out; 1377 __skb_pull(skb, ihl); 1378 1379 encap = SKB_GSO_CB(skb)->encap_level > 0; 1380 if (encap) 1381 features &= skb->dev->hw_enc_features; 1382 SKB_GSO_CB(skb)->encap_level += ihl; 1383 1384 skb_reset_transport_header(skb); 1385 1386 segs = ERR_PTR(-EPROTONOSUPPORT); 1387 1388 if (!skb->encapsulation || encap) { 1389 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1390 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1391 1392 /* fixed ID is invalid if DF bit is not set */ 1393 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1394 goto out; 1395 } 1396 1397 ops = rcu_dereference(inet_offloads[proto]); 1398 if (likely(ops && ops->callbacks.gso_segment)) { 1399 segs = ops->callbacks.gso_segment(skb, features); 1400 if (!segs) 1401 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1402 } 1403 1404 if (IS_ERR_OR_NULL(segs)) 1405 goto out; 1406 1407 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1408 1409 skb = segs; 1410 do { 1411 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1412 if (udpfrag) { 1413 iph->frag_off = htons(offset >> 3); 1414 if (skb->next) 1415 iph->frag_off |= htons(IP_MF); 1416 offset += skb->len - nhoff - ihl; 1417 tot_len = skb->len - nhoff; 1418 } else if (skb_is_gso(skb)) { 1419 if (!fixedid) { 1420 iph->id = htons(id); 1421 id += skb_shinfo(skb)->gso_segs; 1422 } 1423 1424 if (gso_partial) 1425 tot_len = skb_shinfo(skb)->gso_size + 1426 SKB_GSO_CB(skb)->data_offset + 1427 skb->head - (unsigned char *)iph; 1428 else 1429 tot_len = skb->len - nhoff; 1430 } else { 1431 if (!fixedid) 1432 iph->id = htons(id++); 1433 tot_len = skb->len - nhoff; 1434 } 1435 iph->tot_len = htons(tot_len); 1436 ip_send_check(iph); 1437 if (encap) 1438 skb_reset_inner_headers(skb); 1439 skb->network_header = (u8 *)iph - skb->head; 1440 skb_reset_mac_len(skb); 1441 } while ((skb = skb->next)); 1442 1443 out: 1444 return segs; 1445 } 1446 1447 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1448 netdev_features_t features) 1449 { 1450 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1451 return ERR_PTR(-EINVAL); 1452 1453 return inet_gso_segment(skb, features); 1454 } 1455 1456 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1457 { 1458 const struct net_offload *ops; 1459 struct sk_buff *pp = NULL; 1460 const struct iphdr *iph; 1461 struct sk_buff *p; 1462 unsigned int hlen; 1463 unsigned int off; 1464 unsigned int id; 1465 int flush = 1; 1466 int proto; 1467 1468 off = skb_gro_offset(skb); 1469 hlen = off + sizeof(*iph); 1470 iph = skb_gro_header(skb, hlen, off); 1471 if (unlikely(!iph)) 1472 goto out; 1473 1474 proto = iph->protocol; 1475 1476 ops = rcu_dereference(inet_offloads[proto]); 1477 if (!ops || !ops->callbacks.gro_receive) 1478 goto out; 1479 1480 if (*(u8 *)iph != 0x45) 1481 goto out; 1482 1483 if (ip_is_fragment(iph)) 1484 goto out; 1485 1486 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1487 goto out; 1488 1489 NAPI_GRO_CB(skb)->proto = proto; 1490 id = ntohl(*(__be32 *)&iph->id); 1491 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1492 id >>= 16; 1493 1494 list_for_each_entry(p, head, list) { 1495 struct iphdr *iph2; 1496 u16 flush_id; 1497 1498 if (!NAPI_GRO_CB(p)->same_flow) 1499 continue; 1500 1501 iph2 = (struct iphdr *)(p->data + off); 1502 /* The above works because, with the exception of the top 1503 * (inner most) layer, we only aggregate pkts with the same 1504 * hdr length so all the hdrs we'll need to verify will start 1505 * at the same offset. 1506 */ 1507 if ((iph->protocol ^ iph2->protocol) | 1508 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1509 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1510 NAPI_GRO_CB(p)->same_flow = 0; 1511 continue; 1512 } 1513 1514 /* All fields must match except length and checksum. */ 1515 NAPI_GRO_CB(p)->flush |= 1516 (iph->ttl ^ iph2->ttl) | 1517 (iph->tos ^ iph2->tos) | 1518 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1519 1520 NAPI_GRO_CB(p)->flush |= flush; 1521 1522 /* We need to store of the IP ID check to be included later 1523 * when we can verify that this packet does in fact belong 1524 * to a given flow. 1525 */ 1526 flush_id = (u16)(id - ntohs(iph2->id)); 1527 1528 /* This bit of code makes it much easier for us to identify 1529 * the cases where we are doing atomic vs non-atomic IP ID 1530 * checks. Specifically an atomic check can return IP ID 1531 * values 0 - 0xFFFF, while a non-atomic check can only 1532 * return 0 or 0xFFFF. 1533 */ 1534 if (!NAPI_GRO_CB(p)->is_atomic || 1535 !(iph->frag_off & htons(IP_DF))) { 1536 flush_id ^= NAPI_GRO_CB(p)->count; 1537 flush_id = flush_id ? 0xFFFF : 0; 1538 } 1539 1540 /* If the previous IP ID value was based on an atomic 1541 * datagram we can overwrite the value and ignore it. 1542 */ 1543 if (NAPI_GRO_CB(skb)->is_atomic) 1544 NAPI_GRO_CB(p)->flush_id = flush_id; 1545 else 1546 NAPI_GRO_CB(p)->flush_id |= flush_id; 1547 } 1548 1549 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1550 NAPI_GRO_CB(skb)->flush |= flush; 1551 skb_set_network_header(skb, off); 1552 /* The above will be needed by the transport layer if there is one 1553 * immediately following this IP hdr. 1554 */ 1555 1556 /* Note : No need to call skb_gro_postpull_rcsum() here, 1557 * as we already checked checksum over ipv4 header was 0 1558 */ 1559 skb_gro_pull(skb, sizeof(*iph)); 1560 skb_set_transport_header(skb, skb_gro_offset(skb)); 1561 1562 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1563 ops->callbacks.gro_receive, head, skb); 1564 1565 out: 1566 skb_gro_flush_final(skb, pp, flush); 1567 1568 return pp; 1569 } 1570 1571 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1572 struct sk_buff *skb) 1573 { 1574 if (NAPI_GRO_CB(skb)->encap_mark) { 1575 NAPI_GRO_CB(skb)->flush = 1; 1576 return NULL; 1577 } 1578 1579 NAPI_GRO_CB(skb)->encap_mark = 1; 1580 1581 return inet_gro_receive(head, skb); 1582 } 1583 1584 #define SECONDS_PER_DAY 86400 1585 1586 /* inet_current_timestamp - Return IP network timestamp 1587 * 1588 * Return milliseconds since midnight in network byte order. 1589 */ 1590 __be32 inet_current_timestamp(void) 1591 { 1592 u32 secs; 1593 u32 msecs; 1594 struct timespec64 ts; 1595 1596 ktime_get_real_ts64(&ts); 1597 1598 /* Get secs since midnight. */ 1599 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1600 /* Convert to msecs. */ 1601 msecs = secs * MSEC_PER_SEC; 1602 /* Convert nsec to msec. */ 1603 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1604 1605 /* Convert to network byte order. */ 1606 return htonl(msecs); 1607 } 1608 EXPORT_SYMBOL(inet_current_timestamp); 1609 1610 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1611 { 1612 if (sk->sk_family == AF_INET) 1613 return ip_recv_error(sk, msg, len, addr_len); 1614 #if IS_ENABLED(CONFIG_IPV6) 1615 if (sk->sk_family == AF_INET6) 1616 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1617 #endif 1618 return -EINVAL; 1619 } 1620 1621 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1622 { 1623 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1624 const struct net_offload *ops; 1625 __be16 totlen = iph->tot_len; 1626 int proto = iph->protocol; 1627 int err = -ENOSYS; 1628 1629 if (skb->encapsulation) { 1630 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1631 skb_set_inner_network_header(skb, nhoff); 1632 } 1633 1634 iph_set_totlen(iph, skb->len - nhoff); 1635 csum_replace2(&iph->check, totlen, iph->tot_len); 1636 1637 ops = rcu_dereference(inet_offloads[proto]); 1638 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1639 goto out; 1640 1641 /* Only need to add sizeof(*iph) to get to the next hdr below 1642 * because any hdr with option will have been flushed in 1643 * inet_gro_receive(). 1644 */ 1645 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1646 tcp4_gro_complete, udp4_gro_complete, 1647 skb, nhoff + sizeof(*iph)); 1648 1649 out: 1650 return err; 1651 } 1652 1653 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1654 { 1655 skb->encapsulation = 1; 1656 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1657 return inet_gro_complete(skb, nhoff); 1658 } 1659 1660 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1661 unsigned short type, unsigned char protocol, 1662 struct net *net) 1663 { 1664 struct socket *sock; 1665 int rc = sock_create_kern(net, family, type, protocol, &sock); 1666 1667 if (rc == 0) { 1668 *sk = sock->sk; 1669 (*sk)->sk_allocation = GFP_ATOMIC; 1670 (*sk)->sk_use_task_frag = false; 1671 /* 1672 * Unhash it so that IP input processing does not even see it, 1673 * we do not wish this socket to see incoming packets. 1674 */ 1675 (*sk)->sk_prot->unhash(*sk); 1676 } 1677 return rc; 1678 } 1679 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1680 1681 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1682 { 1683 unsigned long res = 0; 1684 int i; 1685 1686 for_each_possible_cpu(i) 1687 res += snmp_get_cpu_field(mib, i, offt); 1688 return res; 1689 } 1690 EXPORT_SYMBOL_GPL(snmp_fold_field); 1691 1692 #if BITS_PER_LONG==32 1693 1694 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1695 size_t syncp_offset) 1696 { 1697 void *bhptr; 1698 struct u64_stats_sync *syncp; 1699 u64 v; 1700 unsigned int start; 1701 1702 bhptr = per_cpu_ptr(mib, cpu); 1703 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1704 do { 1705 start = u64_stats_fetch_begin(syncp); 1706 v = *(((u64 *)bhptr) + offt); 1707 } while (u64_stats_fetch_retry(syncp, start)); 1708 1709 return v; 1710 } 1711 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1712 1713 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1714 { 1715 u64 res = 0; 1716 int cpu; 1717 1718 for_each_possible_cpu(cpu) { 1719 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1720 } 1721 return res; 1722 } 1723 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1724 #endif 1725 1726 #ifdef CONFIG_IP_MULTICAST 1727 static const struct net_protocol igmp_protocol = { 1728 .handler = igmp_rcv, 1729 }; 1730 #endif 1731 1732 static const struct net_protocol tcp_protocol = { 1733 .handler = tcp_v4_rcv, 1734 .err_handler = tcp_v4_err, 1735 .no_policy = 1, 1736 .icmp_strict_tag_validation = 1, 1737 }; 1738 1739 static const struct net_protocol udp_protocol = { 1740 .handler = udp_rcv, 1741 .err_handler = udp_err, 1742 .no_policy = 1, 1743 }; 1744 1745 static const struct net_protocol icmp_protocol = { 1746 .handler = icmp_rcv, 1747 .err_handler = icmp_err, 1748 .no_policy = 1, 1749 }; 1750 1751 static __net_init int ipv4_mib_init_net(struct net *net) 1752 { 1753 int i; 1754 1755 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1756 if (!net->mib.tcp_statistics) 1757 goto err_tcp_mib; 1758 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1759 if (!net->mib.ip_statistics) 1760 goto err_ip_mib; 1761 1762 for_each_possible_cpu(i) { 1763 struct ipstats_mib *af_inet_stats; 1764 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1765 u64_stats_init(&af_inet_stats->syncp); 1766 } 1767 1768 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1769 if (!net->mib.net_statistics) 1770 goto err_net_mib; 1771 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1772 if (!net->mib.udp_statistics) 1773 goto err_udp_mib; 1774 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1775 if (!net->mib.udplite_statistics) 1776 goto err_udplite_mib; 1777 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1778 if (!net->mib.icmp_statistics) 1779 goto err_icmp_mib; 1780 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1781 GFP_KERNEL); 1782 if (!net->mib.icmpmsg_statistics) 1783 goto err_icmpmsg_mib; 1784 1785 tcp_mib_init(net); 1786 return 0; 1787 1788 err_icmpmsg_mib: 1789 free_percpu(net->mib.icmp_statistics); 1790 err_icmp_mib: 1791 free_percpu(net->mib.udplite_statistics); 1792 err_udplite_mib: 1793 free_percpu(net->mib.udp_statistics); 1794 err_udp_mib: 1795 free_percpu(net->mib.net_statistics); 1796 err_net_mib: 1797 free_percpu(net->mib.ip_statistics); 1798 err_ip_mib: 1799 free_percpu(net->mib.tcp_statistics); 1800 err_tcp_mib: 1801 return -ENOMEM; 1802 } 1803 1804 static __net_exit void ipv4_mib_exit_net(struct net *net) 1805 { 1806 kfree(net->mib.icmpmsg_statistics); 1807 free_percpu(net->mib.icmp_statistics); 1808 free_percpu(net->mib.udplite_statistics); 1809 free_percpu(net->mib.udp_statistics); 1810 free_percpu(net->mib.net_statistics); 1811 free_percpu(net->mib.ip_statistics); 1812 free_percpu(net->mib.tcp_statistics); 1813 #ifdef CONFIG_MPTCP 1814 /* allocated on demand, see mptcp_init_sock() */ 1815 free_percpu(net->mib.mptcp_statistics); 1816 #endif 1817 } 1818 1819 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1820 .init = ipv4_mib_init_net, 1821 .exit = ipv4_mib_exit_net, 1822 }; 1823 1824 static int __init init_ipv4_mibs(void) 1825 { 1826 return register_pernet_subsys(&ipv4_mib_ops); 1827 } 1828 1829 static __net_init int inet_init_net(struct net *net) 1830 { 1831 /* 1832 * Set defaults for local port range 1833 */ 1834 seqlock_init(&net->ipv4.ip_local_ports.lock); 1835 net->ipv4.ip_local_ports.range[0] = 32768; 1836 net->ipv4.ip_local_ports.range[1] = 60999; 1837 1838 seqlock_init(&net->ipv4.ping_group_range.lock); 1839 /* 1840 * Sane defaults - nobody may create ping sockets. 1841 * Boot scripts should set this to distro-specific group. 1842 */ 1843 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1844 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1845 1846 /* Default values for sysctl-controlled parameters. 1847 * We set them here, in case sysctl is not compiled. 1848 */ 1849 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1850 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1851 net->ipv4.sysctl_ip_dynaddr = 0; 1852 net->ipv4.sysctl_ip_early_demux = 1; 1853 net->ipv4.sysctl_udp_early_demux = 1; 1854 net->ipv4.sysctl_tcp_early_demux = 1; 1855 net->ipv4.sysctl_nexthop_compat_mode = 1; 1856 #ifdef CONFIG_SYSCTL 1857 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1858 #endif 1859 1860 /* Some igmp sysctl, whose values are always used */ 1861 net->ipv4.sysctl_igmp_max_memberships = 20; 1862 net->ipv4.sysctl_igmp_max_msf = 10; 1863 /* IGMP reports for link-local multicast groups are enabled by default */ 1864 net->ipv4.sysctl_igmp_llm_reports = 1; 1865 net->ipv4.sysctl_igmp_qrv = 2; 1866 1867 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1868 1869 return 0; 1870 } 1871 1872 static __net_initdata struct pernet_operations af_inet_ops = { 1873 .init = inet_init_net, 1874 }; 1875 1876 static int __init init_inet_pernet_ops(void) 1877 { 1878 return register_pernet_subsys(&af_inet_ops); 1879 } 1880 1881 static int ipv4_proc_init(void); 1882 1883 /* 1884 * IP protocol layer initialiser 1885 */ 1886 1887 static struct packet_offload ip_packet_offload __read_mostly = { 1888 .type = cpu_to_be16(ETH_P_IP), 1889 .callbacks = { 1890 .gso_segment = inet_gso_segment, 1891 .gro_receive = inet_gro_receive, 1892 .gro_complete = inet_gro_complete, 1893 }, 1894 }; 1895 1896 static const struct net_offload ipip_offload = { 1897 .callbacks = { 1898 .gso_segment = ipip_gso_segment, 1899 .gro_receive = ipip_gro_receive, 1900 .gro_complete = ipip_gro_complete, 1901 }, 1902 }; 1903 1904 static int __init ipip_offload_init(void) 1905 { 1906 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1907 } 1908 1909 static int __init ipv4_offload_init(void) 1910 { 1911 /* 1912 * Add offloads 1913 */ 1914 if (udpv4_offload_init() < 0) 1915 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1916 if (tcpv4_offload_init() < 0) 1917 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1918 if (ipip_offload_init() < 0) 1919 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1920 1921 dev_add_offload(&ip_packet_offload); 1922 return 0; 1923 } 1924 1925 fs_initcall(ipv4_offload_init); 1926 1927 static struct packet_type ip_packet_type __read_mostly = { 1928 .type = cpu_to_be16(ETH_P_IP), 1929 .func = ip_rcv, 1930 .list_func = ip_list_rcv, 1931 }; 1932 1933 static int __init inet_init(void) 1934 { 1935 struct inet_protosw *q; 1936 struct list_head *r; 1937 int rc; 1938 1939 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1940 1941 raw_hashinfo_init(&raw_v4_hashinfo); 1942 1943 rc = proto_register(&tcp_prot, 1); 1944 if (rc) 1945 goto out; 1946 1947 rc = proto_register(&udp_prot, 1); 1948 if (rc) 1949 goto out_unregister_tcp_proto; 1950 1951 rc = proto_register(&raw_prot, 1); 1952 if (rc) 1953 goto out_unregister_udp_proto; 1954 1955 rc = proto_register(&ping_prot, 1); 1956 if (rc) 1957 goto out_unregister_raw_proto; 1958 1959 /* 1960 * Tell SOCKET that we are alive... 1961 */ 1962 1963 (void)sock_register(&inet_family_ops); 1964 1965 #ifdef CONFIG_SYSCTL 1966 ip_static_sysctl_init(); 1967 #endif 1968 1969 /* 1970 * Add all the base protocols. 1971 */ 1972 1973 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1974 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1975 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1976 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1977 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1978 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1979 #ifdef CONFIG_IP_MULTICAST 1980 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1981 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1982 #endif 1983 1984 /* Register the socket-side information for inet_create. */ 1985 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1986 INIT_LIST_HEAD(r); 1987 1988 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1989 inet_register_protosw(q); 1990 1991 /* 1992 * Set the ARP module up 1993 */ 1994 1995 arp_init(); 1996 1997 /* 1998 * Set the IP module up 1999 */ 2000 2001 ip_init(); 2002 2003 /* Initialise per-cpu ipv4 mibs */ 2004 if (init_ipv4_mibs()) 2005 panic("%s: Cannot init ipv4 mibs\n", __func__); 2006 2007 /* Setup TCP slab cache for open requests. */ 2008 tcp_init(); 2009 2010 /* Setup UDP memory threshold */ 2011 udp_init(); 2012 2013 /* Add UDP-Lite (RFC 3828) */ 2014 udplite4_register(); 2015 2016 raw_init(); 2017 2018 ping_init(); 2019 2020 /* 2021 * Set the ICMP layer up 2022 */ 2023 2024 if (icmp_init() < 0) 2025 panic("Failed to create the ICMP control socket.\n"); 2026 2027 /* 2028 * Initialise the multicast router 2029 */ 2030 #if defined(CONFIG_IP_MROUTE) 2031 if (ip_mr_init()) 2032 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2033 #endif 2034 2035 if (init_inet_pernet_ops()) 2036 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2037 2038 ipv4_proc_init(); 2039 2040 ipfrag_init(); 2041 2042 dev_add_pack(&ip_packet_type); 2043 2044 ip_tunnel_core_init(); 2045 2046 rc = 0; 2047 out: 2048 return rc; 2049 out_unregister_raw_proto: 2050 proto_unregister(&raw_prot); 2051 out_unregister_udp_proto: 2052 proto_unregister(&udp_prot); 2053 out_unregister_tcp_proto: 2054 proto_unregister(&tcp_prot); 2055 goto out; 2056 } 2057 2058 fs_initcall(inet_init); 2059 2060 /* ------------------------------------------------------------------------ */ 2061 2062 #ifdef CONFIG_PROC_FS 2063 static int __init ipv4_proc_init(void) 2064 { 2065 int rc = 0; 2066 2067 if (raw_proc_init()) 2068 goto out_raw; 2069 if (tcp4_proc_init()) 2070 goto out_tcp; 2071 if (udp4_proc_init()) 2072 goto out_udp; 2073 if (ping_proc_init()) 2074 goto out_ping; 2075 if (ip_misc_proc_init()) 2076 goto out_misc; 2077 out: 2078 return rc; 2079 out_misc: 2080 ping_proc_exit(); 2081 out_ping: 2082 udp4_proc_exit(); 2083 out_udp: 2084 tcp4_proc_exit(); 2085 out_tcp: 2086 raw_proc_exit(); 2087 out_raw: 2088 rc = -ENOMEM; 2089 goto out; 2090 } 2091 2092 #else /* CONFIG_PROC_FS */ 2093 static int __init ipv4_proc_init(void) 2094 { 2095 return 0; 2096 } 2097 #endif /* CONFIG_PROC_FS */ 2098